
Records, variants and quali�ed types

Benedict R. Gaster

Technical report NOTTCS-TR-98-3

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy

July 1998

Contents

Abstract viii

Acknowledgements ix

1 Introduction 1

1.1 Types and type systems . 1

1.2 Quali�ed types . 2

1.3 Records and variants . 3

1.4 This dissertation . 4

1.5 Dissertation outline . 6

I Theory 10

2 Records and variants: an overview 11

2.1 Overview . 11

2.1.1 Basic operations . 12

2.2 Implementation details . 15

3 Extensible records and variants 19

3.1 Formal presentation . 19

3.1.1 Kinds . 20

3.1.2 Types and constructors . 20

i

CONTENTS ii

3.1.3 Predicates . 22

3.1.4 Typing rules . 24

3.2 Type Inference . 24

3.2.1 Uni�cation and insertion . 25

3.2.2 A type inference algorithm 27

3.3 Compilation . 29

3.3.1 Compilation by translation 29

3.4 Related work . 31

3.4.1 Subtyping . 37

3.4.2 Row extension . 38

3.4.3 Flags . 38

3.4.4 Predicates . 39

3.4.5 Kinds . 39

3.4.6 Constraints . 40

4 Specialization based semantics 41

4.1 Overview . 41

4.2 A system of quali�ed types . 44

4.2.1 Predicates . 44

4.2.2 Evidence . 45

4.2.3 OML . 46

4.3 Core-ML . 47

4.3.1 PML . 48

4.3.2 MML . 49

4.4 Specialization from OML to PML 51

4.5 Simply typed �-calculus . 55

4.5.1 T� . 55

4.5.2 Relationship between MML and T� 58

4.6 A semantics for PML and OML . 61

CONTENTS iii

4.6.1 Formal semantics . 61

4.7 Related work . 64

4.7.1 Milner and Damas core-ML semantics 64

4.7.2 Explicit core-ML . 65

4.7.3 Polymorphic types as sets 65

4.7.4 Type classes . 66

4.7.5 A second look at overloading 67

5 Categorical semantics 68

5.1 Overview . 68

5.2 A syntax directed OML . 70

5.2.1 Operational semantics for OML 70

5.3 A categorical semantics . 73

5.3.1 Categorical treatment of types 73

5.3.2 Categorical predicate systems 74

5.3.3 Categorical OML . 76

5.4 Towards a semantics for Haskell type classes 80

5.5 Related work . 83

5.5.1 A categorical model for core-ML 83

5.5.2 A categorical semantics for F! 84

5.5.3 A categorical semantics for type classes 85

II Pragmatics 86

6 A semantics for records and variants 87

6.1 A semantics for record and variant types 88

6.2 A semantics for lacks predicates . 89

6.3 A semantics for record and variant operations 91

6.4 Lacks predicates are enough . 93

CONTENTS iv

6.4.1 Types and semantics . 94

6.4.2 Translation from has to lacks 95

6.5 Record restriction|an example . 97

7 Rows, labels and casting 99

7.1 Row polymorphism . 99

7.1.1 Non-empty rows . 102

7.1.2 Uni�cation of non-empty rows 104

7.2 Labels . 107

7.2.1 Type checking Java byte code 109

7.2.2 Simple array bounds checking 112

7.3 Casting . 115

7.3.1 The ? predicate . 118

7.3.2 Casting operators . 119

8 Extensible records for Haskell 122

8.1 Overview . 123

8.2 Basic record operations . 125

8.3 Compilation issues . 127

8.4 Pragmatic issues . 128

8.4.1 Pattern matching . 128

8.4.2 Issues of Syntax . 129

8.4.3 Records and the Haskell class system 131

9 Conclusion and future work 134

9.1 Extensible data types . 134

9.2 Unchecked operations . 136

9.3 Parametricity for quali�ed types . 137

Bibliography 139

CONTENTS v

A Proofs 149

A.1 Proofs for Chapter 3 . 149

A.1.1 Lemma 3.1 . 149

A.1.2 Theorem 3.2 . 150

A.2 Proofs for Chapter 4 . 153

A.2.1 Proposition 4.3 . 153

A.2.2 Proposition 4.4 . 153

A.2.3 Theorem 4.15 . 154

A.2.4 Theorem 4.17 . 156

A.3 Proofs for Chapter 5 . 157

A.3.1 Proposition 5.1 . 157

A.3.2 Lemma 5.4 . 159

A.3.3 Lemma 5.7 . 161

A.3.4 Lemma 5.11 . 163

A.3.5 Theorem 5.12 . 163

A.4 Proofs for Chapter 6 . 166

A.4.1 Proposition 6.3 . 166

A.5 Proofs for Chapter 7 . 170

A.5.1 Theorem 7.1 . 170

A.6 Proofs for lemmas . 172

B Introduction to polynomial categories 181

Index 186

List of Figures

1.1 Dissertation outline. 7

3.1 Predicate entailment for rows. 23

3.2 Typing rules. 25

3.3 Kind-preserving uni�cation. 26

3.4 Kind-preserving insertion. 27

3.5 Type inference algorithm W. 28

3.6 Predicate entailment . 29

3.7 Typing rules for evidence insertion. 31

3.8 Type inference algorithm with translation. 32

3.9 Type systems for records and variants 33

4.1 Roadmap. 44

4.2 Predicate entailment with evidence. 46

4.3 Typing rules for OML. 48

4.4 OML equality. 49

4.5 PML and MML. 50

4.6 Specialization algorithm for OML. 53

4.7 Typing rules for T�. 56

4.8 Translation from MML to T�. 58

5.1 Syntax directed typing rules for OML. 71

5.2 Natural semantics for OML. 72

vi

LIST OF FIGURES vii

5.3 Categorical interpretation of predicate entailment. 75

5.4 Categorical semantics for OML|Part 1. 78

5.5 Categorical semantics for OML|Part 2. 79

6.1 Predicate entailment for rows with evidence. 91

6.2 Record and variant implementations. 92

6.3 Translation. 96

7.1 Rules for product and sums. 101

7.2 Implementations for generalized operators. 102

7.3 Predicate entailment for rows with evidence. 103

7.4 Additional rules for uni�cation. 106

7.5 Additional rules for insertion. 107

7.6 Academic hierarchy. 116

7.7 Predicate entailment for ? predicate. 119

8.1 Example algebraic hierarchy. 127

8.2 Proposed syntax for extensible records in Haskell. 131

8.3 Functions to \show" record values. 133

Abstract

Records and variants provide
exible ways to construct datatypes, but the restric-
tions imposed by type systems can prevent them from being used in
exible ways.
For example, typed languages often prohibit basic operations such as adding �elds
to a record, and may not allow access to individual components unless the type, and
hence the run-time representation of the record, is �xed at compile-time. These
limitations are often the result of concerns about e�ciency, or of the inability to
express accurately the types of key operations.

This dissertation studies type systems that remedy these problems, supporting
extensible records and variants, with a full complement of polymorphic operations
on each. The systems are based on the theory of quali�ed types, from which they
inherit a simple compilation method and e�ective type inference for the implicitly
typed versions.

Quali�ed types is a general theory for constrained polymorphism, whose semantics
(implicit) has previously been de�ned in terms of a translation into the second
order polymorphic �-calculus, supported by a statement of coherence. This dis-
sertation describes two alternative (explicit) semantics for quali�ed types. The
�rst describes the meaning of an overloaded expression via specialization, while
the second interprets expressions in polynomial categories.

viii

Acknowledgements

Many people have provided help during my time at the University of Nottingham,
in particular with the development of this dissertation. First and foremost I must
thank my supervisor Mark P. Jones, who far surpassed his position as supervisor
and mentor. Mark's interest in programming language research, without restrict-
ing his focus to a single point within the �eld, has provided me with a unique
opportunity, for which I will be forever grateful. Thanks are also due to all the
members of the Languages and Programming Group at the University of Notting-
ham; our lunch time discussions will be sorely missed. Particular thanks must go
to Graham Hutton, who introduced me to category theory|a subject I shall never
be without|and to Colin Taylor, who started in the same o�ce, as myself, on
the same day. Thanks are also due to Paul Blampied, Tony Danniels, and Claus
Reinke who have provided useful discussions on category theory and problems with
understanding LATEX. Particular thanks should go to my examiners, Simon Peyton
Jones and Graham Hutton, who provided many useful comments and suggestions
about this work, which helped to make it better as a result.

This work would not have been possible without the support of my family and
friends. In particular, my mother and father have provided �nancial support,
which has enabled me to travel to workshops and conferences around the world.
My close friends|you know who you are|have provided a place to escape when
it sometimes got too much!

This work was supported in part by an EPSRC studentship 9530 6293. Finally,
the commutative diagrams were produced using Paul Taylor's macros [Tay90].

ix

Chapter 1

Introduction

1.1 Types and type systems

In most programming languages, a system of types is used to distinguish between
di�erent types of values. Types are \checked" in some way, either statically (during
program compilation) or dynamically (during program execution). In compile-time
type checking, the system ensures that each sub-expression of a program de�nes an
element of a speci�c type. This may be speci�ed explicitly as part of the program
text (function parameters in C [KR88], for example), or inferred implicitly from
the way the program syntax is used.

The following properties are some of the advantages of checking type correctness
statically:

� The static detection of errors. A program that tries to add an integer to
a string, can be detected, and rejected, by a compile-time type checker be-
fore the program is executed. Thus compile-time type checking provides an
analysis for reducing the number of possible errors that can occur during
program execution.

� The validity of optimizations. Consider a data structure such as a record
whose layout (and therefore selection function) depends on the type of �elds
it contains. If the type and, therefore, the size of the �elds are known at
compile-time, then pointer arithmetic can be used to compile a more e�cient
selection function.

1

CHAPTER 1. INTRODUCTION 2

� Documentation. It is generally considered good programming practice to
document a function de�nition with its corresponding type. For example, it
is often the case that each top level de�nition in a Haskell[PH97] program
will be supplied with a suitable type. In the case of explicitly type languages
(e.g., Java [AG96]) the programmer must supply a type for each �eld and
method within a class de�nition.

For the work in this dissertation we will, in general, be concerned with programs
that can be checked statically for type correctness. We shall pay particular atten-
tion to two di�erent kinds of polymorphism, noted by Strachey [Str67], suited to
programming. The �rst, parametric polymorphism, captures the fact that certain
values behave independently of type|a function, for example, to reverse a list is
unconcerned with the type of elements contained within that list. The second,
or constrained polymorphism, captures the notion of overloading. For example,
an equality operator (==) is often de�ned for more than one type. Furthermore,
we shall often consider general algorithms, similar in spirit to those described by
Damas and Milner [Mil78, DM82, Dam85], for inferring the types of implicitly
typed expressions.

1.2 Quali�ed types

Quali�ed types, as described by Jones [Jon92b, Jon94b], is a general theory of
constrained polymorphism, and comes with a natural generalization of Damas
and Milner style type inference [Mil78, Dam85]. For example, a partial ordering
operator v can be assigned the type

v: 8�:PartialOrd �) �! �! Bool ;

where the predicate PartialOrd � constrains the instantiation of � to types with
a partial ordering.

To de�ne the semantics of quali�ed types, Jones provides a translation for over-
loaded terms into a variant of the second order polymorphic lambda calculus
[Gir72, Rey74], which is an explicitly typed lambda calculus with type abstrac-
tion. Unfortunately, the mathematical structures required to model expressions
of the polymorphic lambda calculus are often more complicated than required to
understand applications involving quali�ed types, and consequently are too strong

CHAPTER 1. INTRODUCTION 3

a requirement. Furthermore, to prove correctness of speci�c applications, of qual-
i�ed types, one must be able to show correctness of overloaded operators within
the models of the polymorphic lambda calculus. This is often a very di�cult task.

1.3 Records and variants

Products and sums play fundamental roles in the construction of datatypes|
products describe grouping of data items, while sums express choices between
alternatives. For example, we might represent a date as a product, with three
integer components specifying the day, month, and year

Date = Int � Int � Int :

For a simple example of a sum, consider the type of input events to a window
system, with one alternative indicating that a character has been entered on the
keyboard, and another indicating a mouse click at a particular point on the screen

Event = Char + Point :

These de�nitions are adequate, but they are not particularly easy to work with in
practice. For example, it is easy to confuse datatype components when they are
accessed by their position within a product or sum, and programs written in this
way can be hard to modify and extend.

To avoid these problems, many programming languages allow the components of
products, and the alternatives of sums, to be identi�ed using names drawn from
some given set of labels. Labelled products are more commonly known as records or
structs, while labelled sums are better known as variants or unions. For example,
the Date and Event datatypes described above might be de�ned more attractively
as

Date = Rec fjday :Int ; month:Int ; year :Int jg
Event = Var fjkey :Char ; mouse:Point jg:

This notation captures a common feature in the construction of record and variant
types, using rows of the form fjl1:�1; : : : ; ln :�n jg to describe mappings that associate
a type �i with each of the (distinct) labels li . Record types are obtained by pre-
ceding rows with the symbol Rec. Variant types are constructed using Var . For
example, if r = fjl1:�1; : : : ; ln :�n jg and e1,. . . ,en have types �1,. . . ,�n , respectively,
then we can form a record (l1 = e1; : : : ; ln = en) of type Rec r , or distinct variants,

CHAPTER 1. INTRODUCTION 4

hl1 = e1i; : : : ; hln = eni, each of type Var r . Thus, (day = 17;month = 1; year =
1942) and hkey = 0a 0i represent values of type Date and Event , respectively.

Unfortunately, practical languages are often less
exible in the operations that they
provide to manipulate records and variants. For example, many languages|from
C to Standard ML (SML) [MTH90, MTH97]|will only allow the programmer to
select the l component, r :l , from a record r if the type of r is uniquely deter-
mined at compile-time1. These languages do not support polymorphic operations
on records|such as a general selector function (:l) that will extract a value from
any record that has an l �eld. A further weakness in many of these languages is
that they provide no real support for extensibility; there are no general operators
for adding a �eld, removing a �eld, renaming a �eld, or replacing a �eld (possibly
with a value of a di�erent type) in a record value.

1.4 This dissertation

This dissertation addresses both the theoretical and practical issues of type systems
for records and variants. A complete formal foundation for the di�erent systems
is developed, while also considering more pratical concerns, such as the problems
of making the types and operations �t in to existing general purpose functional
programming languages.

The major contributions of this dissertation are

Core type system: The type system described in Chapter 3 supports

� extensible records and variants;

� a full complement of polymorphic operations;

� e�ective type inference; and

� simple e�cient implementation.

The system of records and variants, and its extensions, described in this disser-
tation combines many of the ideas that have been used in previous work into a

1In implementations using boxed representations for values, only the set of labels in r is
needed; the actual component types are not required.

CHAPTER 1. INTRODUCTION 5

practical type system for implicitly typed languages like SML and Haskell. In
particular, it supports polymorphism and extensibility, records and variants, type
inference, and compilation. The type system is an application of quali�ed types,
extended to deal with a general concept of rows. Positive information about the
�elds in a given row (i.e., which labels are used) is captured in the type language
using row extension, while negative information (i.e., which labels are not used) is
re
ected by the use of predicates.

The most obvious bene�t of this approach is that we can adapt results and prop-
erties from the general framework of quali�ed types|such as a type inference
algorithm and a compilation method|without having to go back to �rst princi-
ples. The result is a considerable simpli�cation of both the overall presentation
and of speci�c proofs. Another important advantage of this approach is that it
guarantees compatibility with other applications of quali�ed types. For example,
our type system can be used|and indeed, has already been used in our prototype
implementation|in conjunction with the type class mechanisms of Haskell.

Although these ideas are not new in themselves, having been studied previously
by a wide selection of di�erent authors, we are the �rst to propose a single system
combining these features. For example, R�emy [R�em94a] describes a very expressive
set of record and variant operations but does not provide a simple and e�cient
method for compilation, while Ohori [Oho95] provided a simple implementation
but lacks support for extensibility.

Formal semantics: To provide a formal semantics for our system of records and
variants, and more generally to provide a formal foundations for quali�ed types,
this dissertation (Chapters 4 and 5) develops two alternative semantics for quali�ed
types, supporting a statement of soundness.

Inspired by early work of Wadler and Blott [WB89], the �rst semantics translates
away overloaded expressions, providing a platform for reasoning about quali�ed
types with respect to any model of the simply typed lambda calculus. The sec-
ond takes a more direct categorical approach, interpreting constrained and non-
constrained types within distinct categories. Unlike the models for Jones' trans-
lation into the polymorphic lambda calculus, the alternative semantics de�ned
in this dissertation do not depend on the di�cult, sometimes counter-intuitive,
mathematical structures that are needed to model type abstraction.

Although our proposed systems are based on the general theory of quali�ed types,
it was not clear that the original semantics described by Jones [Jon94b] was enough

CHAPTER 1. INTRODUCTION 6

(in fact it would have required extensions). To this end we have developed two
alternative semantics for quali�ed types. These provide general frameworks for
reasoning syntactically or semantically about applications of quali�ed types and
are not restricted simply to records and variants. As an example, we used these
results to describe a simple categorical semantics for Haskell style type classes.

Extensions: Chapter 7 goes further than previous approaches, introducing the
following extensions to our original proposal

� row polymorphism;

� �rst-class labels; and

� casting.

To our knowledge it is the �rst time that these ideas have been proposed in the
presence of type inference. In fact we are, to our knowledge, the �rst to propose
�rst-class labels in any form, while row polymorphism was discussed in an explic-
itly typed setting by Pierce and Turner [PT94]. Chapter 7 also proposes support
for a casting operator for extensible records, corresponding closely to functional-
ity supported by a wide selection of object-oriented languages. Although similar
operators have been studied by other authors (see Abadi and Cardelli [AC96], for
example) we are, to our knowledge, the �rst to study such an operator in the
presence of type inference.

Concrete proposal: A �nal, but important contribution of this dissertation
is the proposal for extending the functional programming language Haskell with
extensible records (Chapter refchapter-haskell). We believe, this proposal shows
that, although our work is generally theoretically based, it also has practical and
worthwhile applications.

1.5 Dissertation outline

The dissertation is separated into two parts; the �rst is concerned with theoretical
issues, while the second considers practical aspects of the ideas developed in part
one. To help the reader understand the structure of the dissertation Figure 1.1

CHAPTER 1. INTRODUCTION 7

Records and variants:
an overview

Chapter: 4

Chapter: 6

Extensible records and
variants

Specialization based
semantics

Categorical semantics

A semantics for records
and variants

Rows, labels, and casting

Extensible records for
Haskell

 Qualified types

Part II: Pragmatics

Chapter: 2

Chapter: 3

Chapter: 5

Chapter: 7

Chapter: 8

Part I: Theory

Figure 1.1: Dissertation outline.

provides a pictorial view of the chapters contained within the di�erent parts, and
the relationships between them. The bubble, denoted quali�ed types, is not a
chapter, but a conceptual point indicating how the general theory of quali�ed types
is incorporated into our work. Although there is no separate chapter on quali�ed
types, Chapters 3, 4, and 5 describe alternative syntactic presentations of the
general theory, while Chapters 4 and 5 also provide alternative formal foundations
for quali�ed types.

We conclude this introduction by summarizing the remaining chapters.

� Chapter 2 focuses on datatypes, paying particular attention to their construc-
tion using sums (variants) and products (records). An informal overview of
our proposal for extensible records and variants is given. A number of basic
operations are considered, themselves natural generalizations of operations

CHAPTER 1. INTRODUCTION 8

in category theory (see Maclane [Lan72], for example) and logic (see Hami-
ton [Ham88], for example).

� Chapter 3 provides a formal presentation of our type system for extensible
records and variants, based on the general theory of quali�ed types. To
encourage the practical use of our system, this chapter presents general al-
gorithms for type inference and record and variant compilation.

� Chapter 4 provides a specialization based semantics for quali�ed types. A
translation is described into the simply typed lambda calculus [Chu40], pro-
viding a platform for proving equational soundness for quali�ed types.

� Chapter 5 introduces an alternative semantics for quali�ed types, based on
polynomial categories. A semantics for Haskell style type classes is outlined
as an example application of the categorical semantics.

� Chapter 6 makes use of the specialization semantics for quali�ed types to pro-
vide a semantics, combined with a statement of soundness, for our system
of record and variants. To further support our choice of types for the primi-
tive record and variant operations, the semantics is used to show that other
reasonable types for the basic operations have the same semantic meaning.

� Chapter 7 considers extensions to our original system of records and vari-
ants. In particular, a notion of row polymorphism is discussed, allowing the
introduction of an extensible �rst-class case construct, �rst-class labels, and
an operator to test for �eld membership.

� Chapter 8 presents an alternative proposal for records in Haskell, based upon
ideas from previous chapters. An informal presentation of extensible records
in Haskell is considered, paying particular attention to pragmatic issues (e.g.,
syntax), which must be considered in the case of a new language feature.

� Chapter 9 provides concluding remarks combined with a summary of contri-
butions and considers a selection of ideas for further work.

� Appendix A provides detailed descriptions of results stated, but not proved
in the main body of the report. We have tried to keep the dissertation as
coherent as possible and often found that including a proof in the main text
interrupted the
ow. To this end, the reader will �nd that most proofs appear
outside of the main text. However, in some cases, such as to introduce a new
technique or notation, proofs are included in the main body.

CHAPTER 1. INTRODUCTION 9

� Appendix B introduces some important categorical concepts, which are used
in Chapters 4 and 5. In particular, we describe the concepts of cartesian
closure and polynomial extension.

Part I

Theory

10

Chapter 2

Records and variants: an

overview

This chapter outlines, informally, the set of basic operations for records and vari-
ants, and considers details of implementation. The sections of this chapter are as
follows. Section 2.1 provides a general overview, including examples, of the oper-
ations we expect over records and variants. Section 2.2 describes compilation and
runtime related issues for records and variants.

2.1 Overview

Both record and variant types are de�ned in terms of rows, and these are con-
structed by extension, starting from the empty row, fjjg. For example, the Date
and Event types of the previous chapter are expressed as

Date = Rec fjday : Int jfjmonth : Int jfjyear : Int jfjjgjgjgjg
Event = Var fjkey : Char jfjmouse : Point jfjjgjgjg:

It is convenient to introduce abbreviations for rows obtained in this way

fjl1:�1; : : : ; ln :�n jr jg = fjl1:�1 j : : : fjln :�n jr jg : : : jg
fjl1:�1; : : : ; ln :�n jg = fjl1:�1; : : : ; ln :�n jfjjgjg:

Note, however, that we treat rows, and hence record or variant types, as equal if
they include the same �elds, regardless of the order in which those �elds are listed.

11

CHAPTER 2. RECORDS AND VARIANTS: AN OVERVIEW 12

Thus, although it is standard in Europe to display the day �eld before the month,
while in America the reverse is true, the following records types are considered
equal

Rec fjday : Int ;month : Int ; year : Int jg =
Rec fjmonth : Int ; day : Int ; year : Int jg:

2.1.1 Basic operations

Intuitively, a record of type Rec fjl : � j r jg is like a pair whose �rst component is
a value of type �, and whose second component is a record of type Rec r . This
motivates our choice of basic operations on records, which correspond directly to
the two projections and the pairing constructor for products in category theory or
logic. For example, the operation to extract a value of type � for a �eld l can be
assigned the type

(:l) : Rec fjl : � jr jg ! �;

corresponding to the �rst projection. There is in fact a family of record selection
operators, one for each possible choice of � and r . This notion is captured by
universally quantifying over � and r , re
ected in the following type for selection

(:l) : 8�:8r :Rec fjl : � jr jg ! �:

There is, however, one complication; we do not allow repeated uses of any label
within a particular row, so the expression fjl : � j r jg is only valid if l does not
appear in r . This is re
ected by pre�xing the type for record selection with a
predicate (rnl), pronounced \r lacks l", that restricts instantiation of r to rows
without an l �eld. Thus, the �nal type for record selection is

(:l) : 8�:8r :(rnl)) Rec fjl : � jr jg ! �:

The types of the remaining primitive records operations, restriction and extension,
are constructed in a similar fashion

� Restriction: to remove a �eld labelled l

(� l) : 8�:8r :(rnl)) Rec fjl : � jr jg ! Rec r :

� Extension: to add a �eld l to an existing record

(l = j) : 8�:8r :(rnl)) �! Rec r ! Rec fjl : � jr jg:

CHAPTER 2. RECORDS AND VARIANTS: AN OVERVIEW 13

We can use these basic operations to implement a number of additional operators,
including

� Update/replace: to update the value in a particular �eld, possibly with a
value of a di�erent type

(l := j) : 8�:8�:8r :(rnl)) �! Rec fjl : � jr jg ! Rec fjl : � jr jg
(l := x jr) = (l = x jr � l)

� Renaming: to change the label attached to a particular �eld

[l m] : 8�:8r :(rnl ; rnm)) Rec fjl : � jr jg ! Rec fjm : � jr jg
r [l m] = (m = r :l jr � l)

The empty record, (), plays an important role as the only proper value of type
Rec fjjg. Again, it is convenient to introduce abbreviations for the construction of
record values by repeated extension

(l1=e1; : : : ; ln=en jr) = (l1=e1 j : : : (ln=en jr) : : :)
(l1=e1; : : : ; ln=en) = (l1=e1; : : : ; ln=en j()):

Intuitively, a variant of type Varfjl : � jr jg is either a value of type � tagged with
the label l , or is a value of type Var r . We can specify the basic operations on
variants in a similar way. Again, they correspond closely to the standard operations
on sums in category theory or logic

� Injection: to tag a value with the label l

hl = i : 8�:8r :(rnl)) �! Var fjl : � jr jg:

� Embedding: to embed a value in a variant type that also allows for a new
label, l

hl j i : 8�:8r :(rnl)) Var r ! Var fjl : � jr jg:

� Decomposition: to act on the value in a variant, according to whether or not
it is labelled with l

(l 2 ? :) : 8�:8�:8r :(rnl)) Var fjl : � jr jg ! (�! �)
! (Var r ! �)! �:

CHAPTER 2. RECORDS AND VARIANTS: AN OVERVIEW 14

The empty variant, hi, is the only proper value of type Var fjjg.

More sophisticated language constructs, for example, pattern matching facilities, or
record update, are easily described using the operations listed here. As an example,
consider a function that returns true if a mouse click has been performed, and false
otherwise, which might implemented as

mouseClick? : Varfjmouse : Point ; key : Char jg ! Bool
mouseClick? hmouse = i = True
mouseClick? = False:

Intuitively, an expression of the form (mouseClick? E) is evaluated from top to
bottom, �rst testing if the corresponding summand is labelled mouse and resulting
in the value True, otherwise the next equation is tried. This de�nition can easily
be translated into one de�ned completely in terms of variant primitives

mouseClick? : Varfjmouse : Point ; key : Char jg ! Bool
mouseClick? v = mouse 2 v?(�x :True) : (�y :False):

More generally we can explain the semantics of pattern matching over variants
using a translation of the form

�hl = pi:e = �v :l 2 v?(�x ! case x of
p ! E
! ?) : ?;

where ? is an unde�ned expression of the appropriate type|capturing the pos-
sibility that a pattern match may fail. Note, this translation di�ers slightly from
that applied to the function mouseClick?. The problem is that it is not possible,
in general, to calculate the complete set of labels for any given variant at compile
time, and thus, determine if a pattern match is total. Consequently, the general
translation must cater for the possibility of failure and is the reason for the in-
troduction of the value ?. However, if the compiler can determine that a pattern
match will not fail then this case can be eliminted statically. Chapter 8 describes
an analogous translation for record patterns.

In addition, we expect that practical implementations will use, but not display
predicates implied by the context in which they appear. For example, all of the
types given above for the record and variant primitives include a row fjl : � j r jg
that is only valid if rnl ; so displaying this predicate is, in some sense, redundant.
However, as we will see in the next section, this predicate plays a central role in
the implementation of the basic operations.

CHAPTER 2. RECORDS AND VARIANTS: AN OVERVIEW 15

2.2 Implementation details

Our next task is to explain how the data structures and operations described above
can be implemented. We will focus on the treatment of records and, in particular,
the implementation of extension, (l = j), which is one of the most frequently used
basic operations. A naive approach would be to represent a record by an association
list, pairing labels with values. This would allow simple implementations for each
of the basic operations, with the type system providing a guarantee that the search
for any given labelled �eld would not fail. A major disadvantage is that it does
not allow constant time access to record components.

To avoid these problems, we will assume instead that a record value is represented
by a contiguous block of memory that contains a value for each individual �eld.
To extend a particular record r with a �eld l , we need to know the o�set where the
l �eld can be inserted in the block of memory representing r . Languages without
polymorphic extension will usually only allow an expression of the form (l = e jr)
if the o�set value, and hence the structure or even the full type of r , is known at
compile-time. For example, the record (year = 1942, day = 17, month = 1) might
be represented as the block of memory

17 1 1942

Notice that to inforce a canonical representation of records in memory we have
assumed the ordering day < month < year on labels. In general, we shall require
that any given set of labels, L, is supplied with a total ordering, <.

However, it is not actually necessary to know the position of every �eld at compile-
time; instead, we can treat unknown o�sets as implicit parameters whose values
will be supplied at run-time when the full types of the records concerned are known.
This is essentially the compilationmethod that was used by Ohori [Oho95], and also
suggested, independently, by Jones [Jon94b]. If we forget about typing issues for a
moment and assume that records are implemented as vectors, then the extension
operator, (l = v j r), can be implemented by a function �i :pext i v r , using the
extra parameter i to supply the o�set at which the value v is to be inserted into
the record r . Here the function pext is a primitive operation on arrays, which given
an o�set i , an expression E , and an array r inserts E into r at o�set i . As an
example, the expression

(�r :(month = 1 jr)) (day = 17; year = 1942);

CHAPTER 2. RECORDS AND VARIANTS: AN OVERVIEW 16

can be implemented by compiling it to

(�i :�v :�r :pext i v r) 1 1 (17 1942):

Here the natural number 1 represents the o�set into the vector (17 1) at which
to insert the component 1. The resulting expression, pext 1 1 (17 1942), can be
implemented by simple copying procedures, allowing the correct insertion of the
value 1.

This process is captured diagrammatically by the following diagram:

17 1942

�	 @R
17 1 1942

Note that all �elds with labels considered less than the label being inserted, remain
in the same position in the array, while all �elds following the inserted �eld are
shifted up one position. Record restriction can be implemented in a similar fashion,
where, instead of larger �eld labels being shifted up one position, they are shifted
down one.

As with the compilation of extension, record selection, (:l), can be implemented
by a function �i :�r :r [i]1, using the extra parameter i to supply the o�set of l in
r . For example, the expression (day = 17;month = 1; year = 1942):day ; can be
implemented by compiling it to

(�i :�r :r [i]) 0 (17 1 1942):

which evaluates to 17, as expected. Again this can be pictured diagrammatically
as

17 1 1942

?
17

1As a notational convenience we adapt standard vector notation, by representing indexing
through the concatenation of the expression [i], where i is the corresponding index, to an arbitrary
vector expression.

CHAPTER 2. RECORDS AND VARIANTS: AN OVERVIEW 17

Of course, there are run-time overheads in calculating and passing o�set values
as extra parameters. However, an attractive feature of our system is that these
costs are only incurred when the extra
exibility is required. This point can be
highlighted by observing that, if the shape of a record or variant is completely
determined at compile time (indicated by its type), then evidence for any given
label will be constant. Consequently, we can use standard compiler optimizations
to eliminate corresponding �-redexes. For example, consider selecting the �eld
labelled plus from the expression (id = 0; plus = plusInt); which has type Recfjid :
Int ; plus : Int ! Int ! Int jg. The resulting expression can be implemented by
compiling it to

(�i :�r :r [i]) 1 (0 plusInt);

with the constant 1 being supplied to the abstraction �i to indicate the o�set for
plus. Thus, a compiler can simply perform two �-reductions to obtain the following
inlined array selection

(0 plusInt)[1]:

Of course, we could further reduce this expression to plusInt , however, in general,
this will not be possible, while it will always be the case that constant o�set �-
redexs can be eliminated at compile time. The idea of �-redex elimination, for
overloaded values, is in fact a simple form of partial evaluation, applying not only
to the compilation of records and variants but, in general, to any application of
quali�ed types. Chapter 4 describes a general algorithm, called specialization,
for overloading elimination, which provides the basis for de�ning a semantics for
quali�ed types that provide a foundation for describing sound rules for constant
elimination.

Each predicate (rnl) in the type of a function signals the need for an extra run-time
parameter to specify the o�set at which a �eld labelled l would be inserted into
a record of type Rec r . Obviously, the same o�set can also be used to locate or
remove the l �eld from a record of type Rec fjl : � jr jg, or treated as ordinal numbers
to access and tag values in a variant. So, this one extra piece of information is all
that we need to implement the basic operations.

Operations like record extension and restriction will, in general, be implemented by
copying. Optimizations can be used to combine multiple extensions or restrictions
of records, avoiding unnecessary allocation and initialization of intermediate values.
For example, a compiler can generate code that will allocate and initialize the
storage for a record (x = 1; y = 2; z = 3) in a single step, rather than a sequence of
three individual allocations and extensions as a naive interpretation might suggest.

CHAPTER 2. RECORDS AND VARIANTS: AN OVERVIEW 18

The typechecker gathers and simpli�es the predicates generated by each use of an
operator on records or variants. For example, if today is a value of type Date, then
an expression like today :month will generate a single constraint, fjday : Int ; year :
Int jgnmonth. Predicates like this, involving rows whose structure is known at
compile-time, are easily discharged by calculating the appropriate o�set value.
Obviously, a compiler can use this information to produce e�cient code by inlining
and specializing the selector function, (:month).

Predicates that are not discharged within a section of code will, instead, be re
ected
in the type assigned to it. For example, there is nothing in the following de�nition
to indicate the full type of d

newYear d = d :day = 1 ^ d :month = 1;

so the inferred type will be

(rnday ; rnmonth)) Rec fjday : Int ; month : Int jr jg ! Bool :

We would not expect this de�nition to have been accepted at all by a compiler
for SML which requires the set of labels in a record to be uniquely determined by
`program context'. But the meaning of this phrase is de�ned only loosely by an
informal note in the de�nition of SML [MTH90, MTH97]. Now, with the ideas used
in this chapter, there is a way to make this precise: a de�nition is only acceptable
in SML if the inferred type does not contain any predicates. For programs written
with these restrictions, a language based on our type system should o�er the same
levels of performance as SML.

It is possible that our more general treatment of record operations could result in
compiled programs that are littered with unwanted o�set parameters. However,
experience with our prototype implementations have so far provided no evidence
that is in fact the case. As discussed above, simple compiler optimizations (e.g.,
constant folding) can be used to eliminate o�sets known at compile time. Fur-
thermore, there are simple steps that can be taken to avoid such problems. For
example, a compiler might reject any de�nition with an inferred type containing
predicates, unless an explicit type signature has been given to signal the program-
mer's acceptance. This is closely related to the monomorphism restriction in
Haskell [PH97] and to the value restriction in SML [Wri95, Ler93, MTH97].

Chapter 3

Extensible records and variants

In the previous chapter, we introduced, informally, a system of extensible records
and variants. This chapter presents a formal development of that system.

The sections of this chapter are as follows. Section 3.1 provides a formal presenta-
tion of our new type system for extensible records and variants. This is followed
by discussions of type inference in Section 3.2 and of compilation in Section 3.3.
Finally, Section 3.4 describes related work.

An earlier version of this chapter has previously been distributed in the form of a
technical report [GJ96].

3.1 Formal presentation

This section provides a formal presentation of our type system, based on two
particular ingredients

� The theory of quali�ed types [Jon94b], which provides a general framework
for describing constrained polymorphism and overloading. In the current
application, we use constraints to capture assumptions about the occurrences
of labels within rows.

� A higher-order version of the Hindley-Milner type system [Hin69, Mil78,
DM82], originally introduced in the study of constructor classes [Jon95c].
Among other things, this provides a simple way to introduce the new con-
structs for rows, records, and variants without the need for special, ad-hoc

19

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 20

syntax.

We split the presentation into sections on kinds (Section 3.1.1), types and construc-
tors (Section 3.1.2), predicates (Section 3.1.3), and typing rules (Section 3.1.4).

3.1.1 Kinds

One of the most important aspects of the work described here is the use of a kind
system to distinguish between di�erent kinds of type constructor. Formally, the
set of kinds is speci�ed by the following grammar

� ::= � the kind of all types
j row the kind of all rows
j �1 ! �2 function kinds.

Intuitively, the kind �1 ! �2 represents constructors that take something of kind
�1 and return something of kind �2. The row kind is new to the system presented
here and was not part of the type system used in the development of constructor
classes.

3.1.2 Types and constructors

For each kind �, we have a collection of constructors C � (including variables ��)
of kind �

C � ::= �� constants
j �� variables
j C �0!�C �0

applications
� ::= C � types

The usual collection of types, represented here by the symbol � , is just the set of
constructors of kind �. We assume given a countable set of labels, hhhhL;<iiii, including
a total ordering, <: L � L ! B , on labels. For the purposes of this dissertation,
we assume that the set of constant constructors includes at least the following,

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 21

writing �:� to indicate the kind � associated with each constant �:

! : � ! � ! � function space;

fjjg : row empty row;

fjl : j jg : � ! row ! row extension, for each l 2 L;

Rec : row ! � record construction; and

Var : row ! � variant construction.

For example:

� The result of applying the function space constructor ! to two types � and
� 0 is the type of functions from � to � 0, and is written as � ! � 0 in more
conventional notation. As usual the constructor ! is assumed to associate
to the right. That is, for example, the kind � ! � ! � means � ! (� ! �)
rather than (� ! �)! �.

