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abstra ct

Structural polymorphism is a generic programming technique known within the func-
tional programming community under the namesof polytypic or datatype-generic pro-
gramming. In this thesis we shaw that suc a technique conicts with the principle of
data abstraction and proposea solution for reconciliation. More concretely we shaw
that popular polytypic extensions of the functional programming language Haskell,
namely, Generic Haskel and Scrap your Boilerplate have their genericity limited by
data abstraction. We proposean extensionto the Generic Haskell languagewhere the
“structure' in “structural polymorphism' is de ned around the conceptof interface and
not the represenation of a type.

More precisely polytypic functions capture families of polymorphic functions in one
single template de nition. Instancesof a polytypic function for speci ¢ algebraictypes
can be generatedautomatically by a compiler following the de nitional structure of the
types. Howevwer, the de nitional structure of an abstract type is, for maintainabilit y
reasons,ogically hidden and, sometimes,even physically unavailable (e.g., precompiled
libraries). Even if the represertation is known, the semartic gap betweenan abstract
type and its represeration type makesautomatic generationdi cult, if not impossible.
Furthermore, if it werepossibleit would neverthelessbeimpractical: the code generated
from the de nitional structure of the internal represeration is renderedobsoletewhen
the represenation changes. The purposeof an abstract type is to minimise the impact
of represenation changeson client code.

Data abstraction is upheld by client code, whether polytypic or not, when it works
with abstract typesthrough their public interfaces Fortunately, interfacescan provide
enoughdescription of “structure' to guide the automatic construction of two polytypic
functions that extract and insert data from abstract typesto concretetypesand vice
versa. Polytypic functions can be de ned in this setting in terms of polytypic inser-
tion, polytypic extraction, and ordinary polytypic functions on concrete types. We
proposethe extension of the Generic Haskell language with medanisms that enable
programmersto supply the necessaryinformation. The sdhemerelies on another pro-
posedextensionto support polytypic programming with type-classconstrainedtypes,
which we show are not supported by Generic Haskell.
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Chapterl
Introduction

In order to get to where|l want to be from here, | would not start from
here. [Moo0Z

1.1 General theme and contribution

Structural polymorphism is a Generic Programming technique known within the func-
tional programming community under the namesof polytypic or datatype-generic pro-
gramming. In this thesis we show that sudch a technique conicts with the prin-
ciple of data abstraction and proposea solution for reconciliation. More concretely
we show that popular polytypic extensionsof the functional programming language
Haskell, namely, Generic Haskel [HJ02, Hin02, Hin0O, Loh04 and Scrap your Boil-
erplate [LP0O3, LP04, LPO05] have their genericity limited by data abstraction. We
proposea solution for Generic Haskell where the “structure' in “structural polymorph-
ism' is de ned around the concept of interface and not the represenation of a type.
Section 1.3 describesthe researt problem in more detail. Section 1.4 lists the thesis’
contributions. Section 1.5 provides a detailed list of contents.

1.2 Notes to the reader

Style of presentation. The presen thesis has been written in a discursive and
‘reader-friendly' style where the tension betweenrigour and readability has beeneased
often in favour of the latter. Naturally, doctoral thesesare not textb ooks and a dis-
cursive style could fall into an excessof verbosity. However, thesesshould be meart to
be read by someoneother than the author and the examiners. Communicating ideas
to a wide audienceis also an essetial aspect of scholarship and researd.

I have had se\eral typesof readerin mind during the writing. | hope to have beenable
to balancetheir dissening expectations. The rst typeisthat of graduate students, like
myself, who would like to make use of this work but may not be ertirely familiar with
the badkground material and cannot indulge in fetching and studying the cited papers,
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often lessrecommendedasa rst exposureand by their very nature lesscomprehensie.
I have tried to spell out the prerequisitesfor understanding and to be as self-cortained
as possible. Inexorably, the organisation and exposition of badground material is
personal. | hope the reader nds it useful and interesting.

The secondtype of readeris an stereotyped practitioner for whom C++ is the only lan-
guagesupporting expressie Generic Programming features. Such a reader praisesthe
languagefor its "e ciency' and badkward-compatibility while neglectingits theoretical
and practical aws. It may strike that a work concernedwith functional program-
ming should care about those who mistakenly regard functional programming as\toy
recursive programming with lists". Certainly, by comparisonfunctional programming
is practiced by a minority, and functional polytypic programming by an even smaller
minority. Consequetly, | have described Generic Haskell and Scrap your Boilerplate
in considerabledetail in Chapter 6, sowe can thereafter explore whether there is life
beyond the C++ Standard Template Library that may be of interest to programmers
for whom data abstraction is a sine qua non.

The last type of readeris the functional programmer for whom the world of algebraic
typesis not deemedlow-level. To my surprise, during a workshop discussionl found
amusing that the Haskell type:

data Ord a) Tree a = Empty | Node a (Tree a) (Tree a)

was consideredasde ning an orderedbag. Why not an orderedset, or a priorit y queue,
or what have you? Some functional programmers despiseobject-oriented languages
becauseof orthogonal unsafe features such as downcasting. But object-orientation is

not only about objects passingmessagesbut also about programming with rst-class,

re-usable, and extensible abstractions, an aspect which is found wanting in Haskell.

Chapters 7 and 8, as well as parts of Chapter 4, have beenwritten with this readerin

mind.

Floating boxes will appear scattered throughout the text following a sequettial
numbering within ead chapter. Boxes1.1and 1.2 on the next pagesare two examples.
Boxes expand on particular topics or discussissuescross-cutting seeral sections.

Cited work. | have madean e ort to cite original authors and papers but, in some
cases,instead of standard or “classic'references have opted for referenceshat | have



1.2 Notes to the reader

BOX 1.1: About FunctionalProgramming

We assumethe readeris familiar with functional programming in generaland
the Haskell languagein particular. Let us recall that Functional Program-
ming [Rea89 BW88, Mac9( is basedon two certral ideas: (1) computation
takesplace by evaluating applications of functions to argumerts and (2) func-
tions are rst-class values. In particular, functions are higher-order (can be
passedto or be returned by other functions) and can be componerts of data
structures.

Functional languagesdi er on whether they are strongly type-teded, weakly
type-theded, or untyped; whether they are dynamically type-teded or stat-
ically type-theded; whether they are pure or impure; and nally whether they
are strict or non-strict.

In pure functional languagesan expressionproducesthe samevalue independ-
ently of whenit is evaluated|la property called referential transparency .
Sidee ects likeinput-output are carefully cortrolled and separatedat the type
level by so-calledmonads [Mog91, Nog0§ or uniquenesstypes [PVV93]. Pure
languagesusually have non-strict semartics for functions and their evaluation
order is typically lazy (i.e., call-by-need). In cortrast, impure functional lan-
guagesallow side e ects like imperative languages,they have strict semarics,
and evaluation order is eager (i.e., call-by-value). Purity and non-strictness
are not just a matter of style. Programsin impure, strict languageswill look
and work quite dierently than their pure counterparts. The main benet
of purity is referertial transparency. The main bene ts of non-strictness are
higher modularity and lower coupling from evaluation concerns[Hug89].

In the rest of the thesis, an unquali ed function refersto a typed and pure
function that is a rst-class value.

%

3



1.2 Notes to the reader

BOX 1.2: The Haslell Language

Haskell is a strongly type-theded, pure, and non-strict functional language

which has becomepretty much the de facto standard lazy language. The
readerwill nd information about the Haskell languagein www.haskell .org .

Haskell's syntax is sugar for a core languagesimilar to SystemF, with type
classesand nominal type equivalence. It supports rank-n polymorphism with

the help of type annotations [OL96, SP04]. (We explain what all this means
in Chapters 2 and 4.)

In Haskell, typesand valuesare separatedand its designersdeliberately over-
loaded notation at both levels. Examples are expressionslike (a,b) or [a]
which can be interpreted as value or type expressions.At the value level the
expressionsdenote, respectively, a pair of values and a singleton list value,
where the values are given by variables a and b. At the type level the ex-
pressionsdenote, respectively, the type of pairs with elemerts of type a and
elemerts of type b, and the type of lists with elemens of type a. The over-
loading of parenthesesfor products and bracketing can alsolead to confusion.
Since we cannot redesign Haskell, we have to stick to its actual syntax and
common corvertions.

%

4



1.3 The problem in a nutshell 5

studied in more detail or that may be of better help to unacquairted readers.
1.3 The problem in a nutshell

This section explains the researt problem in a nutshell. Part 11 of the thesis provides
all the details.

The state-of-the-art. Generic Programming is often assaiated with varieties of
polymorphism (parametric, subtype, etc). Structural polymorphism or polytypism is
onesuch variety in which programs (functions) can be obtained automatically from the
de nitional structure of the typeson which they work.

Equality is an archetypical exampleof polytypic function: it canbe de ned automatic-
ally for algebraicdata typesthat lack function componerts (recall that function equality
is, in general,not computable [Cut80]). SomeHaskell examples:

data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)

Type Nat is the hoary type of natural numbers with its well-known value constructor
Zero and the rather rude Succ. TypelList isthe hoary typeoflists.® It is a parametric
type,i.e., List takesanon-parametric typethrough type variable a and yields the type
of lists with data of type a.

Polytypic programming is founded on the idea that the structure of a function is de-
termined by the structure of its input type. Look at Figure 1.1. The equality function
for natural numberstakestwo natural-number argumerts and returns a booleanvalue.
BecauseList is parametric, the equality function for lists needsthe function that com-
putes equality on list elemeris asan extra argumert. The body of equality for Nat and
List is de ned by pattern-matching on the value constructors. Diering value con-
structors are unequal. Identical value constructors are equal only if their componerts
are all equal. The structure of the functions clearly follows the structure of the types.

Becauseof this, it is possiblefor a compiler to generatethe typesand bodies of equality
functions automatically. The fact that equality's function name is overloaded is a
somewhat orthogonal, yet important, issue: the type-classmecanism employed in
resolving overloading [Blo91, WB89, Jon92 Jon95b, MJP97] has seeral limitations

! Admittedly , looking at its constructors the type List is really the type of stacks.
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egNat :: Nat ! Nat ! Bool

eqNat Zero Zero = True

egNat Zero _ = False

egNat _ Zero = False

egNat (Succ n) (Succ m = egNat n m

egList :: 8a (a ! a! Bool) ! (List a ! List a ! Bool)
egList ega Nil Nil = True

egList ega Nil _ = False

egList ega Nil = False

egList eqa (_Cons X Xs) (Cons y ys) (ega x y) && (egList ega xs ys)

Figure 1.1: Equality for Nats and List s.

which restrict the sort of typesfor which equality can be automatically derived.

Generic Haskell is a languageextensionin which programmerscan de ne a polytypic
function (a generictemplate) which is usedby the GenericHaskell compiler in the auto-
matic generation of instancesof the polytypic function for every type in the program
(Section 6.1). Equality is one sudh example.

Scrap your Boilerplate combines polytypic programming and strategic programming
techniques. The Glasgav Haskell Compiler supports the necessaryextensionsto gen-
erate instancesof special functions, called one-layer traversals, following the structure
of types. Programmers can de ne generic functions in terms of one-layer traversals
(Section 6.2)

Conict with data abstraction. Functions on abstract data typescannot be ob-
tained automatically following the de nitional structure of a type. For one thing, the
de nitional structure (i.e., the internal represernation) of an abstract typeis, for main-
tainabilit y reasons,logically hidden and, sometimes,even physically unavailable (e.g.,
precompiled libraries). Even if the represenation is known, the semaric gap between
an abstract type and its represenation type makes automatic generation di cult, if
not impossible. Furthermore, if it were possibleit would neverthelessbe impractical:
the code generated from the de nitional structure of the internal represeration is
rendered obsoletewhen the represetiation changes. The purposeof an abstract type
is to minimise the impact of represenation changeson client code.

Let us illustrate this point with a particular example of abstract type: ordered sets
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implemented as ordered lists:
data Ord a) Set a = MkSet (List a)
An equality function can be obtained from the de nitional structure of the type:

eqSet © 8a. Orda) (@ ! a! Bool) ! (Set a! Set a! Bool)
eqgSet ega (MkSet xs) (MkSet ys) = egList ega Xxs ys

Howewer, this de nition would consider MkSet [1] and MkSet [1,1] unequal sets,
which is not the case.

The ordered-settype is more restricted than the ordered-list type, i.e., it is subject
to more laws: no repetition. Consequetly, its equality function hasto re ect that
restriction somehav. If we changethe represenation from lists to binary seard trees,
s&, a new de nition of eqSet hasto be generated.

Ordinary functions on abstract typestypically accessthe latter's information content
via an interface of operators that enablethe obsenation and construction of values of
the type. In this setting, equality for setswould be programmed thus:

eqSet . 8a. Orda) (@ ! a! Bool) ! (Set a! Set a! Bool)
eqSet ega sl s2

| isEmpty sl && isEmpty s2 = True
| isEmpty sl && not (isEmpty s2) = False
| not (isEmpty sl1) && isEmpty s2 = False
| otherwise = let ml= smallest sl

m2 = smallest s2
rl = remove ml sl
r2 = remove m2 s2
in (ega ml m2) && (eqSet eqga rl r2)

This de nition usesinterface operators and, therefore, is not a ected by changesof
represertation. The question to addressis whether we can generate sudh de nitions
following the “structure' provided by an interface, and how to put it to work. This is
the topic of this thesis.
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1.4 Contributions

1. We provide a survey of Generic Programming in general (Chapter 4) and of Gen-
eric Haskell and Scrap your Boilerplate in particular (Chapter 6), discussingtheir
features, expressibility, limitations, di erences, and similarities.

2. We show that polytypism con icts with data abstraction (Chapter 7). This should
not be surprising: a function that is de ned in terms of the de nitional structure of
the type implementing an abstract type can wreak havoc, whether it is an ordinary
function or the instance of a polytypic function. Howewer, it is important to drive
homethe point for thoselured by the “generic'adjective, and there are also con icts
speci ¢ to the nature of GenericHaskell and Scrapyour Boilerplate. We alsoexplain
why polytypic extensionis an unsatisfactory solution.

3. Abstract typesare often implemented in terms of type-classconstrainedtypes,i.e.,
parametric algebraicdata typeswith someor all of their argumert typesconstrained
by type classeqSections5.6 and 5.8.2). We show that GenericHaskell doesnot sup-
port constrainedtypes(Section 6.1.10) and proposea solution in which polykinded
types are made context-parametric (Section 6.1.11). The proposal entails an ex-
tension to the Generic Haskell compiler, not the language We discussthe wider
implications of constraints in abstraction in Chapter 5.

4. We provide a formal introduction to the syntax and semartics of algebraic speci c-
ations with partial operators and conditional equations, which for us provide the
meaning to the word "abstract type'. Algebraic speci cations have equational laws
which are important to us becausethey specify a type and, more relevantly, are
neededin our approad to polytypic programming with abstract types (Chapter 5
and Appendix A).

5. We de ne the concept of unbounded and bounded abstract types and explain the
conditions that both classesf typesmust satisfy to be functors, i.e., to have a map
function (Section 5.10).

6. Polytypic functions and their instancesare de ned by pattern matching, and pattern
matching con icts with data abstraction. There are se\eral proposalsfor reconciling
pattern matching with data abstraction and the rst thing that comesto mind is
to investigate whether they can be of any usein reconciling polytypic programming



1.5 Structure and organisation 9

with data abstraction. We survey the most popular and promising proposalsand
arguethat their applicability to polytypic programming is unsatisfactory and limited
(Chapter 8).

7. We proposean extensionto the Generic Haskell languagefor supporting polytypic
programming with abstract types. The key ideais to provide "de nitional structure'
in terms of interfaces (algebraic speci cations), not type represerations. Working
with interfacesleadsto a form of Extensional Programming. We show that Generic
Extensional Programming is possible(Chapter 9).

More precisely we introduce functorial views or F-views, which specify the func-
torial structure of operator interfaces,and named signature morphisms, which spe-
cify the conformance of particular abstract types or concrete typesto particular
F-views. Equational laws have to be usedby the programmer when declaring sig-
nature morphisms.

Obsenation and construction in abstract types may not be inverses. Polytypic
functions on abstract types cannot be programmed without the help of insertion
and extraction functions from/to the abstract type to/from someconcretetype. We
shaw that thesefunctions can be de ned polytypically, i.e., instancesfor particular
abstract and concretetypes can be obtained automatically following the structure
of F -views and using the operators provided by signature morphisms. We show that
polytypic functions on abstract typescan be de ned in terms of polytypic insertion,
polytypic extraction, and ordinary polytypic functions on concretetypes. We shov
that polytypic extensionis supported. Finally, we intro duce the notion of exprting
in order to support polytypic programming with non-parametric abstract types.