� The result of applying the Rec constant to the empty row fjjg of kind row is
the type Rec fjjg of kind �.

� The result of applying an extension constructor fjl : j jg to a type � and a
row r is a row, usually written as fjl :� j r jg, obtained by extending r with a
�eld labelled l of type � . Note that we include an extension constructor for
each di�erent label l . To avoid problems later, we will also need to prohibit
partial application of extension constructors.

The kind system is used to ensure that type expressions are well-formed. While it
is sometimes convenient to annotate individual constructors with their kinds, there
is no need in practice for a programmer to supply these annotations. Instead, they
can be calculated automatically using a simple kind inference process [Jon95c].

We consider two rows to be equivalent if they include the same �elds, regardless
of the order in which they are listed. This is described formally by the equation

fjl :�; l 0:� 0 jr jg = fjl 0:� 0; l :� jr jg;

and extends in the obvious way to an equality on arbitrary constructors.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 22

For the purposes of later sections, we de�ne a membership relation, (l : �)2r , to
describe when a particular �eld (l : �) appears in a row r

(inV ar) (l : �)2fjl : � jr jg

(inRow)
(l : �)2r l 6= l 0

(l : �)2fjl 0 : � 0 jr jg

and a restriction operation, r� l , that returns the row obtained from r by deleting
the �eld labelled l

fjl : � jr jg � l = r
fjl 0 : � jr jg � l = fjl 0 : � jr � l jg:

It is easy to prove that these operations are well-de�ned with respect to the equality
on constructors, and to con�rm these intuitions we have the following lemma.

Lemma 3.1 If (l : �)2r , then r = fjl : � jr � l jg.

A proof of this result is given in Section A.1.1 of Appendix A.

3.1.3 Predicates

The syntax for rows allows examples like fjl : �; l : � 0jg where a single label appears
in more than one �eld. Such an example is not appropriate for our work with
records or variants, in which we allow at most one �eld with any given label.
Clearly, some additional mechanisms are needed to enable us to specify that a
type of the form Rec fjl : � j r jg, for example, is only valid if the row r does not
contain a �eld labelled with l .

One way to achieve this is to use a more sophisticated kind system, with sets of
labels, L, as kinds instead of the single row kind. For example, rows with �eld
labels l1,. . . ln can be represented by the kind L = fl1; : : : ; lng. This is essentially
the approach adopted by Ohori [Oho95]. Unfortunately, this becomes much more
complicated if we try to extend it to deal with extensible rows. In particular, we
would need to assign whole families of kinds, indexed by label sets, L, to some of
the constructor constants introduced in the previous section

fjl : j jg :: � ! L! (L [flg) l 62 L
Rec; Var :: L! �

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 23

The alternative that we adopt in this dissertation is based on the theory of quali�ed
types [Jon94b], using predicates to capture any side conditions that are required to
ensure that a given type expression is valid. In fact, only a single form of predicate
is needed for this purpose

� ::= C rownl

Intuitively, the predicate rnl can be read as an assertion that the row r does not
contain an l �eld. More precisely, we explain the meaning of predicates using the
entailment relation de�ned in Figure 3.1.

P [f�g `̀ �
P `̀ rnl l 6= l 0

P `̀ fjl 0 : � jr jgnl
P `̀ fjjgnl

Figure 3.1: Predicate entailment for rows.

A derivation of P `̀ � from these rules can be understood as a proof that,
if all of the predicates in the set P hold, then so does �. As an example of
predicate entailment consider extending records r : Rec fjx : Int ; y : Int jg and
r 0 : Rec fjx : Int ; y : Int ; colour : Colour jg with a �eld colour : Colour . Upon
application of the extension operation the predicates fjx : Int ; y : Int jgncolour and
fjcolour : Colour ; x : Int ; y : Int jgncolour are introduced and must be provable un-
der predicate entailment. The following derivation shows that it is straightforward
to justify the extension with a �eld not already present:

; `̀ fjjgncolour y 6= colour

; `̀ fjy : Int jfjjgjgncolour x 6= colour

; `̀ fjx : Int jfjy : Int jfjjgjgjgncolour :

However, suppose we try to construct a derivation asserting

; `̀ fjcolour : Colour ; x : Int ; y : Int jgncolour :

It is clear that although it is possible to give a proof for ; `̀ fjx : Int ; y :
Int jgncolour (the previous derivation, for example), the remaining hypothesis colour 6=
colour is, in general, not provable. The important point here is to observe that a
predicate of the form fjl : � j r jgnl 0 is proven simply by proving a similar assertion
for its subcomponent r .

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 24

It is easy to prove that the relation `̀ is well-de�ned with respect to equality of
constructors.

3.1.4 Typing rules

Following Damas and Milner [DM82], we distinguish between the simple types, � ,
described above, and type schemes, �, described by the grammar

� ::= � j 8�:� type schemes
� ::= � j �) � quali�ed types.

Restrictions on the instantiation of universal quanti�ers, and hence on polymor-
phism, are described by encoding the required constraints as a set of predicates,
P , in a quali�ed type of the form P) � . The set of free type variables in an
object X is written as TV (X).

The term language is just core-ML, an implicitly typed �-calculus, extended with
constants and a let construct, and described by the following grammar

E ::= x j c j E F j �x :E j let x = E in F :

We assume that the set of constants c includes the operations and values required
for manipulating records and variants as described in Section 2.1, and that each
constant c is assigned a closed type scheme, �c.

The typing rules are presented in Figure 3.2. A judgement of the form P jA ` E : �
represents an assertion that, if the predicates in P hold, then the term E has type
�, using assumptions in A to provide types for free variables. These are just
the standard rules for quali�ed types [Jon94b], extending the rules of Damas and
Milner [DM82] to account for the use of predicates. Note that uses of the symbols
� , �, and � in these rules is particularly important in restricting their application
to particular classes of types or type schemes.

3.2 Type Inference

This section provides a formal presentation of a type inference algorithm for our
system. The most important feature is the introduction of inserters in Section 3.2.1
to account for non-trivial equalities between row expressions during uni�cation.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 25

(const) P jA ` c : �c

(var)
(x : �) 2 A

P jA ` x : �

(!E)
P jA ` E : � 0 ! � P jA ` F : � 0

P jA ` EF : �

(!I)
P jAx ; x : � 0 ` E : �

P jA ` �x :E : � 0 ! �

()E)
P jA ` E : �) � P `̀ �

P jA ` E : �

()I)
P [f�gjA ` E : �

P jA ` E : �) �

(8E)
P jA ` E : 8�:�

P jA ` E : [�=�]�

(8I)
P jA ` E : � � 62 TV (A) [TV (P)

P jA ` E : 8�:�

(let)
P jA ` E : � Q jAx ; x : � ` F : �

P ;Q jA ` (let x = E in F) : �

Figure 3.2: Typing rules.

3.2.1 Uni�cation and insertion

Uni�cation is a standard tool in type inference, and is used, for example, to ensure
that the formal and actual parameters of a function have the same type. Formally,
a substitution1 S is a uni�er of constructors C ;C 0 2 C � if SC = SC 0, and is a
most general uni�er of C and C 0 if every uni�er of these two constructors can be
written in the form RS , for some substitution R.

The rules in Figure 3.3 provide an algorithm for calculating uni�ers, writing C
U
�C 0

1For the purposes of this dissertation, we restrict our attention to kind-preserving substitutions;
that is, to substitutions that map variables � 2 C � to constructors of the corresponding kind, �.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 26

(id) C
id
�C

(bind)
�
[C=�]
� C

C
[C=�]
� �

9>=
>; � 62 TV (C)

(apply) C
U
�C 0 UD

U 0

�UD 0

CD
U 0U
� C 0D 0

(row) (l : �)
I
2r 0 Ir

U
�(Ir 0 � l)

fjl : � jr jg
UI
�r 0

Figure 3.3: Kind-preserving uni�cation.

for the assertion that U is a uni�er of the constructors C ;C 0 2 C �. The �rst three
rules are standard [Rob65], and are even suitable for unifying two row expressions
that list exactly the same components with exactly the same ordering in each.
The fourth rule, (row), is needed to deal with the more general problems of row
uni�cation, taking account of di�erences in ordering the �elds.

To understand how (row) works, consider the task of unifying two rows fjl : � jr jg
and fjl 0 : � 0 j r 0jg, where l ,l 0 are distinct labels, and r ,r 0 are distinct row variables.
Our goal is to �nd a substitution S such that

Sfjl : � jr jg = fjl : S� jSr jg = fjl 0 : S� 0 jSr 0jg = Sfjl 0 : � 0 jr 0jg

Clearly, the row on the left includes an (l : S�) �eld, while the last row on the right
includes an (l 0 : S� 0) �eld. If these two types are to be equal, then we must choose
the substitution S so that it will `insert' the missing �elds into the two rows r 0

and r , respectively. In this particular case, assuming that r ; r 0 62 TV (�; � 0), which
is the standard occurs check, then we can choose

S = [fjl 0 : � 0 jr 00jg=r ; fjl : � jr 00jg=r 0]

where r 00 is a new type variable.

More generally, we will say that a substitution S is an inserter of (l : �) into
r 2 C row if (l : S�) 2 Sr . S is a most general inserter of (l : �) into r if every

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 27

(inVar) (l : �)
[fjl :�jr 0jg=r]

2 r ; r 62TV (�); r 0 new

(inTail)
(l : �)

I
2r l 6= l 0

(l : �)
I
2fjl 0 : � jr jg

(inHead) �
U
�� 0

(l : �)
U
2fjl : � 0 jr jg

Figure 3.4: Kind-preserving insertion.

such inserter can be written in the form RS , for some substitution R. The rules

in Figure 3.4 de�ne an algorithm for calculating inserters, writing (l : �)
I
2r for the

assertion that I is an inserter of (l : �) into r 2 C row . An expression of the form
r new states that the variable r is new and thus, has not been used previously.
Note that the last rule here, (inHead), makes use of the uni�cation algorithm in
Figure 3.3, so the two algorithms are mutually recursive. The important properties
of the two algorithms|both soundness and completeness|are captured in the
following result

Theorem 3.2 The uni�cation (insertion) algorithm de�ned by the rules in Fig-
ure 3.3 (Figure 3.4) calculates most-general uni�ers (inserters) whenever they ex-
ist. The algorithm fails precisely when no uni�er (inserter) exists.

A proof of this result is given in Section A.1.2 of Appendix A.

3.2.2 A type inference algorithm

Given the uni�cation algorithm described in the previous section, we can use the
type inference algorithm for quali�ed types [Jon94b] as a type inference algorithm
for the type system presented in this chapter. For completeness, we include a
de�nition of the algorithm using the rules in Figure 3.5. Following R�emy [R�em94a],
these rules can be understood as an attribute grammar; in each typing judgement
P jTA `W E : � , the type assignment A and the term E are inherited attributes,
while the predicate assignment P , type � , and substitution T are synthesized.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 28

(var)W
(x : 8�i :P) �) 2 A �i new

[�i=�i]P jA `
W

x : [�i=�i]�

(!E)W

P jTA `W E : � Q jT 0TA `W F : � 0

T 0�
U
� � 0 ! � � new

U (T 0P [Q) jUT 0TA `W EF : U�

(!I)W
P jT (Ax ; x : �) `W E : � � new

P jTA `
W

�x :E : T�! �

(let)W

P jTA `
W

E : � � = Gen(TA;P) �)

P 0 jT 0(TAx ; x : �) `W F : � 0

P 0 jT 0TA `
W

(let x = E in F) : � 0

Figure 3.5: Type inference algorithm W.

The (let)W rule uses an auxiliary function to calculate the generalization of
a quali�ed type � with respect to a type assignment A. This is speci�ed by the
following de�nition.

De�nition 3.3 The generalization of a quali�ed type � with respect to the type
assignment A is written Gen(A; �) and de�ned by

Gen(A; �) = 8�i :�; where f�ig = FTV (�)nFTV (A):

The type inference algorithm is both sound and complete with respect to the
original typing rules.

Theorem 3.4 The algorithm described by the rules in Figure 3.5 can be used to
calculate a principal type for a given term E under assumptions A. The algorithm
fails precisely when there is no typing for E under A.

A proof of this result is given by Jones [Jon94b] and we do not reproduce the
details here.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 29

3.3 Compilation

Previously, we have described informally how programs involving operations on
records and variants can be compiled and executed using a language that adds
extra parameters to supply appropriate o�sets. This section shows how this process
can be formalized, including the calculation of o�set values.

3.3.1 Compilation by translation

In the general treatment of quali�ed types [Jon94b], programs are compiled by
translating them into a language that adds extra parameters to supply evidence
for predicates appearing in the types of the values concerned. The whole process
can be described by extending the typing rules to use judgements of the form

P jA ` E ; E 0 : �;

which include both the original source term E and a possible translation, E 0. A
further change here is the switch from predicate sets to predicate assignments;
the symbol P used above represents a set of pairs (v : �) in which no variable
v appears twice. Each variable v corresponds to an extra parameter that will be
added during compilation; v can be used whenever evidence for the corresponding
predicate � is required in E 0.

P [fv : �g `̀ v : �

P `̀ e : (rnl)

P `̀ m : (fjl 0 : � jr jgnl)
m =

8<
:

e; l < l 0

e + 1; l 0 < l

P `̀ 0 : (fjjgnl)

Figure 3.6: Predicate entailment .

In the current setting, predicates are expressions of the form (rnl) whose evidence
is the o�set in r at which a �eld labelled l would be inserted. The calculation of
evidence is described by the rules in Figure 3.6, which are direct extensions of the

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 30

earlier rules for predicate entailment that were given in Figure 3.1. Intuitively, a
derivation of P `̀ e : � tells us that we can use e as evidence for the predicate �
in any environment where the assumptions in P are valid. The second rule is the
most interesting and tells us how to �nd the position at which a label l should be
inserted in a row fjl 0 : � jr jg

� If l comes before l 0 in the total ordering, <, on labels, then the required o�set
will be the same as the o�set e of l in r .

� If l 0 comes before l , then we need to use an o�set of e + 1 to account for the
insertion of l 0.

In general, these rules calculate o�sets that are either a �xed natural number, or
a �xed o�set from one of the variables in P . For simplicity, we have assumed a
boxed representation in which all record components occupy the same amount of
storage. It is easy to allow for varying component sizes by replacing e + 1 in the
calculation above with e + size(�).

For illustration of the translation process we restrict ourselves to describing the two
rules that account for the use and introduction of o�set parameters, the complete
set of rules for translation are described in Figure 3.7. The �rst of these is a
variation on function application

P jA ` E ; E 0 : �) � P `̀ e : �

P jA ` E ; E 0 e : �:

This tells us that we need to supply suitable evidence e in the translation of any
program whose type is quali�ed by a predicate �. The second rule is analogous
to function abstraction, and allows us to move constraints from the predicate
assignment P into the inferred type

P [fv : �gjA ` E ; E 0 : �

P jA ` E ; �v :E 0 : �) �

These two rules are direct extensions of ()E) and ()I) in Figure 3.2 and, com-
bined with simple extensions of the other rules there, can be used to construct a
translation for any term in the source calculus.

Following the approach towards type inference described in Section 3.2.2 we can
use the generalized type inference algorithm for quali�ed types [Jon94b]. This

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 31

(var)
(x : �) 2 A

P jA ` x ; x : �

(!E)
P jA ` E ; E 0 : � 0 ! � P jA ` F ; F 0 : � 0

P jA ` EF ; E 0F 0 : �

(!I)
P jAx ; x : � 0 ` E ; E 0 : �

P jA ` �x :E ; �x :E 0 : � 0 ! �

()E)
P jA ` E ; E 0 : �) � P `̀ e : �

P jA ` E ; E 0e : �

()I)
P ; v : �;P 0 jA ` E ; E 0 : �

P ;P 0 jA ` E ; �v :E 0 : �) �

(8E)
P jA ` E ; E 0 : 8t :�

P jA ` E ; E 0 : [�=t]�

(8I)
P jA ` E ; E 0 : � t 62 TV (A) ^ t 62 TV (P)

P jA ` E ; E 0 : 8t :�

(let)
P jA ` E ; E 0 : � Q jAx ; x : � ` F ; F 0 : �

P ;Q jA ` (let x = E in F); (let x = E 0 in F 0) : �

Figure 3.7: Typing rules for evidence insertion.

algorithm describes an e�ective procedure to infer the most general type, if one
exists, for an expression E , which also produces, in some formal sense, a most
general translation E 0. The complete set of rules are given in Figure 3.8.

3.4 Related work

In this chapter we have described a type system capturing extensible records and
variants, a full complement of polymorphic operations, which supports e�ective
type inference and simple e�cient implementation. There have been many previ-
ous attempts to design type systems for records and variants that support poly-
morphism and extensibility. Such work is important, not just in its own right,
but also in its application to the study of object-oriented or database program-

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 32

(var)W
(x : 8�i :P) �) 2 A �i and v new

v : [�i=�i]P jA `
W

x ; xv : [�i=�i]�

(!E)W
P jTA `W E ; E 0 : � Q jT 0TA `W F ; F 0 : � 0 T 0�

U
� � 0 ! �

U (T 0P ;Q) jUT 0TA `
W

EF ; E 0F 0 : U�

where � is a new variable

(!I)W
P jT (Ax ; x : �) `W E ; E 0 : � � new

P jTA `
W

�x :E ; �x :E 0 : T�! �

(let)W
v : P jTA `W E ; E 0 : � P 0 jT 0(TAx ; x : �) `W F ; F 0 : � 0

P 0 jT 0TA `
W

(let x = E in F); (let x = �v :E 0 in F 0) : � 0

where � = Gen(TA;P) �)

Figure 3.8: Type inference algorithm with translation.

ming languages where these facilities seem particularly useful. In this section we
summarize the key features of some of these earlier systems.

To help further the relationships between di�erent systems of records and variants
Figure 3.9 charts a table listing the features supported by a wide selection of
authors. Of course, properties supported or not supported by the di�erent systems
may be argued by the di�erent authors. For example, many of the systems listed
do not have a tick in the implementation row, however, it is clear that a naive
implementation exists for any of the record and variant systems|simply use an
association list representation, consisting of (label, value) pairs, and implement
the primitive operations as necessary. This kind of implementation, of course, is
not what we had in mind when ticking (or not ticking) this row. To provide an
indication of the kind of properties each row in Figure 3.9 is trying to indicate, the
following list provides a short description of our interpretation.

Records: It may come as a surprise to the reader that we have included a row
con�rming that each system supports some form of records. However, this row
serves two purposes; the �rst is to highlight that records have often been studied
alone (not in the presence of variants), and secondly to allow us to select systems

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 33

[W
an

87
]

[R
em

94
a]

[W
an

91
]

[J
at

88
]

[C
M

91
]

[H
P9

0]

[O
ho

95
]

Th
is

th
es

is

Polymorphic Operations

Variants

Records

Extensibility

Most General Unifers

Implementation

Explicitly Typed

Checked Operations

Unchecked Operations

Concatenation

[C
ar

84
]

[H
P9

1]

Figure 3.9: Type systems for records and variants

that all aim to provide a set of basic operations over records. By this we mean
that the basic system supports some notion of records and primitive operations
over them, in particular, it does not imply additional features, such as, polymor-
phic operations or extensiblility|these each have their own row in Figure 3.9. In
general, we will use the record row to mean simply that the system provides some
form of labelled products.

Variants: A quick glance at Figure 3.9 shows that although all of the systems
support some form of records, only a small subset provide similar features for
variants. In many cases this seems not to be because the systems can not be
extended to provide the additional functionality but rather the authors have not
considered it worthwhile or maybe even a trivial addition|noting that variants are

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 34

dual to records. However, it may be the case that in the underlying theory records
and variants are dual, but when considering them within a practical programming
language there are important di�erences. For example, there is the question of
syntax, what syntatic lexicons should be used to indicate the use of records and
variants, how does the new syntax interact with other features of the language?
There are other, possibly not so clear, questions that might need to be considered.
For example, Ohori [Oho95] and Gaster [Gas96] have both observed that the use
of extensible variants may often have to be annotated with (some) extra type
information in practical applications. We believe that this is enough to justify the
requirment that variants be described explicitly rather than an author just noting
that they are (in theory) just the dual to records.

Polymorphic Operations: Although many of the systems listed in Figure 3.9
provide support for polymorphic operations over records and (or) variants some
do not. Of course, one may quote many systems that do not include polymorphic
operations over records or variants, but are not included in Figure 3.9|ranging
from C to Standard ML. So why include the choices of Figure 3.9, while, admitting
others? The answer to this question is not simple and, of course, is subjective. We
have tried to include systems that can be seen as having a direct relationship to
our �eld of study. By this we mean systems that are either trying to express
similar functionality (e.g., extensibility) or might be considered as fundemental to
the ideas developed in later systems. This latter point may be best illustrated
by the development of Wand's [Wan87, Wan88] original proposal for extensible
records, which was inspired by the early work of Cardelli [Car84] where he gave a
semantics for multiple inheritance in terms of record and variant subtyping.

Extensibility: The notion of adding or removing a �eld from a record, for exam-
ple. It is important to note that supporting polymorphic operations over records
and variants is not enough, on its own, to provide for the additional functionality
that is captured through extensibility. An excellent example of this can be seen
in Ohori's [Oho95] system, which supports polymorphic operations but lacks the
additional expressiveness that extensibility gives. Of course, Ohori's systems has
other bene�ts such as a simple and e�cient implementation, while not requiring
type annotations.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 35

Most General Uni�ers: This dissertation is, in the most part, concerned with
type systems for records and variants that support automatic type inference. Fol-
lowing Hindley [Hin69] and Milner [Mil78], we have reduced the problem of type
inference to a �rst-order uni�cation problem and consequently require the exis-
tance of an algorithm that given types � and � 0 produces a most general uni�er S
such that S� = S� 0 or else fails. Figure 3.9 indicates which of the di�erent sys-
tems has a known �rst-order uni�cation alogrithm for solving equalities between
di�erent expressions in the speci�ed language of types. It is important to note
that many of the systems described are explicitly typed (see below) and thus, it
probably was not important to the authors whether type inference was possible.
This is not the case for all the systems considered in Figure 3.9.

Implementation: As described brie
y above it fairly straightforward to describe
a naive implementation for records and variants using assocation lists and then
implementating each of the required primitives using standard speci�cations for
similar functions over lists. However, in general, this approach does not lead to
the e�cient implementation of many of the primitives for records and variants.
For example, consider the selection of a �eld l from a record of type

Rec fjl1 : �1; : : : ; l : �; : : : ; ln : �n jg:

Assuming records are represented as lists of label and value pairs then record se-
lection must be implemented be simply iterating over the list comparing the stored
label with the label being selected and return the associated value on matching of
to labels|the type system then simply guarantees that this search will never fail.
The problem with this approach is that the complexity of (:l) is linear in the size
of the record (i.e., it is possible that record selection will have to iterate over the
complete list to �nd the required �eld).

With the above discussion in mind the implementation row included in Figure 3.9
has only been ticked for the case where the author has explicitly described an
implementation and furthermore the implementation of record selection is known
to be constant time. This is a hard property to satisfy and is not without its
own problems. In particular, R�emy [R�em92a] has shown that if one is to consider
records as certain forms of hash tables then many of the primitive operations
over records can be implemented e�ciently. However, there are two problems with
R�emy's approach in that some type information must remain at run-time, allowing
the calculation and matching of labels. Furthermore, it is not possible, in general,
to provide a constant time implementation of record selection, for example. In the

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 36

special case when the set of possible labels for all records is known at compile-time
it may be possible to in-line record selection and expand the hashing functions to
determine the index of a given value before execution of the program at run-time.

Explicitly Typed: Many interesting systems that provide support for extensible
records and variants are set in an explicitly typed setting, see Cardelli [Car84],
Cardelli and Mitchell [CM91], and Harper and Pierce [HP90, HP91], for example.
An explicitly typed calculus requires, in general, that terms be annotated with
types. Consequently to check that a term is well-formed one need only check that
each sub-term is well-formed with respect to a speci�ed inference system. An
important consequence of explicit typing is that impredicative polymorphism, as
in the polymorphic �-calculus [Gir72, Rey74], can be supported without loss of
decidability [Wel94]. An interesting point to note with reference to Figure 3.9 is
the support of an explicitly typed version of the system presented in this chapter.
Although we have not given an explicit de�nition of such a system it can be derived
from Jones' [Jon92b] original paper on quali�ed types.

Checked Operations: In this chapter the primitive operations provided to ma-
nipulate records and variants have been checked. For example, the extension op-
erator for a label l can only be applied to a record r if the record r does not
contain an l �eld already. Of course, there are applications when it may be useful
to extend a record with a �eld that might already be present, such operations are
often referred to as unchecked. Both Wand [Wan87, Wan88] and R�emy [R�em94a]
support unchecked operations, which enables them to capture the semantics of
multiple inheritance, as proposed by Cardelli [Car84].

It is important to note that although the type system for extensible records and
variants described in this chapter does not support unchecked operations, as in-
dicated in Figure 3.9, it does not mean it cannot provide such functionality. In
particular, an unchecked casting operation is described for our system in Chapter 7.

Concatenation: Inspired by the early work of Cardelli [Car84], Wand [Wan87,
Wan88] described a system of extensible records, which supported a record con-
catenation operation for modelling inheritance. There are two di�erent kinds of
concatenation operation that may be provided as primitive in any particular sys-
tem. The �rst, symmetric concatenation (see Harper and Pierce [HP91], for ex-
ample) merges two records, which have distinct set of labels, resulting in a new

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 37

record containing the �elds of both records. As the two sets of labels must be dis-
joint it is clear that symmetric record concatenation must be a checked operation.
The second, asymmetric record concatenation is the same as symmetric except
that the two sets of labels need not be disjoint. In other words, asymmetric is
unchecked record concatenation. To avoid an ambiguous semantics|if a label l
appears in both records then we must select one �eld over the other|most systems
that support asymmetric concatenation pick the right �eld over the corresponding
left.

More recently R�emy [R�em94b] has shown that if a particular type system supports
checked record extension then symmetric record concatenation can be obtained
for free via a simple encoding. Of course, the same encoding provides asymmetric
record concatenation if the underlying extension is unchecked. So it is clear that
all systems supporting record extension can also support some form of record
concatenation, and thus, can be inferred from the extensibility row in Figure 3.9.
Consequently the row labelled concatenation in Figure 3.9 is representative of
systems that provide record concatenation as primitive rather than building on
top of extension.

3.4.1 Subtyping

Subtyping is one of the most widely used techniques for building type systems
for records and variants [Car84, CM91, Car92, PT94]. We can de�ne a subtyping
relation by specifying that a row r1 is a subrow of r2, written r1 � r2, if r1 contains
all the �elds of r2, and possibly more. The intuition here is that, for example, a
record of type Rec r1 could be used in any context where a value of type Rec r2
is expected, and conversely, that a variant of type Var r2 can be substituted in
any context where a value of type Var r1 is required. In particular, the selection
operator (:l) can be treated as a function of type

8�:8r � fjl :�jg:Rec r ! �:

This operation is implemented, at least conceptually, by coercing from Rec r to a
known type|the singleton Rec fjl :�jg|and then extracting the required �eld. One
weakness of this approach is that information about the other �elds in the record is
lost, so it is harder to describe operations like record extension. For example, ob-
serving that bounded quanti�cation is not by itself su�cient, Cardelli and Mitchell
[CM91] used an overriding operator on types to overcome this problem.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 38

3.4.2 Row extension

Motivated by studies of object-oriented programming, Wand [Wan87] introduced
the concept of row variables to allow incremental construction of record and variant
types. For example, a record of type Rec fjl : � jr jg has all of the �elds of a record
of type Rec r , together with a �eld l of type � . Wand did not discuss compilation,
but his approach supports both polymorphism and extensibility. For example, the
selection operator (:l) has type

8�:8r :Rec fjl : � jr jg ! �:

However, the operations and types in Wand's system are unchecked; for example,
extending a row with an l �eld may either add a completely new �eld, or replace
an existing �eld labelled with l . As a result, some programs do not have principal
types [Wan88].

3.4.3 Flags

R�emy has developed a
exible treatment for extensible records and variants in a
natural extension of ML [R�em94a]. A key feature of his system is the use of
ags
to encode both positive and negative information|that is, to indicate which �elds
must be present, and which must be absent. Again, a concept of row variables
is used to deal with other �elds whose presence or absence is not signi�cant in a
particular situation. For example, the selection operator has type

8�:8r :Rec fjl : pre(�) jr jg ! �;

where pre(�) is a
ag indicating the presence of a �eld of type �, and r is a row
variable representing the rest of the record. This allows the system to prevent
access to unde�ned components, while being expressive enough to support some
unchecked operations. On the other hand, the type system does not lead to a
simple and e�cient implementation. By this we mean that it is not possible to
give an implementation that, in general, does not require some form of run-time
tagging. For example, R�emy [R�em92a] describes an implementation for his early
system of extensible records and variants based on hash tables. The problem is
that hashing is based on the notion of simple key that on application of a hashing
function describes where to look up the required value in some abstract datatype
for tables. Consequently, it is not possible, in general, to avoid two values being

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 39

stored at the same index and thus some additional search must be preformed in
these cases. This has the a�ect of requiring some form of tagging, which in e�ect
is simply run-time type information.

3.4.4 Predicates

Harper and Pierce [HP90, HP91] studied type systems for extensible records using
predicates on types to capture information about presence or absence of �elds,
and to restrict attention to checked operations. For example, writing r1#r2 for the
assertion that the rows r1 and r2 have disjoint sets of labels, the selection operator
(:l) has type

8�:8r :(r#fjl : �jg)) Rec (r k fjl : �jg)! �;

where r1 k r2 is the row obtained by merging r1 and r2, and is only de�ned if r1#r2.

Harper and Pierce's work does not deal with variants, type inference, or compila-
tion, and does not provide an operational interpretation of predicates. However,
their approach to record typing was one of the motivating examples in Jones'
work on quali�ed types [Jon94b] where a general framework for type inference and
compilation was developed. As a special case, Jones outlined a type system for
extensible records, but some of the important details were either omitted or un-
resolved. For example, he did not address the problems of unifying record types.
Indeed, his full system lacks most general uni�ers|the result of including record
restriction in the type language2. One of the achievements of the present work is
to re�ne and extend that work to a practical system [Gas97a].

3.4.5 Kinds

Ohori [Oho95] described a type system that extends SML with polymorphic opera-
tions on both records and variants. Signi�cantly, Ohori also presented a simple and
e�ective compilation method: input programs are translated into a target language
that adds extra parameters to specify �eld o�sets. In fact, the end result is much
the same as that suggested by Jones' work on quali�ed types, even though the
two approaches were developed independently. But Ohori's work di�ers substan-
tially from other systems in its use of a kind system; this allows variables ranging

2A counter-example, which can be used to show the loss of most general uni�ers in Jones'
system, is given in Chapter 7 Section 7.3.2.

CHAPTER 3. EXTENSIBLE RECORDS AND VARIANTS 40

over record types to be annotated with a speci�cation of the �elds that they are
expected to contain. For example, the selection operator operator (:l) has type

8�:8rfjl :�jg:Rec r ! �:

The main limitation of Ohori's type system is its lack of support for extensibility.

3.4.6 Constraints

Sulzmann [Sul97], has subsequently described a type system, as an application of
HM (X) [SOW97], based upon the early presentations of Ohori [Oho95], Gaster and
Jones [GJ96], and the work described in this dissertation. The basic idea is that
operations over records can be constrained by predicates of the form (r has l : �),
which asserts that the record r contains at least the �eld l of type � . As is the case
with quali�ed types [Jon94b] each application of HM (X) includes an entailment
relation for proving statements about predicates. The required instance of this
relation for predicates that constrain records is similar in spirit to the entailment
relation described in this chapter. As an example, the record selection operator,
(:l), can be assigned the following type in HM (X)

(:l) : 8r :8�:(r has l : �)) r ! �:

One shortcoming of Sulzmann's work seems to be the lack of a general compilation
method. It is clear that the methods of compilation described by Ohori [Oho95] and
in this chapter can be applied to the type assigned to record selection. However, it
is not clear that this is the case for the complete set of record operations described
by Sulzmann, in particular record extension, or more broadly for other applications
of HM (X).

Chapter 4

Specialization based semantics

As discussed in the introduction, this chapter and the following are not concerned
directly with records and variants. Instead these two chapters study the more
general, problem of semantic foundations for quali�ed types.

This chapter describes a semantics for quali�ed types nased upon the notion of
specialization, which describes the process of overloading elimination.

The sections of this chapter are as follows. Section 4.1 gives an overview of the
specialization based semantics for quali�ed types. Section 4.2 introduces a system
of quali�ed types (OML). Section 4.3 presents two alternative (but equivalent)
de�nitions of core-ML (Polymorphic ML (PML) and Monomorphic ML (MML)),
while Section 4.4 introduces an algorithm (Spec) for translating overloaded terms
into core-ML. Section 4.5 discusses a semantics for the simply typed �-calculus
(T�) and its relationship to core-ML. This is followed by a formal semantics for
quali�ed types in Section 4.6. Finally, Section 4.7 concludes with a discussion on
related work.

An earlier version of this chapter has previously been distributed in the form of a
technical report [Gas97b].

4.1 Overview

Polymorphism arises in a variety of forms in computer science. In particular,
Strachey observed two kinds of polymorphism that are particularly suited to pro-
gramming [Str67]. The �rst, parametric polymorphism, captures the fact that

41

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 42

certain values behave independently of type|a function, for example, to reverse
a list is unconcerned with the type of elements contained within that list. The
programming languages C++ (templates), Haskell, Pizza (parameterized classes),
and SML, for example, all provide support for parametric polymorphism. The sec-
ond, ad-hoc or constrained polymorphism, captures the notion of overloading|a
single symbol may have many interpretations. For example, the addition operator
(+) is often de�ned on integer and
oating point numbers. A parametric func-
tion is well-de�ned at all instances, while an ad-hoc function is only de�ned for
a subset of instances. Overloading has been incorporated into a wide selection
of programming languages including C, C++, Haskell, Java, Pizza, and SML, for
example. Unfortunately, each of these languages have di�erent implementations
for overloading, depending on alternative extensions to the type system.

Motivated by the early work of Kaes [SK88] and of Wadler and Blott [WB89],
the theory of quali�ed types, as described by Jones [Jon92b, Jon94b], provides a
general theory for ad-hoc polymorphism and type inference. For example, the
(==) operator of SML and Haskell can be assigned the type

(==) : 8�:Eq �) �! �! Bool ;

where the predicate Eq � constrains the instantiation of � to types with an equality
operator.

To describe a semantics for quali�ed types Jones gives a translation for over-
loaded terms into a variant of Girard and Reynolds' second order polymorphic
�-calculus [Gir72, Rey74]. Inspired by the analogy between propositions and types
[How80, Coq90], the translation inserts `evidence' abstractions and applications on
the introduction and elimination of implicit overloading. We have already seen one
example of evidence in Chapter 3, where integer o�sets were provided as proofs for
lacks predicates. As another example, assuming eqInt : Int� Int ! Bool , consider
the expression

(�x :x == x) 10;

which is translated to
(�v :�x :v (x ; x)) eqInt 10:

In general, there may be many di�erent translations for any given term. To avoid
depending on any translation, Jones provided a coherence result, which, under
reasonable assumptions, stated that di�erent translations are in a precise sense
equivalent.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 43

Although a reasonable solution the semantics of quali�ed types depends on the con-
struction of a suitable model for the polymorphic �-calculus. Such models require
structures suitable for modelling explicit impredicative polymorphism, which, in
light of the fact that quali�ed types supports only predicative polymorphism, seems
a strong requirement. In particular, constructing a semantics for quali�ed types
based upon Jones' translation rules out any chance of a simple set-based model
[Rey84]. We strongly believe that such a model can provide a simple platform for
understanding and reasoning about quali�ed types, using a language familiar to a
wide range of computer scientists. As such, a key aim of this chapter is to present
a semantics for quali�ed types, suitable for a simple set-based model.

In this chapter we develop a semantics for quali�ed types as an extension of
Ohori's [Oho89a] work on core-ML. Ohori considered the interpretation of a poly-
morphic type to be the set of monomorphic instances for that type. For example,
the type

8�:�! �! Bool ;

is interpreted as the set

f� ! � ! Bool j� 2 Typeg:

Ohori's interpretation of polymorphic types extends naturally to constrained types
by observing that the set of monomorphic instances for a given polymorphic type
can be generated with respect to some predicate. For example, the constrained
type

8�:Eq �) �! �! Bool ;

can be interpreted as

f� ! � ! Bool j� 2 Type; � 2 Eqg;

where � 2 Eq asserts the existence of equality over � .

Inspired by the work of Wadler and Blott [WB89, Blo92], we interpret overloaded
terms as sugar for more verbose core-ML terms. However, unlike the translation
of Wadler and Blott we introduce a notion of specialization, translating away any
nested polymorphism introduced through overloading. Thus, unlike the work of
Jones [Jon94b], we avoid translation into the polymorphic �-calculus and instead
have any model of the simply typed �-calculus at our disposal. In particular, one
can construct a simple set-based model for quali�ed types.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 44

To our knowledge, we are the �rst to present a direct semantics, supported by a
proof of soundness, for quali�ed types. The following chapter extends this fur-
ther, providing a complete categorical treatment of constrained �rst-order poly-
morphism.

OML
Spec

-
�
�

PML (====) MML �
-

T�
�

TT

Figure 4.1: Roadmap.