1.5 Structure and organisation

This thesisis organisedin three parts. Part | explainsbadkground material usedby later
chapters. Part 11 surveyspolytypic functional programming, describesthe con ict with
data abstraction, and proposesa solution for reconciliation. Part |11 is an appendix
with technical details from Chapter 5.
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Part I. Background

Chapter 2. Language Games introducesconceptual terminology and notational
corvertions. It also cortains a brief account of types and typed programming, pin-
pointing their relevanceto Generic Programming. Seeral families of Lambda Calculi
are then overviewed which are necessaryfor a full understanding of Chapters 4 and 6.
The overview is not meart to be a tutorial but a brushing up. Bibliographic references
are provided in the relevant sections.

Chapter 3: Bits of Category Theory . Category Theory provides a general, ab-
stract, and uniform meta-languagein which to expressmany ideasthat have di erent
concrete manifestations. This chapter spells out seeral category-theoretical concepts
that are usedin Chapters 6, 5, and 9.

Chapter 4: Generic Programming overviews the manifestations of genericity in
programming. Section 4.1 opens the chapter with a discussionon the two variants
of abstraction (control and data) and de nes Generic Programming as the judicious
integration of parametrisation, instantiation and enapsulation. Section 4.2 overviews
the concept of data abstraction, which is expandedand formalised in Chapter 5. Sec-
tion 4.3 discussesthe role of Generic Programming in the wider context of Software
Engineering. Section 4.4 talks briey about the role of Generic Programming in Gen-
erative Programming and vice versa. Sections4.5 and 4.6 discussthe importance of
typed programming in Generic Programming, a topic resumedfrom Chapter 2. Sec-
tion 4.7 provides a coarseclassi cation of genericity and its di erent manifestations in
programming. Finally, Section4.8 winds up discussingwhere the preseri thesis stands
in the described setting.

Chapter 5: Data Abstraction. Data abstraction corresponds with the principle
of represenation independence.But what are abstract types, really? How should we
formalise them?

We beliewve algebaic speci ¢ ations are the best route to the formalisation and under-
standing of abstract types. Algebraic speci cations have se\eral advantagesbeyond the
mere speci cation of a formal object; in particular, they provide an interface for client
code, they can be usedin the formal construction and veri cation of client code, there
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is a formal relation betweenthe speci cation and the implemertation, and prototype
implementations can be obtained automatically [LEW96, Mar98, GWM * 93].

Mainstream languagesdo not support algebraic speci cations or equational laws for
operators. Howewer, we assumethat algebraic speci cations have beenused in the
designand implementation of abstract types. In particular, the presenceof equational
laws is important to motivate and describe our approad to Generic Programming.

The chapter starts discussingthe advantagesand disadvantages of data abstraction in

Sections5.1 and 5.2 respectively, underlining the impact of parametricity constraints

on maintainabilit y, a recurring issuewhoseimport to Generic Programming is discussed
in Chapter 6.

Sections5.3, 5.4, and 5.5 intro duce algebraic speci cations with partial operators and
conditional equations. Partial operators are those that may produce run-time errors.
They arecommonin strongly-typedlanguageshat separatevaluesfrom types(a simple
exampleis the list function head). Conditional equationsare neededto cope with parti-
ality. For readability, the formal and technical details have beenmovedto Appendix A.

The formalism presertied is rst order. Our aim is to explore Generic Programming
on classicabstract typeswhich can be described perfectly well in a rst-order setting.
Higher-order functions such as catamorphisms will be written as generic programs
outside the type using the latter's rst-order operators (Chapter 9).

The chapter preserns seweral examplesof algebraic speci cations that are usedby sub-
sequen chapters (e.g, Chapters 7 and 9). Section 5.6 illustrates with an algebraic
speci cation examplethe problems of constrained abstract types,which were discussed
in the context of the Haskell languagein Section5.8.

The medianisms available in Haskell and Standard ML for supporting abstract data
typesare described in Section5.8.

The chapter concludeswith a classi cation of abstract typesand their operators that
is assumedby subsequeh chapters (Sections5.9 and 5.10).
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Part 11. Functional Polyt ypic Programming and Data Abstraction

Chapter 6: Structural Polymorphism in Haskell examinesthe two most pop-
ular polytypic language extensionsof Haskell: Generic Haskel [Hin00, Hin02, HJ02]
and Scrap your Boilerplate [LP03, LP04, LP05]. The latter combines polytypic and
Strategic Programming techniques [VS04, LVVO02], which are also examined.

The version of Generic Haskell studied is the so-called classic one supported by the
Beryl releaseof the Generic Haskell compiler (version 1.23, Linux build). Howewer, its
syntax has beensugaredto t someof the notational corvertions of Chapter 2. The
di erences with Dependency-styleGenericHaskell [Loh04] are also outlined. We do not
go into much detail concerning Dependency-syle Generic Haskell becausethere is an
excellent presenation [Loh04]and, more importantly, becauseit is basedon the same
idea (structural polymorphism) as classic Generic Haskell and is therefore subject to
the sameproblemswe study in Chapter 7.

Section6.2describesthe Scrapyour Boilerplate approad paper by paper after an initial
exposureto the ideasof Strategic Programming.

The material for this chapter has beenusedin sewral talks. It is self-cortained and
follows a tutorial style. The following topics are of special interest:

The impact of nominal versus structural type systems(Sections 6.1.3 and 6.1.4),
and the question of expressibility (Section 6.1.5). It is also not clear what the
most general polykinded type of a function is (Section 6.1.2). There are polytypic
functions that are not expressiblein Generic Haskell (Section 6.1.7). Finally, we
arguein favour of parameterising polytypic functions on the casesor manifesttypes
(Section 6.1.12).

Section 6.1.10shows that Generic Haskell doesnot support constrained data types,
which play a major role in the implementation of abstract data types. (The reader
may want to read Sections5.2, 5.6, 5.7, and 5.8.1in order to put the problem in
context.) Section6.1.11proposesa solution basedon making polykinded typespara-
metric on type-classconstraints. The moral of this contribution is that \p olytypic
functions possessonstrained-parametric polykinded types".
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Polytypic function de nitions are described categorially? in Section 6.1.13. The
categorial rendition is used later in Chapter 9 to justify that it is not possibleto
expresspolytypic functions on abstract typesin the sameway ason concretetypes.

Chapter 7: Polyt ypism and Data Abstraction shows that data abstraction
limits polytypism's genericity becausepolytypic functions manipulate concrete repres-
entations. The problemsare outlined at the beginning of Section 7.1 and the rest of the
chapter elaborates with examples. Section 7.1.3 explains when a map function can be
programmedfor an abstract type and discusseghe obstaclesinvolved in programming
it polytypically in terms of concreterepresertations. Section 7.2 arguesthat abstract-
ing over data contents is not a satisfactory way of dealing with manifest abstract types,
making the casefor “exporting', a mecanismto beintroducedin Chapter 9. Section7.3
summarises:buck the represenations.

Chapter 8. Pattern Matc hing and Data Abstraction. Pattern matching is an-
other languagefeature that con icts with data abstraction. There are seeral proposals
for reconciling pattern matching and data abstraction. This chapter overviews them
and arguesthat their application to reconciling polytypic programming and data ab-
straction is unsatisfactory and limited. Resistanceto bucking the represenations is
futile.

Chapter 9: F-views and Extensional Programming beginswith an examina-
tion of somepossibleways of reconciling polytypic programming with data abstraction,
and narrows down the list after analysing the pros and cons. The remaining sections
introduce and dewelop our proposalin detalil.

Bucking the represerations meansprogramming with abstract typeshasto be done
through their interfaces. This leadsto a form of Extensional Programming where client
functions are concernedwith the data contents of a type and ignore its represertation.
Somenotion of structure is neededfor polytypism to be possible. The clients of an ab-
stract type can provide a de nition of structure in terms of F -views. Obsenation and
construction must be separated. Obsenation is performed by a polytypic extraction
function that extracts payload from an abstract type into a concrete type that con-
forms to the sameF -view. Correspondingly, construction is performed by a polytypic

2Following [Gol79] we use categorial instead of categorical in order to distinguish the technical from
the ordinary use of the adjective.
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insertion function that inserts payload from the concretetype to the abstract type.

In Section 9.8 we demonstrate that many of the ideas can be encaled in Haskell for
particular families of abstract types. From Section 9.9, we generaliseand shov how
insertion and extraction can be de ned polytypically: their typesare polytypic on the
structure provided by an F-view and the signature morphisms are usedin the gener-
ation of their bodies by a compiler. Section 9.11 shows how polytypic functions on
abstract types can be de ned in terms of polytypic insertion and extraction. Sec-
tion 9.12 shows how polytypic extension or specialisation can be done in our system.
Section 9.13 introducesthe idea of exporting in order to support polytypic program-
ming with manifest abstract types. Sections9.14and 9.15 discusssomeapplications of
polytypic extension.

Chapter 10: Future Work discussesfuture lines of researt and other design
choicesand the challengesthey presen.

App endix

Details from Chapter 5. The appendix contains the technical details of the formal
syntax and sematrtics of the algebraic speci cation formalism of Chapter 5. Of particu-
lar importance is the conceptof -Algebra (De nition A.1.7) which involvesthe notion
of syml-mapping This is an important but often obviated ingredient that is also
presert in the de nition of signature morphisms - homomorphisms and partialit y.
Signature morphisms and F -algebras (Section A.3.1) are essetial for understanding
and justifying our approad to Generic Programming (Chapter 9).
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Chapter2
Languagé&ames

\In order to recognisethe symbol in the sign we must considerthe sig-
nicant use." Ludwig Wittgenstein. Tratactus Logico-Philosophicus
Proposition 3.326

This chapter preseris some concepts, terminology, and notational corvertions used
throughout the thesis. It is not meart asan introductory exposition but asa brushing
up. Bibliographic referencesare provided in the relevant sections. The treatment of
Category Theory is postponedto Chapter 3.

2.1 Object versus meta

We assumefamiliarity with the distinction between object language , a particular
formal language under study, and meta-language , the notation used when talking
about the object language.

2.2 Denitions and equality

It is common practice in mathematics to use equality as a de nitional device. Since
equality is also used as a relation on already de ned ertities, we distinguish equality

from de nitional equality and usethe symbol %f for the latter. A de nition inducesan

equality in the sensethat if X ©'Y then X = Y ; the corverseneednot be true.

In some chapters we make heavy use of inductive de nitions expressedas natural de-
duction rules and rule schemaswhich have the following shape:

antecedert; N anteceder

consequeny Ll consequen,

where n 0. Rules can be read forwards (when all antecedens are the casethen
all the consequets are the case)or badkwards (all the consequets are the caseif all
the antecederts are the case). Inductiv e rules will be usedfor expressingconditional

16
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de nitions and inferencerules of formal deduction systems. Variables in antecedens
and consequets are assumeduniversally quanti ed unlessindicated otherwise.

2.3 Grammatical conventions

We useEBNF notation to expressthe syntax of seweral formal languages.Non-terminals
are written in capitalised slanted. Any other symbol stands for a terminal with the
exception of the post x meta-operators ?, *, and . Their meaningis as follows: X?,
X , and X* denote, respectively, zeroor one X, zeroor more X, and one or more X, where
X can be a terminal or non-terminal. Parenthesesare also used as meta-notation for
grouping, e.g, (X Y) .

The following EBNF exampleis a snippet of C++'s grammar [Str92]:

CondOp := if Cond Block (else Block)?
Cond := ( Expression)
Block = Stmt | { Stmt* }

In the rst production parenthesesare meta-notation. In the secondthey are object-
level symbols becausethey are not followed by a post x meta-operator.

2.4 Quanti cation

We follow the widely used and well-known “quarti er-dot' cornvertion when denoting
quanti cation in logical formulae. For example,in 8x:P the scope of bound variable x
starts from the dot to the end of the expressionP. Also,

8x2S:. P abbreviates 8x: x2S) P
2.5 The imp ortance of types

We deliberately use term to refer to English terms (for instance, “overloading' is a
term) and to program terms. Following the corvertion of most strongly type-deded
programming languageswe distinguish betweenvalue-lewel terms and type-lewel terms,
called type-terms or just types. Originally typeswereintroducedasa medanism for
optimising storagein early programming languageslike for tran [CW85, p7]. Types
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classify syntactically well-formed terms.! Every well-formed term is assaiated with
one or perhaps more type-terms. Thus, types introduce a new level of description
that is re ected grammatically and semartically. This hasimportant repercussionson
languagedesign:

The classi cation of terms by type-terms provides a syntactic methal for proving
the absene of particular classesof execution (run-time) errors, generically called
type errors. A type system is a precisespeci ¢ ation of such a method andatype
checker a feasibleand hopefully e cien t implementation.

Type errors typically include incompatibility errorsjwhic h arise when operators
are applied to terms of the wrong typeland thoserelated to enforcing abstraction,
e.g., scoping, visibility, etc. A precise de nition of what constitutes a type error
is determined, amongst other factors, by the expressibility of the type language
(Box 2.1).

Type systemsusually comein the guise of logical proof systems,and type chedkers
in the guiseof specialisedproof-cheking algorithms. Type systemsmust be able to
decidably prove or disprove propositions, here called judgements , which assertthat
a well-formed term t hasa particular type-term in atype-assignmet , the whole
judgemert typically written as ~ t: . A type-assignmehcontains the type-terms
of the term's free variablesthat arein scope. Termswith no free variables are called
closed terms .

Type-terms and terms are de ned by means of context-free grammars, but their
assaiation is establishedin a corntext-sensitive fashion by infer ence rules , usu-
ally written in natural deduction style, which establish compositional implications
between judgemerts. Compositionality meansthat the type of a term can be de-
termined from the typesof its constituent subtermsand assciated type-assignmets.
Type cheing is the processof proving a judgemert by deduction, i.e., of provid-
ing a derivation of the judgemert from someaxioms by the application of the type
inferencerules.

We de ne sometype languagesand systemsin Section 2.7. The following refer-
encesare excellert introductions to typesand type systemsin relation to program-

1This sertence is deliberately ambiguous; both interpretations are true: types classify terms syn-
tactically and these terms are syntactically well-formed.
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ming: [Car97, CW85, Mit96, Pie02 Pie05 St94].

BOX 2.1: Type Soundnes€anBe Deceptive

A type systemcomeswith a de nition of what constitutes a type error. A pro-
gramis well-typ ed if it passeghe typecheder. Typesoundness meanswell-
typed programs are well-behaved, where well-behaved programs are those
that don't crash becauseof a type error. A formal semariics is neededto
prove type soundnesgCar97, Pie0Z.

Typesoundnessanbedeceptive: awell-behaved program may still crashif the
sourceof the error is not included in the type system'sde nition of type error.
One must be careful when spouting the old chestrut “well-typed programs
cannot go wrong'. In many popular type systemsit is disproved at the rst

counterexample|lik e computing the head of an empty list in languagesof the

ML family or downcasting to the wrong classin C++ or Java.
%

Type chedking may in uence term-languagedesign;for instance, its feasibility may
restrict the permitted recursion schemes(e.g., structural, generative, polymorphic,
general, etc). In practice, the languageof typesis designedwith a particular type-
cheding algorithm in mind [CW85, p11]. However, type reconstruction,? alsoknown
astype inferenae, neednot restrict the languageof types,for disanbiguating annota-
tions can always be given by the programmer, e.g. [OL96]

Value-lewel terms are evaluated at run time; type-level terms are usually evaluated at
compiletime (Box 2.2). A powerful and sophisticated languageof typescan become
pretty much a static (compile-time) mini-programming language,with more e ort

and computation performed by the type chedker. By ‘e ort' we not only mean
that type cheding or type reconstruction may require substartial computation, but
that someform of compile-time “execution' of type-lewel terms is also taking place.
How involved this execution is depends on the complexity of the type language.
(Section 2.7.4 shaws a trivial example.)

Type-level computation hasan impact not only on software developmert (i.e., being
able to widen the de nition of type error and catch more correctnesserrors stat-

2The processof nding automatically the most generaltype of a term that has no type annotations.
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BOX 2.2: Strong/Weak, Static/Dynamic

Static type-checking is typically distinguished from dynamic type-
checking in that programsaretype chedked without evaluating them, whereas
in the latter they are type chedked while evaluating them. With modern lan-
guagesthis accourn of static type-ceding is somewhatimprecise; we should
rather say that programs are type cheded without ewaluating the whole of
them.

The di erence between strong and weak type-checking hinges upon the
de nition of type error or, in other words, on whether the languageof types
is sophisticated enoughto guarartee that well-typed terms don't crash.

Strong/W eak is orthogonal to Static/Dynamic. For instance, LispY is strongly
and dynamically type-diedked. C is statically and weakly type-theded.

From the standpoint of program dewvelopmert, the advantages of strong and
static type-thedking should be clear after reading the previous de nitions in
a dierent light: dynamic type-cheking puts run-time errors and type errors
at the samelevel. Weak type-theding is about being happy with narrower
notions of type error and passingthe hot potato to the programmer. Pro-
grammers of the C era revel on their bestoved responsibility, but \the price
of freedom is hours spent hunting errors that might have beencaugh auto-
matically” [Pau96, p7].

In this thesis we take strong, static type-chesking for granted.

YLots of Insidious and Silly Parenthesis.

%
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ically), but also on aspects related to Generic Programming such as the ability to
de ne typedlanguageextensionswithin the languageitself, automatic program gen-
eration, and meta-programming, e.g., [CEQO, LP03, KLS04, Lau95 MSO0Q. Types
are also essetial for Generic Programming for other reasonsthat not only have to
do with typed programming: they are a necessaryprecondition for genericity in a
typed world (Chapter 4).

Type-lewel languagesvary in complexity according to their term language. For
instance, Haskell has some sort of “prologish' language at the type level due to
its type class medtanism [HHPW92, Blo91, Jon92. C++ Templates are Turing-
complete: it is possibleto write programsthat “run' at compiletime [VJ03, CEOQQ]. In
dependertly-t yped languageslike Epigram [MMO04], there is no separation between
type-terms and terms and the type cheder also dealswith (normalising) values of
computations. In Epigram, the semaric properties of programs are encaled in the
language directly as types, which expressrelationships between values and other
types|for example, one can de ne the type List a n, that is, the type of lists of
payload a and length n.

Of course,not all semartic properties are decidable statically, for they may depend
on dynamic information. After all, we have to run programsin order to compute;
compiling them is not enough. Howewer, many ‘interesting' properties can be ap-
proximated by types. To the author's knowledge, a sort of Rice's Theorem on type-
language expressibility has not been ernunciated; the range of semaric properties
that are decidableand feasiblevia type approximations is still a matter of researt
in type languages,the theoretical limit being the halting problem. Howewer, it has
yet to be elucidated whether programming in that fashionis more corveniert. What
is certain is that Generic Programming techniqueswill be essetial [AMMO5].

Sincetypesprovide a consenative, static, and decidable approximation of program
sematriics, they also play an important role in program speci cation and construc-
tion. Of course, program values are not fully understood just by looking at their
types, but the more sophisticated the type language,the more properties captured
by them. For instance, many properties of functions can be obtained from just their
types, e.g. [Wad89, and function construction can be interactively guided by type
information in languageswith rich type systems,e.g. [MMO4].



2.6 Denoting functions 22

Finally, typesare useful in documentation, security, e cien t compilation, and op-
timisation, e.g.. [HM95, Wei0Z [DDMMO03, GPO03]

2.6 Denoting functions

In mathematics, the application of unary function f to x is written f (x) and f 's de n-
ition is expressedasf (x) %' E. Here E abbreviatesan expressionwhere x may occur
free. The notation generalisesnaturally to n-ary functions. We follow this convertion
at the meta-lewel. For us, variables may be strings, not just characters, and therefore
notations sud asf x or FX are deemedconfusing. In functional languagessupporting
currying, function application is denoted by whitespace,with parenthesesbreaking the
corvertion. For example,f(x ),f x,andf (x) areall valid applications. Inexorably,
we follow this corvertion at the object-level.

2.7 Lambda Calculi

The Lambda Calculus [Chu4l, Mit96, Bar84] introducesa uniform and corveniert
notation for manipulating unnamel rst-class functions. Initially a formal (i.e., sym-
bolic) language of untyped functions that was part of a proof system of functional
equality, it hasdeweloped into a family of systemsthat model di erent aspects of com-
putation. Typed extensionswith polymorphism, recursion, built-in primitiv es, plus
naming and de nitional facilities at value and type level make up the core languagesof
functional languages[Lan66, Pie02, Mit96, Rea89; in fact, many functional language
constructs are syntactic sugar or derived forms [Pie02 p51]. Improvemeris to the core
language'soperational aspects form the basisof functional languageimplementations.

We assumethe reader is familiar with the Lambda Calculus. In the following pages
we glossover the syntactic, context-dependert, and operational aspects of the family

of calculi that make up most of Haskell's core language. These are necessaryfor a full

understanding of Chapter 4 and Chapter 6. For axiomatic and denotational semartic

aspects the reader is referred to [Mit96, Sc94, Sto77, Ten7g§. We only mertion in

passingthat, commonly, types and functional programs are taken to be objects and
arrows in the category of Complete Partial Orders [Mit96], but sud interpretation is
slightly inaccurate [DJ04]. Category Theory (Chapter 3) provides, amongother things,

a uniform meta-languagefor talking and moving about semartic universes.
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2.7.1 Pure Simply Typed Lambda Calculus

Type ::= basetype
| Type! Type function type
| (Type) grouping
Term = TermVar term variable
| Term Term term application
| TermVar : Type . Term term abstraction
| (Term) grouping
(x)= D CE Tty (X Tt
TOX To(tpto) To(x oty o]
ty Bt9 tp Bt
Tty 10 @ o, 1 o 112
(x: :t)t* B t[t=x] tito B tj t2 Xt B Xt
t1 B to to B t3
ref trs
tBt t1 B t3

Figure 2.1: The Pure Simply Typed Lambda Calculus.

Figure 2.1 shaws the syntax, type rules, and operational semariics of the Pure Simply
Typed Lambda Calculus (PSTLC). There are terms carrying type annotations and for
that reasonit is dubbed "explicitly typed'|jor ala Church, who rst proposedit [HS84.
The following paragraphselaborate.

Terms and types. The PSTLC has a language of types (non terminal Type) for
expressingthe typesof functions inductiv ely from a unique baseor ground type , and
a languageof terms (non-terminal Term) which consistsof variables, lambda abstr ac-
tions (unnamed functions), and applic ations of terms to other terms.® Variables
stand for formal parametersor yet-to-be-de ned primitiv e valueswhen not bound by
any . In alambda abstraction x : :t, the symbol indicates that x is a bound

%That application is denoted by whitespace is not quite deducible from the grammar alone. In
order for the two terms to be distinguished there must be some separator token between them which
is assumedto be whitespace.
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variable (i.e., a formal parameter), is the type of x, and t abbreviates an expression
where x may occur free.

In the rest of the chapter, we stick to the meta-variable converntions shavn in Table 2.2.
Table 2.1 lists the symbols whose notation at the meta-level and object level (i.e.,
Haskell) dier. An exceptionis the “haskind' symbol (Sections2.7.3and 2.7.4) which
is not standard Haskell 98. (The Glasgav Haskell Compiler supports “haskind', written

', but weuse ' instead to di erentiate kind from type signatures.)
, ,... rangeovertypes.
X, Y, ... rangeoverterm variables.
t,t% ... rangeover terms.

rangesover type-assignmets.
, ,... rangeover type variables (Section 2.7.3).
, range over kinds (Section 2.7.3).

Figure 2.2: Meta-variable cornventions for Lambda Calculi.

Notion Meta-level symbol Haskell symbol

— def
De nition = =

Equality = ==
"Hastype' : :
"Haskind' : :
Type variable vy e a, b, ...
Lambda abstraction x : :X X |

Table 2.1: Dierences in notation at meta- and object level. Type annotations are
provided separately from terms in Haskell.

Typesand terms are separatedwith the only exceptionthat typescanappearasannota-
tions in lambda abstractions. The type of a function is also called its typ e signatur e.
It describesthe function's arity, order, and the type of its argumerts. The arity is
the number of argumerts it takes. The order is determined from its type signature as

follows:
def
order( ) = 0
order( ! ) det max ( 1+ order( ); order( ) )

Let be the type of a lambda abstraction and supposeorder( ) = n. If n = 1 then
the lambda abstraction may either return a manifest (non-function) value of type or
another lambda abstraction of order 1 asresult. If n > 1, then it is a higher-order
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abstraction that either takesor returns a lambda abstraction of order n.

Occasionally we blur the conceptual distinction between manifest valuesand function
valuesby consideringthe former asnul lary functions and the latter asproper func-
tions .

The xity of a function is an independert concept. It determines the syntactical
denotation of the application of the function to its argumerts. In some functional
languages functions canbein x, pre x, postx, mix X, and have their precedenceand
assciativity de ned by programmers. In the PSTLC, lambda abstractions are pre X,
application assaiates to the left|ffor example, t; ty t3 is parsedas (t1 tp) tzland
consequetly arrows in type signaturesassaiate to the right[for example, ! !
isparsedas ! (! ).

Multiple-argument functions are represerted as currie d higher-order functions that
take one argumert but return another function asresult. For example, the term:

Xyl Y X

is a higher-order function that takes a manifest value x and returns a function that
takesa function y as argumert and appliesit to x.

Related terminology . An operator is aterm whosevalue is a function (a precise
de nition of “value' is given on page 26). It also has a more specic usein relation
to abstract data typesand algebra (Chapter 5). Sometimesoperation is usedinter-
changeably with operator. The term metho d has wider connotations than operation
and is usedin its object-oriented sense[Bud02]. A call site is another name for an
applic ation of an operator to an operand.

An operand is a term that plays the role of a parameter or argument . A formal
parameter or argumert appearsin a de nition whereasan actual parameter or argu-
ment appearsin an application. The following are synoryms: X is a parameter of Y
(or Y is parameterisedby X), Y is indexal by X (or Y is X-indexed), Y is degendent
on X (or Y is X-dependen).

We usethe word “type' not only in referenceto type-termsbut alsoin referenceto data
types, i.e., a concrete realisation of the type in an implementation designor actual
code. We usedata structur e for data of more elaborate structural complexity, usually
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involving not only type operators but perhaps other linguistic constructs (e.g., mod-
ules). In a purely functional setting, data-type valuesare immutable and persistent :
operations on valuesof the type produce new values. Occasionally howewer, it is con-
veniert to treat all thesevaluesasa\unique identit y invariant under changes"[Oka98g
p3]. This gure of speed is the persistent identity .

Type rules. The type rules listed in Figure 2.1 can be employed to chek the type
of a term compositionally from the type of its subterms. The type of a term depends
on the type of its free variables. This context-dependert information is captured by a
type-assignmen function : TypeVar! Type which acts as a symbol table of sorts
that stores the types of free variables in scope. The operation ;x: denotesthe
construction of a new type-assignmehn and has the following de nition:

def

(x: )y =

The type rules are rather intuitiv e. Notice only that is enlargedin the last rule

if x=ythen else(y)

becausex may occur freein t.

Operational semantics. The call-by-name operational semarics is shovn in the
last box of Figure 2.1. A reduction relation B is de ned betweenterms. Briey , Rule

capturesthe reduction of an application of a lambda abstraction to an argumert. The
free occurrencesof the parameter variable are substituted (avoiding variable capture)
by the argumert in the lambda abstraction's body. This is what the operation t[t %=x]
means, which reads\t where t°is substituted for free x" [Bar84]. Rule lil species
that an application t; t, can be reducedto the term t&’ to when t; can be reduced
to t9. Rule li2 species that reduction must proceedto the argumert of an applic-
ation when the term being applied is a free variable. Together, theserules specify a
leftmost-outermost reduction order. Rulesref and trs specify that B is a re exive

and transitiv e relation.

A value is a program term of certral importance. Operationally, the set of valuesV
is a subsetof the set of normal forms N, which is in turn a subsetof the set of terms
T,that is,V N T. Thesesetsareto be xed by de nition. A term is in normal
form if no reduction rule, other than re exivit y, is applicable to it. In the PSTLC, all
normal forms are valuesand they are de ned by the following grammar:

NF = TermVar j TermVar : Type . Term
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That is: variables and lambda abstractions are normal forms, which meansthat func-
tion bodies are evaluated only after the function is applied to an argumert. This is
re ected in the operational sematrtics by the deliberate omission of the following rule:

t B t°

X: :tB x: :tY

It can be the casein other languagesthat there are normal forms that are not values.
Examples are stuck terms which denote run-time errors.

Example.  The following derivation provesa reduction:

(x: ! x)(x::x)B (x: :x) it
|
(x: ! xX)(x::xX)yB (x: :xX)y (x::x)yBytrs
(x: 1 xX)(x: :x)yBy

The following is an examplereduction of a well-typed PSTLC term to its normal form.
The subterm being reducedat ead reduction step is shavn underlined.

(y: ! wyzp(y: ! ty)(x: :x)
B({(y: ! :y)(x: :x)z

B(x: :x)z

Bz

2.7.2 Adding primitiv e types and values.

The PSTLC isimpractical asa programming language. Givenaterm t, its freevariables
have no meanings. The PSTLC extendel with various primitiv eshasbeengiven speci ¢
names. In particular, the language PCF (Programming Computable Functions) is
a PSTLC extended with natural numbers, booleans, cartesian products, and xed
points [Sto77, Mit96].

In Figure 2.3 we extend the grammar of terms and types of Figure 2.1 to include
some primitiv e types. The basetype is now removed from the language of types.
Of particular interest are cartesian product and disjoint sum typesthat endov the
Extended STLC (referredto asSTLC from now on) with algebraictypesroughly similar
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to those supported by functional languages.

We only shaw a tiny sampleof type and reduction rules for primitiv es,the latter called

-rules in the jargon, to illustrate how the extension goes. Consult [Car97, CW85,
Pie02 Mit96] for more detail. Primitiv e typesare all manifest and therefore their order
is 0.

Example.  The following is an example reduction of a well-typed STLC term:

(x :Nat:if x> Othen lelse x+ 1) ((y :Nat:y+y)4)

if ((y:Nat:y+y)4)>Othen lelse ((y :Nat:y+y)4)+1
if (4+4)>0then lelse ((y :Nat:y+y)4)+1

8> 0Othen lelse ((y :Nat:y+y)4)+1

if true then lelse ((y :Nat:y+y)4)+1

T W W W @

2.7.3 Adding parametric polymorphism: System F

The STLC is not polymorphic. For example, the identity function for booleansand
naturals is expressedby two syntactically di erent lambda abstractions:

(x :Nat:x) : Nat! Nat

(x :Bool :x) : Bool ! Bool

Howewer, they only di er in type annotations. System F [Gir72, Rey74 extendsthe
STLC with universal parametric polymorphism (seealsoChapter 4). It addsnew forms
of abstraction and application where typesappear asterms, not just annotations. The
new syntax can be motivated using the above identity functions. A parametrically
polymorphic identit y is obtained by abstracting over types(universal abstr action ),
e.g.

DX LoiX
This term hastype:

8 : 1

(We explain the role of in a momert.) A capitalised lambda ~' is introduced to

distinguish universal abstraction over types from term abstraction. Dually, there is
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Type ::= Nat naturals
| Bool booleans
| Type Type products
| Type + Type disjoint sums
| 1 unit type

Term ::= Num natural literals
| true boolean literals
| false
| + | [ arithmetic functions
| not Term boolean functions
| if Term then Term else Term
| ...
| (Term , Term) pairs
| fst Term
| snd Term
| Inl  Term sums
| Inr Term
| case Term of Inl TermVar then Term ; Inr TermVar then Term
| unit unit value

true : Bool Tounit 1
t : Bool ) tq: ) [ 9)
(if tthen tielse ty) :
(if true then tielse ty) B t; (if false then tielse ty) B to

t B t°
(if tthen tielse ty) B (if t%then ty else ty)

Figure 2.3. The (Extended) Simply Typed Lambda Calculus. The basetype is
removed from the language of types and new productions are added for terms and
type-termsto thosein Figure 2.1. Only a small sampleof type and reduction rules are
shown.



2.7 Lambda Calculi 30

universal applic ation , e.g.
(@ :x: :xX)Nat B (x :Nat:Xx)

A universal application is evaluated by substituting the type-term argumert for the
free occurrencesof the bound type-variable in the body of the universal abstraction.
Another example:

( ::( = :x: :xX) )Nat B ( : :x: :x)Nat

Figure 2.4 shows the additions to the grammar, to the typerules, and to the operational
semariics. Becauseof the introduction of type variables, rules for type-term well-
formednessare provided (a few are shown in the rst row of the secondbox).

We reintroduce at a new level and call it a baseor ground kind. Kinds classifytypes
and are explainedin detail in Section2.7.4;for the momert, type variablesin universal
abstractions always have kind , for they can only be substituted for basetypeswhich
are all manifest, but we usein advancethe kind meta-variable becausethe language
of kinds is extended in Section 2.7.4. Type-assignmets now also store the kinds of
type variables.

The type rules for universal abstraction and application are shaovn in the secondrow
of the secondbox. Notice that a type-lewel, capture-avoiding substitution operation is
assumedwhich replacestype variables for typesin terms. The last box in Figure 2.4
enlargesthe reduction relation to accourt for universalapplications. Universalabstrac-
tions are normal forms like regular term abstractions.