Figure 4.1 provides a simple `roadmap' highlighting the relationships between the
di�erent systems introduced in this chapter.

4.2 A system of quali�ed types

As discussed in the introduction to this chapter, quali�ed types provides a general
framework for type systems with constrained types. In general, such a system
requires the notion of a predicate, introduced to capture restrictions on the way a
term can be used. Section 4.2.1 expands this notion by introducing the idea of an
entailment relation over predicates, for which the entailment relation of Chapter 3
is an instance. Section 4.2.2 introduces the notion of evidence, providing a language
of expressions for predicates. Section 4.2.3 outlines a variation on the general
theory of quali�ed types, denoted as OML.

4.2.1 Predicates

The general theory of quali�ed types is motivated by the requirement to include
predicates in the type of a term, enforcing restrictions on the way it may be
used. The exact form of individual predicates is not signi�cant but, in practical
applications, they are often written using expressions of the form p �1 � � � �n where
p is a predicate symbol corresponding to an n-place relation between types. One
can read the predicate p �1 � � � �n as assertion that the types denoted by the type
expressions �1; � � � ; �n are in the relation p. In general, we impose only one condition
on the set of predicates: it must be closed under substitutions mapping type
variables to type expressions. That is, for any substitution S and predicate � of

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 45

the form p �1 � � � �n , the expression

S� = p (S�1) � � � (S�n);

must also be a predicate.

There are various examples of predicates which apply to a wide variety of ap-
plications. Of course, the predicate rnl introduced in chapter 3 is one such ap-
plication. Many other applications have also been studied, including the Haskell
class hierarchy [PH97], subtyping [Jon94b] and a general set of operations over
lattices [Jon92a].

Predicates have a number of formal properties speci�ed by an entailment relation,
written `̀ . This relation is read such that if P and Q are sets of predicates,
then P `̀ Q , asserts that the predicates Q can be proved from the hypothesis P
using the axioms and rules of the predicate system. In general, we require that
entailment is monotonic (i.e, if P � Q , then P `̀ Q), transitive (i.e., if R `̀ P and
P `̀ Q , then R `̀ Q), and closed under substitutions (i.e., if P `̀ Q and S is a
substitution, then SP `̀ SQ). These, are typically, taken as part of the de�nition
of predicate entailment in speci�c applications.

4.2.2 Evidence

The previous section introduced the notion of a predicate, describing an entailment
relation for asserting properties about predicates. However, the term language for
quali�ed types, to be described in the following section, requires evidence for a
predicate. In a logical setting evidence e provides proof for predicate �, and is
analogous to the Curry-Howard isomorphism [How80], where terms and types of
the simply typed �-calculus correspond to proofs and propositions in constructuve
propositional logic.

Unlike the de�nition of predicates, we make no assumptions about the form of
evidence expressions. We let e range over sequences of evidence expressions, while
v and w correspond to sequences of evidence variables. As before, predicates may
have a number of formal properties speci�ed by an entailment relation, written
`̀ . This relation is read such that if v : P and w : Q are sets of predicates, then
v : P `̀ w : Q , asserts that the predicates w : Q can be proved from the hypothesis
v : P and the axioms of the predicate system. An important point to note is that
the predicate sets P and Q must correspond to sequences of predicates. Again, we
require only that, in general, entailment is monotonic, transitive, and closed under

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 46

substitutions. It will be convenient in later sections, and in describing a categorical
semantics for quali�ed types, to reformulate entailment in terms of an inference
system. A set of inference rules for predicate entailment are given in Figure 4.2.

(id) v : P `̀ v : P

(term) v : P `̀ ;

(fst) v : P ;w : Q `̀ v : P

(snd) v : P ;w : Q `̀ w : Q

(univ)
v : P `̀ e : Q v : P `̀ e 0 : R

v : P `̀ e : Q ; e 0 : R

(trans)
v : P `̀ e : Q v 0 : Q `̀ e 0 : R

v : P `̀ [e=v 0]e 0 : R

(close)
v : P `̀ e : Q

Sv : SP `̀ e : SQ

(evars)
v : P `̀ e : Q

EV (e) � v

Figure 4.2: Predicate entailment with evidence.

4.2.3 OML

Following Damas and Milner [DM82], we distinguish between the simple types, � ,
and type schemes, �, described by the grammar below

� ::= � j � j � ! � monotypes
� ::= P) � quali�ed types
� ::= 8f�ig:� type schemes

The symbols � and � range over sets of type variables and base types, respec-
tively. Restrictions on the instantiation of universal quanti�ers, and hence on
polymorphism, are described by encoding the required constraints as a sequence
of predicates, P , in a quali�ed type of the form P) � .

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 47

The term language of OML is just core-ML, an implicitly typed �-calculus, ex-
tended with constants, evidence abstraction and application

E ::= x variables
j c constants
j EF application
j �x :E abstraction
j let x = E in F local bindings
j �v :E evidence abstraction
j Ee evidence application.

Unlike other presentations of quali�ed types, we make evidence abstraction and
application explicit. The advantage of making evidence explicit is that it allows
more insight into how quali�ed types really work and helps in the development of
a semantics for OML.

The typing rules are presented in Figure 4.3. A judgement of the form P jC ;A `
E : � represents an assertion that, if the predicates in P hold, then the term E has
type �, using assumptions in C and A to provide types for the free overloaded and
non-overloaded variables, respectively. These are just the standard rules for qual-
i�ed types [Jon94b], extending the rules of Damas and Milner [DM82] to account
for the use of predicates.

An equation in OML, denoted P jC ;A ` E = F : � , is a pair of terms E and
F with P j C ;A ` E : � and P j C ;A ` F : � . An equational theory for OML,
written T OML, includes the standard rules for equational reasoning (i.e., re
exivity,
symmetry, transitivity, and congruence) and for core-ML (i.e., (�), (�), (�), and
a rule for let equivalence). In addition it should contain rules for reasoning about
evidence expressions (i.e., (�e), (�e) and (�e)). Figure 4.4 contains some of the
rules for proving equalities between OML terms.

A theorem is provable, denoted T OML ` P jC ;A ` E = F : � , if it is derivable
from the standard rules and the equations of T OML.

4.3 Core-ML

In this section we de�ne two inference systems for core-ML. The �rst, Polymorphic
ML (PML), de�ned in Section 4.3.1, is a variation on the inference system given
by Damas and Milner [DM82]. Section 4.3.2 gives a reformulation of this system,

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 48

(const)
(x : �) 2 C

P jC ;A ` x : �

(var)
(x : �) 2 A

P jC ;A ` x : �

(!E)
P jC ;A ` E : � 0 ! � P jC ;A ` F : � 0

P jC ;A ` EF : �

(!I)
P jC ;Ax ; x : � 0 ` E : �

P jC ;A ` �x :E : � 0 ! �

()E)
P jC ;A ` E : �) � P `̀ e : �

P jC ;A ` Ee : �

()I)
P ; v : � jA ` C ;E : �

P jC ;A ` �v :E : �) �

(8E)
P jC ;A ` E : 8�:�

P jC ;A ` E : [�=�]�

(8I)
P jC ;A ` E : � � 62 TV (A) [TV (P)

P jC ;A ` E : 8�:�

(let)
P jC ;A ` E : � Q jC ; x : �;Ax ` F : �

P ;Q jC ;A ` (let x = E in F) : �

Figure 4.3: Typing rules for OML.

which we call Monomorphic ML (MML), such that it uses only monomorphic types,
and thus can be translated directly into the simply typed �-calculus. Following
Mairson [Mai92], we show that a typing judgement in PML is valid if and only if
an equivalent typing judgement is valid in MML.

4.3.1 PML

The types of PML are just the types of OML that contain no predicates, and thus
the terms of PML are simply the terms of OML without evidence abstraction or

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 49

(�) P jC ;A ` (�x :E) F = [F=x]E : �

(�e) P jC ;A ` (�v :E) e = [e=v]E : �

(�-let) P jC ;A ` let x = E in F = [E=x]F : �

(�)
x 62 FV (E)

P jC ;A ` (�x :Ex) = E : �

(�e)
v 62 EV (E)

P jC ;A ` (�v :Ev) = E : �

Figure 4.4: OML equality.

application. The set of well-typed PML terms is de�ned by the OML inference
system, without the rules for typing evidence abstraction and application (i.e.,
()I) and ()E)), and the rule for overloaded constant introduction (i.e., (const)).
Although the well-typed terms of PML are those identi�able in the original system
proposed by Damas and Milner [DM82], this is not the case for the types. One
problem here is that the types of PML contain empty predicates sets, which are not
present in Damas and Milner's de�nition. However, in practice this does not cause
any problems due to the fact that we can simply eliminate the empty predicate set
(or, dually, insert the empty predicate set) to get from one system of types to the
other.

PML equations and theories, denoted A ` E =PML F : � and T PML, respectively,
are simply the equations and theories of OML without the rules for evidence.

A formal de�nition of PML appears in the lefthand column of Figure 4.5.

4.3.2 MML

Following the de�nition of PML in the previous section, we de�ne a monomor-
phic version of core-ML as follows: MML terms are the terms of PML and the
types are the monotypes of PML. Well-typed terms are formed from the rules of
PML, noting that, as support is provided for monotypes only, the inference sys-
tem of MML does not contain rules for universal quanti�cation introduction and
elimination. However, due to this restriction, it is impossible, in MML, to type
let-polymorphism without altering the inference rule for let-bindings. As in the

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 50

PML MML
� ::= � j � j � ! �
� ::= 8f�ig:�
E ::= x
j EE
j �x :E
j let x = E in E

� ::= � j � j � ! �

E ::= x
j EE
j �x :E
j let x = E in E

(x : �) 2 A

A ` x : �

(x : �) 2 �

� ` x : �

A ` E : � 0 ! � A ` F : � 0

A ` EF : �
� ` E : � 0 ! � � ` F : � 0

� ` EF : �

Ax ; x : � 0 ` E : �

A ` �x : � 0:E : � 0 ! �

�x ; x : � 0 ` E : �

� ` �x : � 0:E : � 0 ! �

A ` E : � A; x : � ` F : �

A ` (let x = E in F) : �

� ` E : � 0 � ` [E=x]F : �

� ` (let x = E in F) : �

� ` E : 8�:�
� ` E : [�=�]�

� ` E : � � 62 FV (�)

� ` E : 8�:�

Figure 4.5: PML and MML.

work of Ohori [Oho89a] and Mairson [Mai92], we replace the inference rule for let
with the following monomorphic version

� ` E : � 0 � ` [E=x]F : �

� ` (let x = E in F) : �:

A formal de�nition of MML appears in the righthand column of Figure 4.5, to
facilitate ease of comparsion of MML with PML.

Equational theories for MML are de�ned in the same way to those for PML and
we leave the details to the reader.

The following result shows that, although MML provides only support for mono-

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 51

types, the alternative rule for let-bindings is enough to regain the expressness of
PML. This provides support for our interpretation of let-polymorphism in the
simply typed �-calculus. Following Mairson [Mai92], we de�ne what it means for
the systems PML and MML to be related and then state the required theorem.

De�nition 4.1 Let �0 = fx1 : �1; � � � ; xm : �mg be any context of monotype bind-
ings, and � = fy1 : �1; � � � ; yn : �ng be any context of polymorphic bindings. Let
F = fF1; � � � ;Fng be a set of terms where �i is the principal type of Fi ; in partic-
ular, we require that for 1 � i � n,

if �0; fy1 : �1; � � � ; yi�1 : �i�1g `
PML

Fi : �i ;

then �0 `MML
[F1=y1] � � � [Fi�1=yi�1]Fi : �i ;

where �i is �i with all the quanti�ers removed.

We now state the theorem of equivalence for PML and MML.

Theorem 4.2 (Mairson [Mai92]) Let E be any PML or MML term, � a monomor-
phic type, and �0, �, and F = fF1; : : : ;Fng be de�ned as in De�nition 4.1; then

�;�0 `PML
E : � () �0 `MML

[F1=y1] � � � [Fn=yn]E : �:

A proof of this result is given by Mairson [Mai92] and we do not reproduce the
details here.

4.4 Specialization from OML to PML

In this section we describe an algorithm to translate OML terms into PML, provid-
ing a stepping stone to our semantic de�nition for OML. Following Jones [Jon94a],

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 52

specialization is described using expressions of the form x e ; x 0 for variables x
and x 0 (new) and evidence e. For any given program, several monomorphic ver-
sions of a polymorphic function may be required, thus, we work with �nite sets of
expressions of the form x e ; x 0 called specialization sets. Any specialization set
S must satisfy the constraint

(x e ; x 0); (y e 0 ; x 0) 2 S) x = y ^ e = e 0;

ensuring that S is well-formed. This constraint is exactly the restriction required to
ensure that any specialization set S can be interpreted as a substitution where each
(x e ; x 0) 2 S represents the substitution of the expression x e for the variable
x 0. For example, applying the specialization set fx e ; x 0g to the expression
(�x :�y :x) x gives (�x :�y :x) x e.

We introduce some special notation for working with specialization sets

� If V is a set of variables, then SV is the set

SV = f(x e ; x 0) 2 S j x 62 V g:

As a special case, we write Sx as an abbreviation for Sfxg.

� The relation extends de�nes the specialization sets that can be obtained from
a given set S , but with di�erent specializations for variables bound in a given
B

S 0 extends (B ; S)() 9S 00:Vars S 00 � dom B ^ S 0 = S(dom B) [S
00:

We require that extends is restricted such that, for any set of bindings B and
specialization set S , if S 0 extends (B ; S) and S 00 extends (B ; S) then S 0 = S 00.

The specialization algorithm is de�ned by the rules in Figure 4.6. A judgement of
the form S ` E ; E 0 asserts that, under the specialization set S , E 0 represents
E without overloaded let-bindings and evidence redexes. We write S ` A; A0 if,
for each (f e ; f 0) 2 S , P jC ;A0 ` f 0 : �, for some PML type �, bindings C , and
predicates P .

The judgement of the form S ; S 0 ` B ; B 0 used in the anticedent of the rule (let)
describes the process of specializing a group of bindings B with respect to a pair
of specialization sets S and S 0 to obtain a set of bindings B 0 that are evidence free.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 53

(var-�)
x 62 S

S ` x ; x

(var-let)
(x e ; x 0) 2 S e =) d

S ` x e ; x 0

(�evi)
S ` [e=v]E ; E 0

S ` (�v :E)e ; E 0

(abs-evi)
Sv ` E ; E 0

S ` �v :E ; �v :E 0

(app) S ` E ; E 0 S ` N ; N 0

S ` E N ; E 0 N 0

(abs)
Sx ` E ; E 0

S ` �x :E ; �x :E 0

(let)
S ; S 0 ` B ; B 0 S 0 ` E ; E 0 S 0 extends(B ; S)

S ` let B in E ; let B 0 in E 0

Figure 4.6: Specialization algorithm for OML.

This process is de�ned by

S ; S 0 ` B ; B 0 () B 0 = fx 0 = N 0 j (x = �v :N) 2 B
^(x e ; x 0) 2 S 0

^S ` [e=v]N ; N 0g:

Note that we now work with sets of bindings, in let expressions, which di�ers from
the syntax of Section 4.2.3. However, this does not introduce any new complica-
tions as the syntax used throughout this section is a simple generalisation of the
syntax de�ned in Section 4.2.3.

The judgement e =) d used in the hypothesis of the (var-let)rules implies compile-
time evaluation of the evidence expressions e to the evidence constants d . Jones [Jon94a]
required this rule to ensure that this calculation can always be carried out without
risk of non-termination, allowing the specialization algorithm to be part of pratical
compiler|at least one that would not fail to terminate due to specialization. A

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 54

more fundemental consequence of restricting evidence expressions, such that they
can be evaluated at compile time, is the failure to capture polymorphic recursion
in the presence of specialization. To see that this is the case consider the following
Haskell de�nition:

foo : Eq alpha) �! Bool
foox = x == x && foo [x]

This can not be typed under the standard Damas and Milner type system since
the function foo is used at two di�erent types within the its own body. However,
Haskell uses the type de�nition of foo to provide a polymorphic type for foo within
its own de�nition. As a consequence the set of evidence constants that are required
to evaluate foo True is in�nite and the specialization algorithm will not terminate
with this program.

As an example, of specialization consider the expression

let eq x y = x == y
in (eq True False; eq 0a 0 0a 0);

where (==) : Eq �) � ! � ! Bool and the overloaded function eq is used
at two distinct instances Bool and Char . Applying specialization results in an
expression of the form

let eqBool x y = primEqBool x y
eqChar x y = primEqChar x y

in (eqBool True False;
eqChar 0a 0 0a 0);

where primEqBool : Bool ! Bool ! Bool and primEqChar : Char ! Char !
Bool represent primitive equality operators over booleans and characters, respec-
tively.

The following proposition, extending an earlier result of Jones [Jon94a], establishes
the correctness of the specialization algorithm.

Proposition 4.3 If P j C ;A ` E : � , S ` E ; E 0, and S ` A ; A0, then
P jC ;A0 ` E 0 : � and P jC ;A ` E = SE 0 : � .

A proof of this result is given in Section A.2.1 of Appendix A.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 55

We conclude this section with a coherence result for specialization, which shows
that, if an expression E specializes to two di�erent evidence free expressions, then
the resulting expressions are equal. This will play a fundamental role in the proof
of soundness for quali�ed types.

Proposition 4.4 If P jC ;A ` E : � , S ` A; A0, S ` E ; F, and S ` E ; F 0,
then P jC ;A0 ` F = F 0 : � .

A proof of this result is given in Section A.2.2 of Appendix A.

4.5 Simply typed �-calculus

This section provides a formal presentation of Church's simply typed �-calculus
[Chu40], denoted T�, and its relationship with the calculi de�ned in previous
sections. We split the presentation into two parts: Section 4.5.1 gives a static and
denotational semantics for T�, and Section 4.5.2 outlines the relationship between
OML, PML, MML, and T�.

4.5.1 T�

The types of T� are just the ground types of MML extended with product types1,
given by the following grammar

� ::= � j � ! � j � � � j ():

We write TypeT� for this set, dropping the T� when it follows from context.

The term language of T� is just an explicitly typed �-calculus extended with
constants and products, as described by the following grammar

E ::= x j c j EE j �i E j (E ;E) j () j �x : �:E :

The typing rules are presented in Figure 4.7. A judgement of the form A ` E : �
represents an assertion that the term E has type � , using the assumptions in A to
provide types for free variables.

1We include products here as they are required in the semantic de�nition of T�. It is, of
course, possible to include products in the de�nitions ofOML, PML, andMML, but, for simplicity
we have avoided this step.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 56

(var)T� (x : �) 2 A

A ` x : �

(!E)T� A ` E : � 0 ! � A ` F : � 0

A ` EF : �

(!I)T� Ax ; x : � 0 ` E : �

A ` �x : � 0:E : � 0 ! �

(E�)T� A ` E : � � � 0

A ` �1 E : �

(�E)T� A ` E : � � � 0

A ` �2 E : �

(�I)T� A ` E : � A ` F : � 0

A ` (E ;F) : � � � 0

(unit)T� A ` () : ()

Figure 4.7: Typing rules for T�.

An equation in T�, written A ` E =T� F : � , is a four tuple with a typing
environment A, a type � , and a pair of terms E and F such that, A `T�

E : � and
A `

T�
F : � . An equational theory for T�, written T T�, is de�ned analogously to

those for OML, PML, and MML and is combined with the standard rules (�), (�),
(�), and (�) of the simply typed �-calculus, and the standard rules for equational
reasoning (i.e., re
exivity, symmetry, transitivity, and congruence). We say a
theorem is provable, written T T� `T� A ` E =T� F : � , if it is derivable from the
standard rules and the equations of T T�.

Following Crole [Cro93], we de�ne models of T� in terms of cartesian closed cat-
egories.

De�nition 4.5 A categorical model for T� consists of

� A cartesian closed category C , as de�ned in De�nition B.3 of Appendix B.

� A structure,M, in C over T�, de�ned by

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 57

{ for every ground type � a non-empty objectM[[�]] of C ,

{ for every constant function symbol c : � , a global element M[[c]] : 1 !
M[[�]], where

M[[� ! � 0]] = [M[[�]]!M[[� 0]]]
M[[� � � 0]] = M[[�]]�M[[� 0]]
M[[()]] = 1:

As a notational convenience we may write [[]], when in fact we really meanM[[]].
The meaning of a context A, is de�ned inductively by

[[;]] = 1

[[A; x : �]] = [[A]]� [[�]]:

For every judgement A `
T�

M : � we specify an arrow [[A `
T�

M : �]] : [[A]] ! [[�]]
in C . The semantics of T� terms are speci�ed inductively over the typing rules of
Figure 4.7 as follows2

[[A; x : � ` x : �]] = �2

[[A; y : � ` x : �]] = [[A ` x : �]] � �1

[[A ` c : �]] = [[c]]�![[A]]

[[A ` �x : � 0:E : � 0 ! �]] = curry([[Ax ; x : � 0 ` E : �]])

[[A ` EF : �]] = eval � h[[A ` E : � 0 ! �]]; [[A ` F : �]]i

[[A ` (E ;F) : � � � 0]] = h[[A ` E : �]]; [[A ` F : � 0]]i

[[A ` �1 E : �]] = �1 � [[A ` E : � � � 0]]

[[A ` �2 E : � 0]] = �2 � [[A ` E : � � � 0]]

[[A ` () : ()]] = ![[A]]:

An equation A ` E =T� F : � is valid inM, denotedM j=T� A ` E =T� F : � , if
[[A `

T�
E : �]] and [[A `

T�
F : �]] are equal arrows in C . We say that the structure

M is a model for T�, if every equation A ` E =T� F : � is valid inM. We have
the following soundness and completeness of equational theories for T�

Theorem 4.6 (Lambek [Lam80]) Let C be a cartesian closed category, T T� an
equational theory, andM a model of T T� in C . Then

A ` E =T� F : � ()M j=T� A ` E =T� F : �:

2We use the symbol !A to denote the unique arrow ! : A! 1.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 58

A proof of this result is given by Lambek and Scott [LS86] and we do not reproduce
the details here.

4.5.2 Relationship between MML and T�

In this section, we de�ne a translation, TT (a mnemonic for TypedTerm), from
MML derivations to T� terms. The rules of Figure 4.8 describe this translation
process for all possibleMML derivations. A judgement of the form A ` E ; E 0 : �
asserts that the function TT is applied to a derivation of the form A `

MML
E : � and

results in the T� term A `T�
E 0 : � . We may sometimes write TT (�) to mean the

result of applying the rules in Figure 4.8 to a typing derivation �. As an example,
of rules in Figure 4.8 consider the MML judgement A `

MML
�x :�y :x : � ! � 0 ! � ,

which by application of the rules (!I)TL, (!I)TL, and (var)TLresults in the T�
expression �x : �:�y : � 0:x .

(var)TL
(x : �) 2 A

A ` x ; x : �

(!E)TL A ` E ; E 0 : � 0 ! � A ` F ; F 0 : � 0

A ` EF ; E 0F 0 : �

(!I)TL
Ax ; x : � 0 ` E ; E 0 : �

A ` �x :E ; �x : � 0:E 0 : � 0 ! �

(let)TL
A ` E ; E 0 : � 0 A ` [E=x]F ; F 0 : �

A ` (let x = E in F); F 0 : �

Figure 4.8: Translation from MML to T�.

The following result, due to Ohori [Oho89a], asserts that, although there may
be many derivations for a given MML typing judgement, they all have the same
semantic meaning.

Proposition 4.7 (Ohori [Oho89a]) If �1 and �2 are derivations of the same
typing judgement A `MML

E : � , then

A ` TT (�1) =T� TT (�2) : �:

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 59

A proof of this result is given by Ohori [Oho89b] and we do not reproduce the
details here.

De�ne the type erasure of a T� expression E , denoted by E �, as follows

x � = x
(EE 0)� = E �E 0�

(�x : �:E �) = �x :E �:

The following two propositions capture the relationship between MML and T�,
showing that if an expression is well-typed in one of the systems, then translation
of the same term is well-typed in the other system.

Proposition 4.8 (Ohori [Oho89a]) If A `
T�

E : � then there is a derivation �
of

A `
MML

E � : �;

where
A ` TT (�) =T� E : �:

A proof of this result is given by Ohori [Oho89b] and we do not reproduce the
details here.

Proposition 4.9 (Ohori [Oho89a]) If � is a typing derivation of A `
MML

E : � ,
then

A `
T�

TT (�) : �

and
A ` TT (�)� =MML LetExpand(E) : �;

where LetExpand(E) is the same as the expression E, except that all let bindings
have been expanded (see Ohori for details [Oho89a]).

A proof of this result is given by Ohori [Oho89b] and we do not reproduce the
details here.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 60

Straightforward corollaries of these two results (in combination with Theorem 4.2
and Proposition 4.3) highlight the relationship between OML, PML, and T�,
showing that if a term is well-typed in one system than a translated version is
well-typed in the other systems.

Corollary 4.10 Given � = fy1 : �1; � � � ; yn : �ng and �0 such that for each �i
there exists an

�0; fy1 : �1; � � � ; yi�1 : �i�1g `
PML

Fi : �i :

Then if �;�0 `
PML

E : � there exists a derivation � of

�0 `
MML

[F1=y1] � � � [Fn=yn]E : �

such that �0 `
T�

TT (�) : � .

Proof : It follows that

�0 `MML
[F1=y1] � � � [Fi�1=yi�1]Fi : �i ;

and then by application of Theorem 4.2 we have

�0 `MML
[F1=y1] � � � [Fn=yn]E : �:

If � is a proof of this judgement, then it follows by application of Proposition 4.9
that

�0 `
T�

TT (�) : �;

as required.
(This completes the proof. 2)

Corollary 4.11 Given � = fy1 : �1; � � � ; yn : �ng, and �0 such that for each �i
there exists an

�0; fy1 : �1; � � � ; yi�1 : �i�1g `
PML

Fi : �i :

Then if ; jC ;�;�0 ` E : � , S ` A; A, and S ` E ; E 0 there exists a derivation
� of

�0 `
MML

[F1=y1] � � � [Fn=yn]E
0 : �

such that �0 `T�
TT (�) : � .

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 61

Proof : Observe that by Proposition 4.3 we have

;jC ;A ` E 0 : �;

and by the de�nition of specialization the expression E 0 does not contain any free
overloaded variables. Thus, the typing context C can be removed, giving

;jA ` E 0 : �;

which by de�nition is a PML typing judgement

A `PML
E 0 : �:

Thus the required result follows by Corollary 4.10.
(This completes the proof. 2)

We conclude this section by de�ning the semantics of MML terms relative to any
model of T�.

De�nition 4.12 (Semantics of MML terms) The semantics of MML terms
relative to a modelM of T� is de�ned as

M[[A `MML
E : �]]MML =M[[A `T�

TT (�) : �]];

for some derivation � of A `MML
E : � .

By Proposition 4.7 and Theorem 4.6, this de�nition does not depend on the choice
of �.

4.6 A semantics for PML and OML

We are now in a position to give a semantics for the systems PML and OML.
Section 4.6.1 lays out a semantics for these systems in terms of the developments
of previous sections, particularly with respect to the semantics of MML.

4.6.1 Formal semantics

Although it is possible, in theory, to give a single de�nition describing the meaning
of both PML and OML, it would be di�cult to read and it would hide some

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 62

intuitive understanding. Thus we begin this section by de�ning the meaning of
monomorphic and polymorphic PML terms with respect to any model of MML
terms, concluding with soundness of equational theories. We then extend this
de�nition, describing the semantics of OML terms with respect to any model for
PML, and conclude with a result about the soundness of OML equational theories.

De�nition 4.13 (Semantics of monomorphic PML terms) The semantics of
the monomorphic PML term �;�0 `PML

E : � , where � = y1 : �1; � � � ; yn : �n , with
relation to any model,M, of MML is de�ned as

M[[�;�0 `
PML

E : �]]PML =M[[�0 `
MML

[Nj=yj]E : �]]MML:

As an example, a function that returns its second argument might be speci�ed as

; `
PML

�x :�y :y : � ! � 0 ! � 0:

Applying the above de�nition we have

curry(curry(�2)) : 1! [[[�]]! [[[� 0]]! [[� 0]]]]:

We now extend this semantics to polymorphic PML terms.

De�nition 4.14 (Semantics of polymorphic PML terms) The semantics

M[[A `
PML

E : 8f�ig:�]]
PML

of a PML term A `
PML

E : 8f�ig:� , relative to any modelM is an arrow

M[[�0]]! ��i 2 Type:M
[[[�i=�i]�]];

de�ned as follows

M[[A `
PML

E : 8f�ig:�]]
PML� =

f([�i=�i]�;M[[A `
PML

E : [�i=�i]�]]
PML�)j�i 2 Typeg:

As an example, consider again a function that returns it second argument, but this
time is polymorphic in its two arguments:

; `PML
�x :�y :y : 8�:8�:�! � ! �:

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 63

Applying the above de�nition we have, for each �; � 0 2 Type,

curry(curry(�2)) : 1! [[[�]]! [[[� 0]]! [[� 0]]]];

as an element of the set

[[; `
PML

�x :�y :y : 8�:8�:�! � ! �]]:

We now state the �rst result of this section, asserting that the equational theories
of PML are sound with respect to the semantics.

Theorem 4.15 (Soundness of PML theories) LetM be any model and T PML

an equational theory; then A ` E =PML F : �)M j=PML A ` E =PML F : �.

A proof of this result is given in Section A.2.3 of Appendix A.

Finally, we are in a position to de�ne a semantics forOML in terms of specialization
and PML.

De�nition 4.16 (Semantics of OML terms)

M[[w : P jC ;A ` E : 8�i :Q) �]]OML� =

f([�i=�i]�;M[[A `
PML

Spec([�i=�];E) : [�i=�i]�]]
PML�) j�i 2 Type;

`̀ P ; [�i=�i]Qg;

where Spec([�i=�];E) is de�ned as

Spec([�i=�];E) = E 0

where
`̀ e : P ; e 0 : [�i=�i]Q
S ` A; A
S ` ([e=w]E)e 0 ; E 0:

By Proposition 4.4 and Theorem 4.15, this de�nition does not depend on the choice
of S in Spec.

As an example, consider the following implementation for overloaded (==) :
8�:Eq �) �! �! Bool ,

P jf(==) : �g ` �v :�x :�y :(==) v x y : �;

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 64

where � = 8�:Eq �) � ! � ! Bool . Applying the de�nition of semantics for
OML, and assuming the only ground implementations for equality are ; `T�

eqInt :
Int ! Int ! Bool and ; `

T�
eqBool : Bool ! Bool ! Bool , we have

[[P j(==) : � ` �v :�x :�y :(==) v x y : �]] =
f (Int ! Int ! Bool ;
; `

T�
�x : Int :�y : Int :eqInt x y : Int ! Int ! Bool);

(Bool ! Bool ! Bool ;
; `T�

�x : Bool :�y : Bool :eqBool x y : Bool ! Bool ! Bool)g:

Expanding further gives the set

f(Int ! Int ! Bool ; curry(curry(eval(eval(eqInt ; �2 � �1); �2))));
(Bool ! Bool ! Bool ; curry(curry(eval(eval(eqBool ; �2 � �1); �2))))g;

as expected.

We conclude this section with the main result of this chapter|soundness of OML
equational theories.

Theorem 4.17 (Soundness of OML theories) LetM be any model and T OML

an equational theory, then

P jC ;A ` E = F : �)M j=OML P jC ;A ` E = F : �:

A proof of this result is given in Section A.2.4 of Appendix A.

4.7 Related work

Of course, there have been many other attempts to provide a denotational seman-
tics for implicitly typed languages, and we summarize the key points of some of
these approaches.

4.7.1 Milner and Damas core-ML semantics

Milner [Mil78], and later Damas [Dam85], described a semantics for implicitly
typed core-ML by presenting a denotational semantics for the untyped core-ML
terms. Introducing a special value wrong for runtime errors, they showed that any

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 65

well-typed core-ML term would not \go wrong". Although adequate, interpreting
well-typed terms with respect to the set of untyped terms introduces extra, unnec-
essary, constraints on models for core-ML. For example, any model of the untyped
calculus must guarantee the existence of �x points, ruling out the possibility of a
simple set-based model [Sco80]. However, it is well-known that type inference for
core-ML restricts the set of untyped terms such that �x points (Turing's � func-
tional [Tur37], for example) are not expressible, and thus one might reasonably
expect a de�nition of core-ML models to re
ect this.

4.7.2 Explicit core-ML

Harper and Mitchell [HM93] considered the implicitly typed terms of core-ML as
a shorthand for terms of an explicitly typed language called XML|a predicative
version of the polymorphic �-calculus. They de�ned a translation from the typing
derivations of a Damas and Milner style inference system into typing derivations
of XML. For example, the expression

�x :x : 8�:�! �

becomes
��:�x : �:x : 8�:�! �:

Harper and Mitchell described a number of semantic models, including one based
on sets, for XML, which can be considered models of core-ML via their translation.
To guarantee well-formedness of translation, any model of XML must satisfy a
coherence condition. Unfortunately, this condition is not always satis�ed by the
set-based model.

4.7.3 Polymorphic types as sets

Motivated by the weakness of previous approaches Ohori [Oho89a] proposed in-
terpreting the terms of core-ML as terms of the simply typed �-calculus [Chu40],
describing a translation from the derivations of a Damas and Milner style inference
system3 into simply typed expressions. Again, to guarantee the well-formedness of
translation, Ohori required a coherence condition. However, unlike the coherence

3Technically, Ohori described an alternative typing rule for let-polymorphism. We described
a variation of this rule and its relationship to Damas and Milner's rule in Section 4.3.

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 66

constraint of Harper and Mitchell this is purely syntactic and guaranteed to hold in
all models. A key aspect of Ohori's approach is the interpretation of a polymorphic
type as the set of its monomorphic instances. For example, the type 8�:�! � is
represented by the set

f� ! � j� 2 Typeg:

Although Ohori's presentation avoided the speci�cs of models, it is well-known that
any cartesian closed category is a model for the simply typed �-calculus [Lam80],
and thus a model of core-ML. In particular the category of sets is cartesian closed,
providing a set-based model for core-ML.

Of course, the semantics for OML described in this chapter builds upon the early
work of Ohori.

4.7.4 Type classes

Wadler and Blott [WB89, Blo92] describe a system for ad-hoc polymorphism,
capturing relations such as equality and ordering through constrained types. For
example, overloaded equality can be speci�ed as

over(==) : 8�:�! �! Bool :

Here the over construct can be thought of as introducing a new Haskell style type
class. In this example, it would introduce a new predicate symbol Eq constraining
the instances of �, in the type of ==, to be ones supporting an equality operation.
Semantically, overloaded terms are considered sugar for more verbose core-ML
terms, justi�ed by a formal translation. However, unlike the more general theory
of quali�ed types, an overloaded expression cannot be assigned a type with more
than one type variable. For example, consider an operation strict for inserting
explicit strictness annotations

over(strict) : 8�:8�:(�! �)! �! �:

Here the type variable � is constrained, while � is universal for all instances of
strict . This leads to the observation that Wadler and Blott's translation may, if
applied to arbitrary expressions, introduce non-overloaded terms possessing types
with nested quanti�ers (i.e., goes beyond the Damas and Milner system).

CHAPTER 4. SPECIALIZATION BASED SEMANTICS 67

4.7.5 A second look at overloading

Odersky, Wadler, and Wehr [OWW95] describe a system for ad-hoc polymorphism,
capturing a restricted form of Wadler and Blott style type classes and a notion
of bounded polymorphism with application to polymorphic records. For example,
overloaded record selection can be assigned the type

(:l) : 8r :8�:(r � fl : �g)) r ! �;

where the predicate r � fl : �g constrains r to be a record containing at least the
�eld l .

Motivated by the observation that an overloaded expression of Wadler and Blott
style type classes, or quali�ed types, cannot be assigned a meaning independent
of its type, Odersky et al. restrict the type of an overloaded symbol to have the
form � ! � , where � is constrained. Restricting overloaded expressions in this
way allows the semantics of overloaded terms to be understood within an untyped
framework, similar in style to that of Damas and Milner. Unfortunately, although
there are a variety of operations whose types satisfy the required restriction, there
are many interesting ones that do not. This includes the operation hl = i (given
in Chapter 2), which has type

hl = i : 8�:8r :(rnl)) �! Var fjl : � jr jg;

and tags a value with the label l in a variant Var fjl : � jr jg.

Chapter 5

Categorical semantics

In the previous chapter, we developed, a semantics for quali�ed types based upon
specialization. This chapter develops an alternative categorical semantics for qual-
i�ed types using the notion of polynomial categories. One important di�erence of
the categorical semantics described in this chapter, over the specialization based
approach, is its ability to model Haskell's polymorphic recursion.

The sections of this chapter are as follows. Section 5.1 gives an overview of the
categorical semantics for quali�ed types. Section 5.2 introduces an alternative pre-
sentation for quali�ed types. Section 5.3 describes a categorical semantics for qual-
i�ed types, while Section 5.4 presents an application of our semantics to Haskell's
class system. Finally, Section 5.5 considers related work, with particular attention
to categorical semantics for �rst-order polymorphism and constrained types.

A description of the categorical structures (e.g., polynomial categories) used in this
chapter can be found in Appendix B.