2.7.4 Adding type operators: System F,

System F, extends System F with type operators , i.e., functions at the type level.
They are also called type constructors , but we prefer to use “constructor' at the
value level when referring to the terms assaiated with type operators, called value
constructors . (For personalreasons,we deprecatethe term data constructor .) An
example of type operator is List which when applied to a manifesttype returns the
type of lists of type . Its assaiated value constructors are:

Nil © 8a . List a

Cons : 8a . a! List a! List a
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Kind ::=
Type = TypeVar
| 8 TypeVar : Kind . Type ! Type
Term ::= TypeVar : Kind . Term universal abstraction
| Term Type universal application
()= ) ;o
) : ! 8 :
; t: t:(8 )
( )@ ::) oot [ =]

( ::t)y Bt =]

Figure 2.4: SystemF extensions.
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which are namesfor primitiv e constarts without -rules| e.g., aterm like Cons t Nil is
in normal form, whatever the t (Section 6.1.1). Manifest typessuc asNat or Bool are
‘values' at the type level. A fully applied (i.e., closed)type operator also constitutes a
manifest type, e.g.. List Nat. Occasionally we blur the distinction betweenmanifest
typesand type operators by consideringthe former as nul lary type operators and
the latter asproper type operators .

To model type-lewel functions, the PSTLC of Figure 2.1 is lifted to the type level as
shawvn in the rst box of Figure 2.5, sothat termssuchas , : . ,and (that is,
type variables , type-level abstr actions , and typ e-level applic ations ) are de ned
aslegal type-terms.

The kind of a type-term is somewhatinaccurately described as the “type' of a type-
term. But kinds only descrike the arity and order of type operators. The kind of a
nullary type operator (a manifest type) is . The kind of a proper type operator is
denotedas ! , where isthe kind of its argumernt and the kind of its result. The
order of a type operator is determined from its kind signatur e as follows:

order( ) f

order( ! )

0
max ( 1+ order( ); order( ))

ng nug

f

Kinds do not have a status asthe “types' of typeswhen there are orthogonal features
in the type language(e.g. quali ed types[Jon9Z) that render them inaccurate as suc.
For instance, the following two Haskell de nitions of the type operator List have the
samekind, but the secondis constrained on the range of type argumernts:

data List a = Nil | Cons a (List a)
data Ord a) List a = Nil | Cons a (List a)

Type cheders kind-check applications of type operators to argumerts to make sure
the latter have the right expected kind. Kind-cheding rules are shown in the second
box of Figure 2.5. The rst three lines establish the kinds of manifest typesand also
depict the kind-cheding rules for primitiv e type operators such as+ and , etc. The
last line cortains the type rules of the PSTLC but lifted askind rules (compare with

Figure 2.1).

The third box in Figure 2.5 shows a type-levelreduction relation | betweentype-terms
that is re exiv e, transitiv e, and compatible with all ways of constructing type-terms.
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Kind ::=
| Kind ! Kind
Type = Type Type type application
| TypeVar : Kind Type type abstraction
1- 2.
Nat : Bool : (1! 2)
1 T2 ’ 2!
(1 2) (1+ 2):
T8
()= o ! T2 , )
R T2 " ) !
|9 2
1 1 2 2
( ) %1 [%] 121 2 Pol P §
2 2 9 2 |9 |9
1 1 2 2 1 1 2 2 1 1 2 2
1+ 21 P+ 9 1 219 3 1o PR
| 0 I >l 3
8 I 8 : 0 I 1 | 3
1 2 1 2 2 3
2 1 1 3
1 1 2 2
1! 2 1! 2 8x: 8x:
1 1 2 2
12 12 ( ) 0 [ & ]

Figure 2.5: SystemF, addstypeoperators, a reduction relation (I ), and an equivalence
relation () on type-terms.
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The symbol P standsfor a primitiv etype, i.e., Bool , Nat, or 1, which isin normal form.
The reduction relation is static: type-lewel applications are reducedby the type-thedker
at compile time. This relation is a trivial example of type-level computation.

The last box in Figure 2.5 de nes a relation of structur al type equivalenc e which
speci es that two type-terms are equal when their structure is equal. The relation is
re exiv e, symmetric, transitiv e, and compatible with all ways of constructing types.

Normal forms of type-termsare type variables, primitiv e types,type-lewel abstractions,
and type-termsof the form ; ,,8 : : 1, 1+ ,and 1! ,,when ;and ; are
themselesin normal form.

Notice that there are three sorts of substitutions, two at the term level (one replacing
term variables for terms in term abstractions and another replacing type variables for
type-termsin universalabstractions) plus oneat the type level (replacing type variables
for type-termsin type-lewel abstractions).

2.7.5 Adding general recursion

All the languagesdescribed sofar are strongly normalising, i.e., terms and type-terms
always reduce to normal form [Pie02 Mit96]. However, in order to use System F,
for real programming we needto introduce some form of recursion. In this section
we extend the language of terms and typesto cater for genearl recursive functions
and type operators. In functional languages,functions (term-level or type-lewel) are
recursive when the function name is applied to another term within its own body.
For instance, the recursive de nition of the list type and the factorial function can be
written in Haskell as follows:

data List a Nil | Cons a (List a)

if ==0 then 1 else n factorial (n-1)

factorial n
Which can be translated to the lambda notation of SystemF, as follows:

List = a . 1+ (a (List a))
factorial = n:Nat. if n==0 then 1 else n factorial (n-1)

But term and type lambda abstractions are unnamed; the naming medanism above is
meta-notation. Recursion must be achieved indirectly. Let us abstract in both cases
over the name of the function to remove the recursion:
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List = f£ 1 . a . 1l+(a f a)
factorial = fiNat ! Nat. n:Nat . if n==0 then 1 else n f (n-1)

It is typical at this point to resort to meta-level argumerts or denotational semartics
to explain that the equations:

List = List List
factorial = factorial factorial

have a least solution in somesemartic domain that givesmeaningto SystemF, syntax.
Sudh solution is the least xed point of the equation. Fortunately, there is no need
to resort to meta-level argumerts. Operationally, recursive functions are reduced by
unfolding their body at ead recursive call. This unfolding can be carried out at the
object level by two new primitiv e term and type constarts fix and Fix respectively.
They are called xe d-point operators because,semartically, they return the least
xed point of their argumert.* Their type- and kind-signatures are respectively:

fix : 8:: (! )!

Fix : 8: (! )!
Their type-chedking and reduction rules are shavn in Figure 2.6. The intuition is that
at the meta-lewel, the following equations must hold:

fix f) =1 @fix f)
(Fx F) = F (Fx F)

which turned into reduction rules give:

fix f)Bf (fix f)
(Fx F) | F (Fix F)

but sinceF and f abbreviate respectively type and term lambda abstractions, we
have:

(fix (x: :t) B (x: :t) (fix (x: :t))
B t[x=(fix (x: :t))]

(Fix ( ) 1 ) (Fx ( ::)
I [=Fx ( )]

“4Fixed-p oint operators are also denoted Y and in the literature.
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Type ::= Fix Type
Term = fix Term
o A |
© Fix : Tofix ot
Fix ()1l [=Fix ( : :)] fix (x: :t) B t[x=fix (x: :t)]

Figure 2.6: Extension of SystemF, with xed-p oint operators.

Figure 2.6 collectsthesestepsin a single reduction rule. Call-by-name guaranteesthat
recursive calls are unfolded only when their value is required.

Going badk to our examples,the terms:

Fix (f ! . a . 1+ (a f a))
fix ( f:Nat ! Nat. n:Nat . if n==0 then 1 else n f (n-1)

are both legal System F, syntax that represen the recursive list type operator and
the factorial function. The following is an example reduction that demonstratesthe
unfolding (ellipsis abbreviate somesubexpressionsand reduction steps):

(fix ( fNat ! Nat. n:Nat. if n==0 then 1 else n f (n-1)) 2

B ( mNat . if n==0 then 1 else n (fix :::) (n-1l) 2
B if 2==0 then 1 else 2 (fix :::) (2-1)

B if false then 1 else 2 (fix :::) (2-1)

B 2 (fix :::) (2-1)

B2 ( mNat. if n==0 then 1 else n (fix :::)) (2-1)
B2 if (21)==0 then 1 else (2-1) (fix 1) ((2-1)-1)
B 2 if false then 1 else (2-1) (fix ) ((2-1)-1)

W
N

(2-1) (fix 1) ((2-1)-1)

B2 (2-1) 1
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B 2

Et Voila.



Chapter3
Bits of Categoy Theay

[Clategory theory is not specialisedto a particular setting. It is a basic
conceptual and notational framework in the samesenseas settheory ...
though it dealswith more abstract constructions. [Pie91, p.xi]

Category Theory is heavily usedin programming language theory, especially in de-
notational semartics, algebraic speci cation, and program construction. The certral
conceptsof thesedisciplinesare usually wielded in their categorial formulation because
Category Theory provides a general, abstract, and uniform meta-languagein which to
expressmany ideasthat have di erent concrete manifestations.

Abstraction is of special interest to us and certain category-theoretical conceptswill be
usedwhen talking about polytypic programs and abstract data typesin Chapters 6, 5,
and 9. More precisely the categoriesof particular interest to us are the category of
typesand the category of algebrasand partial algebras. Further referenceson category
theory are [SS03,Fok92, BBvv98, BW99, Pie9]].

3.1 Categories and abstraction

For mathematical structures to constitute categoriesone needsto identify ertities with
structure’, called objects, and “structure-preserving' mappings betweenthem, called
arr ows. Preservingstructure meanspreservingthe property of being a valid object of
the category Due to their often graphical presernation, a collection of objects and a
collection of arrows is called a diagr am . (We usethe word “collection' in a technical
sense:a collection is an homogeneousset.)

The axioms describing what constitutes a category are rather generaland wildly dif-
ferert mathematical structures can be “categorisedas categories'. Only arrows need
satisfy minimal requiremerts: there must be an arrow composition operation that is
partial, closed,assaiative, and hasunique neutral elemer|the identity arrow, which
must exist for every object.

38
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Category Theory is constructive in the sensethat witnesses(arrows) are always con-
structed in terms of compositions of other arrows rather than have their existence
posited. Category Theory is coherent in the sensethat sud arrows must satisfy uni-
versal properties (also known asnaturality properties) expressedas equationsinvolving
universally-quarti ed arrows and their compositions. More precisely many properties
of diagrams do not depend on the internal structure of the particular objects under
consideration and can be studied abstractly and independertly of them. These uni-
versal properties are expressibleexternally, that is, purely in terms of composition of
arrows.

As a contrasting illustration, Set Theory is concernedwith the internal structure of
sets and mappings. For instance, injective functions are characterised in terms of a
property held by the elemerts of their domain and codomain sets:

f:Al B a2A a’2A f@=f@) a=a°

f is injective

The categorial approadc abstracts away from this detail and concenrates on the ex-
ternal relationships betweenarrows. Setsconsideredas objects and set-theoretic total
functions consideredas arrows make up a category where arrow composition is func-
tion composition. The equivalent concept of injective function, namely, monic arrow,
is de ned in terms of its properties under composition:

f:Al B g:C! A h:C! A f g=f h) g=h

f is monic

This de nition is a generalisationthat appliesin all categoriesand therefore a monic
arrow in somecategoriesmay have nothing to do with the notion of injective function
(Section 3.4).

3.2 Direction of arrows

Arrows will be written forwards, whether in type signatures or categorial diagrams.
That is, we will write f : A! B andnotf : B A. Good reasonshave beengiven
in favour of the latter style. In particular, the type of an applied function composition
readsswiftly from the typesof the functions involved whenread from right to left| i.e.,
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in the samedirection asthat of the arrows|as shawn in Figure 3.1(1). This is not the
casewhen arrows and typesare read from left to right, as shovn in Figure 3.1(2)(3),
for composition appliesits right argumert rst.

g:C B f:B A g:B! C f:A! B
: @ : ()
g f:C A g f:A! C
f:Al B g:B! C f:Al B g:B! C
. ©) - 4
g f:Al C f;g:A!l C

Figure 3.1: Arrows and composition.

Furthermore, writing the target type on the left and the source type on the right
is consistent with the normal notation for function application, where the argumerts
appearto the right of the function name,i.e.. (g f) x = g (f x). \[In] the alternative,
so-calleddiagrammatical forms, onewrites x f for application and f ; g for composition,
wherex (f;g) = (x f) g" [BdM97, p2]. Nonetheless,there are also good reasonsfor
writing arrows forwards:

1. It is the standard notation in mathematics and functional programming languages.
It requirespractice to get usedto the badkwards notation and werisk confusingread-
ers unfamiliar with it. The choiceis between ipping somecompositions around in
order to read typesnaturally versus ipping all arrowsin order to make composition
read naturally.

2. Only aestheticsor rigidity proscribesthe useof a diagrammatical notation for com-
position alongsidethe normal notation for function application. There is no reason
why composition cannot be used at will both in its diagrammatical or traditional
form.

3. Only in the diagrammatical form doesthe type of composition itself read naturally,

asit is only there that f is the rst argumert:

Figure 3:1(2); :(C A (B A (C B)
Figure 3:1(2)(3); B! C)!P (Al B)! (Al ©C)
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Figure 3:1(4); ;: (A! B)! (B! C)! (A! C)

Unless, of course,onedenes g f asthe inx way of writing (f;g) instead of the
expected (g;f).

3.3 De nition of category

A categoryis identied by de ning the objects, the arrows, what is composition, what
is an identity arrow, and cheding that categorial axioms are satis ed.

Definition  3.3.1 A category C is a collection of objects Obj(C) and a collection of
arrows Arr (C), sudh that:

1. For ewery pair of objects A and B there might be zero or more arrows from A to
B. Thesearrows can be collected into a set which we denote by Arr (A; B). Notice
that Arr (C) denotesthe collection of all arrows of C whereasArr (A; B) denotesthe
collection of arrows from A to B. It is common practice to write f : A! B when
f 2Arr (A; B). It is alsocommon practice to call A the source of f and B the target
of f . Arrows have unique sourcesand targets. This is usually represened neatly in
a diagram:

A—— B

2. Thereis an arrow-composition operation (denotedby ; or by asshawn in Figure 3.1)
with the following properties:

(a) It is partial: two arrows f and g composeif the target of f equalsthe source

of g.

f:Al B g:B! C
f;g: Al C

(b) It is closed: the resulting arrow is in Arr (C):

f:Al B g:B! C h:C! D
fi(gh) = (f;9;h

(c) It is ass@iative:
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(d) It hasa left and right identity arrow for every object:

f:A!l B ida Al A idg :B! B
ida;f =f f;idg = f

Identities are unique:

u;f =f ) u=ida

fou=f ) u=idg

Category Theory is an algebraof "typed' arrows. By composing arrows we obtain new
arrows; but arrows with the samesourceand target neednot be equal. It is only when
h = f ;g that we say the following diagram commutes :

A - B
@
@
h@@ g
® b
C

Universal properties are equationsinvolving arrows expressiblein terms of diagrams
that commute.

3.4 Example categories

Categoriesare named after their objects. A typical category is Set, where objects are
sets, arrows are total set-theoretic functions, and composition is function composition,
which satis es the categorial requiremerts for arrow composition. Another typical
categoryis Pre , where objects are the members of a pre-orderedset (A; ), arrows are
pairs (x;y) : x Iy sud that x2A, y2A, x vy, and arrow composition is de ned as
follows:

xy) : x! vy y;2) 1 y! z

Gy vz s xt oz (Y () £ (x2)
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This example shows that arrows neednot be functions.

A category of particular interest to usis Typ e, the category of types where objects
are monomorphic types, arrows are functional programs betweenthesetypes, and ar-
row composition is function composition. In Chapter 5 we introduce the category of
algebrasand partial algebras,where arrows are, respectively, algebra homomorphisms
and partial homomorphisms.

3.5 Dualit y

For every categorial notion involving diagramsthere is always a dual onein which the
direction of the arrows is reversed. If C is a category the dual or opposite category
C©°P has the same objects and arrows as C only that the direction of the arrows is
reversed:

A 2 Obj(C) f2Ar(C) f:A! B
A 2 Obj(C) f2Ar(C® f:B! A

3.6 Initial and nal objects

Definition  3.6.1 Given a category C, 020bj(C) is an initial object i for ewvery
object A there is a unique arrow !5 : 0! A. Accordingly, !o = idg. Dually, given a
category C, 120bj(C) is a terminal object i for every object A there is a unique
arrow !a : Al 1. Accordingly, !4 = id1.