5.1 Overview

Inspired by the early work of Phoa and Fourman [Pho92, PF92], we interpret �rst-
order polymorphism through the notion of an indeterminate object. The idea of a
categorical predicate system is used to provided an interpretation of the abstract
notion of predicate. Constrained types are then understood by providing a concrete
mapping from the categorical notion of predicates into the underlying category used
to interpret expressions. The interpretation places no unexpected constraints on

68

CHAPTER 5. CATEGORICAL SEMANTICS 69

the de�nition of a predicate system, unlike specialization which required evidence,
and thus, predicates to be expressed in T�. This allows the design and speci�cation
of individual predicate systems to be considered independently of the more general
framework for the underlying language.

As an example, consider a function which duplicates its argument

�x :(x ; x) : 8�:Eq �) �! �� �;

and is constrained to arguments supporting an equality operation|asserted by the
predicate Eq �. Applying the translation rules of Figure 3.7 we need only consider
the semantics for the expression

�v :�x :(x ; x) : 8�:Eq �) �! �� �;

where syntactically �v , and �x represent abstraction over evidence and values,
respectively. However, semantically these binding operators are interpreted by the
same constructs and it is only the types of the arguments (i.e., predicates and
normal expressions) that are considered distinct.

The semantics of an overloaded expression can then be understood in a cartesian
closed category C [X] providing there is a mapping, E , from the semantic meaning
of predicates into the category C [X]. In general, predicates are interpreted in
a cartesian category and thus the mapping E is a structure preserving functor
between the two categories.

The semantics for our duplicating function can then be understood as the arrow1

[[�v :�x :(x ; x)]] = dcurry(hhhh�2; �2iiii)e : 1! [E(Eq X)! [X ! X � X]]:

In his dissertation [Jon94b], Jones discusses a categorical treatment for a monomor-
phic system of quali�ed types but he does not consider polymorphism. To our
knowledge, we are the �rst to propose a categorical semantics for quali�ed types|
providing a categorical interpretation both for predicate entailment and for �rst-
order polymorphism. This provides a general framework for reasoning about pred-
icates independently of the types that they constrain. However, we retain the more
operational view that predicates (can) represent tuples of functions in the same
underling category. This is the approach adopted by the languages Gofer [Jon95a]
and Haskell [PH97], for example.

1Following Lambek and Scott [LS86], we use df e : 1 ! [A ! B] to represent the arrow,
referred to as the `name' of f : A ! B , implied by the isomorphism hom(A;B) �= hom(1; [A !
B]).

CHAPTER 5. CATEGORICAL SEMANTICS 70

5.2 A syntax directed OML

In this section we give an alternative syntax-directed presentation of OML. This
alternative presentation provides a natural formalization for specifying the cate-
gorical semantics by induction over the structure of a type derivation.

The alternative typing rules are presented in Figure 5.1. A judgement of the form
T ;P j C ;A ` E : � represents an assertion that, if the predicates in P hold,
then the term E has type �, using assumptions in C and A to provide types for
polymorphic and monomorphic variables, respectively. Intuitively one may think
of variables assigned polymorphic types (i.e., variables mentioned in C), as being
let-bound, while monomorphic variables (i.e., variables mentioned in A) are bound
via lambda abstraction.

The set T denotes the set of type variables (bound and unbound) in a given
derivation|T may also be used to denote the set of type variables in a monotype
type � . We de�ne '() : TVar ! N as a bijection from type variables into the
naturals, giving a mapping from type variables to indeterminates. The function '
extends to a function over P(TVar) ! P(N), providing functionality to calculate
the set of indeterminates to be adjoined to a category C . The rules for predicate
entailment described in Figure 4.2 must also be extended to include a corresponding
set of type variables T . These extended rules are given in the left hand coloum of
Figure 5.3.

The rule (let) of Figure 5.1, requires a mention as it is the only place in which
polymorphism may be introduced. This occurs through the generalization of a
quali�ed type with respect to the environment in which it was deduced. This
process is described using the function Gen() given in De�nition 3.3.

5.2.1 Operational semantics for OML

Following Tofte [Tof88], we de�ne a big-step operational semantics (often referred
to as a natural semantics|see Gunter [Gun92], for example) and show that a
well-typed OML expression will not `go wrong'.

A judgement of the form E + V represents an assertion that the term E reduces to
the value V in one or more steps. The semantic domain V , of values, is described
by the following grammar

V ;U ::= �x :E j �v :E j (V ;V) j ():

CHAPTER 5. CATEGORICAL SEMANTICS 71

(const) T ;P jC ;A ` c : �c

(varP)
T ;P jC ; x : 8�:�;A ` x : [�=�]�

(varM)
T ;P jC ;A; x : � ` x : �

(E�)
T ;P jC ;A ` E : � � � 0

T ;P jC ;A ` fst E : �

(�E)
T ;P jC ;A ` E : � � � 0

T ;P jC ;A ` snd E : � 0

(�I)
T ;P jC ;A ` E : � T ;P jC ;A ` F : � 0

T ;P jC ;A ` (E ;F) : � � � 0

(unit) T ;P jA ` () : ()

(!E)
T ;P jC ;A ` E : � 0 ! � T ;P jC ;A ` F : � 0

T ;P jC ;A ` EF : �

(!I)
T ;P jC ;Ax ; x : � 0 ` E : �

T ;P jC ;A ` �x :E : � 0 ! �

()E)
T ;P jC ;A ` E : �) � T ;P `̀ e : �

T ;P jC ;A ` Ee : �

()I)
T ;P ; v : �;P 0 jC ;A ` E : �

T ;P ;P 0 jC ;A ` �v :E : �) �

(let)
T ;P jC ;A ` E : � T ;Q jC ;Ax ; x : � ` F : �

T ;P ;Q jC ;A ` (let x = E in F) : �

where � = Gen(C ;A;P) �)

Figure 5.1: Syntax directed typing rules for OML.

CHAPTER 5. CATEGORICAL SEMANTICS 72

E + �x :E 0 [F=x]E 0 + V

EF + V

E + �v :E 0 [e=v]E 0 + V

Ee + V

�x :E + �x :E

�v :E + �v :E

E + (V ;U)

fst E + V

E + (V ;U)

snd E + U

E + V F + U

(E ;F) + (V ;U)

() + ()

[E=x]F + V

let x = E in F + V

Figure 5.2: Natural semantics for OML.

The reduction rules for expressions are given in Figure 5.2.

Following Wright and Felleisen [WF94], we capture the notion that reduction pre-
serves type, and thus, will not `go wrong', by proving subject reduction for OML.

Proposition 5.1 (Subject reduction (syntactic type soundness)) If T ;P j
C ;A ` E : � and E + V , then T ;P jC ;A ` V : �.

A proof of this result is given in Section A.3.1 of Appendix A.

Intuitively, subject reduction tells us that an implementation of quali�ed types
need not perform run-time type checking, as a terminating reduction sequence

CHAPTER 5. CATEGORICAL SEMANTICS 73

produces a well-typed value. Somes ben�ts of not preforming run-time type check-
ing might include, but not limited to: faster execution, as run-time checks need
not inserted and thus are execucted, requiring extra computation time; and smaller
compiled programs as type information can be discarded and run-time checks need
not be inserted.

5.3 A categorical semantics

This section presents a categorical semantics for OML. To ease the technical pre-
sentation we break the de�nition into sections: Section 5.3.1 describes a categorical
interpretation of monomorphic types, while Section 5.3.2 introduces the notion of
a categorical predicate system. Finally, Section 5.3.3 presents the complete cate-
gorical semantics for OML.

5.3.1 Categorical treatment of types

Following Lambek [Lam80], we interpret the meaning of simple types as objects in a
cartesian closed category, built by induction from ground types and type variables.
As discussed in the introduction, type variables are interpreted as indeterminate
objects in some cartesian closed category C [X].

De�nition 5.2 (Semantics of monotypes) Given a monotype � , a set T =
TV (�), and a cartesian closed category C ['(T)], then a structureM is speci�ed by
giving an objectM[[�c]] in C ['(T)] for each constant type �c and an interpretation
of � by induction, through the following clauses

M[[�i]] = '(�i)
M[[� ! � 0]] = [M[[�]]!M[[� 0]]]
M[[()]] = 1

M[[� � � 0]] = M[[�]]�M[[� 0]]:

As a notational convenience we may write [[]], when in fact we really meanM[[]].

We conclude this section with a categorical interpretation of type substitutions.

CHAPTER 5. CATEGORICAL SEMANTICS 74

De�nition 5.3 (Semantics of substitutions) Given monotypes �1; � � � ; �n , a
modelM over C ['(T)], such that

Sn

i=1
TV (�i)�T , and a substitution [�i=�i], we de-

�ne the semantics of [�i=�i] to be the substitution functorM[[[�i=�i]]]~D : C ['(T)] !

C ['(T)] where ~D = M[[�1]]; � � � ;M[[�n]], and Di = Xi otherwise, which uniquely
extends the identity functor on C .

To provide some intuition behind the categorical de�nition for substitutions, and
to motivate the following distribution lemma, consider the type � ! � and the
substitution [Nat=�], whereM[[Nat]] is an object representing the type of natural
numbers, for example. The substitution functor for [Nat=�] is the unique functor
[[[Nat=�]]] : C [X] ! C such that [[[Nat=�]]]([[�]]) = [[Nat]] and acts as the identity
everywhere else. This gives [[[Nat=�]]][[� ! �]] = [[[Nat=�](� ! �)]]; as expected.
This is a general property captured by the following substitution lemma.

Lemma 5.4 If � and � are monotypes over C ['(TV (�) [TV (�))] is a model for
monotypes, and [�=�] a substitution, then

M[[[�=�]�]] =M[[[�=�]]]M[[�]]:

A proof of this result is given in Section A.3.2 of Appendix A.

5.3.2 Categorical predicate systems

We now consider the semantics for predicate entailment, describing the notion of
a categorical predicate system in the following de�nition.

De�nition 5.5 (Semantics of predicates) A categorical model of predicate en-
tailment, with respect to a set of type variables T , consists of

� A cartesian category C ['(T)].

� A structure, P, in C ['(T)] over entailment, de�ned by

{ for every predicate symbol �, an object P[[�]] in C ['(T)].

As a notational convenience we may write [[]], when in fact we really mean P[[]].
The meaning of a context P is de�ned inductively by

[[;]] = 1

[[P ; v : �]] = [[P]]� [[�]]:

CHAPTER 5. CATEGORICAL SEMANTICS 75

For every judgement T ;P `̀ Q, we specify an arrow [[T ;P `̀ Q]] : [[P]] ! [[Q]]
in C ['(T)]. The semantics of `̀ terms are speci�ed inductively over the rules for
entailment. Figure 5.3 gives the complete set of entailment rules in the left hand
column with the corresponding categorical interpretation on the right.

(id) T ; v : P `̀ v : P [[P]]
id- [[P]]

(term) T ; v : P `̀ ; [[P]]
!- 1

(fst) T ; v : P ;w : Q `̀ v : P [[P ;Q]]
�1- [[P]]

(snd) T ; v : P ;w : Q `̀ w : Q [[P ;Q]]
�2- [[Q]]

(univ)
T ; v : P `̀ e : Q T ; v : P `̀ e 0 : R

T ; v : P `̀ e : Q ; e 0 : R

[[P]]
e- [[Q]] [[P]]

e0

- [[R]]

[[P]]
<e;e0>- [[Q ;R]]

(trans)
T ; v : P `̀ e : Q T ; v 0 : Q `̀ e 0 : R

T ; v : P `̀ [e=v 0]e 0 : R

[[P]]
e- [[Q]] [[Q]]

e0

- [[R]]

[[P]]
e- [[Q]]

e0

- [[R]]

Figure 5.3: Categorical interpretation of predicate entailment.

The following de�nition extends the interpretation of monotypes given in Sec-
tion 5.3.1 to quali�ed monotypes.

De�nition 5.6 (Semantics of quali�ed types) Given a quali�ed type P) � ,
a set T = TV (P) �), a predicate system P over a cartesian category Pred ['(T)]
for P, and a modelM over a cartesian closed category C ['(T)] for � , thenM[[P)
�]] is de�ned by specifying

� A cartesian functor E : Pred ['(T)] ! C ['(T)] mapping predicates to ev-

idence. For any entailment P
e- Q, the arrow EP

Ee- EQ should be

uniquely determined by P and Q alone to guarantee `uniqueness of evidence'.

� M[[]] is extended to predicates and constrained types by de�ning M[[�]] =
E(P[[�]]) andM[[�) �]] = [M[[�]]!M[[�]]].

CHAPTER 5. CATEGORICAL SEMANTICS 76

We conclude this section with a statement of soundness for predicates.

Lemma 5.7 (Predicate soundness) Given a judgement T ; v : P `̀ w : Q, and a
predicate system P, then

P[[T ; v : P `̀ w : Q]] : P[[P]] - P[[Q]]:

A proof of this result is given in Section A.3.3 of Appendix A.

5.3.3 Categorical OML

Before de�ning a semantics for OML terms, we �rst give an interpretation for type
schemes and type contexts. The following de�nition formalizes the interpretation
of a type scheme, �, at a given instance.

De�nition 5.8 (Semantics of type schemes) Given a type scheme 8�:�, a mono-
type �, and a modelM over a cartesian closed category, C ['(TV (�))], for �, then
M[[8�:�]] with respect to a substitution [�=�] is speci�ed by

M[[8�:�]][�=�] =M[[[�=�]]]M[[�]]:

Suppose that T ;P j C ;A ` E : �, and that x1; � � � ; xn are the occurrences of
(x : 8�:�) 2 C in the term E . It follows that, in the unique derivation of T ;P j
C ;A ` E : �, each xi is introduced via an application of rule (varP), such as

(xi : 8�j :Q) �) 2 C

T ;P jC ;A ` xi : [�j=�j]Q) �:

Each xi can be understood by providing an expression of type [�j=�j]Q) �.
Thus a polymorphic context, C , assigning types to free variables (used at di�erent
instances) in the expression E , can be interpreted as a product of all instances of
xi in E .

De�nition 5.9 (Semantics of polymorphic contexts) Given T ;P j C ;A `
E : � is derivable, where C = x1 : �1; � � � ; xn : �n , M is a model over a cartesian

CHAPTER 5. CATEGORICAL SEMANTICS 77

closed category C ['(T)] for �, and suppose2 x
[�=�]1
i ; � � � ; x

[�=�]rj
i are the occurrences

of xi in E, for 1 � i � n. Then the meaningM[[C]]E of the context C with respect
to the expression E is given by

M[[C]]E =
r1Y
l=1

[[�1]]
[�=�]l � � � � �

rnY
l=1

[[�n]]
[�=�]l 2 C ['(T)]:

Note that
[[C]]EF

�= [[C]]
let x=E in F

�= [[C]]E � [[C]]F :

Finally, we are in position to describe a categorical semantics for OML, captured
by the following de�nition.

De�nition 5.10 (Semantics of OML) A categorical model of OML with respect
to a set of type variables, T , consists of

� A predicate system P, speci�ed by De�nition 5.5;

� a modelM, speci�ed by De�nition 5.6; and

� for every constant, c : �c, a global element

M[[c]] : 1!M[[�c]]:

As a notational convenience we may write [[]], when in fact we really meanM[[]].
The meaning of a context A is de�ned inductively by

[[;]] = 1

[[A; x : �]] = [[A]]� [[�]]:

For every judgement T ;P jC ;A ` E : � we specify an arrowM[[T ;P jC ;A ` E :
�]] : E(P[[P]]) �M[[C]]E �M[[A]] ! M[[�]] in C ['(T)]. The semantics of OML
terms are speci�ed inductively over the typing rules. Figures 5.4 and 5.5 give the
complete set of rules for the categorical semantics.

2For ease of reading we have abused notion slightly by avoiding subscripts on � in a substitu-
tion [�=�]j . Formally, each � should be annotated �j , highlighting the fact that each occurrence
of xi may be used at a di�erent instantiation.

CHAPTER 5. CATEGORICAL SEMANTICS 78

(!I)
E [[P]]� [[C]]E � ([[A]]� [[�]])

E- [[� 0]]

E [[P]]� [[C]]E � [[A]]
curry(E�s)- [[[�]]) [[� 0]]]

where s : (A� B � C)� D �= A� B � (C � D)

()E)

E [[P]]� [[C]]E � [[A]]
E- [E [[�]]) [[�]]] [[P]]

e- [[�]]

E [[P]]� [[C]]E � [[A]]
hhhhE ;Ee��1iiii- [E [[�]]) [[�]]]� E [[�]]

eval- [[�]]

()I)
(E [[P]]� E [[�]])� [[C]]E � [[A]]

E- [[�]]

E [[P]]� [[C]]E � [[A]]
curry(E�r)- [E [[�]]) [[�]]]

where r : (A� B)� C � D �= (A� C � D)� B

(let)
E [[P]]� [[C]]E � [[A]]

E- [[� 0]] E [[Q]]� [[C]]F � I � [[A]]
F- [[�]]

(E [[P]]� E [[Q]])� [[C]]
let x=E in F � [[A]]

hhhh[�=�]1E ;���;[�=�]rEiiii�id�a-

I � (E [[Q]]� [[C]]F � [[A]])
F�b- [[�]]

where I =
Qr1
l=1[[Gen(C ;A;P) �)]][�=�]l

a : (A� B)� (C �D)� E - (A� C � E)� (B �D � A)

b : A� (B � C � D) - B � C � A�D

Figure 5.4: Categorical semantics for OML|Part 1.

The following lemma shows that, if a typing assertion is provable, then it also holds
semantically. We may interpret this to mean that well-typed OML expressions do
not contain type errors.

Lemma 5.11 (Type soundness) If T ;P jC ;A ` E : � then

M[[T ;P jC ;A ` E : �]] : E(P[[P]])�M[[C]]E �M[[A]] -M[[�]]:

A proof of this result is given in Section A.3.4 of Appendix A.

CHAPTER 5. CATEGORICAL SEMANTICS 79

(unit) E [[P]]� 1� [[A]]
!- [[()]]

(E�)
E [[P]]� [[C]]E � [[A]]

E- [[� � � 0]]

E [[P]]� [[C]]fst E � [[A]]
�1�E- [[�]]

(�E)
E [[P]]� [[C]]E � [[A]]

E- [[� � � 0]]

E [[P]]� [[C]]snd E � [[A]]
�2�E- [[� 0]]

(�I)
E [[P]]� [[C]]E � [[A]]

E- [[�]] E [[P]]� [[C]]F � [[A]]
F- [[� 0]]

E [[P]]� [[C]]E � [[C]]F � [[A]]
hhhhE��1;F��2iiii�p- [[� � � 0]]

where p : A� B � C �D - (A� B � D)� (A� C �D)

(varP)1
E [[P]]� 1� [[[�=�]�]]� [[A]]

�1��2��2- [[[�=�]�]]

(varP)2

E [[P]]� [[C]]x � [[A]]
x- [[�]]

E [[P]]� [[C]]C ;x � 1� [[A]]
x��2��- [[�]]

where � : A� B � C � D �= C � A� B � D

(varM)1
E [[P]]� 1� [[A]]� [[�]]

�2��2��2- [[�]]

(varM)2
E [[P]]� 1� [[A]]

x- [[�]]

E [[P]]� 1� [[A]]� [[� 0]]
x��1��2��2- [[�]]

(!E)
E [[P]]� [[C]]E � [[A]]

E- [[[�]]! [[� 0]]] E [[P]]� [[C]]F � [[A]]
F- [[�]]

E [[P]]� [[C]]EF � [[A]]
hhhhE ;F iiii��- [[[�]]! [[� 0]]]� [[�]]

eval- [[� 0]]

where � : A� (B � C)�D - (A� B �D)� (A� C �D)

Figure 5.5: Categorical semantics for OML|Part 2.

CHAPTER 5. CATEGORICAL SEMANTICS 80

Furthering the connection between the natural semantics of Section 5.2.1, and the
categorical semantics described in this Section, the following theorem captures the
usual soundness property for reduction with respect to a denotational semantics:
If a typing assertion is provable and its corresponding expression reduces to some
value, then this value and the original expression are equal denotationally.

Theorem 5.12 (Soundness of OML reduction) If T ;P j C ;A ` E : � and
E + V , then

M[[T ;P jC ;A ` E : �]] =M[[T ;P jC ;A ` V : �]]:

A proof of this result is given in Section A.3.5 of Appendix A.

This theorem is closely related to Theorem 4.17 (soundness of OML equational
theories). Intuitively, we might hope to induce the equations of Figure 4.4 from
the natural semantics described in Figure 5.2. We do not consider this point
further, but note that it may be an interesting area for future work.

5.4 Towards a semantics for Haskell type classes

In this section we give an example of our semantics in relation to the program-
ming language Haskell [PH97]. We consider a subset of the Haskell class system,
highlighting a possible approach to de�ning a denotational semantics for Haskell.
For simplicity we consider a speci�c instance of ad-hoc polymorphism, overloaded
equality, and a �xed entailment system. However, expanding this to a system where
entailment is extended statically by the user, as in Haskell, should not require too
much extra work.

In Haskell, operations for testing equality are introduced through instances of the
following class

class Eq � where
(==); (==) :: �! �! Bool
(==) = �x :�y :not (x == y):

This de�nition introduces a new predicate symbol Eq .

An instance of the type class Eq , at a given type � , provides at least an imple-
mentation for equality, at type � . However, if this latter implementation is not
provided, then the default �x :�y :not (x == y) is used. For example, given a

CHAPTER 5. CATEGORICAL SEMANTICS 81

primitive operation eqInt : Integer ! Integer ! Bool , determining equality over
integers, an instance of Eq at type Integer is given as

instance Eq Integer where
(==) = eqInt :

Most Haskell implementations construct a dictionary as evidence for equality at
type Integer . This includes implementations for each of the operations supported
by the class Eq . Following Wadler and Blott [WB89], we represent dictionaries as
Haskell data types. For example, the dictionary for the Eq class could be de�ned
as

data EqDict � = EqDict (�! �! Bool) (�! �! Bool):

A Haskell implementation speci�es suitable implementations for (==) : EqDict �)
�! �! Bool and (==) : EqDict �) �! �! Bool . The following de�nitions
su�ce for the current presentation

(==) (EqDict eq) = eq
(==) (EqDict neq) = neq ;

which simply extract the appropriate implementations.

To provide a semantics for our system we begin by specifying objects for predicates
of the form Eq � . For simplicity, we consider equality at instances � and Integer ,
i.e., ; `̀ eqInt : Eq Integer , and v : Eq � `̀ v : Eq �. We now specify a cartesian
closed category C , and thus a predicate system P, for our entailment relation as
follows3

� Objects are chain complete partial orders (CPOs), including at least the
(lifted) CPOs P[[Integer]] = Z?, P[[Bool]] = B? and closed with respect to
the standard constructions of products and exponentials. Arrows are total
continuous functions between CPOs.

� We specify an arrow

hhhheqInt ; not � eqIntiiii : 1
eqint- [Z! [Z! B]] � [Z! [Z! B]];

which represents the implementation for the equality class at type Integer .

3We assume a function not : Bool ! Bool to negate a boolean value, and the arrows P [[;; ; j
; ` eqInt : Integer ! Integer ! Bool]] and P [[;; ; j; ` not : Bool ! Bool]] are labelled eqInt and
not , respectively.

CHAPTER 5. CATEGORICAL SEMANTICS 82

It follows by Proposition B.7 that the cartesian closed polynomial category, C ['(�)],
is closed over the rules of Figure 5.3, and thus, is a predicate system. Given the
cartesian closed category of complete partial orders and total continuous functions,
denoted CPO , and a structureM as speci�ed in De�nition 5.10, the predicate func-
tor E is then de�ned simply as the identity inclusion|the predicate system P for
equality is a full subcategory of CPO .

Our semantics interprets dictionaries of type EqDict � by the functor

EqDict(A) = [A! [A! B]] � [A! [A! B]];

and, as such, the functions (==) and (==) can be interpreted as

M[[;; ;j; `==: 8�:Eq �) �! �! Bool]] : [X ! [X ! B]] � [X ! [X ! B]]
! [X ! [X ! B]]

M[[;; ;j; `==: 8�:Eq �) �! �! Bool]] = �1

M[[;; ;j; ` == : Eq �) �! �! Bool]] : [X ! [X ! B]] � [X ! [X ! B]]
! [X ! [X ! B]]

M[[;; ;j; ` == : 8�:Eq �) �! �! Bool]] = �2:

As an example consider the expression

�x :(==) (EqDict eqInt (not � eqInt)) x 10;

which has type Integer ! Bool in any type and predicate context. This expression
is assigned the meaning

[[T ;P jC ;A ` �x :(==) (EqDict eqInt (not � eqInt)) x 10 : Integer ! Bool]]

= curry([[T ;P jC ;A; x : Integer ` (==) (EqDict eqInt (not � eqInt)) x 10 : Bool]])

= curry(eval � hhhh [[T ;P j C ;A; x : Integer ` (==) (EqDict eqInt (not � eqInt)) x :
Integer ! Bool]];

[[T ;P jC ;A; x : Integer ` 10 : Integer]]iiii)

= curry(eval � hhhheval � hhhheqInt ; �2 � �2 � �2iiii; 10iiii);

where 10 is a global element for the integer 10 and we have omitted some diagonal
maps for ease of reading.

CHAPTER 5. CATEGORICAL SEMANTICS 83

Assume that we are given the following de�nition

curry(curry(== �hhhh�2 � �1; �2iiii));

for the arrow eqInt . The symbol == represents primitive (uncurried) equality on
integers, and can be de�ned in the standard way. Now applying the result of the
above calculation to the global element 5 (representing the integer 5), gives the
following equality

eval � hhhhcurry(eval � hhhheval � hhhheqInt ; �2 � �2 � �2iiii; 10iiii); 5iiii

= eval � curry(eval � hhhheval � hhhheqInt ; �2 � �2 � �2iiii; 10iiii)� id � hhhhid ; 5iiii

= eval � hhhheval � hhhheqInt ; �2 � �2 � �2iiii; 10iiii) � hhhhid ; 5iiii

= eval � hhhheval � hhhhcurry(curry(== �hhhh�2 � �1; �2iiii)); �2 � �2 � �2iiii; 10iiii � hhhhid ; 5iiii

= eval � hhhheval � curry(curry(== �hhhh�2 � �1; �2iiii))� id � hhhhid ; �2 � �2 � �2iiii; 10iiii � hhhhid ; 5iiii

= eval � hhhhcurry(== �hhhh�2 � �1; �2iiii) � hhhhid ; �2 � �2 � �2iiii; 10iiii � hhhhid ; 5iiii

= eval � hhhhcurry(== �hhhh�2 � �1; �2iiii); 10iiii � hhhhid ; �2 � �2 � �2iiii � hhhhid ; 5iiii

= eval � curry(== �hhhh�2 � �1; �2iiii)� id ; �hhhhid ; 10iiii � hhhhid ; �2 � �2 � �2iiii � hhhhid ; 5iiii

= == �hhhh�2 � �1; �2iiii � hhhhid ; 10iiii � hhhhid ; �2 � �2 � �2iiii � hhhhid ; 5iiii

= == �hhhh�2 � �1; �2iiii � hhhhid ; 10iiii � hhhhhhhhid ; 5iiii; 5iiii

= == �hhhh�2 � �1; �2iiii � hhhhhhhhhhhhid ; 5iiii; 5iiii; 10iiii

= == �hhhh5; 10iiii

= F :

5.5 Related work

There have been other attempts to provide categorical semantics for implicitly
typed languages and constrained polymorphism, and we summarize the key points
of some of these approaches here.

5.5.1 A categorical model for core-ML

As discussed in the introduction to this chapter, the categorical semantics of Sec-
tion 5.3.3 is based upon the early work of Phoa.

CHAPTER 5. CATEGORICAL SEMANTICS 84

Phoa [Pho92] described a semantics for implicitly typed core-ML. Interpreting
generic type variables|Milner's de�nition of type variables universally quanti�ed
at the outermost level [Mil78]|to be some (yet) undetermined object in a cartesian
closed category C [X] obtained by adjoining an `indeterminate object' X to the
cartesian closed category C . It then makes sense to interpret expressions whose
types contain polymorphic (i.e., generic) variables in the category C [X] rather than
the underlying category C . For example, consider again the duplicating function
which, unlike the de�nition at the beginning of the chapter, places no constraints
on its argument.

�x :(x ; x) : 8�:�! �� �:

In Phoa's interpretation this function is understood as the arrow

[[�x :(x ; x)]] = dhhhhidX ; idX iiiie : 1! [X ! X � X];

in C [X]. Thus given that the expression �x :(x ; x) is at some point applied to an
expression of type � , corresponding to an object C in the underlying category
C , then the instantiated expression is understood by applying the substitution
X 7! C to dhhhhidX ; idX iiiie : 1 ! [X ! X � X] 2 C [X], resulting in dhhhhidC ; idC iiiie :
1! [C ! C � C], and thus, an arrow for �x :(x ; x) in C .

5.5.2 A categorical semantics for F !

Seely [See87] describes a categorical semantics for Girard's Higher-Order Polymor-
phic �-calculus (F!), that, following Lambek and Scott [LS86], interprets typed
�-calculus via cartesian closed categories. However, unlike the structures required
to model the simply typed �-calculus, a structure capturing the properties of F!

must be able to model higher-order function types, 8�:�, where � may itself be
instantiated to a higher-order function type. To permit such higher-order types,
the categorical structure must also be \complete" in some sense (i.e., must allow
the formation of \arbitrary" products). Of course, this is impossible for an arbi-
trary cartesian closed category|see Reynolds [Rey84] for a proof in the category
Set and Reynolds and Plotkin [RP90] for a categorical proof.

To overcome this dilemma Seely interprets the categorical structure in an appro-
priate \universe", a so called \PL category", which must be an internal complete
cartesian closed category in some other category than the category Set|the solu-
tion is to introduce a class of cartesian closed categories indexed by an appropriate
base category, which mediates the well-formedness of types and thus terms within

CHAPTER 5. CATEGORICAL SEMANTICS 85

each �bre (i.e., a particular cartesian closed category). Unfortunately, although
Seely's interpretation can be used to construct models for implicitly typed �-calculi
(e.g., PML), the set of provable equalities for these calculi is only a subset of equal-
ities provable algebraically in F!. As a consequence, modelling implicitly typed
�-calculi within Seely's framework can often introduce unnecessary complications.
For example, it is often simpler to choose the category Set as a model for PML,
providing a model theoretic framework known to a wide selection of computer
scientists.

5.5.3 A categorical semantics for type classes

Hilken and Rydeheard [HR92], propose a categorical semantics of Haskell style
type classes, that, following Seely [See87], interprets a language with terms, types,
and kinds with respect to indexed categories. The relationship between types and
type classes is described through Lawvere's [Law70] comprehension schema in an
indexed category, which de�nes subsets through predicates as x 2 fy : Aj�g , x 2

A ^ �(x). To illustrate this interpretation, consider the Haskell class introducing
a predicate PartialOrd

class PartialOrd � where
(v) : �! �! Bool ;

asserting that, for any type included in the unary-relation PartialOrd , there is
an operation (v) of the appropriate type. Intuitively, the class PartialOrd is
interpreted by a comprehension fK j�g. Here, K is the kind of the type variable
�, which in this case is the kind of all types, while the predicate � restricts types
in K to those of the form �! �! Bool .

To account for the notion of subclass|the class Eq can be considered a subclass of
PartialOrd by de�ning (==) in terms of (v), for example|Hilken and Rydeheard
introduce rules for class introduction and elimination. Separating form and forma-
tion introduces the problem that a type derivation is no longer determined by an
expressions structure. Hilken and Rydeheard provide a coherence result restoring
the connection between sequents and their derivations. Unfortunately, the implicit
polymorphism of core-ML introduces further coherence constraints that interact
with the coherence results of Hilken and Rydeheard. Furthermore, Hilken and
Rydeheard's semantics is based on a single application of quali�ed types, Haskell
style type classes, and although it seems possible that their work may generalize
to quali�ed types we have not considered this in detail.

Part II

Pragmatics

86

Chapter 6

A semantics for records and

variants

Previous chapters of this dissertation have outlined a type system for extensible
records and variants based on quali�ed types, and two possible de�nitions for the
semantics of quali�ed types. However, hitherto we have not addressed the question
of a semantics for quali�ed types including records and variants. In this chapter
we give, as an application of the work in Chapter 4, a semantics for OML extended
with records and variants.

The record and variant system of Chapter 3 used row extension and lacks predicates
to assert that a speci�ed row does or does not contain a given �eld. Early work
by Harper and Pierce [HP90] and Jones [Jon94b] included extra, so called has
predicates to assert the existence of �elds in a record. However, it was later noted
by Harper and Pierce [HP91] that the combination of extension and lacks predicates
was enough to capture all types expressible using has predicates, although they
did not formalize this remark. In this chapter we give an e�ective procedure, that
given a type, possibly containing has predicates, results in a type without any has
predicates. Applying the semantics developed in this chapter for OML extended
with records and variants we show that this translation preserves meaning.

We split the presentation of a semantics for OML plus records and variants into
sections. Section 6.1 describes a semantics for record and variant types. Section 6.2
considers the semantics of predicate entailment for lacks predicates. Section 6.3
gives a semantics to each of the record and variant primitives, concluding with
a statement of soundness. Section 6.4 concludes this chapter answering, in the

87

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 88

positive, the question `are lacks predicates enough?'

6.1 A semantics for record and variant types

The semantic de�nition given in Chapter 4 (Section 4.6.1) requires that we provide
an interpretation for monomorphic record and variant types in T�. Although one
might simply extend T� with records and variants, we consider records to be
binary products and variants to be coproducts. One technical problem with this
interpretation is that rows are considered equal up to reordering of �elds and, as
a consequence, a naive semantics may distinguish syntactically equivalent types.
For example, consider the record type Recfjl : �; l 0 : � 0jg, which semantically can
be interpreted as the types

� � � 0

and
� 0 � �:

Of course, these types are isomorphic and so the choice of representation is not
important, assuming that we are consistent. To provide a canonical representation
we de�ne the semantics of record and variant types in terms of products and
coproducts, with respect to the total-ordering on labels. For example, if l 0 < l ,
then the record type Rec fjl : Bool ; l 0 : Int jg is represented as Int�Bool . Of course,
we could have chosen to represent the type Rec fjl : Bool ; l 0 : Int jg as Bool � Int ,
however, for a canonical representation we must choose one and, consequently, we
have selected the former interpretation.

Instead of describing a semantic interpretation for the kinds row and � that we
used to enforce the well-formedness of record and variant types in Chapter 3,
we consider record and variants types to be expressed directly in the syntax of
monotypes

� ::= : : : j Rec row j Var row j : : :
row ::= fjjg j fjl : � jrow jg

The main motivation for this choice is the lack of support of higher-order polymor-
phism in the semantics of Chapters 4 and 5. However, as discussed in Chapter 9 we
see no real technical di�culty in extending either of the semantic de�nitions to sup-
port higher-order polymorphism, but we feel that it complicates the presentation
unnecessarily for the purposes of this discussion.

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 89

We can now extend the interpretation of monotypes described in De�nition 4.5 to
provide a semantics for monomorphic record and variant types1.

[[Rec fjjg]] = ()
[[Var fjjg]] = 0
[[Rec fjl : � jr jg]] = [[Rec r]]� � 8l 0 2 labs(r):l 0 < l
[[Var fjl : � jr jg]] = [[Var r]] + � 8l 0 2 labs(r):l 0 < l

To provide an interpretation for variants in terms of coproducts, the monotypes of
T� must be extended to include coproducts. The cartesian closed category, C , of
De�nition 4.5 becomes a bicartesian closed category with sums interpreted in the
obvious way. All of the previous results, including Theorem 4.6, extend naturally
to bicartesian closed categories.

6.2 A semantics for lacks predicates

In Chapter 3 we considered evidence for predicates of the form (rnl) to be an
integer for the label l . In this chapter, we consider evidence for predicates to be
projections (for decomposing a sum or product) and injections (for building sums
and products). Thus, evidence for a predicate of the form (rnl), is a four tuple,
(p; e; i ; d), whose elements are as follows

� p: select the corresponding component of the product used to represent the
record r with a component labelled l .

� e: insert the corresponding element into a record r , labelled l .

� i : inject a value into a coproduct with the corresponding label l .

� d : deconstruct a coproduct value with corresponding label l .

Note that the interpretation of lacks predicates di�ers from that given in Chapter 3.
We return to this point once we have established soundness for OML plus records
and variants.

For the interpretation of lacks predicates to be justi�ed we must be able to express
n-ary products/coproducts in an arbitrary (bi)cartesian closed category. However,

1We use the symbol 0 to denote the type of the initial object.

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 90

this is straightforward if one considers the existence of tuples in any cartesian
closed category, asserted by the following lemma.

Lemma 6.1 (N-ary products) If C is a cartesian closed category then for any
objects A1; � � � ;An there exists an object (A1; � � � ;An), unique up to isomorphism,
and arrows �ni : (A1; � � � ;An) ! Ai , hhhhf ; � � � ; fniiii : A ! (A1; � � � ;An), and insertni :
(A1; � � � ;An) ! [Ai ! (A1;�;Ai ; � � � ;An+1)] such that �ni (A1; � � � ;An) = Ai and
�i � hhhhf1; � � � ; fi ; � � � ; fniiii = fi .

Proof : The proof of this lemma is standard and reproduced here to help with the
general presentation.