Arrows x : 1! A from terminal objects are called constants of A [Pie9], pl17]. The
motivation is that, for example,in the category of types,functional programsfrom the
terminal type 1 (called unit type) to any other type A can be put into one-to-one
correspondencewith the valuesin A. In other words, there is an injective function
i:A! (1! A)sud that if x is avalue of type A then i(x) isavalueof typel! A,
i.e., a function. For instance, given the type of natural numbers:

data Nat = Zero | Succ Nat

the nullary value constructor Zero : Nat is a constart which can be lifted to a function
Zero : 1! Nat. We usethis devicefor other categoriesin SectionA.3.1.
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3.7 Isomorphisms

Definition  3.7.1 Two objects A and B in a category are isomorphic when there are
arrowsf : A! B andg:B ! A whosecomposition is the identity. In other words,
f;g = ida andg;f = idg.

3.8 Functors

Categories are themselves mathematical structures. Functors are maps between cat-
egorieswhich presene the categorial structure.

Definition 3.8.1 A functor F : C ! D is an overloadedtotal map® between cat-
egoriesC and D mapping objects to objects and arrows to arrows while preserving
composition and identities. More precisely

F : Obj(C)! Obj(D)

F:Arr(C)! Arr(D)
sud that:
1. 8A20bj(C): F(A) 2 Obj(D)
2. If the functor is covariant in its arrow argumert then:

f 2 Arr (C) f Al B
F(f) 2 Arr (D) F(f):F(A)! F(B)

3. If the functor is contr avariant in its arrow argumert then:

f2Ar(C) f :B! A
F(f)2 Ar(D) F(f):F(A)! F(B)

Howewer, a functor is just “cortravariant' whenf : A! B butF(f):F(B)! F(A).

LOr if the reader prefers, two maps with overloaded name.
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4. Finally, and more importantly, the functor presenesthe categorial structure:

f 2 Arr (C) g2 Arr(C) A 2 Obj(C)
F(f:g9) = F(f); F(9 F(ida) = idga)

Figure 3.2 characterisesa functor diagrammatically. If F is a functor and the diagram
in C commutes, the diagram in D also commutes.

At . g Fia) L )
@ @
@ @

@ g @ F(9)

- F(f:

g @@ A F _ (f;0) @@ _

C F(C)

AL A F(A)M F(A)

Figure 3.2: A functor F diagrammatically.

For simplicity, De nition 3.8.1de nes aunary functor. Functors of any arity are de ned
in terms of cartesian products of categories.

Definition  3.8.2 The product category of two categoriesC and D, denotedC D,
is a category where:

def

Obj(C D) = Obj(C) Obj(D)
Arr (C D) © Arr (C) Armr(D)
sud that:

f 2 Arr (C) f:Al C g2 Arr (D) g:B! D
(f;99 2 Arr(C D) (f;9):(AB)! (C:D)
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The previous de nition can be trivially extendedto n-tuples; we talk then about n-
product categories. For instance, a binary functor (or bifunctor) is a functor from a
product categoryto another category e.g,F : C D ! E, andsimilarly for n-functors.
We will be mostly interestedin endofunctors that is, in functors from C" to C, where
C" is the n-product of C. For the sake of clarity, let us illustrate how De nition 3.8.1
is adapted for a binary covariant functor F : C2! C:

(A;B) 2 Obj(C?) (fig) 2 Arr (C?) (f;0):(A;B)! (C;D)
F(A;B) 2 Obj(C) F(f;0) 2 Arr (C) F(f;9):F(A;B)! F(C;D)

In the category of types, a functor F : Type ! Type at the object level is a type
operator that mapstypesto types: if F is a type operator and A is a manifest type
then F(A) is a manifest type. At the arrow level, i.e., functional programs, F must
satisfy the following:

Ff) : FA)! F(B)
F(f;0 F(f); F(9)
F(Id/_\) = idF(A)

Which meansthat at the arrow level F is the map function for the type operator. For
example, in the caseof type operator List :

map f : List a !l List b
map (f ;7 Q) == mapf 7 mapg
map (id :» a! a) == (id : List a ! List a)
wheref ;> g=g f. We have usedexplicit type annotations to illustrate the types

of ead id instance.

Sections3.9.1and 3.10 presert examplesof binary functors.
3.9 (Co)Limits

A limit is a solution to a diagram, i.e., another diagram consisting of an object and a
collection of arrows that satis es the universal property that any other solution factors
uniguely, i.e., there is a unique arrow from the other solution to the object in the limit
diagram which makesthe combined diagrams commute. The colimit is the solution in
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the dual diagram. Limits and colimits can be studied bottom-up from empty diagrams
by adding objects and arrows. In the next sectionswe only presern (co)limits for
diagramsthat are usedlater on.

3.9.1 (Co)Pro ducts

A (co)product is the (co)limit of a diagram involving two objects A and B and no
arrows. Following [SS03]we present both notions simultaneously. The product is an
object A B and two arrows exl and exr. The coproduct is an object A + B and two
arrows inl and inr:

A A
@
@@
exl in~@
&)
A B A+ B
@
@ exr inr
@@
®
B B

sud that for any other similar solution (object S with arrowsf and g), there is a unique
mediating arrow from it to the product (or from the coproduct to it) that makesthe
following diagrams comnute:

. A A
H
@ H
f @ MH g
exl inl@@ HHH
m < me
S ~ A B A+ B et .. S
H *
H @
HHH @@exr inr
g H @ g
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That is:
m;exl=f ~ m;exr=g¢g
in; m°=f ~ inr,m%= g
Both m and m° are unique for every solution diagram, i.e., they are uniquely determ-

ined from the arrows involved. Following [Fok92 MFP91] we make this functional
relationship explicit and usefunctions M and O sud that:

[oX

ef

m = f Og
0 ¥t Mg

Q.
o

m

An important consequenceof universality is that any other diagram solution is iso-
morphic. If S is another product there is a unique arrowm, : A B! S. If Sis
another coproduct there is a unique arrow m9 : S! A + B. Becausemediating arrows
are unique and the resulting diagramscommnute, the composition of mediating arrowsis
the identity and their sourceand targets are isomorphic (Section 3.7). More precisely:

A A

* H
H
@ H
f @@HHM
exl| inl~@ Hh
S ""_.'l'.'.'.':::.'.'?.'.. A B A+ B R S
e, @ m$
Hy @@exr inr
H
g H, Sp@ g
B B
m1; ex f ) inl; m9 f
exl = nt; =
! ) mympf =f f;md;md =1 ( ! _
mo:f = exl ) f;mg = inl
myexr = g innmd = ¢
) mumzg=g  gm3me= g( o _
mo;g = exr gmd = inr

Consequetly:

my;my = ids® mo;my = ida g mJ;m?d=ids» m%;mJ = ida+s
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3.9.2 (Co)Pro ducts and abstraction

The de nition of product captures the general notion of an object that is uniquely
formed by combining two objects suc that we can recover them via arrows exl and
exr irr espective of the internal structure of that composite object. For example,in the
category of sets,the categorial product is the cartesian product, which can be de ned
internally in many ways:

ng
@

A B f ff ag;fa;bggj a2A " 2B g
A B % fffogfabygja2An 2B g
A B % fffao0gfblggja2A” 2B g

o

ng

The product object is a generalisation,i.e., an abstract set with operationsfor construc-
tion and obsenation. In the category of types,A B is an abstact type (a composite
of A and B with two selector operators) which abstracts from the internal structure
(represenation) of the object.

A coproduct is a type into which we can inject two typesusing the two arrows. The
mediating arrow f M g provides lifted construction in products and f O g provides
lifted discrimination plus selectionin coproducts as shown in Figure 3.3, where lifting
refersto the processof turning valuesinto functions.

exl > Prod ab! a

exr = Prod ab! b

M: (¢c! a ! (c! b ! (¢c ! Prod ab)
f Mg x =prod (f x) (g X)

prod = a! b! Prod ab

inl al! CoProd a b

inr b ! CoProd ab

O: (a@a! ¢ ! (b! ¢ ! (CoProd ab ! ¢
(f Og) x =if isl x then (f asl ) x else (f asr) X
asl > CoProd ab! a

asr @ CoProd ab! b

isl > CoProd a b ! Bool

Figure 3.3: Type Prod standsfor a product type and CoProd for a coproduct type.

Notice that typesProd and CoProd are abstract, we have not provided their de nition
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in terms of concrete types. In a functional language (i.e., Haskell), binary products
and coproducts are manipulated through concrete represenations introduced in type
de nitions, i.e., cartesian products and disjoint sums (Figure 3.4).

type Prod ab=(ab)
data CoProd a b =1Inl a | Inr b
exl = fst

exr = snd

inl = Inl

inr = Inr

isl  (Inl ) = true

isl  (Inr ) = false

asl (Inl  x) = X

asl (Inr ) = undefined
asr (Inl ) = undefined
asr (Inr y) =y

Figure 3.4: An “implemertation’ of Figure 3.3 which describesthe internal structure of
the objects and arrows.

Binary (co)products are generalisedto n-ary (co)products trivially: the (co)product is
an object and n arrows [Pie91]].

Interestingly, product and coproduct construction, i.e., and +, areboth endofunctors
from C? to C. It is standard to deviate from the pre x functor application notation
and write A B instead of (A; B) and similarly for +. More precisely:

(A; B) 2 Obj(C?) (f;g) 2 Arr (C?) f:Al C g:B! D
A B 2 Obj(C) f g2 Armr(C) f g:A B! C D

In the category of types, at the arrow level correspondsto the function:

map Prod : (a ! ¢) ! (b ! d ! Prod ab! Prod cd
map_Prod f g = (f ex) M (g exr)

In the caseof concrete tuple types (Figure 3.4), the function can be written more
familiarly:

map = (@ ! ¢)! (' d ! Prod ab! Prod c d
map f g (xy) =@ x gy

Similarly, for coproducts:
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map_CoProd :: (a! ¢ ! (b ! d) ! CoProd ab ! CoProd c d
map_CoProd f g = (inl f) O (inr 0)

map. : (@ ! ¢) ! (! d ! CoProd ab ! CoProd c d
map. f g (Inl  x) =1Inl ( x)
map. f g (Inr y) =1Inr (g vy)

3.10 Arro w functor

In Section 3.3 we introducedthe notation Arr (A; B) to expressthe collection of arrows
from A to B in a given category C. Interestingly, Arr can be understood as an endo-
functor from C2to C. In the categoryof types,for any (A; B)2Obj(Typ e?), Arr (A; B)
is another type: the type of functions (arrows in Typ e) from A to B. This functor has
the peculiar characteristic that it is contravariant onits rst argumernt. Why this is so
becomesapparert by looking at the following diagram:

A———C

h ?

4 ?

B - D
g

At the arrow level, we cannot de ne Arr (f;g) : Arr (A;B) ! Arr (C;D) by composing
f and g with arrows h2 Arr (A; B) to yield an arrow in Arr (C;D). We cando it if Arr
is contravariant on its rst argumert:

A—C
h fih;g
? ?
B - D
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Definition  3.10.1 Given a category C, the arr ow functor Arr : C?! C is de ned
as follows:

(A; B) 2 Obj(C?)
Arr (A; B) 2 Obj(C)

f:C!l' A g:B! D h2Amr(AB)

Arr(f:g) : Arr(A;B)! Arr(C:D) (A (f:g)(h) ¥ f:h:g

In the category of types, Arr (A; B) is the function spaceA ! B. At the arrow level,
f 1 g canbewritten using more familiar Haskell notation:

map = (c ! a ! ! d ! @! b ! (! d
map f gh=g h f

3.11 Algebra of functors

Just like there is an algebraof manifesttypesand type operators which canbe combined
to form type-terms, there is an algebra of objects and functors which can be combined
to form object expressions.The following de nitions provide the madhinery.

Identit y functor:  The identity functor Id : C! C is de ned asfollows:

A 2 Obj(C) f2Ar(C) f:A!l B

Id(A) 2 Obj(C)  Id(A) E'A Id(f) 2 Arr(C)  1d(f) &'

f

Constan t functor.  The constart functor Kg : C ! C for every object B of C is
de ned as follows:

A 2 Obj(C) f2Ar(C) f:C! D

Kg(A) 2 Obj(C) Kg(A) £'B Kg(f)2 Arr(C) Kg(f) ® idg

Polynomial functors and pointwise lifting:  Objects described by object expres-
sions can be obtained from applications of the constart functor, the identity functor,
and the product and coproduct functors to other objects. For example,if A, B and C
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are objects of C, sois A+ (B C). The object is not named but written in terms of
applications of functors to objects.

Functors can alsobe de ned in terms of object expressions.In the previous expression
if A stands for a free variable instead of an object, the object turns into a functor
(+(B C):C! C, whereweindicate by the place were the actual parameter
would go. More commonly, functors are named in de nitions:

FIX) € x+@B ©)

(Inexplicably, Lambda Calculus notation has never caught on in Category Theory or
in maths asa whole.)

It is sometimescorveniert to de ne F only in terms of the functors involved and not
in terms of functors and objects. To do that we de ne a notion of pointwise lifting
for functors.

Definiton 3.11.1 Let F : C2! C be a functor. The lifting of F, denoted F- is
de ned as follows:

A20Obj(C) G:C! C H:C! C

E(G:H):C! C  (F(G:H)(A) ¥ F(G(A)H(A))

With this de nition at hand it is not dicult to ched that F(X) %'

be de ned in terms of functors and pointwise-lifted functors:

X+ (B C)can

F % 1de(Kg _Ke)

At the object level:

F(A)

(Id+(Kg _Kc))(A)

= 1d(A)+ (Ks Kc)(A)
= A+ (Kg(A) Kc(A)
= A+ (B C)
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At the arrow level:

F(f) (Id+(Kg _K¢))(f)
Id(f)+ (Kg _Kc)(f)
f+ (Kg(f) Kc(f))

f+(dg idc)

The last expressionis more commonly written in Haskell as follows for xed typescC
and B:

map, f (map (id = B! B) (id = C! Q)
Pointwise lifting produceshigher-or der functors :
F:C2! C
E_: Func(C;C)?! Func(C;C)

where Func (C; C) is the category of functors from C to C (yep, functors make up a
category seeSection 3.12). It is commonto write Func(C;C) asC ! C, making the
“type signature' of E- more obvious to a functional programmer:

F:(C! C)! (C! C)

The nal touch is provided by lifting objects to functors. An object A20Obj(C) is lifted

to afunctor A.: 1! C, wherel isthe initial category(the initial object in the category
of small categories,seeSection 3.12). If we drop the notational distinction between
lifted and regular functors, objects, and lifted products, we end up in a ‘language-game'
similar to that of valuesand (higher-order) functions, or manifest typesand (higher-

order) type operators. This facilitates the treatment of type operators as functors.

The last ingrediert in this setting is the introduction of xed points to accourt for
recursive equations involving functors from C" to C. Let us state here the de nition
forn = 1:

Definition  3.11.2 Let C beacategoryand F : C! C afunctor. A xe d point of
F isapair (A; ) whereA20bj(C) and :F(A)! A isanisomorphism.

The technical machinery neededto explain the de nition in detail is beyond the scope
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of this presenration. Let us just mertion that the xed points of F form a category
and the least xed point is the initial object. Sud category is a subcategory of the
category of F-algebras, discussedin Chapter 5. The proof of existenceof the initial
algebra is basically a categorial generalisation of Tarski's xed-p oint theorem [Pie91,
p61{72].

3.12 Natural transformations

Categoriesare themselwes mathematical structures and can be taken to be objects of
another category where functors are the arrows. To avoid circular notions sud asthe
category of all categories(whoseobjects are all categories)that may lead to paradaxes
similar to Russell'sin Set Theory [Ham82], categoriesare classi ed into small and
lar ge, wherein the former objects are not categories.

It isinteresting to considerwhether arrows of a category are objects of another category
and what would then be the corresponding notion of arrow in this secondcategory,
called an arr ow category . Functors are maps between categorieswhich presene the
categorial structure. A functor category is an exampleof an arrow category: objects
are functors betweensmall categories;arrows are called natural transformations.