Firstly de�ne the object (A1; � � � ;An) by induction on n as

() = 1

(A) = 1� A
(A1; � � � ;An) = (A1; � � � ;An�1)� An :

The generalized projections are speci�ed as

�nn = �2
�ni = �n�1

i � �1 i < n:

By de�nition, it is clear that an object (A1; � � � ;An) is unique up to isomorphism.
The split arrow can be de�ned as

hhhhiiii = 1

hhhhf iiii = hhhh!; f iiii
hhhhf1; � � � ; fniiii = hhhhhhhhf1; � � � ; fn�1iiii; fniiii:

It is clear that the required equalities for projections and splits follow from analo-
gous properties for categorical products. Now de�ne the arrow

insert 0ni : (A1; � � � ;An)� Ai ! (A1;Ai ; � � � ;An+1)

as
insert 0nn = hhhh�1; idiiii
insert 0ni = hhhhinsert 0n�1

i � hhhh�1 � �1; �2iiii; �2 � �1iiii

and thus, insertni = curry(insert 0ni), as required.
(This completes the proof. 2)

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 91

Similarly we can generalize categorical coproducts to n-ary coproducts. We do not
work out the details of this fact here. Instead, we note that statement of such a
lemma can be derived from Lemma 6.1 using C

op in place of C , where C is the
cartesian closed category of Lemma 6.1. We label the dualized projections and
splits inji and joini , respectively.

Finally, we are in a position to restate the rules for predicate entailment with
evidence. The calculation of evidence is described by the rules in Figure 6.1.

P `̀ (�1; ins1; in1; join1) : (fjjgnl)

P `̀ (pi ; p
0
i ; si ; s

0
i) : (rnl)

P `̀ (�m ; insm ; injm ; joinm) : (fjl 0 : � 0 jr jgnl)
m =

8<
:

i ; l < l 0

i + 1; l 0 < l

Figure 6.1: Predicate entailment for rows with evidence.

To conclude this section we observe that, to be able to apply Theorem 4.17 (sound-
ness of OML theories) to OML plus our record and variants, we must be able to
express evidence constructed by the rules in Figure 6.1 as T� expressions. How-
ever, this introduces no new problems, as all of the projections, injections etc,
described in Lemma 6.1 and its dual can be expressed in T�. In fact, they are
de�ned as in the proof of Lemma 6.1.

6.3 A semantics for record and variant opera-

tions

For each primitive record and variant operation of Chapter 3 a corresponding oper-
ation must be added to OML, providing both a type and a suitable implementation.
Of course, the types for these operations are just the types assigned to the original
operations and all that is required here are the implementations. As an example
implementation, record selection might be speci�ed as

(�v :�r :�1 v r : 8�:8r :(rnl)) Recfjl : � jr jg ! �) 2 C ;

where the lambda bound variable v is evidence for the predicate (rnl). By De�ni-
tion 4.16 we have

[[; `T�
(�r : (Int ;Bool):�2

2 r) : (Int ;Bool)! Bool]];

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 92

as an element of the set

[[;j; ` (�v :�r :�1 v r) : 8�:8r :(rnl)) Recfjl : � jr jg ! �]];

at type (Int ;Bool) ! Bool . By �-equivalence, we observe that record selection
is simply an appropriate projection function, constructed with respect to a given
record type. Figure 6.2 describes suitable implementations for the complete set of
record and variant primitives given in Chapter 3.

pRecSel : 8�:8r :(rnl)) Rec fjl : � jr jg ! �
pRecSel = �1

pRecExt : 8�:8r :(rnl)) �! Rec r ! Rec fjl : � jr jg
pRecExt = �2

pVarInj : 8�:8r :(rnl)) �! Varfjl : � jr jg
pVarIn = �3

pVarDe : 8�:8r :(rnl)) Var fjl : � jr jg ! (�! �)! (Var r ! �)! �
pVarDe = �4

Figure 6.2: Record and variant implementations.

Finally, to conclude this section, we now give a statement of soundness for OML
with extensible records and variants as a corollary to Theorem 4.17. We shall write
P jC ;A ` E =r+v F : � and M j=OML P jC ;A ` E =r+v F : � for syntactic and
semantic equations, respectively.

Corollary 6.2 (Soundness of OML + extensible records and variants) Let
M be any model and T OML an equational theory, then

P jC ;A ` E =r+v F : �)M j=OML P jC ;A ` E =r+v F : �:

Proof : The proof follows directly by application of Theorem 4.17 and the fact
that each of the record and variant operations are expressed as expressions in T�.
Furthermore, the equalities for reasoning about records and variants can be derived
directly from the provable equations for the corresponding equalities for products

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 93

and coproducts in an arbitrary bicartesian closed category. It follows that these
rules are sound with respect to our semantics.

(This completes the proof. 2)

Although we have established the soundness of OML plus records and variants, we
must still justify the implementation of records and variants described in Chapter 3.
Fortunately, this is straightforward as the rules for predicate entailment given
in Figure 3.6 are in one-to-one correspondence with those given in Figure 6.1.
Furthermore, it is clear that the record and variant primitives given in Chapter 3
are suitable implementations, for the operations on n-ary products and coproducts
described in this chapter.

6.4 Lacks predicates are enough

Chapter 3 introduced predicates of the form (rnl) to assert that the row r does not
contain a �eld l , and used row extension to extend a row with a new label. Thus
lacks predicates represent the assertion of `negative' information, while extension
captures `positive' information about the �elds appearing in a given row. However,
it is also possible to dualize this notion, introducing predicates of the form2

r has (l : �)

asserting the existence of a label l in r , and using row restriction instead of row
extension, to remove a label from a given row3. Thus has predicates convey positive
information, while negative assertions are transfered into row expressions. As an
example, consider the type of Jones' [Jon94b] record restriction, which is stated
using only positive predicates and row restriction

(� l) : 8�:8r :(r has (l : �))) Rec r ! Rec (r � l):

Intuitively, at least, we expect the di�erent types for record restriction to represent
the same semantic value. But why choose one over the other or, more importantly,
is it possible to write down a type using positive predicates that does not have a
corresponding type using only lacks predicates? If this question is answered in the

2The type � is required to preserve type soundness.
3As discussed in Chapter 3, the introduction of row restriction into the type language leads

to the loss of most general uni�ers. However, this is not relevant in the context of the current
discussion.

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 94

positive, then there are quite reasonable expressions over record and variants that
the type system of Chapter 3 will reject. Why then did we choose to use, only
lacks predicates? This question has been asked before in the work of Harper and
Pierce [HP91], who initially used both positive and negative constraints [HP90],
but later re�ned use to predicates capturing only negative information. In answer
to this question Harper and Pierce conjectured that lacks predicates were enough:
Any type constrained by has predicates could be translated into a type constrained
only by lack predicates, while preserving semantic meaning. In the remainder of
this section we describe a formal procedure for performing just such a transla-
tion. Building upon the semantics of this and previous chapters, we show that
the semantics of the original and translated types coincide. Thus we give a proof
of Harper and Pierce's conjecture, justifying the use of only negative constraints.
As a side e�ect, the translation makes it possible to translate a type contain-
ing row restriction and corresponding positive constraints (which can lead to the
failure of most general uni�ers) into one containing row extension and negative
constraints|regaining most general uni�ers.

The remaining sections are as follows. Section 6.4.1 extends the predicates and
monotypes of Chapter 3 to include has predicates and row restriction and de-
scribes a simple semantics. Section 6.4.2 presents a translation from types, which
may contain has predicates, into types containing only lacks predicates. Finally,
Section 6.5 applies the translation procedure to Jones' [Jon94b] record restriction,
resulting in a type for record restriction that is the same type as assigned to record
restriction in this dissertation.

6.4.1 Types and semantics

To keep the presentation simple, we consider record types only, making the ob-
servation that variant types can be catered for in a similar fashion. Following
Chapter 3, we distinguish between types, � , type schemes, �, and quali�ed types,
�, as described by the following grammar

� ::= � j Rec row j � ! � monotypes

row ::= r j fjjg j fjl : � jrow jg j row � l rows

� ::= P) � quali�ed types

� ::= 8�:� j � type schemes

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 95

As before, the symbols � and r range over countable sets of disjoint variables. P
represents sequences of predicates, described by the following grammar

P ::= ; empty sequence
j (r has l : �);P positive constraints
j rnl ;P negative constraints.

To enforce well-formedness of types, we require that any row of the form

fjl : � jr jg and (r � l);

is constrained by corresponding predicates

rnl and r has l : �;

respectively. Furthermore, we require that for any predicate of the form (rnl) or
(r has l : �) the row r is always a variable. This does not introduce any new
problems as the rules for predicate entailment can be used to simplify (normalize)
any, well-formed, predicate to one of these forms. These restrictions are enough to
ensure that fjl : j jg and � l are total functions.

Following Section 6.1, we describe the semantics of monotypes by giving a trans-
lation into T�, as follows

[[� ! �]] = [[�]]! [[�]]
[[Rec fjjg]] = ()
[[Rec fjl : � jr jg]] = [[Rec r]]� [[�]] 8l 0 2 labs(r):l 0 < l
[[Rec (fjl 0 : � jr jg � l)]] = [[Rec (r � l)]]� [[�]] 8l 00 2 labs(r):l 00 < l ^ l 6= l 0

[[Rec (fjl : � jr jg � l)]] = [[Rec r]]

As before, the semantics of a type scheme, �, is determined by the semantics of its
monomorphic instances, as follows

[[8�:P) �]] = f[[[�=�]�]] j � 2 Type; `̀ [�=�]Pg:

6.4.2 Translation from has to lacks

The rules in Figure 6.3 de�ne a translation relation that, given a type scheme �
(possibly containing both positive, and negative predicates), results in a type

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 96

(scheme)
Q = hasP(P) Q 0 = lacksP(P) (Q) �); (P 0) � 0)

(8�:P) �); (8�:Q 0 [P 0) � 0)

(empty)
fg) � ; fg) �

(arrow) P) � ; P 0) � 00 P) � 0 ; P 00) � 000

P) � ! � 0 ; P 0 [P 00) � 00 ! � 000

(minus)
(r has l1 : �1; � � � ; r has ln : �n ;P)) Rec ((r � l1) � � � � ln);

(rnl1; � � � ; rnln)) Rec r

(noHas)
r has 62 P

P) Rec r ; fg) Rec r

(ext)
r has 62 P

(r has l1 : �1; � � � ; r has ln : �n ;P)) Rec r ;

(rnl1; � � � ; rnln)) Recfjl1 : �1; � � � ; ln : �n jr jg

(noHE)
r has 62 P

P) Recfjl1 : �1 jr jg; fg) Recfjl1 : �1 jr jg

(hasExt)
r has 62 P

(r has l1 : �1; � � � ; r has ln : �n ;P)) Rec fjl 01 : �
0
1; � � � ; l

0
k : �

0
k jr jg;

(rnl1; � � � ; rnln)) Recfjl 01 : �
0
1; � � � ; l

0
k : �

0
k ; l1 : �1; � � � ; ln : �n jr jg

(empR)
P) Recfjjg; fg) Recfjjg

(var)
P) �; fg) �

Figure 6.3: Translation.

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 97

scheme �0 (containing only negative predicates). A judgement of the form � ;
�0 asserts that the type scheme � has translation �0. The (scheme) rule uses
two auxiliary functions to calculate predicates sets containing only has or lacks
predicates, de�ned as follows

hasP(P) = f(r has l : �) j (r has l : �) 2 P ; l 2 L; � 2 Type; r 2 rowg

lacksP(P) = f(rnl) j (rnl) 2 P ; l 2 L; r 2 rowg:

Furthermore, a number of the rules in Figure 6.3 can only be applied on the
assertation that a predicate set P does not contain any speci�c has predicates (see
the (ext) rule, for example). The following de�nition captures this notion

r has 62 P = f(r has l : �) j (r has l : �) 2 P ; l 2 L; � 2 Typeg = fg:

Before answering Harper and Pierce's [HP91] original conjecture|lacks predicates
are enough| we de�ne the auxiliary function, nHas, which, given a type scheme,
�, calculates the number of predicates of the form (r has l : �) in �, as follows

nHas (8�:P :) �) = nHas 0 P
where
nHas 0 ; = 0
nHas 0 (has ;P) = 1 + nHas 0 P
nHas 0 (n ;P) = nHas 0 P

The following proposition con�rms that, for any type scheme, �, there exists a
unique type scheme, �0, such that the semantics of � and �0 coincide, and �0

contains only negative information.

Proposition 6.3 (Lacks predicates are enough) If � is a type scheme, then
there exists a type scheme, �0, such that � ; �0, nHas(�0) = 0, and [[�]] = [[�0]].
Furthermore, if there exists a type scheme, �00, such that � ; �00, then �0 = �00.

A proof of this result is given in Section A.4.1 of Appendix A.

6.5 Record restriction|an example

In this section, we give an example of the translation process. For this we consider
Jones'[Jon94b] type for record restriction

(� l) : 8�:8r :(r has (l : �))) Rec r ! Rec (r � l):

CHAPTER 6. A SEMANTICS FOR RECORDS AND VARIANTS 98

The following derivation shows that, modulo the translation rules of Figure 6.3,
Jones' type for record restriction corresponds to the type assigned to record re-
striction in Chapter 3.

(r has l : �)) Rec r ; (rnl)) Recfjl : � jr jg
(r has l : �)) Rec (r � l); (rnl)) Rec r

(r has l : �)) Rec r ! Rec (r � l); (rnl)) Recfjl : � jr jg ! Rec r

8�:8r :(r has l : �)) Rec r ! Rec (r � l); 8�:8r :(rnl)) Recfjl : � jr jg ! Rec r

The derivation is proved by application of the translation rules, from top to bottom,
(ext), (minus), (arrow), and (scheme).

Jones also assigns the following type to record selection

(:l) : 8�:8r :(r has (l : �))) Rec r ! �;

which, under our translation, becomes

(:l) : 8�:8r :(rnl)) Recfjl : � jr jg ! �;

and is of course the record selection of Chapter 3.

The translation procedure, given in Figure 6.3, combined with Proposition 6.3 is
enough to justify our restriction to lacks predicates and row extension.

One question we have not answered here is whether the relation ; is in fact a
bijection. If this is the case then has predicates would also be enough, and thus,
in a system where most general uni�ers are not important (for example, Harper
and Pierce's [HP91] system is explicitly typed, and consequently, does require
type inference) one could use positive predicates and row restriction rather than
negative predicates and row extension.

Chapter 7

Rows, labels and casting

Previous chapters of this dissertation have been concerned with the theoretical
basis for a calculus of extensible records and variants and with a selection of se-
mantic models for this system and for more general systems of quali�ed types.
This chapter considers a number of extensions to our original calculi, which may
be useful when adapting our proposal to realistic programming languages.

The chapter is split into three sections. Section 7.1, inspired by category theory
and logic, studies the importance of rows, introducing a collection of generalized
operations for constructing and deconstructing records and variants. Section 7.2
considers labels as �rst class values. Finally, Section 7.3 considers encoding objects
as records, paying particular attention to an operation that is known as `casting'
in a wide selection of strongly typed object-oriented programming languages.

7.1 Row polymorphism

Working with a general notion of rows has provided us with an elegant way to
deal with the common structure in record and variant types. However, we have
not seen any examples in the previous sections where it was essential to consider
rows separately from records and variants; we could have just de�ned completely
independent sets of record and variant types.

However, there are some applications in which the ability to separate rows from
records and variants o�ers signi�cant bene�ts. To illustrate this, consider again the
basic operations that were discussed in Chapter 3. For example, if we generalize

99

CHAPTER 7. ROWS, LABELS AND CASTING 100

the rules for decomposing a sum to deal with n-ary sums, then we obtain the
following rule

A1 ! C : : : An ! C

A1 + : : :+ An ! C
:

In terms of records and variants, this rule provides a method for decomposing a
variant|represented by the sum A1 + : : : + An in the conclusion|using a record
of functions|represented by the hypotheses Ai ! C . This suggests a general
operation for variant elimination

sumElim : 8�:8r :Rec (to � r)! Var r ! �:

The to � r construct used here is de�ned as follows

to � fjjg = fjjg
to � fjl : � 0 jr jg = fjl : � 0 ! � j to � r jg:

The function expression to � r behaves like a particular kind of map operation
on rows, replacing each component type � 0 in r with a type of the form � 0 ! �.
For example, the expression to Char fjl : Bool ; l 0 : Int jg evaluates to the row
fjl : Bool ! Char ; l 0 : Int ! Char jg. Similar operations have been suggested in
earlier work by R�emy [R�em92b] and by Hofmann and Pierce [HP95].

For an example of where such an operation may prove useful, consider the type of
integer lists that can be obtained as a �xpoint of the following functor [MH95]

data L l = L (Var fjnil : Rec fjjg; cons : Rec fjtl : l ; hd : Int jgjg):

The sum of a list of integers can be calculated using a general catamorphism

cata (�(L v):sumElim (nil = �():0; cons = �r :(r :hd) + (r :tl)) v):

From this example, it is clear that sumElim is an alternative to the case construct
of languages like Haskell and SML. However, unlike these languages, it is not a
built-in part of the syntax; instead, it allows us to treat case constructs as �rst-
class, extensible values.

The sumElim operation that we have considered here is just one of four operators
that correspond to the standard ways of constructing or deconstructing sums or
products shown in Figure 7.1. The full set of operations are speci�ed by the

CHAPTER 7. ROWS, LABELS AND CASTING 101

A1 ! C : : : An ! C

A1 + : : :+ An ! C

A! C1 + : : :+ A! Cn

A! C1 + : : :+ Cn

A1 ! C + : : :+ An ! C

A1 � : : :� An ! C

A! C1 : : : A! Cn

A! C1 � : : :� Cn

Figure 7.1: Rules for product and sums.

following type signatures

sumElim : 8�:8r :Rec (to � r)! Var r ! �
sumIntro : 8�:8r :Var (from � r)! �! Var r
prodElim : 8�:8r :Var (to � r)! Rec r ! �
prodIntro : 8�:8r :Rec (from � r)! �! Rec r :

The from � r construct used in the types of sumIntro and prodIntro is as an obvious
dual to to � r . An expression of the form from � r replaces each component of type
� in r with a component of type �! � . It is de�ned by the following de�nition

from � fjjg = fjjg
from � fjl : � 0 jr jg = fjl : � ! � 0 j from � r jg:

Given our earlier representations for records and variants, it is easy to implement
each of these operations as built-in primitives. For example, a suitable implemen-
tation for sumElim might be

sumElim r hl = x i = (r :l) x ;

It is easy to see that this implementation is sound because sumElim 0s type guar-
antees that, whatever summand l represents, the corresponding function will be
present in the record r . Figure 7.2, gives implementations for each of the gener-
alized operators. From a practical perspective it is straightforward to implement
each of these operations, with the possible exception of prodIntro, which requires
additional information about the length of a given record.

One technical di�culty that we face with this approach is in extending the treat-
ment of uni�cation to deal with uses of the from and to constructs. This turns out
to be straightforward, except for potential complications caused by the presence
of empty rows. For example, in unifying two rows to � r and to � 0 r 0, we cannot

CHAPTER 7. ROWS, LABELS AND CASTING 102

sumElim r hl = x i = (r :l) x
sumIntro hl = f i x = hl = f xi
prodElim hl = f i (l = x j) = f x
prodIntro (l1 = f1; : : : ; ln = fn) x = (l1 = f1 x ; : : : ; ln = fn x)

Figure 7.2: Implementations for generalized operators.

simply unify � with � 0; if r , and hence r 0, is empty, then there may not be any di-
rect relationship between � and � 0. More precisely, to obtain most general uni�ers
for from and to constructs, we need to restrict ourselves to work with non-empty
rows.

7.1.1 Non-empty rows

Of course, rows are still built by extension but instead of starting with the empty
row, the singleton row constructor is used in its place:

fjl : jg : � ! row :

The following singleton record constructor is included as an additional primitive:

(l =) : 8�:�! Rec fjl : �jg:

With the restriction to non-empty rows we must check that the types of the original
primitives (e.g., record selection, extension, and restriction) are still correct. The
point here is that a row of the form fjl : � j r jg now has at least two elements|
due to the restriction to non-empty rows, the row variable r must include at least
one �eld. As a consequence the record selection operator of Chapter 3 cannot be
applied to a singleton record. However, there is a straightforward solution to this
problem: Assign an alternative type to record selection|one that can be uni�ed
with both singleton and extended records. In fact, we have already seen this type
for record selection in Chapter 6 and is the type assigned by Jones [Jon94b] using
has predicates, instead of lacks predicates, to constrain r to records containing an
l �eld:

(:l) : 8�:8r :(r has l : �)) Rec r ! �:

The row variable r uni�es with both singleton row and extended row types.

CHAPTER 7. ROWS, LABELS AND CASTING 103

With the inclusion of has predicates we must extend the de�nition of predicate
entailment, given in Figure 3.6, to include rules for determining evidence for both
has and lacks. Furthermore, we must restrict entailment such that it is de�ned
over non-empty rows, only. The complete set of rules for predicate entailment
supporting non-empty rows and including has predicates is given in Figure 7.3.

P [fv : �g `̀ v : �

P `̀ e : (rnl)

P `̀ m : (fjl 0 : � jr jgnl)
m =

8<
:

e; l < l 0

e + 1; l 0 < l

P `̀ m : (fjl 0 : � jgnl) m =

8<
:

0; l < l 0

1; l 0 < l

P `̀ e : (rnl)

P `̀ m : (fjl 0 : � jr jg has (l : �))
m =

8<
:

e; l < l 0

e + 1; l 0 < l

P `̀ 0 : (fjl : � jg has (l : �))

Figure 7.3: Predicate entailment for rows with evidence.

It is important to note that the algorithm given in Chapter 6, to translate types
containing has predicates into types containing only lacks predicates, is not valid
in the current setting. It is clear that this is the case, by the argument given above
for changing the type of record selection. To see this note that the original type for
record selection restricted �eld selection to records with at least two components,
while the alternative (including has predicates) is de�ned for all records containing
the �eld l . However, this is not a limitation of the translation procedure, rather
a consequence of restricting row expressions to be non-empty. From a logical
perspective, this is like throwing away the terminal object in a cartesian closed
category, and so it is perhaps not surprising that certain equalities are lost.

Fortunately, the types of the other operations (e.g., extension, injection) remain
unchanged. However, with the introduction of has predicates we must mention

CHAPTER 7. ROWS, LABELS AND CASTING 104

problems of type ambiguity and satis�ability. Consider the following type

8�:8r :(Num �; r has l : �)) Rec r ! Rec r ;

which, under the standard notion of ambiguity1, would be rejected. It is possible to
weaken the notion of ambiguous type to allow for this and other similar examples.

We conclude this section with a small but important point concerning the notion
of satis�ability for constrained types. Consider the following type

8�:8r :(r has l : �; r has l : �)) Rec r ! (�; �);

which to make sense semantically must enforce � = �. Fortunately, this equality
can be induced by the notion of principal satis�ability proposed by Jones [Jon95b].
An implementation can make use of this fact to reduce the above type to the
corresponding type

8�:8r :(r has l : �)) Rec r ! (�; �):

7.1.2 Uni�cation of non-empty rows

To conclude the discussion of row polymorphism we consider the problem of uni�-
cation for our extended type language, which now includes types of the form to � r
and from � r .

Formally, the set of type constructors is extended with the constants2

to : � ! row ! row
from : � ! row ! row :

As a consequence the set of rules for calculating uni�ers (inserters), given in Fig-
ure 3.3 (Figure 3.4), must be extended to include cases for types of the form to � r
and from � r . These extensions are straightforward, except for expressions of the
form

to � r�from � 0 r 0:

It is clear that if the types to � r and from � 0 r 0 are to unify then the set of labels
in r and r 0 must be equal. Furthermore, each type assigned to a label l in r must

1Jones classed any type that contained a reference to a variable in the set of predicates but
not in the constrained type itself as ambiguous.

2We disallow partial application of these constructors.

CHAPTER 7. ROWS, LABELS AND CASTING 105

be uni�able with � 0, and each type assigned to a label l 0 in r 0 must be uni�able to
� .

To capture this observation formally we introduce a new kind, labels, denoting sets
of labels, and two type constructors for building label sets

fjl jg : labels
fjl j jg : labels ! labels:

Note that sets of labels correspond to rows without types for the labels and that
duplicate labels are not allowed. Inserters are de�ned as for rows but without
regard for the type of a given label.

The following constructor, array , is used to construct rows in which each label is
assigned the same type (supplied as the �rst argument to array)

array : � ! labels ! row
array � fjl jg = fjl : � jg
array � fjl jr jg = fjl : � jarray � r jg:

As an example, consider a type to represent two-dimensional points, which might
be expressed as Rec fjx : Int ; y : Int jg, using the notation of Chapter 3. Using the
constructor array this type can be denoted as array Int fx ; yg.

The rules for uni�cation (inserters), given in Figure 3.3 (Figure 3.4), are extended
to include the additional rules in Figure 7.4 (Figure 7.5)3. The important prop-
erties of uni�cation and insertion|both soundness and completeness|captured
in Theorem 3.2, extended to include the restriction to nonempty rows and the
additional rules for uni�cation.

Theorem 7.1 The uni�cation (insertion) algorithm de�ned by the rules in Fig-
ure 3.3 (Figure 3.4), extended to include the additional rules given in Figure 7.4
(Figure 7.5), calculates most-general uni�ers (inserters) whenever they exist. The
algorithm fails precisely when no uni�er (inserter) exists.

A proof of this result is given in Section A.5.1 of Appendix A.

Having established an algorithm for calculating most-general uni�ers for construc-
tors including non-empty rows, to and from we can again use the type inference
and compilation algorithms for quali�ed types.

3Technically the rules for uni�cation (insertion) given in Figures 3.3 and 3.4 must be changed
to unify (insert) non-empty rows. However, this is straightforward.

CHAPTER 7. ROWS, LABELS AND CASTING 106

�
U
�� 0 Ur

U 0

�Ur 0

array � r
U 0U
� array � r

�
U
��! � 0 Ur

U 0

�U (array � fs) �; fs new

array � fs
U 0U
� to � 0 r

�
U
�� 0 ! � Ur

U 0

�U (array � fs) �; fs new

array � fs
U 0U
� from � 0 r

r
U
�array � 0 fs Ur 0

U 0

�array (U �) (Ufs) fs new

to � r
U 0U
� from � 0 r 0

�
U
�� 0 (l)

I
2Ufs

array � fs
IU
�fjl : � 0jg

�
U
�� 0 (l)

I
2Ufs array (IU �) (IUfs � l)

U 0

�IUr

array � fs
U 0IU
� fjl : � jr jg

� 0
U
��! � Ur

U 0

�fjl : U� jr 00jg to (U 0U �) (U 0Ur 00))
U 00

�U 0Ur 0 �; r 00 new

to � r
U 00U 0U
� fjl : � 0 jr 0jg

�
U
�� 0 Ur

U 0

�Ur 0

to � r
U 0U
� to � 0 r 0

� 0
U
�� ! � Ur

U 0

�fjl : U� jr 00jg from (U 0U �) (U 0Ur 00))
U 00

�U 0Ur 0 �; r 00 new

from � r
U 00U 0U
� fjl : � 0 jr 0jg

�
U
�� 0 Ur

U 0

�Ur 0

from � r
U 0U
� from � 0 r 0:

Figure 7.4: Additional rules for uni�cation.

CHAPTER 7. ROWS, LABELS AND CASTING 107

�
U
�� 0 (l)

I
2Ufs

(l : �)
IU
2 array � fs

�
U
��! � 0 (l : U�)

I
2Ur � new

(l : �)
IU
2 to � 0 r

�
U
�� 0 ! � (l : U�)

I
2Ur � new

(l : �)
IU
2 from � 0 r

Figure 7.5: Additional rules for insertion.

7.2 Labels

In previous chapters of the dissertation, we have considered the labels used to refer
to �elds as part of the basic syntax of our language. As a result, we had to describe
selection from a record using a family of functions

(:l) : 8�:8r :(rnl)) Rec fjl : � jr jg ! �;

with one function for each choice of label l . A more attractive approach is to
allow primitive operations on records and variants to be parameterized over labels.
We can extend the type system described in previous chapters to accomplish this,
treating selection, for example, as a single function of type

(:) : 8�:8r :8l :(rnl)) Rec fjl : � jr jg ! Label l ! �:

This requires another extension of the kind system in Section 3.1.1 with a new kind
lab, and also a new type constant Label of kind lab ! �. Intuitively, each type of
the form Label l contains a unique label value, often referred to as singleton types
in type theory. The l parameter is important because it establishes a connection
between types and label values; a nullary Label type would not have provided any
way for us to express the necessary typing constraints. We can also dispense with
the family of extension constructors de�ned in Section 3.1.2, replacing them with
a single constructor constant4

fj : j jg : lab ! � ! row ! row :

4Again we do not allow partial application.

CHAPTER 7. ROWS, LABELS AND CASTING 108

Finally, we need to generalize the lacks predicate from Section 3.1.3 to a two place
relation rnl which takes both a row r and a label l of kind lab. This can be de�ned
in the same way as before, and has the same interpretation as an o�set value in
the underlying implementation.

We can generalize the other basic operations on records and variants in a similar
way. For example, the expression �x :�y :(y = 2; x = 3), which involves two uses of
extension, will be assigned the type

fjx : Int jgny) Label x ! Label y ! Rec fjx : Int ; y : Int jg:

The generalized types for each of the speci�c record and variants of Chapter 3 are

� Selection: extract a value

(:) : 8�:8r :8l :(rnl)) Rec fjl : � jr jg ! Label l ! �:

� Restriction: remove a �eld

(�) : 8�:8r :8l :(rnl)) Rec fjl : � jr jg ! Label l ! Rec r :

� Extension: to add a �eld l to an existing record

(= j) : 8�:8r :8l :(rnl)) Label l ! �! Rec r ! Rec fjl : � jr jg:

� Injection: to tag a value

h = i : 8�:8r :8l :(rnl)) Label l ! �! Var fjl : � jr jg:

� Embedding: to embed a value in a variant type

h j i : 8�:8r :8l :(rnl)) Label l ! Var r ! Var fjl : � jr jg:

� Decomposition: to act on the value in a variant

(2 ? :) : 8�:8�:8r :8l :(rnl)) Label l
! Var fjl : � jr jg
! (�! �)
! (Var r ! �)
! �:

CHAPTER 7. ROWS, LABELS AND CASTING 109

As before, we can de�ne additional operations naturally in terms of these primi-
tives. For example, record update can be de�ned as

(:= j) : 8�:8�:8r :8l :(rnl)) Label l ! �! Rec fjl : � jr jg
! Rec fjl : � jr jg

(l := x jr) = (l = x jr � l);

as expected. The important point here is that is a single de�nition for record
update, unlike that of Chapter 3 where there was an implementation for each label
l .

To our knowledge, this is the �rst work|in either implicitly or explicitly typed
record and variant calculi|to consider a type system in which labels can be treated
as �rst-class values. This increases the expressiveness of our system, and we al-
ready have some interesting applications for these new features, some of which are
discussed in the sequel. We have implemented a variant of the functional program-
ming language Haskell (in Java) that includes extensible records and variants with
�rst-class labels. Each of the applications, of �rst-class labels, described in the
sequel have been implemented in this prototype implementation and seem to work
well in practice.

For the remainder of this section we consider two di�erent applications of �rst class
labels. The �rst example, described in Section 7.2.1 is concerned with describing
types for operations of the Java virtual machine [LY96], and is based on work by
Jones [Jon97]. The second example, described in Section 7.2.2, is concerned with
the problem of array bounds checking for a simply typed �-calculus extended with
integer arrays. The key motivation for this example is that it provides evidence
that the introduction of �rst class labels does not break type soundness, but it also
highlights some of the limits of expressiveness of �rst-class labels.

7.2.1 Type checking Java byte code

The programming language Java [AG96] has been designed speci�cally with porta-
bility in mind. Java source code is compiled into a bytecode format that can be
executed on a Java virtual machine (JVM) [LY96]. The designers of Java paid
a lot of attention to security. For example, Lindholm and Yellin [LY96] describe
a process of bytecode veri�cation|a bytecode veri�er identi�es and rejects badly
behaved programs. Although Lindholm and Yellin describe bytecode veri�cation
through the use of natural language, Jones [Jon97] argues that this process can be
understood more formally as a kind of type inference problem.

CHAPTER 7. ROWS, LABELS AND CASTING 110

The key idea in Jones' presentation is to view bytecode �les as a special kind of
concrete syntax for programs with the same dynamic semantics, but typed in a
functional language. The importance of this work in the current setting is that
the functional language is fairly conventional. However, Jones has found that, if
one is to provide types for the complete set of Java bytecode operations, then both
extensible records (used to model function frames) and �rst-class labels (capturing
load frame to stack operations) can be useful in describing the correct types. In
this section we give an overview of Jones' approach to bytecode veri�cation, paying
particular attention to the application of extensible records and �rst-class labels.
We conclude this section describing a successor function for labels that allows us
to assign a type to the operation of loading two-word value of type Long .

A Java bytecode program can be thought of as the execution of a sequence of
commands. Each command has access to the machine's state, which can be rep-
resented by a set of local arguments (the command's frame) and a machine stack.
Modelling the machine's state by a tuple containing the local frame and machine
stack, Jones represents commands by functions that describe transitions from one
machine state to another. For example, the addition of two integers stored on the
top of the machines stack can be speci�ed by the following de�nition5

iadd : 8f :8s:(f ;Push Int (Push Int s))! (f ;Push Int s)
iadd = �(f ;Push x (Push y s)):(f ;Push (x + y) s):

A sequence of commands is then speci�ed by combining the di�erent instructions
together using forward function composition6. For example, the following expres-
sion adds three integers together

iadd ; iadd ;

and has type (f ;Push Int (Push Int (Push Int s)))! (f ;Push Int s).

The reader may have observed that the operator ; represents composition in the
Kleisli category constructed with respect to the original category of computation
and the identity monad [Lan72, Mog91, Wad90]. Furthermore, to capture the
possible e�ects that a command may produce (e.g., exceptions) during execution,
Jones transforms the identity monad to support the required features. This work
on monads is treated in detail by Jones [Jon97].

5We assume the existence of a stack data type|de�ned in Haskell as newtypePush a s =
Push a s .

6We denote forward function composition by (;) : 8�:8�:8
:(�! �) ! (� !
)! � !
.

CHAPTER 7. ROWS, LABELS AND CASTING 111

Hitherto we have not considered any Java bytecodes which make use of the local
frame. One such operation is the load variable command, that simply extracts
a value stored in the frame and pushes it onto the stack. This command is an
excellent application for extensible records and �rst-class labels. It can be de�ned
as

load : 8�:8s:8f :8l : f nl)
Label l !
(Rec fjl : � j f jg; s)!
(Rec fjl : � j f jg;Push � s)

load l = �(f ; s):(f ;Push (f :l) s):

Here the load operator is now parametrized by a label, representive of the frame
memory cell to be loaded, and is de�ned simply to extract the corresponding value
from the frame and push on to the stack.

Finally, to conclude this section, we consider the command lload , which, due to
the Java bytecode speci�cation, has an unexpected type and implementation. The
problem is that although Long is a de�ned type, values of this type cannot be stored
in frames or on the stack. Instead, the low and high words of a corresponding long
are stored in related variables. It is possible to calculate the name of the high byte
by incrementing the name of the low byte. However, using �rst-class labels we can
assign a name to the low byte, but how can a label be incremented? The answer to
this question lies in our original de�nition for labels, speci�ed in Chapter 3. The
only requirement we placed on this set was that it must be countable and closed
under a speci�ed total-ordering. One such set that satis�es this speci�cation is the
set, N , of natural numbers. Choosing the set N for our set of labels implies that
the set of labels is closed under Peano's axioms and, as such, supports a successor
function. To capture the notion of incrementing a label we introduce the following
type constructor

Succ : lab ! lab;

which can be seen as the successor function satisfying Peano's second axiom (see
MacLane and Birkho� [LB93], for example). Furthermore, we add an additional
term constant used to increment a given label

succ : Label l ! Label (Succ l):

CHAPTER 7. ROWS, LABELS AND CASTING 112

Finally, using the successor operation on labels we can de�ne lload as

lload : 8s:8r :8l : (rnl ; rn(Succ l)))
Label l !
(Rec fjl : Word ; (Succ l) : Word jr jg; s)!
(Rec fjl : Word ; (Succ l) : Word jr jg;
Push Word (Push Word s))

lload = �l :�(f ; s):(f ;Push (f :l) (Push (f :(succ l)) s)):

Notice the use of the label successor function to gain correct access to the high
word.

Extending the record and variant type system of Chapter 3 to include �rst-class
labels supporting successor operation introduces no further technical problems.
For example, uni�cation and type inference are unchanged, while an advanced
compilation process may remove references to �rst class labels, if it so chooses.

7.2.2 Simple array bounds checking

Static array bounds checking is concerned with determining, at compile time,
whether a expression tries to select or update an array component outside the
bounds of the array. Thus, as is the case with static type checking, this process
can reduce the need for passing and checking bounds information at runtime. For
example, the expression arr [9] = 20 is safe on the assumption that the array arr
contains at least ten components7, otherwise evaluation may, depending on the lan-
guage de�nition, cause an unexpected exception. In this section, we study a simple
calculus supporting functional arrays and we describe how a translation procedure
can be speci�ed from expressions of this language into our record calculus with �rst
class labels. The soundness of this translation provides us with a simple guarantee
that any, well typed, translated expression will not `go wrong', thus, guaranteeing
that no outer of bounds error will occur. However, as will become clear in the
sequel it is not the aim of this section to provide a solution to the problem of array
bounds checking, but rather to highlight some of the shortcomings of �rst class
labels.

The types for the array language are those of the simply typed �-calculus extended
with types for functional arrays, given by the following grammar

7We assume that the �rst element of an array is indexed at o�set 0.