Definition  3.12.1 Let C and D be categories. Let Func(C;D) be the category of
functors from C to D and F and G two functors (objects) of this category that have
the samevariance. A natur al tr ansformation :F!_Gisanarrow in Func(C;D).
(The notation ! _is introduced for arrows between functors.) More precisely is a
family of D -arrows indexed by objects of C:

= f x 2Arr(F(X);G(X)) ] X 2 Obj(C) g

In words, a natural transformation :F !' G assignsto ead object A20bj(C) an
arrow a2Arr (F(A); G(A)). The arrows must satisfy the following coherence(or nat-
urality) property: depending on whether F and G are both covariant or cortravariant,
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F(A)
F(f)

A F(B)

G(A)

G M~ G

G(B)

D

Figure 3.5: is a natural transformation when A;G(f) = F(f); g for every pair of
objects A and B in C.

the squareddiagramsin D commute respectively:

A F(A) —2= G(A) F(A) —2= G(A)
6 6
f F(f) G(f) F(f) G(f)
? ? ?
B F(B) —2- G(B) F(B) —2- G(B)
C D D

Figure 3.5 is a more illustrativ e depiction of the de nition when F and G are both
covariant. Given A20bj(C), we can draw an arrow A from F(A) to G(A), i.e.,
betweentwo objectsin Obj(D) arising from the sameobject A by two di erent functors.
And this can be done for any object in Obj(C). Furthermore, for any other object
B20bj(C), there are two ways of de ning an arrow from F(A) to G(B), namely,
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F(f); 8 and a;G(f). Both must be equal:
F(f); 8 = a; G(f)

In the category of types, natural transformations are polymorphic functions between
type operators. For example:

flatten . List (List a) ! List a
flatten xs = foldr (+) ]

is a natural transformation:
flatten  : List; List !' List
as proven by the following equation:
(map ;> map f ;7 flatten | == flatten 5, ;7 map f

where flatten 5, and flatten |, are instances of flatten at any two typesa and b
respectively. The equation can be put in the generalform as follows:

Foo¥ st ;List , which at the arrow level is map ;" map.
G % st , Which at the arrow level is map.

A def flatten g

B def flatten

Both sidesof the equation are functions of type List (List a) ! List b which are
equal. The rst function mapsf :: a! b overthe list of list of as and then attens
the resulting list of bs. The secondfunction attens the list of lists of as into a list of
as and then mapsf to get a list of bs.

That functors as objects and natural transformations as arrows make up a category
is illustrated by the following diagram. The composition of natural transformations is
assxiative: given :F!" Gand :G! H, their compositon ; :F !" H de ned
by (; )a= a; a forewery A20bj(C) is natural (i.e., the diagram commutes):

A_ A

F(A) G(A) — H(A)
F(f) G(f) H(f)
? ? ?

F(B) —= G(B) —= H(B)
B B
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The identity natural transformation : F I’ F is the collection of identities of the
objectsin the imageof F, i.e., A = idg(a).



Chapter4
GeneridProgramming

abstra ction principle : Each signi cant piece of functionality in a
program should be implemerted in just one placein the source. Where
similar functions are carried out by distinct piecesof code, it isin general
bene cial to combine them into one by abstracting out the varying parts.
[Pie02 p339]

The notion of “genericity' in programming aroseindependerily from within dierent
paradigmsthat still exert an in uence on its meaning, a meaning connoted by techno-
logical cortingenciesand theoretical advances. The term “generic'is misusedas well as
overused. One is tempted to sa it is overloaded, or to take the pun further, that it is
polymorphic. It is certainly not generic.

This chapter provides an introduction to Generic Programming and aims at clarifying
someof the confusion. We begin by relating "generic'to another overusedterm, namely,
“abstraction’, and wind up discussingwhere the presen thesis standsin the described
setting.

4.1 Genericit y and the two uses of abstraction

Abstraction is the basic medtanism for tackling complexity and excessie detail. It
is certral to the top-down or bottom-up hierarchical decomposition or imposition of
structure (a model) on a highly interconnected domain that cannot be completely
understood in isolation. The focus at a particular level of description, highlighting
what is relevant and ignoring or hiding what is irrelevant at that level, is more tellingly
dubbed information  hiding .

Abstraction madeits early appearancein Mathematics and Engineeringin the guiseof
functional abstraction where the focus is directed toward the “function’, purpose,
or role of componerts irrespective of how they work internally. It made its debut in
programming in the form of contr ol abstr action with the advent of assenbly macros
and subroutines. The rst high-level programming languagespushed the notion fur-

59
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ther with the introduction of structured programming constructs (loops, conditionals,
etc.), procedures,and syndironisation medanismsfor dealing with concurrency The
idea is summarisedby the (Control) Abstraction Principle quoted at the beginning of
the chapter. Implicit in it are two important notions, namely, parametrisation and
enapsulation!

Par ametrisation is the idea of making somethinga parameterto somethingelse. For
example,an expressionwith free variables can be abstracted into a function where the
free variables are understood to be parameters. Many de nitions of Generic Program-
ming focus on parametrisation, i.e., on making programs more exible, adaptable,
and general by \allowing a wider variety of entities as parameters than is available
in more traditional programming languages"[Gib03, pl]. Parametrisation enablesa
Single Program on Multiple Data model of computation and is therefore certral to code
reuse. In the last decade,code reusehas beenmostly popularisedand achieved through
extension inheritance being a conspicuousexample.

Encapsulation is information hiding with respect to the behaviour of componerts:
their interaction is xed but their internals may change. In programming terms, the
interaction is setdown in the speci ¢ ation (the what) of somecomputation or data struc-
ture and the internals are described by its implementation (the how). A consequence
of encapsulationis the interchangability of componerts that satisfy the speci cation.
Thus, if we view our abstracted function as a black box of which we only care about
its name, type, and sematriics, then we have encapsulatedit. Another function of the
sametype and semartics can be consideredequal, irrespective of whether it calculates
its outputs in the samefashion.

Genericity is already presert in the notion of parametrisation. Programswhosevary-
ing domain-speci ¢ details have beenfactored out as parameters’ could be considered
genericin that regard. Nonetheless,genericity has wider connotations than paramet-
risation. We provide a de nition of Generic Programming in a catch-phrase:

Generic Programming = Parametrisation + Instantiation + Encapsulation

1The reader should not confuse parametrisation with parametricity . The latter has a specic mean-
ing in relation to parametric polymorphism [Rey74, Wad89).

2pedartic remark: factoring out something that can vary justies the use of the term “parameter
variable' evenin functional languageswhere variables are immutable. However, somepeople prefer the
more neutral “identi er'.
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More precisely forms of genericity can be classi ed accordingto the following criteria:

1. Which entities are parametersto which other ertities at a level of description, e.g,,
level of valuesand types, modules, componerts, ageris, etc. Parameterisedertities
acquire a new status as a mapping or relation of sorts but they may live at the
samelevel asother ertities, i.e., may be rst-class and therefore parametersto other
ertities. The higher the entity is located in the hierarchy, the more generalit is (e.g.,
compare modules to functions) and the more possibilities for parametrisation and
independenceon ertities in levels belov|not to mertion the possibility of mutual
parametrisation when someof the levels are attened (e.g. dependen types).

2. How parametersare provided to and manipulated by an ertity. Parametrisation is
not necessarilya synonym of uniform behaviour (i.e., uniform semauriics); the med-
anics of instantiation  are of certral importance. Among other things, it plays a
role in determining whether parameterised ertities are rst-class or can be com-
piled separatelyfrom their instantiations (seeSections4.5and 4.7.1). Furthermore,
instantiation itself needsnot be uniform: someparametersmay be instantiated dif-
ferertly than others. Finally, the number of parametersmay be variable, they may
depend on ead other, or be provided by default, etc.

3. Upholding encapsulation. Some researders have characterised Generic Program-
ming as the attempt at \ nding the abstract represenation of e cien t algorithms,
data structures, and other software concepts” so asto make them generally applic-
able, interoperable and reusable[CEQQ, cit. p169]. Key ideasare lifting algorithms
to a generallevel without loosing e ciency and expressingthem with minimal as-
sumptions about data types. In other words, lifting cortrol abstraction to a new
level of generality, usually via parametrisation, but upholding encapsulationin data
types, known as data abstraction .

Encapsulation in control abstraction is achieved by hiding the implementation of an
algorithm behind an interface (e.g, function name, type, and semariics). Encapsula-
tion in data abstraction is also achieved by hiding data typesbehind an interface, but
unfortunately there is somedisagreemen about how this should be done (Section 4.2).
At any rate, upholding data abstraction is a necessarycondition for Generic Program-
ming (Chapter 7). Sometimes,the two usesof “abstraction', cortrol and data, do not
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comehand by hand. Naturally, the lack of su cien t abstraction at a level of description
makes our programs dependernt on speci ¢ detail and therefore lessgeneric.

4.2 Data abstraction

Data abstraction, i.e., functional abstraction for data, appearedlater than cortrol ab-
straction. Originally, the introduction of basedata typesand their operations provided
machine independen represenation and manipulation of data. More complex data
structures were simulated or representa@ in terms of combinations of basetypes, struc-
tured typeslike arrays and records (also called type operators) and previously de ned
types. But the impact of the languageof typesin correctnesswas soon to be noticed,
and part of the outcome hasbeena split of the world of data typesinto concr ete data
types and abstract data types (ADTs). The motivation for this split was threefold:

1. In early computer languages,programmer-de ned types were not given the same
status as basetypes. For instance, a programmer-de ned Point represenied as a
pair of integerscould be manipulated by any function on pairs of integersirrespective
of whether the function maintained the properties of Point (e.g., that its valueslie

within a certain range).

2. Many correctnessproblems, sudh as safety problems, arose, and still cortinue to
arise, becausdhe languageof typesis not expressie enoughto capture the semariics
of the programmer'sintende d (or imagine d) type. Or to replacea negative with a
positive, the representing concretetype can be too big: the “values' of the intended
type are represented by a subsetof the valuesof the represerting type(s), those that
ful | someparticular criteria.

3. Software Engineering practice, in particular maintenance and ewlution, dictated
the conceptual separation between intended type (speci cation) and represering
type (implementation). The needto minimise the repercussionsof ever changing
implementations led to a solution basedon encapsulation where the represeting
type was hidden behind an interface.

By the mid 1970s,the notion of an abstract data type was engraved on most program-
mers' minds, but its theoretical formalisation and its embodiment in programming lan-
guageconstructs hastaken long to mature, the very idea and variations on the theme



4.3 Generic Programming and Software Engineering 63

(e.g. objects) still a subject of current researty [AC96, Cas97 DT88, GWM * 93, Mit96,
Mar98, Pie0Z].

Data abstraction has been one of the cortributions of Computing Scienceto Type
Theory in what is popularly known asthe “formulas-as-ypes' corresppndenceor Curry-
Howard isomorphism [CF68, How80] which identi es formulas of constructive logics
with types, and proofs with functional programs. Programmers write much larger
‘proofs' than mathematicians. Advancesin program structuring and abstract data
typestook placein programming without a foundational theory; in fact, many advances
in programming have taken place independerily or without any intervertion of Type
Theory or otherwise. Other epitomising examples are object-oriented programming
and the serendipitous re-discovery by John Reynolds in programming of Jean-Yves
Girard's type-theoretical SystemF (Section 2.7.3). This cycle of invertion followed by
formalisation is not uncommon and to bring it into questionis to deny reality:

type cheding rules or languageideasare put forth without an underlying model
[formal type theory]. Ad hoc rules are not necessarilylessdesirablefor the lack
of a model; it seemsto us that if sudch rules lead to a consistert and useful
programming methodology, there probably is a satisfactory model. [DT88, p.61]

4.3 Generic Programming and Software Engineering

According to convertional wisdom, software su ers from an endemic crisis of unre-
liabilit y, unmanageability, and unprovability. Becauseour imagination outstrips our
abilities [Bud02, p2], one way of tackling the crisis is, amongst others, to change the
way we channel our imaginations, i.e., to changethe programming model. In this set-
ting, it is natural to expect Generic Programming to help reducesoftware developmert
and maintenance costs, as fewer programs are deweloped, maintained and, so much the
better, they can be re-usedfor varieties of data.

Howewer, there are hardly any standardised or widely acceptedsoftware life cycles,or
developmert processesor speci cation and designformalisms, or program construction
methodologiescertred around Generic Programming or taking it into accourt. Excep-
tions are the minor notational extensionsin UML, 2 the informal ontology of concepts
and methodological aspects brought forth by the designof the C++ STL [MS96, MS94,

Swww.uml.org
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VJ03], and the work of the squiggolcommunity, e.g., [BJIM99, Hoo97], which includes
polytypism and theories of concrete data types.

It is hard to determine the impact that a discipline of Generic Programming will have
on software dewvelopmert, and whether it will dispensewith maintainability. Some
authors are skeptical about the latter:

Becauseead new problem typically requiresa slightly di erent setof behaviours,
it is often di cult to designa truly usefuland general-purposesoftware compon-
ent the rst time. Rather, usefulreusablesoftware componerts ewlve slowly over
many projects until they nally read a stable state. [Bud02, p284]

In terms of programming languagesand implemerntations, there is available technology,
experimental prototypes, and idioms at the level of functions and types, with a bit
lessat the level of modules and libraries. So far, the most widespread successstory
in Generic Programming is polymorphism in all its varieties, popular examplesbeing
the parametric polymorphism of functional languagesand the C++ STL. Hopefully,
the rest of the eld will soon expand and encompassthe full extent of the software
dewvelopmert process.

Understandabilit y. One aspect of genericity that has an impact on dewelopmert
and is usually taken for granted is understandability. The more generic a function
is, the more things it can do, supposedly the more e ort required to construct it, to
understand what parameters are, in which mode they are instantiated, how they are
manipulated, etc.

Ideally, understandability must not compromisecortrol abstraction, e.g., require know-
ledge of the genericfunction's implementation or of the internal mecdanics of instanti-
ation, although sometimesthis is not entirely possible(Section 4.7.2).

When it comesto program proving, alreadyin a rst-order setting proofsrequire heavy
mathematical machinery and get complicated and lengthy for small programs, let alone
in a higher-order setting where there is the dangerthat someproperties may be unde-
cidable.

An example of the tension betweengenericity and understandability is found in func-
tional languages,where programmers can capture recursion patterns as higher-order
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functions which factor out speci ¢ behaviour asfunction parameters. However, an ex-
cessie useof the latter can make programsdi cult to read, especially if thesefunction
parameters have to circumvert the higher-order function's behaviour for specic situ-
ations. More concretely, it is well-known that many programs can be expressedusing
only the higher-order function fold [Hut99, GHAO1], but programmersrarely try to
write all they canin terms of it. They had better rely on generictraversalswritten in
terms of conmbinator libraries [LV02a] or on Generic Programming libraries or language
extensions(Chapter 6).

A careful study on the balance between genericity and speci city at various levels of
description (design,componenrt, module, function, etc.) is yet to be produced. Its study
in design patterns [GHJV95] could perhapsbe a useful starting point. Designpatters
are high-level speci cations in which there is a mixture of genericity and speci city. Is-
suesof abstraction, parametrisation, and encapsulationappear at various levels. There
is already somework in this direction in the functional paradigm [OGO05, LV02b]

Eciency . There is also a tension between genericity and e ciency . Initially, a
genericfunction would seemto belesse cien t than a specialisedfunction for a given set
of parameters, if only becauseof the extra cost of passingand instantiating parameters
and the risk of code bloating in generative approades.

Howewer, the samecanbe said about compiled code beinglesse cien t than handwritten
madhine code or about C being ‘faster' than Java. We don't want to write our programs
in assenbly languageunlessin critical situations, nor do object-oriented programming
in C. Every time there is a leap in abstraction somedegreeof e ciency is lost.

Indeed, programming languagesare better at their job when designedto provide good
automatic support for tasks otherwise performed by the programmer. Opposition to
this trend in defenseof technologically cortingent notions of e ciency is striking. Had
the stigma of ine ciency not beenignored in the past we would not have procedures,
functional languages,or automatic garbagecollection today. The compromisebetween
genericity and e ciency s, like the hoary space versustime, one of the inevitable
tradeo s that arisein Computing Science(Box 4.1).

Standard reparteesare: (1) it is the job of researt in program transformation and
optimising compilersto obtain reasonablee ciency and, (2) medanismsfor supplying
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BOX 4.1: Genericy vs E ciency

\Correctness must come rst. Clarity must usually comesecond,and e ciency

third. Any sacri ce of clarity makesthe program harder to maintain, and must
bejustied by a signi cant e ciency gain." [Pau96, p10]

\More computing sins are committed in the name of e ciency (without ne-
cessarily achieving it) than for any other single reason|including blind stu-

pidity." [Wul72]
& %

e cien t specialisedcode for critical situations can always be provided. An example of
the former can be found in [ASO05 where a program transformation technique (fusion)
is enhancedfor the optimisation of code generatedby the Generic Haskell compiler.
An example of the latter is partial template sgecialisation in C++ [VJ03] and polytypic
extensionin Scrap your Boilerplate (Section 6.2).

Notice the useof the expression reasonablee ciency'. Admittedly, e ciency improve-
ments usually entail a lossof clarity, for the improvemerts on an originally ine cien t
algorithm are obtained after exploiting properties of the problem that are not imme-
diate. Syntactic and semartic program transformation techniques are theoretically
limited and cannot produce fully optimal results:

Program transformations canindeedimprove e ciency , but we should regard ex-
ecutable speci cations with caution... The ideal of declar ative programming
is to freeusfrom writing programsjjust state the requiremerts and the computer
will do the rest. Hoare [Hoa87] hasexplored this ideal in the caseof the Greatest
Common Divisor, demonstrating that it is still a dream. A more realistic claim
for declarative programming is to make programs easierto understand. [Pau96,
p10]

The moral of the story is that madhines cannot replace programmers.

4.4 Generic Programming and Generativ e Programming

GenericProgramming represeis a key implementation technique for Gener ative Pr o-
gramming , a Software Engineering paradigm that aims at manufacturing software
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componerts in the same "automated assenbly line' fashion as most goods are manu-
factured in other industries. More precisely:

Generative Programming focuseson software systemfamilies rather than one-of-
a-kind systems. Instead of building single family membersfrom scratc, they can
all be generatedbasedon a common geneative domain model ... that hasthree
componerts: a meansof specifying family members, the implementation compon-
ents from which eacy member can be assenbled, and the con gur ation knowledge
mapping betweena speci cation of a member and a nished member. [CEOQO, p5]

The implemertation componerts must be highly orthogonal, combinable, reusable,and
non-redundart. Not surprisingly, here is where Generic Programming comesinto the
picture. However, the view of generic programs as implementation componerts for
Generative Programming doesnot alleviate the criticisms of Section4.3, for evenif the
system family speci cation is lifted to the generative domain model, the speci cation
and dewelopmert of genericcomponerts still needsto be carried out.

In the other direction, Generative Programming techniques also provide implemena-
tion solutions to Generic Programming. Examples are program generation from gen-
eric speci cations, generative compilation, and meta-programming techniques (we have
already touched upon this in Section 2.5). Generative Programming also includes the
possibility of generic program genegtion, where \the parametersto the [generic] pro-
gram generation processremove unnecessaryoptions of the generalmodel and Il in
someapplication-speci ¢ detail* [CEQOQ, p209].

45 Typesand Generic Programming

Typesarein uen tial in programming and inexorably too in GenericProgramming. The
needto type chedk genericertities is part of the quest for richer type languagesand
systems.

For instance, most of the available technology in statically type-diedked languagesis
basedon type parametrisation. Also, in sometyped languages,genericfunction de ni-
tions are at most type-deded by the compiler; code is only generatedfor their applica-
tions to actual argumens. Examplesare C++ Templatesand GenericHaskell. In C++,
template functions are not type-theded, their instantiations are. In Generic Haskell,
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so-calledpolytypic functions are only type-diedked by the compiler. Code is generated
for their applications. Both language extensionssupport separate compilation: tem-
plate instantiation is type-chedked as late as link time, and applications of polytypic
functions may appear in di erent modules. Howewer, the compilation of applications
requires reading the module with the de nitions.

GenericProgramming in untyped or dynamically type-dieded languagess not ertirely
a non-issue. Types are implicitly presen in strongly and dynamically type-deded
languages. At run-time one gets ‘type' errors even if typesare not explicitly included
in the language. Even in untyped languages,generalisingcertain constructions is not
trivial and typessomehav arise naturally [CW85, p3].

The de nition and instantiation of genericentities must be well-typed and strong static
type-cheking should not be sacri ced for the sake of genericity. For example,in many
languagesarrays consistonly of pointers to a chunk of memory of a xed size. Functions
on these arrays have to be given their size as a separate parameter|the sourceof a
correctnessproblem|but  they can work on arbitrary arrays. Bundling memory and
sizein an abstract data type means,for most languages,that functions can only work
on arrays of particular sizes. The solution is not to sacri ce safety for genericity but to
designa languageof typeswhere genericity can be safely accommalated.

4.6 Typesand program generators

Sometimesthe languageof typesis expressie enoughto allow typed genericprograms
and data to be directly or indirectly de ned within the language itself, or via lib-
raries or re ection. When the existing language of typesis not powerful enough,
type and term languageextensionsare proposedwhich are either incorporated as part
of the language, with occasionalunexpected interactions with existing features (e.g.,
C++ Templates [Str92]), or implemerted using program generators (e.g., Generic
Haskell [HJ02]):

[A generator] produces “cade' in some language which is already implemented
[and is] usedto extend the power of the baselanguage... This processshould
be compared with that of functional abstraction. The dierence lies in [that]
manipulation is performed beforethe nal compiling [where the semartic chedks
of the whole program take place]. Macrogeneration seemsto be particularly
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valuable when a semariic extension of the languageis required [and the] only
alternativ e to trickery with macrosis to rewrite the compiler|in e ect, to design
a newlanguage. . In a more sophisticated languagethe needfor macrogenerator
diminishes. [Str0Q]

Another important aspect of genericertities that may causeconfusionis the relation-
ship between being rst-class, typed, part of language extensions,or implemented in
terms of program generators. All these possibilities are orthogonal:

An ertity at a particular level (e.g., agerts, modules, types, terms) is rst-class if
it plays the role of a \value" at that level. Amongst other things, it can be a part
of other entities and a parameter or result of other entities. In a typed language,a
rst-class value hasatype; but having atype doesnot grant rst-class status. (e.g.
functions in C). Haskell modules are examplesof ertities that are not rst-class and
don't have types.

Typed genericentities implemented using generatorsmay not be rst-class because
of particular design decisionsregarding generator or compiler implemertation, not

becauseof theoretical limitations. SomeDraconian restrictions on C++ Templates,
like forbidding virtual member template functions, are examplesof this. On the

cortrary, genericfunctions are not rst-class in Generic Haskell becausetheir types
are parametric on attributes of actual type-operator argumerts, which are not known

until instantiation (Section 6.1).

4.7 The Generic Programming zoo0

Generic Programming is better characterisedby a classi cation of its particular mani-
festations which accourt for the di erences in the usageof the term. As discussedin
Section4.1, genericity quali es parametrisation by describingwhat are parameters,how
and when they are instantiated, and whether abstraction is upheld. The inhabitants of
the Generic Programming zoo can be classi ed accordingto this criteria.

Most general-purposetyped programming languagesusually have three explicit levels
of values, types, and modules (which may cortain types and values) plus two more
possibleimplicit or explicit levels, namely, one of kinds (Chapter 2) and another one
for cheding the correct use of abstractions when they are not cheded at the type
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level (e.g., Standard ML modules). In somelanguagesabstractions are chedked at the
type level (e.g., existertial types, higher-order records, classes,etc). Special-purpose

languagesmay have other levels.

Most mainstream languageskeepvaluesand typesapatrt, i.e., valuescan only be para-
meters to valuesor functions and similarly for typesand type operators. It is natural
to explore what happenswhen an entity in a higher level is a parameterto an entity in
a lower level (e.g., valuesparameterisedby types)or when the levels are interconnected
(Box 4.2). It is also natural to explore the di erent possibilities of instantiation.

$

BOX 4.2: Varietiesof Parametrisation

The following table lists some possibilities of parametrisation at value, type,
and kind level (adapted from [HJ02, p17]).

Instantiation
Entity | Parameter | Basedon substitution Basedon structure
Value | Value Ordinary functions
Value | Type Polymorphic functions Polytypic functions
Value | Kind
Type | Value Dependernt types
Type | Type Ordinary type operators Polytypic types
Type | Kind Polykinded types
Kind Value Dependen kinds
Kind Type Dependert kinds
Kind Kind Kind operators Kind-indexed kind

This table doesnot considerbinding time (Section 4.7.1). Ordinary functions
have types. Ordinary type operators have kinds. Polytypic functions have

polykinded types. Polytypic typeshave kind-indexed kinds.

&

%

4.7.1 Varieties of instan tiation

Di erent varieties of instantiation can be entertained depending on how and when

actual argumerts are provided.

Concerningthe how, the typical method of instantiation is the substitution of the ac-
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tual argumert for the formal parameter. This kind of “syrtactical replacemernt’ is not
trivial to implement and is quali ed by evaluation order; typically call-by-X, where X

is valueg, push-value reference, need, name, etc. All these modes of evaluation assume
that function de nitions are not evaluated but just optimally compiled. It is the typ-

ical method of instantiation in function and type application in classical varieties of
polymorphism and dependert types.

Instantiation could also involve somesort of examination of the argumert that guides
the instantiation. This is the casein structural polymorphism, where typesand func-
tions are dependert on the structure of type argumerts and therefore the latter de-
termine the former's semariics. In statically-t yped languages,what is manipulated at
run-time is a value represening the type argumen, if at all.

Non-uniform behaviour is possiblein all theseinstantiation schemes(seeSection4.7.2
and Box 4.2).

Concerning the when or the binding time , instantiation can take place at compile
time (static parametrisation ), at run time (dynamic parametrisation ), or at
both. Static parametrisation rules out run-time variabilit y and may complicate separate
compilation| e.g., template instantiation in C++ is sometimesdeferreduntil link time.
At the value level, the correctnessof instantiations that take place dynamically may
usually be chedked statically (e.g. type cheding function applications).

The notions of open world and closed world are typically usedin relation to exten-
sion. Generic ertities are open world if they can be extended incremertally without
recompiling already written code. Howewer, the notions can also be used with re-
gardsto instantiation and separatecompilation: genericertities are openworld if their
de nitions can be compiled (or at least, type-theded) without their instantiations. In
other words, separatecompilation is supported. "Openness'refers hereto the fact that
de nitions are universal and not determined by how they are used.

4.7.2 Varieties of polymorphism

C++ Templatesand the STL are consideredexamplesof Generic Programming. Ada's
instantiatable modules are actually called “generics'. Many of the current usesof gen-
ericity conform to what is technically known as polymorphism , a vocable derived
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\ Predicative
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Figure 4.1: Classicpolymorphism with instantiation basedon substitution [CW85, p4]
[CEOQ, chp. 6] [Pie02 part v] [Mit96, chp. 9].

from the Greek poly morphos literally meaning ‘mary forms'.# Typically, an ertity
(usually a value or a type) is polymorphic if it has many semaric meanings. Ex-
amples of meaning are the value denoted or the type, the latter an approximation of
the semarics.

An early but crude classi cation of polymorphism was proposedby Strachey [Str00]
and later improved by Cardelli and Wegner[CW85] from a typesperspective; or more
precisely from the perspective of the typesof functions, for the type of a polymorphic
function speci es the nature of its polymorphism. Figure 4.7.2depict and extendstheir
classi cation. The remainder of the section elaborates on it.

The original de nition of ad-ho ¢ polymorphism was given by Strachey [Str00, p37]:
In ad hoc polymorphism there is no systematic way of determining the type of

the result from the type of the argumerts. There may be seweral rules of limited
extent which reducethe number of cases,but these are themseles ad hoc both

4Morphos is a Greek god who can take any form he wishes, even that of a giant carrot.
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in scope and corntent.

Coercion is an example of ad hoc polymorphism. Coercion is automatic or implicit

conversion . A corversion is a transformation of a value from one type to another
type. In the caseof coercion, on the surface the value seeminglyretains its identity
and is seenas having many types. Behind the surfacethe compiler inserts calls to con-
versionsfunctions and createsnew temporary values. Coercionsnot involving changes
of represenation are called castings .

Overlo ading is the foremostand most powerful instance of ad hoc polymorphism. It is
basically a medtanism for symbol reuse. A function name, literal value, etc, is usedwith
di erent meanings(e.g., types) but what is actually being de ned is typically a xed
set of monomorphic valuesor functions that are only nominally related.® The functions
work on dierent typeswith unrelated structure and thus have unrelated semariics.
Their usein the program is determined by a processof "best-matdh' resolution, typically
performed at compile-time, basedon the context of instantiation, which in the caseof
functions is determined by the typesof the actual argumerts and the lexical score.

Overloading is a very powerful feature, especially if combined with other featureslike
inheritance, rede nition, polyadicity, etc; but it lacks a generality that is often com-
plemerted by extension or generative approadies. C++ Templates are an example
(Boxes 4.3 and 4.4).

Whether languagesare explicitly or implicitly typed (i.e., require type annotations)
hasan impact on the overloading scheme. In explicitly typed object-oriented languages
like Java or C++, overloaded methods may have di erent type signaturesand di erent
semartics| e.g.myStack .push () , myDoor.push () , etc. In implicitly typed functional
languagesof the ML family, overloading is either forbidden or hasto be achieved via
type classes [Blo91, WB89, Jon92. Type classescapture a more uniform form of
overloading that relatestypesby making them belongto the sametype class(Box 4.5).
Howewer, in Haskell the aforemenioned push methods cannot be de ned as overloaded
functions within the samescope becausethe type of stadks and the type of doors do
not fall naturally under the sametype class. The functions can be overloadedin terms
of scope if the typesare de ned in di erent modulesand the function namesare always

SWe are talking about stand-alone overloading. Matters change when overloading is combined with
other forms of polymorphism.
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BOX 4.3: C++ TemplategDescription)

C++ Templates are a language extension for static parametrisation. More
precisely templates endov C++ with a restricted form of polymorphism in
its dependen, unbounded parametric, bounded parametric, and F-bounded
parametric variants.

The static parametrisation, the medanics of instantiation, and the fact that
templates were designedto be badkward-compatible with C++'s legacy type
system is what make templates peculiar and restricted. More precisely tem-
plated functions and classesare compile-time macros for what after instan-
tiation are a set of overloaded functions and classes,with late’ overloading
resolution performed at link time if necessaryVJ03]. This ad hoc modus op-
erandi requiresclever compilation tricks and imp osesrestrictions on what can
be programmed. Also, featuresthat could be presen in a uniform treatment
have to be added a posteriori| e.g, member template functions and typedef

templates. Box 4.4 cortinueswith examples.
& %

qualied by module name. In Standard ML overloading is rather Spartan becauseype
reconstruction cannot disambiguate the cortext if type annotations are missing.®

Universal polymorphism contrasts with ad hoc polymorphism in the uniformity of
type structure and \b ehaviour”. Universally polymorphic entities have many types/se-
mantics, even potentially in nite ones,but can be characterised uniformly by a xed
set of rules, and the range of variability can be expressedsyntactically using the 8
quarti er, whencethe “universality'.

Par ametric polymorphism is the kind of universal polymorphism that is often iden-
tied with Generic Programming becauseit relieson generic parameters to adieve
uniformity. Generic parametersare type or value parametersto other types. They are
instantiated using substitution and are re ected at the type level by the introduction
of type variables. Entities that \have many types" in reality have one unique, univer-
sally quarti ed type (e.g, Section 2.7.3). More power is added when type operators

5For many, type reconstruction is more a hurdle than an aid: it is rather strange to let compilers
infer speci cations from implementations.
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BOX 4.4: C++ Templateg Example)

The following is a template function that swapsthe valuesof two variables of
the sametype:

template <typename T>
void swap(T& a, T& b) { Ttemp =a, a =b; b = temp; }

The template  keyword instructs the compiler to treat the ertity that follows
as a parameterised entity. Within the angle brackets the programmer spe-
cies the kind of parametrisation. In this example, the parameter is a type
variable T, so template <typename T>'is similar to =~ : :'in SystemF
(Section 2.7.3). A type name is either a basetype or a class. Unfortunately,
there is no type annotation specifying which methods are to be implemented
by T. Onehasto look at the codeto nd out possibleconstraints or rely on the
compiler, which might issuethe error messagest link time. In our example,
T must provide a copy constructor and operator =. There follows an example
of usage:

int x=1, y=2;

Car carl ("Ford Fiesta ");
Car car2 ("Nissan  Micra ");
swap(x ,y);

swap(carl ,car2 );

Behind the scenesthe compiler generatestwo overlcaded instances of swap
for the typesto which the function is implicitly applied:Y

void swap (int a, int b) { int temp
void swap (Car & a, Car& b) { Car temp

}
}

At ead function call, the compiler gures out the implicit type parameter
by a processof type reconstruction basedon the types of actual value argu-
ments. In addition to type parametrisation, template functions and classes
can be parametric on values and parameterised classes(so-called template-
templates [VJO3].

YGenerating code for ead type producescode bloating .

%
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BOX 4.5: Type Classes

Type classeswere introduced in Haskell to support overloading while pre-

serving type reconstruction. With type annotations, given the application
foo 4.5, a compiler can tell which version of foo to use:

foo = Int ! Int foo ' Float ! Int
foo x = X foo x = intPart X

Without type annotations, it cannot. Type classesare a way to circumvent
this. Programmers can specify classesof typesa for which foo :: a! Int
is de ned:

class Foo a where foo :: a ! Int

Given this classdeclaration, the compiler infers that all occurrencesof foo in
the program havetypeFooa) a! Int . In orderto type-dhek applications
involving foo , programmersmust provide witnesses:

instance Foo Int where foo x = X
instance Foo Float where foo x = intPart X

The application foo 4.5 type-theds because4.5 hastype Float and the
Float type is an instance of (is in the class) Foo. Code generation is also
e cien t. atype classintroducesa type of record dictionary and foo is de ned
to take an extra dictionary parameter:

data FooDict a = FD (a ! Int) -- dictionary type
getft (FDf) =f

foo :: FooDict a ! a ! Int
foo d x = (getf d) x

dint : FooDict Int -- dictionary values
dint = FD( x ! X

dFloat :: FooDict Float
dFloat = FD ( x ! intPart X)

With help from the type cheder, the application foo 4.5 is replacedby the
application foo dFloat 4.5 .