CHAPTER 7. ROWS, LABELS AND CASTING 113

� ::= � ! � j Ix j Arrayn j Elem

Here Ix corresponds to the type of natural numbers, whose elements, n 2 Ix , are
used to access components of the array. Elem is the type of values that can be
stored in an array. Finally, the type Arrayn represents arrays of size n 2 N , whose
elements are of type Elem.

The term language, Array , is an implicitly typed �-calculus extended with the
following constants

� Array de�nition: to de�ne an array of length n, whose components are set
to some default value of type Elem

newn : Elem ! Arrayn :

� Index constants
n : Ix :

� Index addition: to add two array indices

+ : Ix ! Ix ! Ix :

� Access: to select a given component from an array

[] : Arrayn ! Ix ! Elem:

� Update: to update a given array component

[] = : Arrayn ! Ix ! Elem ! Arrayn :

We use the symbol M to range over expressions of type Array .

To enable the following translation procedure to capture the notion of index ad-
dition, we must extend our term operations over labels to support label addition.
The following the addition constant is added to the term language

$+ : Label x ! Label y ! Label (x + y);

CHAPTER 7. ROWS, LABELS AND CASTING 114

observing the need for a new type constructor

+ : lab ! lab ! lab:

Due to the static nature of labels, it may not be necessary to extend the uni�cation
procedure to support addition over labels. However, we leave further investigation
of this subject to future work, noting simply that, if an extended uni�cation pro-
cedure is required, then the work of Kennedy [Ken96] on type inference in the
presence of dimension types may be a good place to begin.

We now de�ne a translation from expressions of Array into expressions of our
record and variant calculus extended with �rst class labels8

[[i]] = $i
[[x]] = x
[[�x :M]] = �x :[[M]]
[[M M 0]] = [[M]][[M 0]]
[[e]] = ()
[[newn]] = ($0 = (); : : : ; $(n � 1) = ())
[[M [i]]] = [[M]]:[[i]]
[[M [i] = M 0]] = ([[i]] := [[M 0]] j [[M]])
[[+]] = $ + :

The following propostion shows that any well-typed array program that has a well-
typed translation into OML plus records and �rst-class labels, supporting addition,
does not produce an array outer bound error.

Proposition 7.2 (Array indexing) If � `
Array

M : � and P j�0 ` [[M]] : � , then
there exists no subexpression indexing an array, such that, the index is greater than
the size of the array itself under the standard interpretation of �-calculus extended
with functional arrays.

Proof : It is clear that by application of Corollary 6.2 that evaluation of the term
P j�0 ` [[M]] : � will not select a record component that is not present. Thus the
required result follows by observation that array selection, update, and indexes all
map to the appropriate record and label operations.

(This completes the proof. 2)

8The expression $n denotes a value (i.e., label) of type Label n, where n 2 N.

CHAPTER 7. ROWS, LABELS AND CASTING 115

Although this proposition provides us with a method for automatically checking,
at compile time, that a given program will not try to access an array component
outside of the array's bounds, this algorithm is not complete. A consequence of
this observation is that it is possible �nd reasonable programs, that are rejected.

Unfortunately, many interesting, well-typed, programs are rejected under the above
translation. For example, consider the expression9

�x (�f :�arr :�i :if i == 3 then arr
else f (arr [i] = e) (i + 1)) 1 (new10);

which simply updates the �rst two elements of a ten element array and returns
this as its result. Using the reduction rules for �-calculus and functional arrays
one can quickly reduce this expression to normal form, without a runtime out of
bounds error. However, applying the above translation to this expression produces
an output expression that is not typeable. It seems that any array expression
depending on recursion, will not be well-typed under the resulting translation.
Thus the number of `interesting' examples for which Proposition 7.2 applies seems
to be rather small. However, it is this limitation that leaves us observing the
addition of �rst class labels supporting arithmetic is sound. The point here is that,
if it was possible to capture iteration through �rst-class labels, then we would be
able to construct an expression that simply discarded a given �eld from a record
and then recursively called itself with the label incremented by one. Thus at some
point the newly generated label would represent a `not present' �eld, leading to a
failure in reduction.

7.3 Casting

Although records have been studied in the context of programming languages
from the early days of Cobol, polymorphism and extensibility are more recent
developments. Inspired by the need for type systems for Smalltalk like languages,
Cardelli [Car84] and Wand [Wan87] proposed encoding objects in terms of record
calculi with extensibility. In this section we study a selection of operations on
records found in many strongly typed object-oriented programming languages,
including Java and C++.

9To simplify the example we assume that the language Array is extended with a functional
�xpoint operator and with conditionals.

CHAPTER 7. ROWS, LABELS AND CASTING 116

To motivate this operation we begin by laying out the implementation of a simple
hierarchy, pictured in Figure 7.6, by example. We use records to represent objects.
For example, the type de�nition

type Academics r = Rec fjname : String ; sex : String jr jg;

captures the class Academics in Figure 7.6,

Observe that the type Academics is parametrised by a row variable r , representing
the possible, yet unspeci�ed, additional methods that a derived class may contain.
An example academic `Bart Simpson' can be de�ned using extension as follows

(name = \Bart Simpson";
sex = \Male") : Rec fjname : String ; sex : String jg:

Student

Undergraduate Postgraduate

Lecturer

Tutor group :: String Group :: Int

Academics

Name :: String

Sex :: String

Title :: StringCourse :: String

Figure 7.6: Academic hierarchy.

The following type de�nition captures the Student class of Figure 7.6, which must
express that an object Student will contain all the �elds of an Academic plus some
additional ones of its own.

type Student r = Academic fjtutorGroup : String jr jg:

CHAPTER 7. ROWS, LABELS AND CASTING 117

Capturing de�nitions such as

(name = \Bart Simpson"; sex = \Male";
tutorGroup = \Math-A-1") : Student r :

As was the case with the polymorphic functions of Chapter 3, functions de�ned
over Academic objects work equally well over Student objects. For example, a
simple function to print an information header for any given academic, might be
de�ned as

header : 8r :(r n name; r n sex)) Academics r ! String
header obj = \Name: "++ obj :name ++\nn"++

\Sex : "++ obj :sex :

Thus the expressions

header (name = \Bart Simpson"; sex = \Male")

and

header (name = \Bart Simpson"; sex = \Male"; tutorGroup = \Math-A-1")

both reduce to the string

Name : Bart Simpson
Sex : Male:

This kind of polymorphism, often referred to as inheritance subtyping in the object-
oriented literature [Bud91], is just that introduced by the row extension operators
of Chapter 3 and �ts naturally with the development of those ideas. However,
another important notion, used extensively in the object-oriented paradigm, is
the idea of casting or inheritance supertyping, which can be seen as the dual to
inheritance subtyping and is not captured by any of the operators presented so far.

Casting provides the ability to widen the number of known �elds for a given ob-
ject, with respect to a known hierarchy. For example, above we considered `Bart
Simpson' to be both an academic and a student, thus, it is reasonable that an
object representing Bart may �rst be considered simply as an academic and later,
if required, be considered as a student. More generally, some object, A, extended
by some other object, B , can be considered in place of an object B if at some
point it was in fact an object B . For example, students can be considered as both

CHAPTER 7. ROWS, LABELS AND CASTING 118

academics and students, but a lecturer is not a student. An important di�erence
here between inheritance subtyping and inheritance supertyping is that the latter
does not, in general, preserve totality. To see this consider the following extended
header function for students

bigHeader : 8r : (r n name; r n sex ; r n tutorGroup))
Student r ! String

bigHeader obj = \Tutor group: "++ obj : tutorGroup ++\nn"++
\Name : "++ obj : name ++\nn"++
\Sex : "++ obj : sex :

which produces an error when applied to the object

(name = \Bart Simpson"; sex = \Male"):

For the rest of this section, we consider a number of possible operations for type
casting with respect to the record and variant system of Chapter 3.

7.3.1 The ? predicate

Before considering any speci�c casting operations this section revisits row pred-
icates and the implementation required to capture the notion of possible �eld
membership. The point here is that casting asks the question whether a given
label is absent or present. The lacks predicate of Chapter 3 captures the assertion
that a given row does not contain a certain label and provides a positional o�set
for the insertion of the corresponding label. Consider a new predicate r?l , which,
represents the assertion that the label l may be present in the row r . Evidence for
this new predicate is represented by a boolean and integer tuple, where evidence
(True; i) asserts that the �eld l is present at o�set i , while (False; i) asserts that
the �eld l is absent but would be inserted at o�set i .

The calculation of evidence for predicates of the form r?l is described by the rules
in Figure 7.7. The second rule is the most interesting and tells us how to �nd
the position at which a label l can be found in a row fjl : � j r jg by calculating
the position at which it can be inserted into the row r . This calculation is made
by application of the rules in Figure 3.6 for lacks predicates and provides the
assertion that the label l does not appear more than once in the row fjl : � j r jg,
which preserves the early invariant that a given label cannot be duplicated. A

CHAPTER 7. ROWS, LABELS AND CASTING 119

P [fv : �g `̀ v : �

P `̀ i : (rnl)

P `̀ (True; i) : (fjl : � jr jg?l)

P `̀ (b; i) : (r?l)

P `̀ (b;m) : (fjl 0 : � jr jg?l)
m =

8<
:

i ; l < l 0

i + 1; l 0 < l

P `̀ (False; 0) : (fjjg?l)

Figure 7.7: Predicate entailment for ? predicate.

consequence of this invariant seems to be that, although it is possible to describe
an unchecked casting operation, it does not seem possible to capture the unchecked
merge operation of Wand [Wan91] in our current setting.

7.3.2 Casting operators

Casting is closely related to variant elimination: It is possible that a variant of
type Var fjl : � j r jg may be in the summand labelled l , otherwise it must be in
Var r . Motivated by this observation, the following possible casting operation is
similar in spirit to variant elimination, but constrains the row variable r using the
predicate r?l , instead of the lacks predicate used for variant operations:

castl : 8r :8�:8�:r?(l : �)) (Recfjl : � jr � l jg ! �)!
(Rec (r � l)! �)!
Rec r ! �:

However, there is a problem with this operation, it leads to the loss of most general
uni�ers. In fact it is the same problem that we highlighted for Jones' [Jon94b]
system of extensible records and is introduced through the use of the row restriction
operator, � l . The problem is how can we �nd a most general uni�er, U , such
that

(r � l)
U
�row (r

0 � l)?

CHAPTER 7. ROWS, LABELS AND CASTING 120

The possible values for the row variable r arise naturally from two di�erent per-
spectives. To see this consider the following row expression

fjx : �; y : �jg;

which can be bound to r and as such, the expression fjx : �; y : �jg � l is equal
to fjx : �; y : �jg. However, if we extend our original row with a new �eld l , of
any type and bind this to r , we also have that fjx : �; y : �; l :
jg � l is equal to
fjx : �; y : �jg. A similar argument can be applied to the row variable r 0 leading
to the observation that there are, in general, a number of possible solutions to the

equation (r � l)
U
�row (r

0 � l), all of which are in some sense most general.

A similar, but simpler casting operator, providing just the functionality required to
express the header functions discussed earlier, while preserving principal types and
thus e�ective type inference, can be captured through the Maybe monad [Mog91]

(?l) : 8r :8�:r?(l : �)) Rec r ! Maybe �:

Here r?l tests the record r for the existence of a �eld l , returning the value stored
at l if present (in the Just projection), and returning Nothing if the �eld l is found
not to exist.

Finally, to conclude this section, we return to the hierarchy of Figure 7.6. The
function bigHeader can now be rewritten to check for the existence of a tutorGroup
�eld and to display an appropriate message if found. The remaining functionality
is expressed by calling the original header function, de�ned for all academics

bigHeader : 8r : (r n name; r n sex ; r?tutorGroup))
Academic r ! String

bigHeader obj = case obj ?tutorGroup of
Just d ! \Tutor group: "++ d ++

\nn"++ header obj
! header obj :

CHAPTER 7. ROWS, LABELS AND CASTING 121

Evaluating the expression

bigHeader (name = \Bart Simpson"; sex = \Male")

results in the string
Name : Bart Simpson
Sex : Male;

as expected.

Chapter 8

Extensible records for Haskell

Previous chapters have described, among over things, a system of extensible records
and variants supporting a number of di�erent features. However, the basic type
system and its extensions were described in the setting of a simply typed �-calculus
and not within a practical functional programming language. In this chapter we
consider the paragmatics of extending Haskell to support extensible records and
variants.

The sections of this chapter are as follows. Section 8.1 gives an overview of extensi-
ble records in Haskell. Section 8.2 provides an informal overview of our proposal for
extensible records in Haskell. A number of basic record operations are considered,
which are natural generalizations of operators that are already present in Haskell.
Although there are no real surprises in this section, it does provide us with the
chance to describe further applications of extensible records. Section 8.3 comments
brie
y on the integration of lacks predicates and record primitives with the implicit
dictionary implementation of Haskell type classes. Section 8.4 considers a number
of pragmatic issues concerning the integration of extensible records into Haskell. In
particular, any serious proposal extending Haskell with new primitive datatypes
must consider the general framework of deriving instances for standard classes
(e.g., equality), and must address questions of syntax, and pattern matching.

An earlier version of this chapter has previously been published at the ACM Haskell
Workshop 1997 [Gas97a].

122

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 123

8.1 Overview

In functional languages like Haskell [PH97] and SML1 [MTH90, MTH97], products
provide support for de�ning datatypes, allowing a selection of data items to be
grouped together. For example, a datatype representing a point in the plane,
might be represented by the following Haskell de�nition

data Point = MkPoint Int Int :

As discussed in Chapter 2, this de�nition is not particularly easy to work with
in practice. For example, it is easy to confuse �elds when they are accessed by
position within a product.

To avoid these problems, the programming languages Haskell and SML allow com-
ponents of products to be identi�ed using names drawn from some set of labels.
Haskell 1.4 provides support for labelled products by allowing a datatype declara-
tion to include �eld labels for components of the datatype. For example, the Point
type described above might be de�ned more attractively as

data Point = MkPoint fx :: Int ; y :: Intg:

SML supports a more general notion of record type, which considers labelled prod-
ucts as part of the core type language. In this setting, our Point example can be
reformulated as2

type Point = Rec fx :: Int ; y :: Intg:

Although SML does not require the programmer to de�ne a type synonym for
Point , in practice, this does provide a useful way of documenting one's intentions.

Both Haskell and SML provide mechanisms allowing �eld names to be used in the
construction and selection of record components, without concern for the overall
structure of the datatype. For example, Haskell ensures that, for each new label,
a function working as a selector for that component is introduced at the top-level.
Unfortunately, this has the undesirable side e�ect of forcing any two datatypes
de�ned within the same scope to use mutually exclusive �eld names. For example,

1This chapter uses references to SML to help support the point that much of our work is
language independent.

2To emphasize the notion of record types, we choose to incorporate a record constructor, Rec,
where the actual SML de�nition is type Point = fx : Int ; y : Intg:

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 124

a datatype of circles including components to specify its centre point and radius,
might be de�ned as

data Circle = MkCircle fx :: Int ; y :: Int ; r :: Intg:

However, this de�nition is not valid if it appears in the same scope as the Point
shape described above, because it contains �elds overlapping with those of a point.
Moreover, datatypes de�ned in separate modules sharing common �eld names may
only be used in the same namespace with careful use of quali�ed names. SML
avoids imposing similar restrictions on record �elds by requiring that the type of
a record r is uniquely determined at compile-time. In e�ect, each di�erent record
type that includes an l �eld comes with its own method for extracting the value
of that �eld. By requiring that the record type can be determined during type
checking, the overloading that results from using the same notation for each of
these operations is easily resolved.

An unfortunate consequence of the restrictions imposed on record types by both
the Haskell and SML type systems is that operations provided for manipulating
records are less
exible than those described in Chapters 3 and 7. For example,
consider an operation to extract the centre point of a given shape. We might
reasonably expect that polymorphism would provide the ability to de�ne a single
de�nition for all shapes

centre shape = (shape : x ; shape : y):

However, although both Haskell and SML provide support for polymorphic de�ni-
tions, no support is provided for row polymorphism, which is required to capture
the notion that a record may contain more than just the �elds x and y . It is
the requirement that record types be completely determined at compile-time|
enforced by the application of constructors in Haskell, and by user speci�ed type
annotations in SML|that limit operations over records to monomorphic type. A
further weakness of the Haskell and SML record systems is the lack of support
for extensibility; there are no general operators for adding and removing �elds in
a record value, for example. The following de�nition, which is not legal in either
Haskell or SML, shows how extensibility might be applied to allow an additional
colour �eld to be incorporated into arbitrary shape values

colour c shape = (colour = c jshape):

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 125

This chapter presents an alternative proposal for records in Haskell3, by combining
ideas of Chapters 3 and 7 to develop a practical type system. In particular, it
supports extensible records, with a full complement of polymorphic operations.
For example, the point and circle shapes described above can be reformulated as

type Shape r = Rec fjx :: Int ; y :: Int jr jg
type Circle = Shape fjrad :: Int jg:

Here, the row extension operator of Chapter 3 provides us with the ability to de�ne
Circle as an extension of the type Shape, which includes at least the �elds x and
y ; i.e., a value of type Shape is at least a value of type Point introduced above.

Of course, the combination of extensibility, and the ability to de�ne polymorphic
operations over records provides us with the functionality to de�ne, and type
correctly, the de�nition of centre described above

centre :: (rnx ; rny)) Rec fjx :: Int ; y :: Int j r jg ! (Int ; Int)
centre shape = (shape : x ; shape : y):

This chapter provides an informal presentation of extensible records for Haskell and
refrains from a more in depth discussion of related record calculi. In particular,
we do not consider proposals for extending SML with similar record operations, as
in the work of R�emy [R�em92b, R�em94a] and Ohori [Oho95]. Previous chapters of
this dissertation have discussed these and other proposals in detail.

8.2 Basic record operations

In this section we review some of the ideas introduced in Chapter 3 within the
context of Haskell. In particular, we show, by example, how record extensibility
and polymorphism can be used to avoid the limitations of Haskell style records,
discussed in the introduction to this chapter. An important aim of this section, and
of this chapter, is to provide some more concrete examples of extensible records
in practice. Note that, although we may be somewhat
exible with our choice of

3The record system discussed in this chapter would be equally suitable for an extension of
SML. However, as we have seen in previous chapters our type system is based on the notion of
quali�ed types, which is the core type system of Haskell, and as such, Haskell seems an obvious
choice.

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 126

syntax, every example has been tested and experimented with in Haskell imple-
mentations. In particular, we have implemented a prototype implementation of
extensible records, called TREX (Typed Row Extensions), in Hugs 1.44 and also
a prototype Java implementation of Mondrian, a Haskell variant [Mei97]. This
latter implementation includes the complete set of record and variant operations
introduced in Chapter 3, and also supports the �rst-class labels of Chapter 7.

As a concrete example of the proposed operations for Haskell, and again high-
lighting the usefulness of extensibility, consider a hierarchy of algebraic structures.
Monoids (structures with a set and a binary operation that is associative and has
a unit) form the base of the hierarchy, and group and ring structures are de�ned
as extensions of monoids and groups, respectively. A group supports all the oper-
ations of a monoid plus an inverse, and a ring supports all operations of a group
plus some of its own. Given an appropriate implementation of this hierarchy, a
user might reasonably expect to de�ne operations, requiring only the functionality
of monoids, over all algebraic structures. Figure 8.1 provides an implementation
of this hierarchy in terms of extensible records, accompanied by sample implemen-
tations for the ring of integers with the standard operations. The parameter r of
the types Monoid , Group, and Ring ranges over rows, capturing the notion that a
group, for example, may support some additional operations.

The standard list function sum, for computing the sum of a list, can now be recast
in terms of any monoid

sum :: (rnplus; rnid)) Monoid � r ! [�]! �
sum mon = foldr (mon:plus) (mon:id)

Here, r ranges over rows containing zero or more �elds, which in the case when
the function sum is applied to iGroup, r is bound to the single �eld negate. Thus
extensibility captures a form of sub-typing that is also present, although in a
slightly di�erent form, in the Haskell class system. However, we believe that this
notion of sub-typing is present in a number of di�erent programming situations,
many of which are more suited to extensibility than to obscure encodings using
the class mechanism.

As discussed brie
y in Chapter 7, extensibility provides a simple form of inheri-
tance, more commonly found in object-oriented languages [Wan87, Car84, Bud91].
Hughes and Sparud [HS95] have shown that the Haskell class system provides an

4Hugs is an implementation of Haskell 1.4, developed jointly by the Languages and Program-
ming Group at the University of Nottingham and the Haskell Group at Yale University.

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 127

type Monoid v r = Rec fj plus :: v ! v ! v ;
id :: v j r jg

type Group v r = Monoid v fjinv :: v ! v jr jg

type Ring v r = Group v fj mult :: v ! v ! v ;
one :: v j r jg

iMonoid :: Monoid Integer fjjg
iMonoid = (plus = (+); id = 0)

iGroup :: Group Integer fjjg
iGroup = (inv = negate j iMonoid)

iRing :: Ring Integer fjjg
iRing = (mult = (�); one = 1 j iGroup)

Figure 8.1: Example algebraic hierarchy.

alternative form of inheritance, which can be utilized to encode object-oriented
features. It remains to be seen whether records with extensibility will provide a
practical platform for incorporating object-oriented features into Haskell.

8.3 Compilation issues

One of Haskell's most interesting design decissions was the inclusion of type classes,
which is implemented in almost all Haskell implementations, through implicit dic-
tionary parameters, similar to the implementation of lacks predicates described in
Chapter 3. Early versions of the Haskell type system and the dictionary imple-
mentation was based on the work of Wadler and Blot [WB89] and Kaes [SK88].
However, since Haskell 1.3, the corresponding type system was generalized to an
application of quali�ed types and constructor classes [Jon94b, Jon95c].

As discussed throughout this dissertation, our proposed type system for extensible
records and variants, and its extensions, is based on a system of quali�ed types.

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 128

Furthermore, we showed in Chapter 6 that the soundness of our type system could
be justi�ed by application of a theorem of soundness for quali�ed types. As a
consequence, the implementation for extensible records described in Section 3.3
integrates naturally with the dictionary passing implementation of Haskell 1.4. In
fact, assuming the implementation of predicate entailment is extended to calcu-
late o�sets for lacks predicates, storing them in appropriate dictionary structures
for lacks predicates, an implementation then simply supplies the primitive record
operations, which are analogous to dictionary selector functions for type classes5.

8.4 Pragmatic issues

In previous sections, we have highlighted a number of shortcomings with the cur-
rent solution for records in Haskell, and we have proposed a system of polymorphic
extensible records, naturally extending the Haskell type system. However, hith-
erto, we have avoided the more pragmatic issues, which often arise with proposed
extensions to non-trivial languages, such as Haskell. In this section, we consider
three particularly important practical concerns for extensible records in Haskell.
Section 8.4.1 considers the question of pattern matching over records, while Sec-
tion 8.4.2 highlights the di�culty in selecting a suitable syntax. Finally, Sec-
tion 8.4.3 presents extensions of the Haskell class mechanism to allow for derived
instances of equality and text operations over records.

8.4.1 Pattern matching

As with other datatypes in Haskell, pattern matching is often a natural way to
extract the components of a record. For example, considering again the algebraic
hierarchy of Section 8.2, pattern matching provides an alternative de�nition for
the function sum

sum :: (rnplus; rnid)) Monoid � r ! [�]! �
sum (plus = p; id = i jr) = foldr p i :

Intuitively, an expression of the form sum e is evaluated from left to right, �rst
evaluating the pattern bindings for p and i , and then binding all other components

5As a consequence of soundness a compiler may pass o�sets around unboxed, adjusting the
primitive record operations as needed.

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 129

to the pattern r . More generally, we can explain the semantics of pattern matching
over records using a translation of the form

n(l = p j r)! e = nx ! case x : l of
p ! case x � l of

r ! e:

8.4.2 Issues of Syntax

Unquestionably, choosing an appropriate syntax plays an important role in the
success or failure of programming language design|it has a direct e�ect on the way
that programmers use and express themselves within the language. For example,
Haskell allows pattern matching on the left hand side of function bindings, which
in turn provides a convenient mechanism for describing inductive de�nitions. If,
however, pattern matching was supported only within the case construct, then
inductive de�nitions may not seem as attractive.

Chapter 3 and Section 8.2 introduced a syntax for record types and operations,
overlaping with the syntax of Haskell. For example, record selection was written
using the symbol (.), which is already used for function composition in Haskell.
The fact that we use the symbols fj and jg, which are not de�ned by Haskell's
lexical syntax, complicates matters even further.

Any discussion of syntax for extensible records in Haskell must consider whether
records, as described by the Haskell 1.4 report, are to be retained. If not, the
syntax for record types can be simply that of Section 2.1, replacing the symbols fj
and jg with f and g, respectively. As the system proposed in this chapter includes
the record operations of Haskell, we believe that it is not unreasonable to consider
replacing one by the other.

We now turn our attention to the question of syntax for record values. Our main
concern is that the syntax of Chapter 3 and Section 8.2 introduces ambiguities
when considered with respect to Haskell's syntax|for example, when parsing the
symbol (:) should it be interpreted as function composition or record selection?
Unfortunately, although record extension integrates smoothly, this is not the case
for either record selection or restriction. In practice we have found only a few
applications for record restriction, and in such cases pattern matching over records
has proven adequate. In contrast, record selection appears in all but the most triv-
ial of record applications, and although pattern matching provides an alternative,
we believe that this operation must be supported using a convenient notation.

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 130

Record selection operators in SML [MTH90, MTH97] are written by pre�xing the
appropriate label with the symbol #. Thus selection of the �eld l of a record r is
denoted by the expression #l r . However, having experimented with this notation,
we found that important program details were often hard to visualize. Further-
more, (:l) is used for �eld selection in a wide variety of programming languages,
including C, C++, and Java. With this in mind, we strongly believe that (:l) is
the correct notation for record selection. This leaves us with the important ques-
tion of what to do about function composition, which is denoted by the symbol
(:) in current versions of Haskell. In fact, we propose that function composition
be represented by the symbol #, even though we felt it to be inappropriate for
record selection. Moreover, because function composition is, in fact, an instance
of the Haskell class Functor , at type ((!)�), it could be prede�ned as part of the
Functor class

class Functor f where
(#) :: (�! �)! (f �! f �)

Function composition is then de�ned simply as an instance of this class

instance Functor ((!) �) where
(f#g) x = f (g x):

Fortunately, associativity for function composition is preserved. To see this, recall
that the following equation is satis�ed by any functor [Lan72]

(f # g) # h = f # (g # h);

for which f , g and h are of the appropriate types. Instantiating the di�erent uses
of (#) to function composition, of the appropriate types, gives the equality6

(f : g) : h = f : (g : h);

which is precisely the required associativity law.

Figure 8.2 contains our proposed extensions for the Haskell grammar, which ap-
pears in appendix B of the Haskell report [PH97].

With a eye to future, we might consider tuples of type (�1; � � � ; �n) to be shorthand
for records of type Rec fj1 : �1; � � � ; n : �n jg, where individual components are
labelled by numbers. A similar relationship between tuples and records has been
adopted by SML [MTH90, MTH97], and seems to provide a number of practical
bene�ts, not least, a general mechanism for selecting arbitrary components of
tuples.

6We return brie
y to denoting function composition as (:), in order to help the discussion.

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 131

label ::= varid (�eld names)

rowvar ::= tyvar (row variables)

row ::= flabel1 :: type1; � � � ; labeln :: typeng (n � 0)
j flabel1 :: type1; � � � ; labeln :: typen j rowg (n � 1)
j rowvar (row variables)

atype ::= � � �
j Rec row (record type)

fexp ::= [fexp]dexp (function application)

dexp ::= dexp:label (record selection)
j aexp

aexp ::= � � �
j (label1 = exp1; � � � ; labeln = expn) (n � 0)
j (label1 = exp1; � � � ; labeln = expn jexp) (n � 1)

apat ::= � � �
j (label1 = pat1; � � � ; labeln = patn) (n � 0)
j (label1 = pat1; � � � ; labeln = patn jpat) (n � 1)

Figure 8.2: Proposed syntax for extensible records in Haskell.

8.4.3 Records and the Haskell class system

Often, the design and implementation of a new datatype requires more than just
specifying the datatype de�nition itself. For example, one must ask questions such
as: is equality de�ned over elements of the new datatype? Are elements of this type
printable? And so on. Although many of these questions will be related to speci�c
applications, there is a class of operations that arise for almost all datatypes (e.g.,
equality).

To ease the programming burden, Haskell provides a number of prede�ned type
classes for operations such as equality and printing, for which instances can be de-
rived automatically by the compiler. This section considers how an implementation

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 132

might automatically derive instances of the Eq and Show classes over records.

An obvious �rst attempt at de�ning equality over records might involve having the
compiler generate instance declarations of the form

instance (Eq (Rec r); Eq �)) (Rec fjl :: � jr jg) where
r == r 0 = (r :l == r 0:l) && (r � l == r 0 � l);

for each record extension with a �eld l . However, this does not give a well-de�ned
notion of equality. To see this, consider the expression

(x = 10; y = ?) == (x = 20; y = 30);

where ? is a diverging term of type Int . Evaluating this expression from left to
right results in the boolean value False. However, we consider rows equal modulo
reordering of �elds, thus applying commutativity and evaluating from left to right
gives ? for the above equality. So, if we are not careful when deriving equality over
records, then it is possible that di�erent implementations may produce di�ering
results. The problem lies in the fact that rows, and thus records, are considered
equal modulo reordering of �elds.

The clue to resolving this problem lies in Section 3.3, where the well-formedness
of record compilation was guaranteed by considering a total ordering on labels.
Intuitively, equality over records is well-de�ned if corresponding pairs of �elds are
compared in an order determined by their labels in the record type that we are
concerned with. Operationally, one can think of record equality as: given any
two records of the same type, construct an ordered list of pairs, in which the �rst
element of each pair is the string for a particular label and the second is a (delayed)
boolean test of equality for the values associated with a given label. The following
class de�nition captures this notion of equality over records

class EqRecRow r where
eqRecRow :: Rec r ! Rec r ! [(String ; Bool)]:

To ensure that the de�nition of equality over records is well-de�ned, an implemen-
tation must guarantee that instances of this class for row extension are only be
generated internally.

The instance for the empty row can be prede�ned, in a suitable library, as

instance EqRecRow fjjg where
eqRecRow = []

CHAPTER 8. EXTENSIBLE RECORDS FOR HASKELL 133

Now, providing that suitable implementations are constructed on each application
of record extension, we can safely de�ne a single, general, instance for equality
over records

instance EqRecRow r) Eq (Rec r) where
x == y = all (map snd (eqRecRow x y))

Derivable instances may be de�ned similarly for the classes Ord and Show . For
example, Figure 8.3 contains an implementation for showing record values7. As
with the function eqRecRow described above, the function showRecRow generates
an ordered list of pairs for a given record. The second component of each pair
represents the showable value associated with a given label l .

instance ShowRecRow r) Show (Rec r) where
showsPrec d = showFields#showRecRow

showFields :: [(String ; ShowS)]! ShowS
showFields [] = showString \()"
showFields xs = showChar 0(0

foldr1 comma (map
d xs)
showChar 0)0

comma a b = a#showString \, "#b

d (s; v) = showString s#showChar 0 =0 #v

class ShowRecRow r where
showRecRow :: Rec r ! [(String ; ShowS)]

instance ShowRecRow fg where
showRecRow = []

Figure 8.3: Functions to \show" record values.

7Following the discussion of Section 8.4.2 the composition of functions is represented by (#) ::
(� ! �) ! (
 ! �)!
 ! �.

Chapter 9

Conclusion and future work

We have described a
exible, polymorphic type system for extensible records and
variants with an e�ective type inference algorithm and compilation method. Pro-
totype implementations have been written in several languages, and an implemen-
tation of records (TREX) has been added to Hugs, an implementation of Haskell
1.4. Our experience to date shows that these implementations work well in prac-
tice. To provide evidence for the correctness of these systems, we developed two
alternative semantics for quali�ed types. These provide a foundation for soundness
of our type system and for others based on the theory of quali�ed types|including
the functional programming language Haskell.

There are many potential areas for further work, and the remaining sections of
this chapter summarize some possibly interesting avenues of study.

9.1 Extensible data types

Functional programming languages, like Haskell and SML, are often claimed to
allow a concise and modular programming style. For example, pattern matching
allows function de�nitions to be speci�ed by induction over the constructors of
a data type. To see this, consider a data type, List , of integer cons lists and a

134

CHAPTER 9. CONCLUSION AND FUTURE WORK 135

function, sum, to calculate the sum of a list

data List = Null j Cons Int List

sum Null = 0
sum (Cons i xs) = i + sum xs:

If, at some later point, it is decided that the list data type must also support a snoc
constructor, then the programmer must go back to the original de�nition of List ,
appending a new summand for snoc elements and additionally provide an extra
clause for sum at the point of de�nition. This, of course, is fairly straightforward
for the example in question, but what if the funtion sum appears somewhere in
millions of lines of source code with the data type de�nition for lists de�ned in
some other module or section of code? An even worse possibility is that the
implementation for lists is provided by a third party, who has chosen not to make
the source code available to the programmer, in question. At this point, nothing
can be done|the programmer may even have to reimplement the de�nitions for
List and sum.

The problem is that, in general, most programming languages do not provide di-
rect support for extending data types other than inserting extra constructors at
the point of de�nition. However, this is just the functionality that row polymor-
phism provides. For example, the algebraic hierarchy example of Section 8.2 used
row polymorphism to capture unimportant �elds in a monoid. Although we used
records in that early example, it applies equally well to variants, and combining the
two provides us with an alternative for data type de�nitions, which can support a
form of extensibility.

We do not take this idea any further here but note that there are many unanswered
questions. For example, it is not clear how seperate compilation will be a�ected by
the introduction of extensible data types. Furthermore, what are the implications
of user speci�ed type signatures in the presence of extensible data types? This is
an important question as most programmers use such signatures to constrain more
general types and as a form of documentation. This former point is particularly
important in the context of Haskell where ambiguous overloading can often be
resolved by the insertion of type annotations.

CHAPTER 9. CONCLUSION AND FUTURE WORK 136

9.2 Unchecked operations

Wand's [Wan87] original extension operator for extensible records was unchecked,
meaning that it would extend a record with a value for the label l even if the
label l was initially present. The type system of Chapter 3 would result in a type
error if extension was applied at label l to a record containing a label l . Thus
record extension is checked and fails to capture some programs that are well type
in Wand's system.

The problem is that information about the presence of a label is asserted by row
extension or by lacks predicates, both of which are incapable of answering the
question is a �eld present. To solve this problem, Section 7.3 introduced a new
predicate (?l) that delayed questions about �eld membership from compile-time
to run-time. However, we also noted that by itself it was not enough to express
unchecked record extension. Combined with row restriction the predicate (?l)
is enough to express Wand's record extension because. Unfortunately, this has
the undesirable e�ect of leading to the loss of most general uni�ers, and thus, a
practical type inference algorithm.

One possible solution to this problem might be through the introduction of a
new row operator, corresponding to maybe predicates in the same way that row
extension relates to lacks predicates. Thus we might introduce the row operator

fjl : ? jg : � ! row ! row ;

which in turn would allow record extension to be assigned the following type

8r :8�:r?l) Rec fjl : �?r jg ! �! Rec fjl : �?r jg:

However, it is unclear how a type Rec fjl : �?r jg should unify with Rec fjl : � j r jg
or with Rec r , if at all. The problem is that although it is unknown if a �eld l is
present in the input record it will exist in the resulting record. R�emy [R�em94a]
captures this fact by having predicates inside row expressions themselves and al-
lowing predicate variables to range over the di�erent possibilities. It is not clear if a
similar approach could be taken here, but it seems reasonable and is an important
area for future work.

CHAPTER 9. CONCLUSION AND FUTURE WORK 137

9.3 Parametricity for quali�ed types

During the early development of the polymorphic �-calculus both Girard [Gir72]
and Reynolds [Rey74] observed that polymorphic functions acted independently
of type. This notion was expanded by Reynolds in his work on parametricity
[Rey83], leading to a complete categorical treatment of these properties developed
by Reynolds and others [MR92, MS93]. Wadler [Wad89] showed that these results
could be extended to types including predicates, such as equality, under the as-
sumption that the evidence constructed for these predicates preserved some logical
properties of parametricity.

Furthering the work of Wadler an interesting, and important, area for future work is
to consider extending the notion of a logical relation [Sta85, MM85] over predicate
entailment, to develop a general parametricity result for quali�ed types.

Working towards this aim we might develop a de�nition of logical relation and
a proof of Reynold's [Rey83] abstraction theorem for the type system PML (de-
scribed in Chapter 4).

IfM andM0 are models for T�, a logical relation R= fR�g overM andM0 is
a family of relations such that1:

� 8� 2 Type:R� �M� �M0� .

� R��� 0

((x ; x 0); (y ; y 0)) () R� (x ; y) ^ R� 0

(x 0; y 0). In the special case when
a : R� and b : R� 0

are functions, then a � b : R��� 0

is a function, de�ned by
a � b (x ; y) = (a x ; b y).

� R�!� 0

(f ; g)() 8x 2M� ; y 2M0� :R� (x ; y)) R� 0

(f x ; g y). Thus functions
f and g are related if and only if they map related arguments to related
results.

In general it is not the case that if a : R� and b : R� 0

are functions then R�!� 0

is also a function, however in this special case R�!� 0

(f ; g) is equivalent to
g � a = b � f .

� If c is a constant of type � , then R� (M� (c);M0� (c)).

� R8�:�(f ; g)() ��i 2 Type:R
[�i=�i]� (f ; g).

1Following Mitchell [Mit96] we write R(x ; y) to represent the assertion that x and y are related
by the relation R.

CHAPTER 9. CONCLUSION AND FUTURE WORK 138

The following result extends Reynold's abstraction theorem for Church's simply
typed �-calculus to PML, and is true for all models constructed with respect to
the semantics of Chapter 4.

Theorem 9.1 If R� M�M0 is a logical relation, A `PML
E : �, and R(�; �0),

then
R(M[[A `

PML
E : �]]�;M0[[A `

PML
E : �]]�0):

It is clear that we can extend the above de�nition of a logical relation to quali�ed
types by the following additions

� 8� 2 Pred :R� �M� �M
0�.

� R�)�(f ; g)() 8e 2M�; e 0 2M0�:R�(e; e 0)) R�(f e; g e).

Theorem 9.1 can now be extended to OML as

Conjecture 9.2 If R� M�M0 is a logical relation, P jA ` E : �, and R(�; �0),
then

R(M[[P jA ` E : �]]�;M0[[P jA ` E : �]]�0):

This work is a preliminary outline of parametricity for quali�ed types, providing
a promising direction for future study.

Alternatively, work by Mitchell and Scedrov [MS93] looks at the categorical gener-
alization of logical relations and may extend naturally to the categorical semantics
for quali�ed types described in Chapter 5.

Bibliography

[AC96] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer, 1996.

[AG96] Ken Arnold and James Gosling. The Java Programming Language. The
Java Series. Addison Wesley, 1996.

[Blo92] Stephen Blott. An Approach to Overloading with Polymorphism. PhD
thesis, University of Glasgow, June 1992. Technical report FP-192-1.

[Bud91] Timothy Budd. An Introduction to Object-Oriented Programming.
Addison-Wesley, Reading, MA, 1991.

[Car84] Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D. Mac-
Queen, and G. Plotkin, editors, Semantics of Data Types, volume 173
of Lecture Notes in Computer Science, pages 51{67. Springer-Verlag,
1984. Full version in Information and Computation 76(2/3):138{164,
1988.

[Car92] Luca Cardelli. Extensible records in a pure calculus of subtyping. Re-
search report 81, DEC Systems Research Center, January 1992. Also
in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language De-
sign (MIT Press, 1994).

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56{68, 1940.

[CM91] Luca Cardelli and John Mitchell. Operations on records. Mathematical
Structures in Computer Science, 1:3{48, 1991. Also in Carl A. Gunter
and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented

139

BIBLIOGRAPHY 140

Programming: Types, Semantics, and Language Design (MIT Press,
1994); available as DEC Systems Research Center Research Report
#48, August, 1989, and in the proceedings of MFPS '89, Springer LNCS
volume 442.

[Coq90] Thierry Coquand. On the analogy between propositions and types. In
G�erard Huet, editor, Logical Foundations of Functional Programming,
pages 399{417. Addison-Wesley, 1990.

[Cro93] Roy L. Crole. Categories for Types. Cambridge University Press, 1993.

[Dam85] Luis M. M. Damas. Type Assignment in Programming Languages. PhD
thesis, University of Edinburgh, April 1985. Technical report CST-33-
85.

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional
programs. In Proceedings of the 9th ACM Symposium on Principles of
Programming Languages, pages 207{212, 1982.

[Gas96] Benedict R. Gaster. A polymorphic type system for extensible records
and variants. Transfer dissertation: extended version of [GJ96], 1996.

[Gas97a] Benedict R. Gaster. Polymorphic extensible records for Haskell. In
ACM Haskell Workshop, June 1997.

[Gas97b] Benedict R. Gaster. A semantics for quali�ed types. Technical Re-
port NOTTCS-TR-97-5, Computer Science, University of Nottingham,
September 1997.

[Gir72] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des
coupures de l'arithm�etique d'ordre sup�erieur. PhD thesis, Universit�e
Paris VII, 1972.

[GJ96] Benedict R. Gaster and Mark P. Jones. A polymorphic type system for
extensible records and variants. Technical Report NOTTCS-TR-96-3,
Computer Science, University of Nottingham, November 1996.

[Gun92] Carl A. Gunter. Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press, 1992.

[Ham88] A. G. Hamilton. Logic for Mathematicians. Cambridge University
Press, 1988.

BIBLIOGRAPHY 141

[Hin69] J. Roger Hindley. The principal type scheme of an object in com-
binatory logic. Transactions of the American Mathematical Society,
146:29{60, December 1969.

[HM93] Robert Harper and John Mitchell. On the type structure of Standard
ML. ACM Transaction on Programming Languages and Systems, 1993.

[How80] W. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H.B Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[HP90] Robert W. Harper and Benjamin C. Pierce. Extensible records without
subsumption. Technical Report CMU-CS-90-102, School of Computer
Science, Carnegie Mellon University, Feburary 1990.

[HP91] Robert Harper and Benjamin Pierce. A record calculus based on sym-
metric concatenation. In Proceedings of the 18th Annual ACM Sym-
posium on Principles of Programming Languages, Orlando FL, pages
131{142. ACM, January 1991. Extended version available as Carnegie
Mellon Technical Report CMU-CS-90-157.

[HP95] Martin Hofmann and Benjamin Pierce. A unifying type-theoretic frame-
work for objects. Journal of Functional Programming, 5(4):593{636,
1995. Previous versions appeared in the Symposium on Theoretical As-
pects of Computer Science, 1994, (pages 251{262) and, under the title
\An Abstract View of Objects and Subtyping (Preliminary Report),"
as University of Edinburgh, LFCS technical report ECS-LFCS-92-226,
1992.

[HR92] Barney P. Hilken and David E. Rydeheard. Towards a categorical se-
mantics of type classes. Fundamenta Informaticae, XVI:127{147, 1992.

[HS95] J. Hughes and J. Sparud. Haskell++: An object-oriented extension
of Haskell. In Proceedings of Haskell Workshop, La Jolla, California,
YALE Research Report DCS/RR-1075, 1995.

[Jon92a] Mark P. Jones. Computing with lattices: An application of type classes.
Journal of Functional Programming, 2(4):475{504, October 1992.

BIBLIOGRAPHY 142

[Jon92b] Mark P. Jones. A theory of quali�ed types. In European symposium
on programming, ESOP '92, Rennes, France, February 1992. Springer
Verlag LNCS 582.

[Jon94a] Mark P. Jones. Dictionary-free overloading by partial evaluation. In
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, Orlando, Florida, June 1994.

[Jon94b] Mark P. Jones. Quali�ed Types Theory and Practice. Distinguished
Dissertations in Computer Science. Cambridge University Press, 1994.

[Jon95a] Mark P. Jones. The Gofer distribution. University of Nottingham, 1995.

[Jon95b] Mark P. Jones. Simplifying and improving quali�ed types. In Pro-
ceedings of the 7th International Conference on Functional Program-
ming Languages and Computer Architecture, pages 160{169, June
1995. At extended version, with proofs, appears as Research report
YALE/DCS/RR-1040, Yale University, New Haven, Connecticut USA,
June 1994.

[Jon95c] Mark P. Jones. A system of constructor classes: overloading and im-
plicit higher-order polymorphism. Journal of Functional Programming,
5(1):1{35, January 1995. An earlier version appeared in Proceedings
Functional Programming and Computer Architecture 1993.

[Jon97] Mark P. Jones. Type safe machine language. In Glasgow Workshop,
September 1997.

[Ken96] A. J. Kennedy. Type inference and equational theories. Technical Re-
port LIX/RR/96/09, Laboratoire d'Informatique, Ecole Polytechnique,
September 1996.

[KR88] Brian W. Kernigham and Dennis M. Ritchie. The C Programming
Language. Prentice Hall Software Series. Prentice Hall, second edition,
1988.

[Lam80] Joachim Lambek. From �-calculus to cartesian closed categories. In
Jonathan P. Seldin and J. Roger Hindley, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
375{402. Academic Press, London, 1980.

BIBLIOGRAPHY 143

[Lan72] Saunders Mac Lane. Categories for the Working Mathematician. Grad-
uate Texts in Mathematics. Springer-Verlag, 1972.

[Law70] F.W. Lawvere. Equality in hyperdoctrines and comprehension schema
as an adjoint functor. In Proceedings of the American Mathematical
Society Symposium on Pure Mathematics XVII, pages 1{14, 1970.

[LB93] Saunders Mac Lane and Garrett Birkho�. Algebra. Chelsea Publishing
Company, 3rd edition, 1993.

[Ler93] Xavier Leroy. Polymorphism by name for references and continuations.
In Principles of Programming Languages, pages 220{231. ACM press,
1993.

[LS86] J. Lambek and P. J. Scott. Introduction to higher order categorical logic.
Cambridge studies in advanced mathematics 7. Cambridge University
Press, 1986.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine. The Java
Series. Addison Wesley, 1996.

[Mai92] Harry Mairson. Quanti�er elimination and parametric polymorphism in
programming languages. Journal of Functional Programming, 2(2):213{
226, April 1992.

[Mei97] Erik Meijer. The design and implementation of Mondrian. In ACM
Haskell Workshop, June 1997.

[MH95] Erik Meijer and Graham Hutton. Bananas in space: Extending fold
and unfold to exponential types. Proc. 7th International Conference on
Functional Programming and Computer Architecture, June 1995.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348{375, August 1978.

[Mit96] John Mitchell. Foundations for Programming Languages. Foundations
of Computing. MIT Press, 1996.

[MM85] J.C. Mitchell and A.R. Meyer. Second-order logical relations. In Logics
of Programs, pages 225{236, Berlin, June 1985. Springer-Verlag LNCS
193.

BIBLIOGRAPHY 144

[Mog91] E. Moggi. Notions of computation and monads. Information and Com-
putation, 93(1), 1991.

[MR92] QingMing Ma and John C. Reynolds. Types, abstraction, and paramet-
ric polymorphism, part 2. In Stephen Brookes, Michael Main, Austin
Melton, Michael Mislove, and David A. Schmidt, editors, Mathematical
Foundations of Programming Semantics, volume 598 of Lecture Notes
in Computer Science, pages 1{40, Berlin, 1992. Springer-Verlag.

[MS93] J.C. Mitchell and A. Scedrov. Notes on sconing and relators. In
E. Boerger et al., editor, Computer Science Logic '92, Selected Papers,
pages 352{378. Springer LNCS 702, 1993.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The de�nition of Stan-
dard ML. The MIT Press, 1990.

[MTH97] Robin Milner, Mads Tofte, and Robert Harper. The de�nition of Stan-
dard ML (REVISED). The MIT Press, 1997.

[Oho89a] Atsushi Ohori. A simple semantics for ML polymorphism. In Proc.
Conference on Functional Programming Languages and Computer Ar-
chitecture, pages 281{292, September 1989.

[Oho89b] Atsushi Ohori. A Study of Semantics, Type and Languages for
Databases and Object-oriented Programming. PhD thesis, University
of Pennsylvania, 1989.

[Oho95] Atsushi Ohori. A polymorphic record calculus and its compila-
tion. ACM Transactions on Programming Languages and Systems,
17(6):844{895, November 1995. A preliminary version appears in Pro-
ceedings of ACM Symposium on Principles of Programming Languages,
1992, under the title: A compilation method for ML-style polymorphic
record calculi.

[OWW95] Martin Odersky, Philip Wadler, and Martin Wehr. A second look at
overloading. In Proceedings of the 7th International Conference on
Functional Programming Languages and Computer Architecture, pages
135{146. ACM SIGPLAN, June 1995.

BIBLIOGRAPHY 145

[PF92] Wesley Phoa and Michael Fourman. A proposed categorical semantics
for pure ML. University of Edinburgh technical report ECS-LFCS-92-
213, Laboratory for the Foundations of Computer Science, 1992.

[PH97] John Peterson and Kevin Hammond. Report on the Programming Lan-
guage Haskell, A Non-strict, Purely Functional Language (Version 1.4).
Technical report, April 1997. Available from http://www.haskell.org.

[Pho92] Wesley Phoa. A simple categorical semantics for ML polymorphism.
University of Edinburgh technical report, Laboratory for the Founda-
tions of Computer Science, 1992.

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foun-
dations for object-oriented programming. Journal of Functional Pro-
gramming, 4(2):207{247, April 1994. A preliminary version appeared
in Principles of Programming Languages, 1993, and as University of
Edinburgh technical report ECS-LFCS-92-225, under the title: Object-
Oriented Programming Without Recursive Types.

[R�em92a] Didier R�emy. E�cient representation of extensible records. In Proceed-
ings of the 1992 workshop on ML and its Applications, page 12, San
Francisco, USA, June 1992.

[R�em92b] Didier R�emy. Projective ML. In 1992 ACM Conference on Lisp and
Functional Programming, pages 66{75, New-York, 1992. ACM press.

[R�em94a] Didier R�emy. Type inference for records in a natural extension of ML.
In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of
Object-Oriented Programming: Type, Semantics, and Language Design,
Foundations of Computing Series. MIT Press, 1994. Early version ap-
peared in Sixteenth Annual Symposium on Principles of Programming
Languages. Austin, Texas, January 1989.

[R�em94b] Didier R�emy. Typing record concatenation for free. In Carl A. Gunter
and John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented
Programming. Types, Semantics and Language Design, Foundations of
Computing Series. MIT Press, 1994.

[Rey74] John Reynolds. Towards a theory of type structure. In Proceedings Col-
loque sur la Programmation, pages 408{425, New York, 1974. Springer-
Verlag LNCS 19.

BIBLIOGRAPHY 146

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymorphism.
In R. E. A. Mason, editor, Information Processing 83, pages 513{523,
Amsterdam, 1983. Elsevier Science Publishers B. V. (North-Holland).

[Rey84] John C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B.
MacQueen, and G. D. Plotkin, editors, Semantics of Data Types, vol-
ume 173 of Lecture Notes in Computer Science, pages 145{156, Berlin,
1984. Springer-Verlag.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution princi-
ple. Journal of the Association for Computing and Machinery, 12(1):23{
41, January 1965.

[RP90] John C. Reynolds and Gordon D. Plotkin. On functors expressible in
the polymorphic lambda calculus. In G�erard Huet, editor, Logical Foun-
dations of Functional Programming, pages 127{152. Addison-Wesley,
1990.

[Sco80] D.S. Scott. Relating theories of the lambda calculus. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
403{450. Academic Press, 1980.

[See87] R. A. G. Seely. Categorical semantics for higher order polymorphic
lambda calculus. Journal of Symbolic Logic, 52(4):969{988, December
1987.

[SK88] Stefan Kaes. Parametric polymorphism. In European symposium on
programming, Lecture Notes in Computer science 300, Nancy, France,
1988. Springer Verlag.

[SOW97] Martin Sulzmann, Martin Odersky, and Martin Wehr. Type inference
with constrained types. Technical Report YALEU/DCS/RR-1129, Yale
University, 1997.

[Sta85] R. Statman. Logical relations and the typed lambda calculus. Infor-
mation and Control, 65:85{97, 1985.

[Str67] C. Strachey. Fundamental concepts in programming languages. Lec-
ture Notes, International Summer School in Computer Programming,
Copenhagen, August 1967.

BIBLIOGRAPHY 147

[Sul97] Martin Sulzmann. Designing record systems. Technical Report
YALEU/DCS/RR-1128, Yale University, 1997.

[Tay90] Paul Taylor. Commutative diagrams in TEX. 1990.

[Tof88] Mads Tofte. Operational Semantics and Polymorphic Type Inference.
PhD thesis, Computer Science Department, Edinburgh University,
1988. CST-52-88.

[Tur37] Alan Turing. The �-function in �-K-conversion. Journal of Symbolic
Logic, 2:164, 1937.

[Wad89] Philip Wadler. Theorems for free! In Proceedings Conference on Func-
tional Programming and Computer Architecture. Springer, 1989.

[Wad90] Philip Wadler. Comprehending monads. In Proceedings ACM Confer-
ence on Lisp and Functional Programming, June 1990.

[Wan87] Mitchell Wand. Complete type inference for simple objects. In Proceed-
ings of the IEEE Symposium on Logic in Computer Science, Ithaca, NY,
June 1987.

[Wan88] Mitchell Wand. Corrigendum: Complete type inference for simple ob-
jects. In Proceedings of the IEEE Symposium on Logic in Computer
Science, 1988.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, (93):1{15, 1991. Prelimi-
nary version appeared in Proceedings of the 4th IEEE Symposium on
Logic in Computer Science, 1989, 92{97.

[WB89] Philip Wadler and Stephen Blott. How to make ad hoc polymorphism
less ad hoc. In Proceedings 16th ACM Symposium on Principles of
Programming Languages, pages 60{76, January 1989.

[Wel94] J. B. Wells. Typability and type checking in the second-order �-calculus
are equivalent and undecidable. In (Ninth Annual IEEE Symposium on
Logic in Computer Science, pages 176{185, July 1994.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38{94, 15th Novem-
ber 1994.

BIBLIOGRAPHY 148

[Wri95] Andrew Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343{356, December 1995.

Appendix A

Proofs

This appendix provides proofs for the main results of this dissertation, including
the important lemmas. We only consider results whose proofs were not given
within the main body of the text.

A.1 Proofs for Chapter 3

A.1.1 Lemma 3.1

Lemma 3.1 if (l : �)2r , then r = fjl : � jr � l jg.

Proof : The proof is by induction on the structure of the derivation of (l : �)2r .
The proof for the case when the last rule of the derivation is (inRow) is straight-
forward. The remaining case is:

Case (inTail): . We have a derivation of the form

(l : �)2r l 6= l 0

(l : �)2fjl 0 : � 0 jr jg:

By induction (l : �)2r and fjl : � j r � l jg = r . Hence, as l 6= l 0, we can extend r
with l 0 : � 0, as required.

(This completes the proof. 2)

149

APPENDIX A. PROOFS 150

A.1.2 Theorem 3.2

Theorem 3.2 The uni�cation (insertion) algorithm de�ned by the rules in Fig-
ure 3.3 (Figure 3.4) calculates most-general uni�ers (inserters) whenever they ex-
ist. The algorithm fails precisely when no uni�er (inserter) exists.

Proof : For each case we �rst prove that U is a uni�er (inserter), and then show
that it is the most general one. The proof is by induction on the structure of the
derivation. The proof for the cases when the last rule in the derivation is (inVar),
(id), or (bind) are straightforward. The remaining cases are:

Case (inTail): Calculate as follows

I fjl 0 : � 0 jr jg

, fde�nition of substitutiong

fjl 0 : I � 0 jIr jg

, finduction, and l 6= l 0g

(l : I �) 2 fjl 0 : I � 0 jIr jg

, fde�nition of substitutiong

(l : I �) 2 I fjl 0 : � 0 jr jg:

For the same case, we show that, if a substitution S also inserts (l : �) into r 2 C row ,
then it is of the form S = RI for some kind-preserving substitution R. Thus the
required result follows by the following calculation.

Sfjl 0 : � 0 jr jg

) f(inVar)g

(l : �) 2 Sfjl 0 : � 0 jr jg

, fde�nition of substitutiong

(l : �) 2 fjl 0 : S� 0 jSr jg

) finductiong

S = RI :

APPENDIX A. PROOFS 151

Case (inHead): Calculate as follows

I fjl : � 0 jr jg

, fde�nition of substitutiong

fjl : I � 0 jIr jg

, finductiong

fjl : I � jIr jg

, fde�nition of substitutiong

I fjl : � jr jg:

For the same case, we show that, if a substitution S also inserts (l : �) into r 2 C row ,
then it is of the form S = RI for some kind-preserving substitution R. Thus the
required result follows by the following calculation.

Sfjl : � 0 jr jg

, fde�nition of substitutiong

fjl : S� 0 jSr jg

) finductiong

S = RI :

Case (apply): Calculate as follows

U 0UCD

, fde�nition of substitutiong

(U 0UC)(U 0UD)

, finductiong

(U 0UC 0)(U 0UD 0)

, fde�nition of substitutiong

APPENDIX A. PROOFS 152

U 0UC 0D 0:

For the same case, we show that, if a substitution S also uni�es constructors
C ;C 0 2 C �, then it is of the form S = S 0U 0U . Thus we calculate as follows

U 0UCD = U 0UC 0D 0

, fde�nition of substitutiong

(U 0UC)(U 0UD) = (U 0UC 0)(U 0UD 0)

) fCD = C 0D 0) C = C 0 ^ D = D 0g

U 0UC = U 0UC 0 ^ U 0UD = U 0UD 0:

Hence, by induction S = S 0U as C
U
�kC

0, and S 0 = S 00U 0 as UD
U 0

�kUD
0. Thus

S = S 00U 0U , as required.

Case (row): Calculate as follows

U 0U fjl : � jr jg

, fde�nition of substitutiong

fjl : U 0U � jU 0Ur jg

, finductiong

fjl : U 0U � jU 0Ur 0 � l jg

,
fLemma 3.1
and de�nition of substitutiong

U 0Ur 0:

For the same case, we show that, if a substitution S uni�es constructors C ;C 0 2 C �,
then it is of the form S = S 0U 0U . Then calculate as follows

Sfjl : � jr jg = Sr 0

APPENDIX A. PROOFS 153

, fde�nition of substitutiong

fjl : S� jSr jg = Sr 0

, finduction and lemma 3.1g

fjl : S� jSr jg = fjl : S� jSr 0 � l jg

) f(equal)g

Sr = Sr 0 � l :

Now, by induction (l : S�) 2 Sr 0, thus S = S 0U and therefore S 0Ur = S 0Ur 0 � l
and S 0 = S 00U 0. Hence, S = S 00U 0U as required.

(This completes the proof. 2)

A.2 Proofs for Chapter 4

A.2.1 Proposition 4.3

Proposition 4.3 If P j C ;A ` E : � , S ` E ; E 0, and S ` A ; A0, then
P jC ;A0 ` E 0 : � and P jC ;A ` E = SE 0 : � .

Proof : The proof follows directly by Lemmas A.7 and A.8.
(This completes the proof. 2)

A.2.2 Proposition 4.4

Proposition 4.4 If P jC ;A ` E : � , S ` A; A0, S ` E ; F, and S ` E ; F 0,
then P jC ;A0 ` F = F 0 : � .

Proof : It follows, from Proposition 4.3, that P jC ;A0 ` F : � and P jC ;A0 ` F 0 : � ,
thus, we need only show that P jC ;A0 ` F = F 0 : � . The proof proceeds by
induction on the structure of E . The only non-trivial case is when E is a let-
binding.

Case E = let B in E 0: By assumption we know P j C ;A0 ` let B in E 0 : � ,
S ` let B in E 0

; F , and S ` let B in E 0
; F 0, and by De�nition 4.6 we have

the derivations:

S ; S 0 ` B ; B 0 S 0 ` E 0
; E 00 S 0 extends (B ; S)

S ` let B in E 0
; let B 0 in E 00;

APPENDIX A. PROOFS 154

and

S ; S 00 ` B ; B 00 S 0 ` E 0
; E 000 S 0 extends (B ; S)

S ` let B in E 0
; let B 0 in E 000:

By de�nition of the relation extends we know that S 0 = S 00, and thus, by induction,
P jC ;A00 ` E 00 = E 000 : � , where A00 is A0 extended with typings for the bindings B .
Finally, we show that B 0 = B 00 by the following calculation:

B 0

= fde�nition of extendsg

fx 0 = N 0jx = �v :N) 2 B ^ (x e ; x 0) 2 S 0 ^ S ` [e=v]N ; N 0g

= f**g

fy 0 = N 0jx = �v :N) 2 B ^ (x e ; y 0) 2 S 0 ^ S ` [e=v]N ; N 0g

= finductiong

fy 0 = N 00jx = �v :N) 2 B ^ (x e ; y 0) 2 S 0 ^ S ` [e=v]N ; N 0g

= fde�nition of extendsg

B 00

The step labelled �� is justi�ed by the fact that (x e ; x 0) 2 S and (x e ; y 0) 2 S
implies x 0 = y 0. The required result follows by application of congruence for let
bindings. (This completes the proof. 2)

A.2.3 Theorem 4.15

Theorem 4.15 (Soundness of PML theories) If C is a cartesian closed cate-
gory, T PML an equational theory, M a model of T PML in C, and �;�0 ` E =PML

F : � , then,M j=PML �;�
0 ` E =PML F : � .

Proof : The proof proceeds by induction on the height of the derivation �;�0 `
E =PML F : � . The standard rules for equational reasoning follow from the corre-
sponding properties for equality of C. The case when the last rule of the derivation
is (�-let) follows directly as translation from MML to T�, given in Figure 4.8,
simply induces the equality for let-bindings (rule (let)TL). The remaining cases

APPENDIX A. PROOFS 155

are:

Case �: We have a derivation of the form:

�;�0 `
PML

�x :Ex : � 0 ! � x 62 Fv(E)

�;�0 ` �x :Ex =PML E : �

By de�nition of the semantic function for PML we calculate as follows:

M[[�;�0 `
PML

�x :Ex : � 0 ! �]]�

= fde�nition of semantic functiong

f(� 0 ! �;M[[�0 `m [Nj=
j](�x :Ex) : �
0 ! �]]�)g

= fde�nition of substitution, and 8j :
j 6= xg

f(� 0 ! �;M[[�0 `
m

�x :([Nj=
j]E)x : � 0 ! �]]�)g

= fsoundness of equational theories for MMLg

f(� 0 ! �;M[[�0 `m [Nj=
j]E : � 0 ! �]]�)g

= fde�nition of semantic functiong

M[[�;�0 `
PML

E : � 0 ! �]]�;

as required.

Case �: We have a derivation of the form:

�;�0; x : � 0 `PML
E : � �;�0 `PML

F : � 0

�;�0 ` (�x :E)F =PML [F=x]E : �

By de�nition of the semantic function for PML we calculate as follows:

M[[�;�0 `
PML

(�x :E)F : �]]�

= fde�nition of semantic functiong

f(�;M[[�0 `m [Nj=
j]((�x :E)F) : �]]�)g

= fde�nition of substitution, and 8j :
j 6= xg

f(�;M[[�0 `
m
(�x :[Nj=
j]E)([Nj =
j]F) : �]]�)g

= fsoundness of equational theories for MMLg

APPENDIX A. PROOFS 156

f(�;M[[�0 `
m
[[Nj=
j]F=x]([Nj=
j]E) : �]]�)g

= f8j :
j 6= x ^ x 62 Fv(Nj) so we can apply Lemma A.2g

f(�;M[[�0 `
m
[Nj=
j][F=x]E : �]]�)g

= fde�nition of semantic functiong

M[[�;�0 `PML
[F=x]E : � 0 ! �]]�;

as required.
(This completes the proof. 2)

A.2.4 Theorem 4.17

Theorem 4.17 (Soundness of OML theories) LetM be any model and T PML

an equational theory, then P jC ;A ` E = F : �)M j=OML P jC ;A ` E = F : �.

Proof : The proof proceeds by induction on the height of the derivation of equality.
The standard rules and those for � and � follow from Theorem 4.15. The remaining
cases are �-evi and �-evi, we prove the case for �-evi, noting that the proof for
�-evi is similar, although a little longer.

Case �-evi : We have a derivation of the form:

P ; v : �;P 0 jC ;A ` E : � P `̀ e : � v 62 Fv(E)

P jC ;A ` (�v :Ev)e = [e=v]E : �

Applying the de�nition of the semantic function to the left-hand side gives:

M[[w : P jC ;A ` �v :Ev : Q) �]]OML� =

f(�;M[[A `
PML

Spec(id ; �v :Ev) : �]]PML�)j `̀ P ;Qg:

Now unfolding Spec(id ; �v :Ev) we have:

Spec(id ; �v :Ev) = M
where
`̀ e 0 : P ; e 00 : Q
S ` A; A
S ` ([e 0=w]�v :Ev)e 00 ; M ;

APPENDIX A. PROOFS 157

where w 62 Fv(e 00), v 62 Fv(e 0) [Fv(e 00), and v 6= w . Thus by the de�nition of
substitution we have:

S ` (�v :([e 0=w]E)v)e 00 ; M :

Now we continue the proof by evaluating the right-hand side:

M[[w : P jC ;A ` E : Q) �]]OML� = f(�;M[[A `PML
Spec(id ;E) : �]]PML�)j `̀ P ;Qg:

Now unfolding Spec(id ;E) we have:

Spec(id ;E) = N
where
`̀ e 0 : P ; e 00 : Q
S ` A; A
S ` ([e 0=w]E)e 00 ; N :

Now by Theorem 4.15 we need only show that the specialised terms M and N are
equal. To see that this is the case, observe that by the de�nition of specialisation
(Figure 4.6) we have a derivation of the form:

S ` [e 00=v](([e 0=w]E)v); M

S ` (�v :([e 0=w]E)v)e 00 ; M

So by the de�nition of substitution it follows that:

S ` ([e 0=w]E)e 00 ; M ;

as v 62 Fv(e 0) [Fv(e 00) [Fv(E). But by Proposition 4.4 it must be the case that
M = N , as required.

(This completes the proof. 2)

A.3 Proofs for Chapter 5

A.3.1 Proposition 5.1

Proposition 5.1 (Subject reduction (syntactic type soundness)) If T ;P j
C ;A ` E : � and E + V , then T ;P jC ;A ` V : �.

APPENDIX A. PROOFS 158

Proof : The proof proceeds on the structure of the derivation T ;P jC ;A ` E : �:
The cases when the last rule of the derivation is (varP) or (varM) are not appli-
cable as reduction is de�ned for closed terms, only. The case when the last rule
of the derivation is either (!I), ()I), (unit), or (�I) are straightforward. The
remaining cases are:

Case (E�): We have a derivation of the form

T ;P jC ;A ` E : � � � 0

T ;P jC ;A ` fst E : �

There is one rule for reduction which applies

E + (V ;U)

fst E + V

By the inductive hypothesis

T ;P jC ;A ` (V ;U) : � � � 0:

Thus we have a derivation of the form

T ;P jC ;A ` V : � T ;P jC ;A ` U : � 0

T ;P jC ;A ` (V ;U) : � � � 0

which implies T ;P jC ;A ` V : � , as required.

The case when the last rule in the derivation is (�E) follows by a similar argument.

Case (!E): We have a derivation of the form

T ;P jC ;A ` E : � 0 ! � T ;P jC ;A ` F : � 0

T ;P jC ;A ` EF : �

There is one rule for reduction which applies

E + �x :E 0 [F=x]E 0 + V

EF + V

APPENDIX A. PROOFS 159

By the inductive hypothesis

T ;P jC ;A ` �x :E 0 : � 0 ! �;

and the fact that substitution preserves type, Lemma A.2, we have T ;P jC ;A `
[F=x]E 0 : � and, by the inductive hypothesis, it follows that [F=x]E 0 + V and
T ;P jC ;A ` V : � , as required.

The case when the last rule in the derivation is ()E) follows by a similar argument.

Case (let): We have a derivation of the form

[E=x]F + V

let x = E in F + V ;

which by the inductive hypothesis and the fact that substitution preserves type
gives T ;P jC ;A ` V : � , as required. (This completes the proof. 2)

A.3.2 Lemma 5.4

Lemma 5.4 If � and � are monotypes, such that, T = TV (�) [TV (�),M over
C ['(T)] is a model for monotypes, and [�=�] a substitution, then

M[[[�=�]�]] =M[[[�=�]]]M[[�]]:

Proof : The proof proceeds by induction on the structure of � .

Case � � �: In this case [�=�]� = �, by de�nition of substitution, thus the required
result follows by re
exivity of equality in the category C and [[[�=�]]]([[�]]) = [[�]].

Case � � �: There are two cases to consider

� The case when � = �, and

� the case when � 6= �.

We consider each in turn. In the case when � = �, we have [[[�=�]�]] = [[�]] =
[[[�=�]]](Xi) = [[[�=�]]][[�]]; as expected. In the case when � 6= � we have [[[�=�]�]] =
[[�]] = Xk = [[[�=�]]](Xk) = [[[�=�]]]([[�]]); where k 6= i , as required.

APPENDIX A. PROOFS 160

Case � � (): In this case [�=�]() = (), by de�nition of substitution, thus the re-
quired result follows by re
exivity of equality in the category C and [[[�=�]]]([[()]]) =
1 = [[()]].

Case � � � ! � 0: By the inductive hypothesis we have [[[�=�]�]] = [[[�=�]]]([[�]])
and [[[�=�]� 0]] = [[[�=�]]]([[� 0]]). We now calculate as follows:

[[[�=�]� ! � 0]]

= fde�nition of substitutiong

[[[�=�]� ! [�=�]� 0]]

= fde�nition of semantic function for typesg

[[[[�=�]�]]! [[[�=�]� 0]]]

= finductive hypothesisg

[[[[�=�]]]([[�]])! [[[�=�]]]([[� 0]])]

= f[[[�=�]]] is by de�nition a cartesian closed functorg

[[[�=�]]][[[�]]! [[� 0]]]

= fde�nition of semantic function for typesg

[[[�=�]]]([[� ! � 0]]);

as required.

Case � � � � � 0: By the inductive hypothesis we have [[[�=�]�]] = [[[�=�]]]([[�]])
and [[[�=�]� 0]] = [[[�=�]]]([[� 0]]). We now calculate as follows:

[[[�=�]� � � 0]]

= fde�nition of substitutiong

[[[nu=�]� � [�=�]� 0]]

= fde�nition of semantic function for typesg

[[[�=�]�]]� [[[�=�]� 0]]

= finductive hypothesisg

[[[�=�]]]([[�]])� [[[�=�]]]([[� 0]])

= f[[[�=�]]] is by de�nition a cartesian closed functorg

[[[�=�]]]([[�]]� [[� 0]])

= fde�nition of semantic function for typesg

[[[�=�]]]([[� � � 0]]);

APPENDIX A. PROOFS 161

as required.
(This completes the proof. 2)

A.3.3 Lemma 5.7

Lemma 5.7 (Predicate soundness) Given a judgement T ; v : P `̀ w : Q, and

a predicate system P, then P[[T ; v : P `̀ w : Q]] : P[[P]] - P[[Q]].

Proof : The proof proceeds by induction on the structure of the derivation T ; v :
P `̀ w : Q .

Case (id): We have a derivation of the form

v : P `̀ v : P

So assuming [[P]] it follows, by the de�nition of a category, that we can construct
the arrow:

[[P]]
id- [[P]];

as required.

Case (term): We have a derivation of the form

v : P `̀ ;:

Again, assuming [[P]], we can construct, by the universal property of terminals, the
arrow

[[P]]
term- 1;

as required.

Case (fst): We have a derivation of the form

v : P ;w : Q `̀ v : P :

Assuming [[P ;Q]] we can construct, by the de�nition of products, the arrow

[[P]]� [[Q]]
�1- [[P]];

as required.

APPENDIX A. PROOFS 162

The proof for (snd) is very similar.

Case (univ): We have a derivation of the form

v : P `̀ e : Q v : P `̀ e 0 : R

v : P `̀ e : Q ; e 0 : R
.

By induction we have

[[v : P `̀ e : Q]] : [[P]]
e- [[Q]];

and
[[v : P `̀ e 0 : R]] : [[Q]]

e0

- [[R]]:

By the universal property of products we can construct the arrow

[[P]]
hhhhe;e0iiii- [[Q]]� [[R]];

which by the de�nition of the semantic function gives the required result.

Case (trans): We have a derivation of the form

v : P `̀ e : Q v 0 : Q `̀ e 0 : R

v : P `̀ [e=v 0]e 0 : R

By induction we have

[[v : P `̀ e : Q]] : [[P]]
e- [[Q]];

and
[[v 0 : Q `̀ e 0 : R]] : [[Q]]

e0

- [[R]]:

By the de�nition of composition of arrows we construct the arrow

[[P]]
e- [[Q]]

e0

- [[R]];

which by the de�nition of the semantic function gives the required result.

Case (close): We have a derivation of the form

APPENDIX A. PROOFS 163

v : P `̀ e : Q

v : SP `̀ e : SQ

By induction we have

[[v : P `̀ e : Q]] : [[P]]
e- [[Q]]:

Assuming we have the substitution functor

S [[P]] : Pred [~X]! Pred [~X];

respecting S , then we can construct an arrow

S [[P]]
e- S [[Q]];

giving

[[v : SP `̀ e : SQ]] : S [[P]]
e- S [[Q]];

as required.
(This completes the proof. 2)

A.3.4 Lemma 5.11

Lemma 5.11 (Type soundness) If T ;P jC ;A ` E : � then

M[[T ;P jC ;A ` E : �]] : E(P[[P]])� CC ;E �M[[A]] -M[[�]]:

Proof : The proof is by induction on the structure of T ;P j C ;A ` E : � and is
similar to the proof of Lemma 5.7.

(This completes the proof. 2)

A.3.5 Theorem 5.12

Theorem 5.12 (Soundness of OML reduction) If T ;P jA ` E : � and E +
V , then

M[[T ;P jA ` E : �]] =M[[T ;P jA ` V : �]]:

APPENDIX A. PROOFS 164

Proof : The proof proceeds by induction on the structure of the derivation T ;P j
A ` E : �. The cases when the last rule of the derivation is either (varM) or
(varP) do not apply as E must be closed for E + V to be valid. Furthermore, the
cases when the last rule of the derivation is (!I), ()I), (�I), or (unit) follow
directly by Proposition 5.1 and re
exivity. The remaining cases are:

Case (!E): We have derivations of the form:

T ;P jC ;A ` E : � 0 ! � T ;P jC ;A ` F : � 0

T ;P jC ;A ` EF : �

E + �x :E 0 [F=x]E 0 + V

EF + V

The required result follows by simple calculation

[[T ;P jA ` EF : �]]

= fde�nition of semantic functiong

eval � hhhh[[T ;P jA ` E : � 0 ! �]]; [[T ;P jA ` F : � 0]]iiii

= finductive hypothesisg

eval � hhhh[[T ;P jA ` �x :E 0 : � 0 ! �]]; [[T ;P jA ` F : � 0]]iiii

= fde�nition of semantic functiong

eval � hhhhcurry([[T ;P jA; x : � 0 ` E 0 : �]] � s); [[T ;P jA ` F : � 0]]iiii

= fproperties of productsg

eval � curry([[T ;P jA; x : � 0 ` E 0 : �]] � s)� id � hhhhid ; [[T ;P jA ` F : � 0]]iiii

= fproperties of exponentialsg

[[T ;P jA; x : � 0 ` E 0 : �]] � s � hhhhid ; [[T ;P jA ` F : � 0]]iiii

= fsubstitution is compositiong

[[T ;P jA ` [F=x]E 0 : �]]

= finductive hypothesisg

[[T ;P jA ` V : �]];

as required.

The case when the last rule in the derivation is ()E) follows by a similar proof.

Case (E�): We have derivations of the form

APPENDIX A. PROOFS 165

T ;P jC ;A ` E : � � � 0

T ;P jC ;A ` fst E : �

E + (V ;U)

fst E + V

The required result follows by simple calculation

[[T ;P jA ` fst E : �]]

= fde�nition of semantic functiong

�1 � [[T ;P jA ` E : � � � 0]]

= finductive hypothesisg

�1 � [[T ;P jA ` (V ;U) : � 0]]

= fde�nition of semantic functiong

�1 � hhhh[[T ;P jA ` V : �]]; [[T ;P jA ` U : � 0]]iiii

= fproperties of productsg

[[T ;P jA ` V : �]];

as required. We have been a little liberal with the diagonal maps as these only
e�ect the polymorphic contexts, which may di�er for each component of the tuple,
but as the expression fst E is closed the expressions V and U are also closed, and
thus, we need not be concerned with the input of polymorphic contexts (up to
isomorphism) and consequently can ignore the diagonal maps.

The case when the last rule in the derivation is (�E) follows by a similar proof.

Case (let): We have derivations of the form

T ;P jC ;A ` E : � T ;Q jC ;Ax ; x : � ` F : � � = Gen(C ;A;P) �)

T ;P ;Q jC ;A ` (let x = E in F) : �

[x=E]F + V

let x = E in F + V

We now calculate as follows

[[T ;P jA ` let x = E in F : �]]

= fde�nition of semantic functiong

APPENDIX A. PROOFS 166

[[T ;P jx : Gen(A; �);A ` F : � 0]] � hhhh [[T ;P jA ` E : �]][�=�]1; � � � ;

[[T ;P jA ` E : �]][�=�]r iiii

= fsubstitution is composition (1)g

[[T ;P jA ` [E=x]F : �]]

= finductive hypothesisg

[[T ;P jA ` V : �]];

as required. To justify step (1) consider the the de�nition of polymorphic con-
texts given in De�nition 5.9, which interprets a type scheme as the product of its
instances used in the body of the expression being interpreted. If x1; � � � ; xr are the
instances of x in the expression F we can rewrite T ;P j x : Gen(A; �);A ` F : � 0

as T ;P j x1 : Gen(A; �)[�=�]1 ; � � � ; xr : Gen(A; �)[�=�]r ` F 0 : � 0, where F 0 is F with
each occurrence of x renamed to the appropriate xi . Thus the required result now
follows by the fact that substitution is interpreted as composition and then simply
rewriting the multiple substitution [E=x1; � � � ;E=x1] as the substitution [E=x] and
renaming x1; � � � ; xr in F 0 back to x , giving F .

(This completes the proof. 2)

A.4 Proofs for Chapter 6

A.4.1 Proposition 6.3

Proposition 6.3 (Lacks predicates are enough) If � is a type scheme, then
there exists a type scheme, �0, such that � ; �0, nHas(�0) = 0, and [[�]] = [[�0]].
Furthermore, if there exists a type scheme, �00, such that � ; �00, then [[�0]] = [[�00]].

Proof : It is clear that for any well-formed type scheme � there exists a �0 such
that � ; �0 as the rules for translation are de�ned by induction over the structure
of a type scheme. We need only show that [[�]] = [[�0]]. The proof proceeds by
induction on the structure of the derivation � ; �0.

Case (scheme): We have a derivation of the form

Q = f has 2 Pg Q 0 = f n 2 Pg Q) � ; P 0) � 0

8�:P) � ; 8�:Q 0 [P 0) � 0

APPENDIX A. PROOFS 167

By induction we have nHas(P 0) � 0) = 0 and [[Q) �]] = [[P 0) � 0]]. Thus it
follows that nHas(8�:Q 0[P 0) � 0) = 0, by de�nition of the function nHas and the
operator [. Finally, it follows by the semantic de�nition for polymorphic types,
that, [[8�:P) �]] = [[8�:Q 0 [P 0) � 0]].

Case (empty): We have a derivation of the form

fg) � ; fg) �

The required result follows directly as nHas(fg) �) = 0, and [[fg) �]] = [[fg)
�]], by re
exivity.

Case): We have a derivation of the form

P) � ; P 0) � 00 P) � 0 ; P 00) � 000

P) � ! � 0 ; P 0 [P 00) � 00 ! � 000

Now by induction nHas(P 0) � 00) = 0, nHas(P 00) � 000) = 0, [[P) �]] =
[[P 0) � 00]], and [[P) � 0]] = [[P 00) � 000]]. It follows, by de�nition of [, that,
nHas(P 0 [P 00) � 00 ! � 000) = 0, and by the semantic de�nition of monotypes
we have [[�]] = [[� 00]] and [[� 0]] = [[� 000]]. Thus, by de�nition of equality, for function
arrows, we have [[� ! � 0]] = [[� 000 ! � 000]], as required.

Case (minus): We have a derivation of the form

(r has l1 : �1; � � � ; r has ln : �n ;P)) Rec ((r � l1) � � � � ln);
(rnl1; � � � ; rnln)) Rec r

It follows that nHas((rnl1; � � � ; rnln)) Rec r) = 0, and thus we need only show
that

[[(r has l1 : �1; � � � ; r has ln : �n ;P)) Rec ((r � l1) � � � � ln]] =
[[(rnl1; � � � ; rnln)) Rec r]]:

APPENDIX A. PROOFS 168

To see that this is the case pick an arbitrary value for the row r , which respects
the predicates (r has l1 : �1; � � � ; r has ln : �n) (by de�nition of semantics, given
above, the predicate set P does not constrain the row r , and thus does not play
any role):

fjl1 : �1; � � � ; ln : �n ; l
0
1 : �1; � � � ; l

0
k : �k jg;

implying that Rec ((r � l1) � � � � ln)) = Recfjl 01 : �1; � � � ; l
0
k : �k jg. Semantically we

have:

[[(r has l1 : �1; � � � ; r has ln : �n)) Rec ((r � l1) � � � � ln]] = �1 � � � � � �k ;

when r = fjl1 : �1; � � � ; ln : �n ; l 01 : �1; � � � ; l
0
k : �k jg, assuming l 01 < � � � < l 0k .

Similarly, picking the same value for r on the right hand side of the translation,
leaving out the �elds l1 : �1; � � � ; ln : �n as asserted by the predicates rnl1; � � � ; rnln ,
gives:

[[(rnl1; � � � ; rnln)) Rec r]] = �1 � � � � � �k ;

when r = fjl 01 : �1; � � � ; l
0
k : �k jg, assuming l 01 < � � � < l 0k .

Now as we made no assumptions about the row r , the types (r has l1 : �1; � � � ; r has ln :
�n)) Rec ((r � l1) � � � � ln and (rnl1; � � � ; rnln)) Rec r are semantically equal,
whenever r is chosen, such that, it satis�es the appropriate predicates.

Case (noHas): We have a derivation of the form

r has 62 P

P) Rec r ; fg) Rec r

The required result follows directly as nHas(fg) Rec r) = 0, by de�nition, and
[[P) Rec r]] = [[fg) Rec r]], as the predicates P do not constrain the row r .

Case (ext): We have a derivation of the form

(r has l1 : �1; � � � ; r has ln : �n ;P)) Rec r ;
(rnl1; � � � ; rnln)) Recfjl1 : �1; � � � ; ln : �n jr jg

It follows that nHas((rnl1; � � � ; rnln)) Recfjl1 : �1; � � � ; ln : �n j r jg) = 0, and thus,
we need only show that

[[(r has l1 : �1; � � � ; r has ln : �n ;P)) Rec r]] =
[[(rnl1; � � � ; rnln)) Recfjl1 : �1; � � � ; ln : �n jr jg]]:

APPENDIX A. PROOFS 169

To see that this is the case pick an arbitrary value for the row r , which respects
the predicates (r has l1 : �1; � � � ; r has ln : �n) (by de�nition of the semantics, given
above, the predicate set P as does not constrain the row r , and thus does not play
any role):

fjl1 : �1; � � � ; ln : �n ; l
0
1 : �1; � � � ; l

0
k : �k jg;

implying that Rec r = Recfjl1 : �1; � � � ; ln : �n ; l
0
1 : �1; � � � ; l

0
k : �k jg. Semantically we

have:

[[(r has l1 : �1; � � � ; r has ln : �n)) Rec r]] = �1 � � � � �n � �1 � � � � � �k ;

assuming l1 < � � � < ln < l 01 < � � � < l 0k .

Similarly, picking the same value for r on the right hand side of the translation,
leaving out the �elds l1 : �1; � � � ; ln : �n as asserted by the predicates rnl1; � � � ; rnln ,
gives:

[[(rnl1; � � � ; rnln)) Rec fjl1 : �1; � � � ; ln : �n jr jg]] = �1 � � � � � �n � �1 � � � � � �k ;

assuming l1 < � � � < ln < l 01 < � � � < l 0k .

Now as we made no assumptions about the row r , the types (r has l1 : �1; � � � ; r has ln :
�n)) Rec r and (rnl1; � � � ; rnln)) Rec fjl1 : �; � � � ; ln : �n j r jg are semantically
equal, whenever r is chosen, such that it satis�es the appropriate predicates.

Case (noHE): We have a derivation of the form

r has 62 P

P) Recfjl1 : �1 jr jg; P) Recfjl1 : �1 jr jg

The required result follows directly as nHas(P) Recfjl1 : �1 j r jg) = 0, by de�ni-
tion. Of course, in general it will not be the case that [[P) Rec fjl1 : �1 j r jg]] =
[[fg) Rec fjl1 : �1 jr jg]]. However, as the predicates P contain no lacks predicates,
as speci�ed by the rule (scheme), and by assumption no has predicates we note
that P can be eliminated and [[fg) Rec fjl1 : �1 j r jg]] = [[fg) Rec fjl1 : �1 j r jg]] is
valid as the resulting predicates Q will preserve the requirement that rnl .

Case (empR): We have a derivation of the form

P) Recfjjg; fg) Recfjjg

APPENDIX A. PROOFS 170

It is clear that nHas(fg) Recfjjg) = 0. Now to see that [[P) Recfjjg]] = [[fg)
Recfjjg]], we �rst note that as � = Q) � is well-formed the predicates in P
constrain the type � in a non-ambiguous way and as such it is safe to eliminate P
in this case. Thus [[fg) Recfjjg]] = [[fg) Recfjjg]], as required.

The case when the last rule in the derivation is (var) follows by a similar argument.
(This completes the proof. 2)

A.5 Proofs for Chapter 7

A.5.1 Theorem 7.1

Theorem 7.1 The uni�cation (insertion) algorithm de�ned by the rules in Fig-
ure 3.3 (Figure 3.4), extended to include the additional rules given in Figure 7.4
(Figure 7.5), calculates most-general uni�ers (inserters) whenever they exist. The
algorithm fails precisely when no uni�er (inserter) exists.

Proof : For each case we �rst prove that U is a uni�er (inserter), and then show
that it is the most general one. The proof is by induction on the structure of the
derivation. The proof for the cases when the last rule in the derivation is (inVar),
(inTail), (inHead), (id), (bind) (apply), and (row) are similar to the proof of The-
orem 3.2. The cases for the rules involving the insertion of a given label into a set
of labels are just simpli�ed versions of the corresponding proofs for inserters, given
in Theorem 3.2. The cases that involve the constructor array are straightforward.
The remaining cases are:

Case (inTo): Calculate as follows

I (to � 0 r)

, fde�nition of substitutiong

to (I � 0) (Ir)

, f*g

to I � 0 fjl : I� jIr � l jg

, funfold de�nition of tog

fjl : I�! I � 0 j to I � 0 Ir � l jg

APPENDIX A. PROOFS 171

, f(inRow)g

(l : I�! I � 0) 2 fjl : I�! I � 0 j to I � 0 Ir � l jg

, fby induction I � = I (�! � 0)g

(l : I �) 2 fjl : I�! I � 0 j to I � 0 Ir � l jg

, ffold de�nition of tog

(l : I �) 2 to I � 0 fjI� jIr � l jg

, f*g

(l : I �) 2 to I � 0 Ir

, fde�nition of substitutiong

(l : I �) 2 I (to � 0 r);

as required.

We can justify the step � by induction and Lemma 3.1, which gives

(l : I�) 2 Ir) Ir = fjl : I� jIr � l jg:

For the same case, we must show that, if a substitution S inserts (l : �) into to � 0 r ,
then it is of the form S = RIU . To see this is the case note that by the de�nition
of substitution S (to � 0 r) = to S� 0 Sr . Hence by induction we have S = S 0U as

U � = U (�! � 0), and S 0 = RI as (l : U�)
I
2Ur , as required.

The case for when the last rule in the derivation is (inFrom)is proved by simply
replacing to � 0 r with from � 0 r and �! � 0 with � 0 ! �.

Case (ToTo): Calculate as follows

U (to � r)

, fde�nition of substitutiong

to U � Ur

, finductiong

to U � 0 Ur 0

, fde�nition of substitutiong

U (to � 0 r 0)

as required.

APPENDIX A. PROOFS 172

For the same case, we must show that, if a substitution S uni�es to � r into to � 0 r 0,
then it is of the form S = RU 0U . To see this is the case note that by the de�nition
of substitution S (to � r) = to S� Sr . Hence by induction we have S = S 0U as

�
U
�� 0, and S 0 = RU 0 as r

U 0

�Ur 0, as required.

The case for when the last rule in the derivation is (FromFrom)is proved by simply
replacing to � r and to � 0 r 0 with from � r and from � 0 r 0, respectively.

(This completes the proof. 2)

A.6 Proofs for lemmas

To conclude this appendix we outline the proofs for a number of simple lemmas,
which are required for the proof of the main results of Chapters 4 and 5.

Lemma A.2 If P j C ;A ` [[N =y]F=x]([N =y]E) : �, y 6= x , and x 62 Fv(N).
Then, P jC ;A ` [N =y]([F=x]E) : �.

Proof : The proof proceeds by induction on the structure of E .

Case E = z : There are three cases to consider:

� z = x ,

� z = y , and

� z 6= x ^ z 6= y .

We consider each in turn.

Case z = x : Substituting z for x we can calculate as follows

P jC ;A ` [[N =y]F=z]([N =y]z) : �

= fde�nition of substitutiong

P jC ;A ` [[N =y]F=z]z : �

= fde�nition of substitutiong

P jC ;A ` [N =y]F : �

= fde�nition of substitutiong

P jC ;A ` [N =y]([F=z]z) : �;

APPENDIX A. PROOFS 173

as required.

Case z = y : Substituting z for y we can calculate as follows

P jC ;A ` [[N =z]F=x]([N =z]z) : �

= fde�nition of substitutiong

P jC ;A ` [[N =z]F=x]N : �

= fde�nition of substitution and x 62 Fv(N)g

P jC ;A ` N : �

= fde�nition of substitutiong

P jC ;A ` [N =z]z : �

= fde�nition of substitutiong

P jC ;A ` [N =z]([F=x]z) : �

as required.

Case z 6= x ^ z 6= y : Substituting z for y we can calculate as follows

P jC ;A ` [[N =y]F=x]([N =y]z) : �

= fde�nition of substitutiong

P jC ;A ` [[N =y]F=x]z) : �

= fde�nition of substitutiong

P jC ;A ` z : �

= fde�nition of substitutiong

P jC ;A ` [N =y]([F=x]z) : �

as required.

Case E = �z :M : Without loss of generality we can assume that z 6= x and z 6= y .
This is justi�ed by the fact that we assume terms equal modulo renaming of bound
variables.

P jC ;A ` [[N =y]F=x]([N =y]�z :M) : �

APPENDIX A. PROOFS 174

= fde�nition of substitution and y 6= zg

P jC ;A ` [[N =y]F=x](�z :[N =y]M) : �

= fde�nition of substitution and x 6= zg

P jC ;A ` �z :[[N =y]F=x]([N =y]M) : �

= finduction hypothesisg

P jC ;A ` �z :[N =y]([F=x]M) : �

= fde�nition of substitution and y 6= zg

P jC ;A ` [N =y](�z :[F=x]M) : �

= fde�nition of substitution and x 6= zg

P jC ;A ` [N =y]([F=x]�z :M) : �

as required.

Case E = �v :M : The proof for this case is very similar to that of term abstraction.

Case E = MM 0: We calculate as follows

P jC ;A ` [[N =y]F=x]([N =y]MM 0) : �

= fde�nition of substitutiong

P jC ;A ` [[N =y]F=x](([N =y]M)([N =y]M 0)) : �

= fde�nition of substitutiong

P jC ;A ` ([[N =y]F=x]([N =y]M))([[N =y]F=x]([N =y]M 0)) : �

= finduction hypothesisg

P jC ;A ` ([N =y][F=x]M)([N =y][F=x]M 0) : �

= fde�nition of substitutiong

P jC ;A ` [N =y](([F=x]M)([F=x]M 0)) : �

= fde�nition of substitutiong

P jC ;A ` [N =y]([F=x]MM 0) : �

as required.

APPENDIX A. PROOFS 175

Case E = Me: The proof for this case is very similar to that of term application.
(This completes the proof. 2)

The following lemma is a standard structural result which is proven by induction
on the number of occurrences of quanti�ers in a given type. The interested reader
will �nd a proof in Mairson's paper discussing the equivalence of the type systems
PML and MML [Mai92].

Lemma A.3 If �;�0 `
PML

E : 8f�ig:� , and E is not a variable, then there exists
a proof �;�0 `PML

E : � where the last rule used is either (!E)PML, (!I)PML, or
(let)PML.

Lemma A.4 If P jC ;A; x : �0 ` E : � and x 62 Fv(E), then P jC ;A ` E : �.

Proof : Without loss of generality we can rename all variables bound in E so that
they are unique with respect to x . By Lemma A.3 we can eliminate applications
of the rules (8I) and (8E), thus allowing the proof to proceed by induction on the
structure of P jC ;A; x : �0 ` E : �. The proofs for the cases where the last rule in
the derivation is (!E), ()E), or ()I) are straightforward. The remaining cases
are:

Case (const): We have a derivation of the form

(y : �) 2 C

P jC ;A; x : �0 ` y : �
(const).

By assumption y 6= x , thus, the desired result follows by application of (const).
The required result follows similarly in the case when the last rule of the derivation
is (var).

Case (!I): We have a derivation of the form

P jC ;Ay ; x : �0; y : � 0 ` E : �

P jC ;A; x : �0 ` �y :E : � 0 ! �
(!I).

By assumption E = �y :E 0, � = � 0 ! � , and y 6= x . By Lemma A.5 we know that
P jC ;Ay ; y : � 0; x : �0 ` E : � and thus, by induction, P jC ;Ay ; y : � 0 ` E : � .

APPENDIX A. PROOFS 176

Hence, the required result follows by application of (!I).

Case (let): We have a derivation of the form:

P jC ;A; x : �0 ` E : �00 Q jC ;Ay; x : �0; y : �00 ` F : �

P ;Q jC ;A; x : �0 ` (let y = E in F) : �
(let).

By assumption y 6= x and by induction and Lemma A.5 P j C ;A ` E : �00 and
Q jC ;Ay ; y : �00 ` F : � . Hence, the required result follows by application of (let).

(This completes the proof. 2)

The proof of the following lemma is similar in style to the previous result and is
again a standard result for quali�ed types. We leave the details to the reader.

Lemma A.5 If P jC ;A; x : �0; y : �00 ` E : �, then P jC ;A; y : �00; x : �0 ` E : �.

Lemma A.6 If P j C ;A; x : � ` E : � and P j C ;A ` E 0 : � , then P j C ;A `
[E 0=x]E : �.

Proof : Without loss of generality we rename all variables bound in E so they are
unique with respect to x . The proof then proceeds by induction on the structure
of E .

Case E = z : There are two cases to consider

� x = z , and

� x 6= z .

We consider each in turn.

Case x = z : By assumption we have P j C ;A; x : � ` x : � , and it follows,
by the de�nition of substitution, that [E 0=x]x = E 0, and thus, by assumption
P jC ;A ` E 0 : � as required.

Case x 6= z : It follows, by the de�nition of substitution, that the expression
[E 0=x]z reduces to z . By assumption z : � 2 C ;A which by application of either
(var) or (const) gives P jC ;A ` z : �.

APPENDIX A. PROOFS 177

Case E = �y :F : By Lemma A.3 it follows that P jC ;A; x : � ` �y :F : � 0 ! � 00

for some � 0 and � 00. Thus, by applying Lemma A.3, we have reduced the proof of
the judgement P jC ;A; x : � ` �y :F : � 0 ! � 00 to a syntax directed proof, and by
rule (!I) we have a derivation of the form:

P jC ;A; x : �; y : � 0 ` F : � 00

P jC ;A; x : � ` �y :F : � 0 ! � 00

By Lemma A.5 we have P j C ;A; y : � 0; x : � ` F : � 00, and by induction it
follows that P jC ;A; y : � 0 ` [E 0=x]F : � 00. Now by application of (!I) we have
P jC ;A ` �y :[E 0=x]F : � 0 ! � 00, and by de�nition of substitution it follows that
P jC ;A ` [E 0=x](�y :F) : � 0 ! � 00. Finally the required result follows by zero or
more applications of the rules (8I) and (8E).

The case when E = �v :F is proved similarly.

Case E = MN : By Lemma A.3 it follows that P jC ;A; x : � ` MN : � 0 for some
� 0. Thus, by applying Lemma A.3 we have reduced the proof of the judgement
P jC ;A; x : � ` MN : � 0 to a syntax directed proof, and by rule (!E) we have a
derivation of the form:

P jC ;A; x : � ` M : � 00 ! � 0 P jC ;A; x : � ` N : � 00

P jC ;A; x : � ` MN : � 0

Now by induction we have P jC ;A;` [E 0=x]M : � 00 ! � 0 and P jC ;A ` [E 0=x]N :
� 00. Thus, by rule (!E)we have P jC ;A; x : � ` ([E 0=x]M)([E 0=x]N) : � 0 and by
de�nition of substitution P j C ;A; x : � ` [E 0=x]MN : � 0. Finally, the required
result follows by zero or more applications of the rules (8I) and (8E).

The case when E = Fe is proved similarly.

Case E = let y = M in N : By Lemma A.3 it follows that P j C ;A; x : � `
let y = M in N : � 0 for some � 0. Thus, by applying Lemma A.3, we have reduced
the proof of the judgement P j C ;A; x : � ` let y = M in N : � 0 to a syntax
directed proof, and by rule (let) we have a derivation of the form:

P jC ;A; x : � ` M : �0 Q jC ;A; x : �; y : �0 ` N : � 0

P ;Q jC ;A; x : � ` let y = M in N : � 0

APPENDIX A. PROOFS 178

By induction we have P jC ;A ` [E 0=x]M : �0, and by �rst applying Lemma A.5
and then induction we also have Q jC ;A; y : �0 ` [E 0=x]N : � 0. Now by application
of the rule (let) we have P ;Q jC ;A ` let y = [E 0=x]M in [E 0=x]N : � 0, which, by
de�nition of substitution, gives P ;Q jC ;A ` [E 0=x](let y = M in N) : � 0. Thus
the required result follows by zero or more applications of the rules (8I) and (8E).

(This completes the proof. 2)

Lemma A.7 If P jC ;A ` E : � and S ` E ; E 0, then P jC ;A0 ` E 0 : �0 and
�0 � �.

Proof : The proof is by induction on the structure of S ` E ; E 0. The proofs for
the cases where the last rule in the derivation is (abs-evi), (app), (abs), or (abs-evi)
are straightforward. The remaining cases are:

Case (var-�): We have a derivation of the form:

x 62 S

S ` x ; x
(var-�).

By assumption P jC ;A ` x : �, thus � � � as required.

Case (var-let): We have a derivation of the form:

(x e ; x 0) 2 S e =) d

S ` x e ; x 0
(var-let).

By assumption P jC ;A ` xe : � where � = � from some � , and also as e =) d
we have P j C ;A ` xd : � . Now, as xe = Sx 0 and (xd ; x 0) 2 S and the fact
substitutions preserve type, P jC ;A0 ` x 0 : � , assuming (x 0 : �) 2 A0. The required
result follows from the fact that � � � .

Case (�evi): We have a derivation of the form:

S ` [e=v]E ; E 0

S ` (�v :E)e ; E 0
(�evi).

APPENDIX A. PROOFS 179

By assumption P j C ;A ` (�v :E)e : �, and it follows by Proposition A.3 P j
C ;A ` (�v :E)e : � for some �. Now by ()E), P j C ;A ` �v :E : �) � and
P `̀ e : �. It follows, by Lemma A.6 that P jC ;A ` [e=v]E : �, thus, by induc-
tion, P jC ;A0 ` E 0 : � and � � � as required.

Case (let): We have a derivation of the form:

S ; S 0 ` B ; B 0 S 0 ` E ; E 0 S 0 extends(B ; S)

S ` let B in E ; let B 0 in E 0
(let)

By assumption we have Q ;P j C ;A ` let B in E : � and � = � . By induction,
it follows, that if (xi = Ei) 2 B and Q jC ;A ` Ei : �i , then (x 0i = E 0

i) 2 B and
Q jC ;A0 ` E 0

i : �
0
i , where �

0
i � �i . Also P jC ;A; xi : �i ` E : � , thus, by induction

P jC ;A0; x 0i : �
0
i ` E

0 : � . Hence, the required result follows by application of (let).
(This completes the proof. 2)

Lemma A.8 If S ` E ; E 0, then E = SE 0.

Proof : The proof is by induction on the structure of S ` E ; E 0 and is straight-
forward, except when the last rule in the derivation is (let). In that case we have
a derivation of the form

S ` [e=v]E ; E 0

S ` (�v :E)e ; E 0
(�evi).

Let B = fxi = ��i :Fig, it follows from the hypothesis S 0 extends (B ; S) that S 0

can be written in the form [xij ej=x
0
j]S . From the hypothesis S ; S 0 ` B ; B 0,

and the earlier de�nition, we know that B 0 = fx 0j = F 0
jg from some F 0

j such that
S ` [ej=�ij]Fij ; F 0

j , and hence, by induction, [ej=�ij]Fij = SF 0
j . The required

equality can now be established through the following reasoning

let B in E

= finductiong

[��i :Fi=xi]E

=

[��i :Fi=xi]S
0E 0

=

APPENDIX A. PROOFS 180

[��i :Fi=xij][xij ej=x
0
j](SE

0)

=

[(��i :Fi) ej=xij]SE
0

=

[(��i :Fi) ej=x
0
j]SE

0

=

[[ej=�i]Fi=x
0
j]SE

0

= finductiong

[SF 0
j=x

0
j]SE

0

=

S ([F 0
j=x

0
j]E

0)

=

S (let B 0 in E 0);

as required. (This completes the proof. 2)

Appendix B

Introduction to polynomial

categories

This appendix describes the categorical notions used throughout this dissertation.
It has been included as an appendix with the intention of allowing the reader quick
reference to categorical de�nitions and notation used throughout. These concepts
and results have appeared elsewhere and are not due to the current author, we
restate them now simply to allow the reader to become familiar with the ideas
and our choice of notation. We assume the reader has some knowledge of category
theory and its application to program language semantics. The interested reader
will �nd Mac Lane's text [Lan72] an excellent reference, while Crole's text [Cro93]
provides an introduction to the application of category theory to formal language
semantics.

De�nition B.1 A category C is cartesian if the unique functor !C : C ! 1 has
a right adjoint, and the diagonal functor � : C ! C � C , de�ned by A 7! hhhhA;Aiiii
and f 7! hhhhf ; f iiii, also has a right adjoint. We denote this later functor by � :
C � C ! C , with the standard projections denoted by �1 and �2. In otherwords a
cartesian category has �nite products and a terminal object.

De�nition B.2 If C and D are cartesian categories, a cartesian functor F :
C ! D is a functor that preserves �nite products, i.e., F (A� B) �= FA� FB and
F1 �= 1.

181

APPENDIX B. INTRODUCTION TO POLYNOMIAL CATEGORIES 182

De�nition B.3 A cartesian category C is cartesian closed if the functor � A :
C ! C has a right adjoint. We denote this functor by [!] : C op � C ! C , with
the adjoint transpose denoted as curry and evaluation as eval.

De�nition B.4 If C and D are cartesian closed categories, a cartesian closed
functor F : C ! D is a cartesian functor that also preserves exponentials, i.e.,
F ([A! B]) �= [FA! FB].

One of the key ideas in Chapter 5 is to use the categorical generalization of polyno-
mials to interpret �rst-order polymorphism. To help provide some intuition behind
polynomial categories we �rst describe the more common idea of polynomial rings
in terms of the categorical notion of universality. A more detailed discussion of
these and other similar ideas can be found in a wide selection of texts on algebra
(see, for example, Mac Lane and Birkho�'s introductory text [LB93]).

De�nition B.5 (Algebraic rings) A ring R = (R;+; �; 1) is a set R with two
binary operations, addition and multiplication, and a unit for multiplication, such
that:

� (R;+) is an abelian group;

� (R; �; 1) is a monoid; and

� Multiplication distributes over addition.

A commutative ring is one in which the multiplication is commutative.

Consider the following polynomial with integral coe�cients and indeterminate x

f = 4x + 67x 2 + 5x 3:

It is possible to consider this expression as shorthand for the function f (x) =
4x + 67x 2 + 5x 3, which can be evaluated by substituting numbers in place of the
variable x . However, polynomials are formal expressions, which may themselves
be added and multiplied forming a ring, when the coe�cients form a commutative
ring K . By the ring of polynomials in the indeterminate, x , written K [x], we mean
the set of all symbols ao+a1x+ � � �+anx

n , where n can be any nonnegative integer
and the coe�cients ai are all in the ring K .

APPENDIX B. INTRODUCTION TO POLYNOMIAL CATEGORIES 183

The construction of the polynomial ring K [x] from the commutative ring K can be
characterized using the categorical notion of universality. Intuitively this can be
thought of as a `universal' way of adjoining a new element x to the ring K . Given a
commutative ring K , an inclusion arrow � : K ! K [x], and any ring homomorphism
f : K ! L, there is a unique arrow ' : K [x] ! L such that '(x) = d and the
following diagram commutes:

K
� - K [x]

@
@
@
@
@

f
R

L;
?

'

where L is a commutative ring and d 2 L. Intuitively, this de�nition states that
the ring homomorphism f uniquely extends to the ring homomorphism ', which
behaves as f except in the case when it is applied to the indeterminate x , in
which case it evaluates to value d . Operationally, ' is simply f with a built-in
environment containing the given value for x . Alternatively one can think of '
evaluating the polynomial, with respect to f , at the point x = d .

Keeping the notion of polynomial rings in mind we now generalize the notion of
adjoining an indeterminate to cartesian and cartesian closed categories.

De�nition B.6 (Cartesian (closed) polynomial categories) Let C and D be
cartesian (closed) categories, X an object (called an indeterminate), and F : C ! D

a cartesian (closed) functor, then C [X] is a polynomial category if there exists an
inclusion functor I : C ! C [X] and a unique cartesian (closed) functor G :
C [X] ! D , such that G(X) = D and the following diagram commutes:

C
I - C [X]

@
@
@
@
@

F
R

D ;
?

G

where D is any cartesian (closed) category, F : C ! D is a cartesian (closed)
functor, and D is any object D 2 D .

APPENDIX B. INTRODUCTION TO POLYNOMIAL CATEGORIES 184

The following proposition shows that given any cartesian (closed) category one can
construct (unique up to isomorphism) the corresponding polynomial category.

Proposition B.7 (Cartesian (closed) polynomial categories) If C is a carte-
sian (closed) category, X an indeterminate, there exists an inclusion functor I :
C ! C [X] and a unique cartesian (closed) functor G : C [X] ! D , such that
G(X) = D and the following diagram commutes:

C
I - C [X]

@
@
@
@
@

F
R

D ;
?

G

where D is a cartesian (closed) category, F : C ! D is a cartesian (closed) functor,
and D 2 D .

It is straightforward to generalize the notion of a polynomial category in one in-
determinate to many by observing that the isomorphism C [X ;Y] �= (C [X])[Y]
follows directly by application of Proposition B.7.

We now introduce the notion of a substitution functor, which provides a method for
instantiating an indeterminate X 2 C [X] to an object in the underlying category
C .

Lemma B.8 (Cartesian (closed) substitution functor) If C is a cartesian
(closed) category C and C and object of C , then the cartesian (closed) functor
G : C [X] ! C , with GI = 1C and G(X) = C , is uniquely determined. (Note that
the functor I is as de�ned in Proposition B.7).

Intuitively, a substitution functor is one which behaves as the identity functor on
objects of C , while instantiating the indeterminate object X to a particular object
of C in C . For example, consider the object [X ! [X ! X]] in C [X], which is
sent to the object [C ! [C ! C]] in C .

Following the generalization of cartesian (closed) polynomials in one indeterminate
to many unknowns, we can extend the notion of a substitution functor to more
that one argument.

APPENDIX B. INTRODUCTION TO POLYNOMIAL CATEGORIES 185

Lemma B.9 If C [~X] is a polynomial cartesian (closed) category and ~D = hhhhD1; � � � ;Dniiii

is an n-tuple of objects of C [~X], then the substitution functor

S~D : C [~X]! C [~X];

is the unique functor de�ned such that

S (X1) = D1; � � � ; S (Xn) = Dn ;

and commuting with C ,! C [~X]:

Index

algorithm W, 28
attribute grammar, 27

category
cartesian, 182
cartesian closed, 183
cartesian closed polynomial, 185
cartesian polynomial, 185

completeness
for T�, 57

Curry-Howard isomorphism, 45

entailment, 45, 46
categorical interpretation, 75
for rows, 23
for rows with evidence, 29, 91, 104,

120
with evidence, 46

equational theory
for PML, 49
for MML, 50
for T�, 55
for OML, 49

functor
cartesian, 182
cartesian closed, 183

has predicates, 93
Haskell, 2

categorical semantics, 85
extensible records, 124

monomorphism restriction, 18
type classes, 45, 85

inserter, 26
most general, 26

insertion algorithm
extended row insertion, 107, 108
row insertion, 27

Java, 2
bytecode veri�cation, 110

kind, 20
term language, 20

lacks predicates, 12, 22
are enough, 93
semantics, 89

MML, 49
algebraic semantics of, 50
denotational semantics of, 61
term language of, 49
type language of, 49
typing rules
for MML, 50

most general inserter, see inserter
most general uni�er, see uni�er

OML, 46
algebraic semantics of, 49
categorical semantics, 77

186

INDEX 187

denotational semantics of, 63
denotational semantics with records

and variants, 91
natural semantics of, 72
term language of, 47
type language of, 46
typing rules of, 48

PML, 47
algebraic semantics of, 49
denotational semantics of, 62
term language of, 48
type language of, 48
typing rules
for PML, 50

polymorphic lambda calculus, 2
polymorphism

ad-hoc, 2, 42
constrained, 2, 42
parametric, 2, 41
row, 100

predicate environment, 30

quali�ed types, 2

records, 3
basic operations, 12
basic operators with �rst-class la-

bels, 109
generalized operators, 102
implementation, 15, 29, 91
implementation of generalized op-

erators, 102
in Haskell, 124
semantics, 89

rows, 3, 100
empty, 11
equational theories of, 21
extension, 11

kind, 20
membership, 22
polymorphism, 100
restriction, 22, 93

Simpson
Bart, 117

SML, 4
soundness

OML+ extensible records and vari-
ants, 92

for T� equational theories, 57
of PML equational theories, 63
of OML, 78
of OML equational theories, 64
of OML reduction, 80
of specialization, 54
predicate entailment, 76
syntactic reduction for OML, 72

specialization, 52
algorithm, 53

Standard ML, 4
value restriction, 18

subject reduction, 72

T�
algebraic semantics of, 55
denotational semantics of, 56
term language of, 55
type language of, 55
type rules for, 55

translation from MML to T�, 58
typing rules

for evidence insertion, 30
for type inference, 27
for type inference and translation,

31
for OML, 48

INDEX 188

for T�, 56
for PML, 50
for MML, 50
for record and variants, 25
for syntax-directed OML, 71

uni�cation algorithm
row uni�cation, 26

uni�er, 25
most general, 25

variants, 3
basic operations, 13
basic operators with �rst-class la-

bels, 109
generalized operators, 102
implementation, 17, 29, 91
implementation of generalized op-

erators, 102
semantics, 89