%
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are included as primitiv esor via type de nitions, with type-level execution (reduction)
taking place during type cheding in the form of type application (e.g., Section2.7.4).

One common feature of parametric polymorphism is that type information plays no
computational role,i.e., no computational decisionis madein terms of typesand they
can be erasedby the compiler after type chedking. This is somethingto expect. mono-
morphic instances of polymorphic programs dier only in type annotations; recall
System F (Section 2.7.3). Consequetly, unlike overloading, one de nition su ces.
Moreover, parametrically polymorphic functions are insensitive to type argumerts.
They are either too general,e.g.

8a a! a
or constart, e.g:
8a a ! Int
or combinators, e.g.
8ab. @ ! b)) ! a! b
or involve type operators, e.g..
8a. List a! b

Theselast functions are insensitive to the payload type of the type operator, or to the
shape typeif the type operator is higher order (Section 6.1.1).

Typeswith value parameters are called dependent types. In languagessupporting
dependert types, type-lewel reduction includes a restricted (i.e., terminating) form of
value-lewel reduction if type-cheding is to terminate.

Di erent manifestations of parametric polymorphism are obtained by twiddling various
knobslike the rangeof the 8, the instantiation mode, or the interplay with other features
like, say, dispatching. The range of the 8 can be de ned in terms of type universes .
The possibilitiesarerightly exempli ed by the families of typed lambda calculi classi ed
under the namesof predicative, impredicative, and Type:Type. By permitting values
to be typesin ead family we obtain new families of predicative, impredicative, or
Type:Type dependently-typed polymorphism. Most of the interesting combinations
are depicted in the so-calledLambda Cube [Pie02.
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In predicative polymorphism, universally quanti ed types\liv e" in a separateuniverse
from other types,a distinction captured syntactically by a separationof typesinto type
schemes and type-terms, the former including type-terms and universally quarti ed
type-terms. The foremostexample of predicative polymorphism is the Hindley-Damas-
Milner or ML-style of polymorphism (also called let-p olymorphism ) of functional lan-
guageswheretypeinferenceis e cien tly decidedby Milner and Damas'W algorithm|a
straightforward exposition of W can be found in [FH88] and [PVV93].

In impr edicative polymorphism, there is no distinction betweentype-termsand type
sthemes,and parametersthemseles may have universally quarnti ed types. The fore-
most exampleis SystemF (Section 2.7.3).

In Type:Type polymorphism, the universe of typesis also a type, hencethe colon
notation. Type cheking may not be decidableand typescannot be understood naively
assetsof values(a setof all setsleadsto Russell'sparadax [Ham82)). The formalisation
of Type:Type polymorphism requiresthe machinery of dependert types[Car86]. It has
applications in the implementation of typed module systems,for modulescontain values
but alsotypes.

In bounded parametric polymorphism the range of the 8 can be restricted to sub-
universeswithin the universeof types[CW85]. It subsumesparametric polymorphism
in the sensethat 8a: is 8a2Type , where Type is the whole universeof types. The
subtype relation is an example of bound:

registrationNumber . 8a Vehicle . a! Int

Type classesare a form of boundedparametric polymorphism wherethe bound is given
by a class-menbership predicate instead of a subtype predicate, i.e.:

sort » 8a Ord a) [a ! ][4
is identical to:
sort 1 8 a20rd. [a] ! [4]

F-bounded polymorphism isaform of boundedpolymorphism in which sub-universes
are parametric and, possibly, recursively de ned [Mit96].

In inclusion polymorphism , there is an inclusion relation betweensub-universes.It
is especially usedin combination with bounded polymorphism. A well-known inclusion
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relation is subtyping , where the members of a type (values) are also menbers of a
supertype. Type classesprovide a di erent kind of inclusion: members of a type class
(types) are also members of its superclass.

Object-oriented languageso er di erent combinations of polymorphism. Inheritance
(subclassing)is wrongly identied with subtyping [AC96, CW85, Cas97]. The former
is about reusing implementations whereasthe latter is about reusing speci cations.
Replacemenm, re nement, dynamic dispatching, and overriding are powerful but ortho-
gonal features [Bud02].

Universal polymorphism is “too generic': functions are insensitive to the possiblevalues
of universally-quarti ed type variables. Structur al polymorphism or polytypism
is a form of polymorphism in which the de nitional structure of a type is a parameter
to the function, which thereby does not have unique semartics. Instantiation is not
based on substitution. Polytypic functions can be typed, but their types are para-
metric on attributes of type-operator argumerts. Polytypic functions are really meta-
functions that producecode from actual type argumerts. Consequetly, the medanics
of instantiation must be known in order to understand how polytypic functions work.
Polytypism captures and generalisesoverloading and parametric polymorphism.

Polytypism is a form of compile-time re ection. At run time the type of an object can
be inspected using some library extension. At compile time that functionality must
be provided by the typesthemselhes and, therefore, a language extension is heeded.
We examine two popular polytypic language extensionsto the Haskell language in
Chapter 6

4.8 Where does this work fall?

With structural polymorphism, functions are parametric on the de nitional structure

of types. When types are abstract, the de nitional structure is hidden. Structural

polymorphism is thus at odds with data abstraction. But in the classic varieties of
polymorphism data abstraction is an orthogonal feature. The presert work investigates
what is neededto restore the order.



Chapterb5
Data Abstraction

[The] key problem in the design and implementation of large software
systemsis reducing the amount of complexity or detail that must be
consideredat any one time. One way to do this is via the processof
abstraction. [Gut77, p397]

The history of programming languagesis a history towards higher cortrol abstraction
and higher data abstraction. Data abstraction appearedlate in Mathematics and Com-
puting (around the 1970s). Key ideasin corntrol abstraction were already presen in
the seminal papers on the theory of computable functions (1930s). The tardiness can
be explained by the fact that aspectswhich are in theory irrelevant can be in practice
of the utmost importance: real programsreac a size of millions of lines and ead may
bring about a failure of the whole program.

When applied to data, "abstraction' corresponds with the principle of represenation-
independence.Abstract typesare de ned by a speci cation, not by an implementation.
Abstract typesare represerted or simulated in terms of concretetypesusing the data
de nition medanisms of programming languages.Abstract typesde ne setsof values
but the interest shifts towards operators that “hide' them; that is, abstract values
are manipulated only through operators. Constart or literal values are understood
as nullary operators. Thus, the separation between abstract typesand built-in types
is arti cial: the latter are abstract with respect to their macdine represenation; the
former are asreal as a built-in type.

In the early 1970s,the notions of program module and information hiding garneredfrom
Software Engineering practice corverged with the formalisation and understanding of
abstract typesin terms of Universal Algebra and its categorial rendition. Examples of
pioneeringwork are [LG86, Gut77, Mor73, BG82, GTW79].

The speci cation of an abstract type consistsof two parts: (1) A syntactic part that
de nes the type's name and operator symbols. The latter implicitly de ne the set
of well-formed terms that can be constructed with them. (2) A semarnic part or just
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“semaiics', which inexorably hasto be expressedsyntactically, that prescribesoperator
usageand, consequetly, the obsenable behaviour of the values of the type. Notions
of visibility , smpe, and module follow as implementation medanisms.

5.1 Benets of data abstraction

Abstract data types(ADTs) enforcerepresenation independencewhich facilitates soft-
ware ewlution and maintainabilit y. Changesto an ADT's implementation do not a ect
client code aslong asthe speci cation and the semartics of the operators remain un-
changed. The ADT's speci cation is a contract or interfac e betweenthe designer,
client, and implementor of the ADT. The separation of interface and implemenrtation
allows ADTs to be provided asreusable,portable, and pre-compiled (binary) compon-
ens.

ADTs are ideal for modular design and division of work. They bet the requiremerts
of high cohesion,low coupling, and reasonablesize. ADT interfacesgather collections
of operators and typesand provide the only interconnection with client code. For lack
of standardised terminology, let us call the coupling betweenan ADT's interface and
its client code interfac e coupling .

ADTs harmonisewith the designmethodology of stepwisere nement of programsand
the data they manipulate. Program actions are decomposedinto smaller, yet unspe-
ci ed actions, and the existenceof ADTs is postulated. Decisionsabout represenation,
set of operators and their implemertation are postponed. Details are discovered asthe
requiremerts and the designare re ned.

ADTs have proven their worth in software developmert. Extensionsto the idea (e.g.,
objects) are deemedsine qua non in modern programming. Object-oriented program-
ming itself is about programming with rst-class, extensible abstract typeswhere the
notion of operator is replaced by the notion of message.Featureslike overriding, late
dispatching, etc, are orthogonal.

5.2 Pitfalls of data abstraction

ADTs are less exible and make programs more verlose For instance, C/C ++ pro-
grammersrevel in their cryptic pointer ddlings and the confusionbetweenstrings and
null-terminated arrays of characters. With Java's String , only string operators are
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applicable to string values;programmershave to usecorversion operators and be more
explicit about what they want. Someconsiderthis to be a pitfall; we do not.

Usually, the choice of ADT is driven by a set of desirede cien t operators. Howeer,
there is often an e ciency trade-o amongthem causedby the choice of represertation.
A simple exampleis the ADT of complex numbers. There are two typical represert-
ations: cartesian and polar. Addition in the cartesian represenation is more e cien t
than in the polar represertation whereasfor multiplication it is the opposite case. Un-
fortunately, both represenations cannot be used at once without losing e ciency in
the translation.

The separation between interface and implementation improves but does not resohe
completely in practice the coupling betweenclient code and ADT implementations. An
implemenrtation changemay entail an interface changethat in turn may a ect already
written client code.

A typical example occurs during maintenance when operators are added, deleted, or
modi ed. In many casesthis situation can be anticipated and cared for during the
designstage;but often it cannot, especially if the changesare elicited during the usage
of the abstract type in a live software system. This problem is intrinsic to the nature
of software: it ewlves.

A thornier example of implementation decisionsa ecting interfacesoccursin the case
of parameterisel ADTs when an implementation decisionmay a ect the parametricity,

i.e., may imposeor modify parameter constraints which in turn a ect client code. As
a realistic scenario,take the caseof a data-analysisapplication for managing numerical
data and producing statistical reports, in particular frequency analysis[Mar98, p163-
164]. A natural choice of abstract type would be a table that provides an abstract
view of the data base. Among the operators, there is an insertion operator that adds
elemerts to the table (increasing their frequency) and selector operators for returning

the ith elemert on the table or its frequency (elemerts can be sorted by frequency).
The e cien t implementation of insertion compromisesthat of selection: hashtables are
more adequatefor quickly storing and retrieving large volumesof data by key whereas
ordered structures such as heapsor balancedseard trees are more suitable for storing

and retrieving ordered data. The constraints expressingwhether the data parameteris
“hashable'or ordered di er but anyhow have to be stated in the type's interface. The
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choice of implementation could conceiably changeasthe circumstancesof the software
system's usagechange. Going for both constraints from the start may be limiting or
impossible.

There is researtr on automatic selectionof e cien t represertations basedon compile-
time analysis of operator usageguided by programmer annotations (see,[CH96] for a
probabilistic approad to the problem). To the author's knowledge, there is no univer-
sally acceptedway of dealingwith the problem, and most speci cation or programming
languageseither ignore it or o er their own custom-madesolutions. We comebadk to
this problem in Section5.6, which illustrates it with an algebraicspeci cation example,
and in Sections5.8.1and 5.8.2, which discussit in the context of the Haskell language.
In Section6.1.11we make Generic Haskell cope with constraints.

5.3 Algebraic specication of data types

Algebraic specic ations are axiomatic formal systemsfor specifying ADTs precisely
unambiguously, and independertly of their implementation. They have se\eral advant-
agesbeyond the mere speci cation of a formal object; in particular, they provide an
interface for client code, they can be usedin the formal construction and veri cation
of client code, there is a formal relation betweenthe speci cation and the implementa-
tion [Mar98, p221-224],and prototype implementations can be obtained automatically
(e.g. [GWM*93).

Algebraic speci cations are subject to all the issuesthat arise in the description of
any axiomatic system: the distinction betweensyntax, semarics, and pragmatics; the
notions of syntactic aswell as semariic consistency soundnessand completenessegetc.

Becausewe cannot communicate ethereal ideasin our headswithout syntax, and cer-
tainly do not want to talk about meaningstoo informally, endoving an axiomatic sys-
tem with meaning amourts to providing a translation or interpretation of that formal
systemin terms of another formal systemthat is "hopefully' better understood| i.e.,
squigglesto familiar squiggles. One should not get the mistaken impression that se-
mantic universesare already there, waiting to be matched syntactically. As speci c-
ations get more and more sophisticated, so are semaric universesdiscovered (or one
should say, cortrived) in order to endow the former with meaning. The reason for
bothering with a translation is non-injectivity: dierent syntactic ertities may have
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the samesemaric meaning.

The meaning of algebraic speci cations is provided by the formal system of Universal
Algebra. This is why algebraic speci cations are “algebraic'. Concretely, in this thesis
the meaning of an algebraic speci cation is a partial many-sorte d algebra, in par-
ticular, the least or initial one. The reasonsfor choosing this semartic formalism are
fourfold:

1. Algebraic speci cations are collections of texts whosemeaning is consideredsimul-
taneously: the meaning of a speci cation dependson the meaning of the speci c-
ations it imports and is therefore corveniert to considerall speci cations at once.
Many-sorted algebrasare algebraswith many carriers, i.e., setsof values. (They are
more precisely called many-valuel but the terminology has not caugh on.)

2. Partial algebrasallow usto deal with partial operators in a natural way. Partial
operators are operators that may produce stuck terms, i.e., run-time errors. They
are common in strongly-typed languagesthat separatevaluesfrom types. For ex-
ample, the function that returns the head of a list is a partial operator which fails
when the list is empty.

3. Classicalgebraic speci cation formalisms have limitations on expressibility. Firstly,
the behaviour of ead typeis described by meansof equational axioms to be satis ed
by any meaning-providing algebra. Equations form a simple speci cation language
but many properties cannot be expressedwith equations alone. For example, the
axiom of functional extensionality requires a conditional equation:

fx=g9gx) f=g

Secondly operators are rst-or der functions.! Equations involving higher-order op-
erators are dicult to wield; in particular higher-order uni cation is in general
undecidable (not surprising, for function equality is undecidable). Howeer, there
is no reasonto worry. On the one hand, Parameterised Programming makes the
casefor lifting higher-order programming from operators to speci cations [Gog8§.
On the other hand, there are algebraic speci cations with higher-order partial op-
erators and conditional equationsthat are complete with respect to the classof all
extensional models [Mei95].

LFor someauthors, this is what “algebraic' means, e.g. [Mit96 , p145].
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Our speci cation formalism will permit conditional equations , which are essetial

in speci cations involving partial operators. As to the order of operators, we remain
in a rst-or der world. Firstly, our aim is to explore Generic Programming on classic
abstract typeswhich can be described perfectly well in a rst-order setting. Higher-
order functions sudch as maps or folds will be written as generic programs outside
the type using the latter's rst-order operators. Secondly conditional equationsare
important to us for purposesof speci cation, not deduction.

. We want our speci cations to have a unique meaning (up to isomorphism). Initialit y

capturesthe idea of the least algebrathat satis es the speci cation, i.e., it doesnot

satisfy equationsthat are not syntactically provablefrom the axioms, and the carriers
contain valuesthat are symbolised by at least one term (i.e., expressioninvolving

operators). There is also another model, the nal algebra, which is unique up to

isomorphism. The certral notion hereis bisimulation, the dual notion of congruence
in initial algebras. A bisimulation establishesan equivalencerelation betweenterms
whoseexternal obsenable behaviour is equivalert. Sudh information-hiding overtone
might render the impressionof being a better notion of meaningfor abstract types,
for the programmer is free to implement a simulation of the type so long as the

terms' obsenable behaviour is the same. However, one thing is the semariics of a
speci cation and another its implemenation, of which we care lessin this thesis.
Finally, initial algebrashave been studied in depth and endow speci cations with

an interesting form of induction.

The following sectionsdescribe our algebraic speci cation formalism. For readability,

the technical details about its semarics and set-theoretic formalisation are given in

Appendix A. The formalism is presened in two stages. A basic formalism is presen-

ted rst, namely, signatures, theories with equations, and initial algebra semariics.

Section 5.4 preseris its syntax and semarics discursively through a few examples.

Section A.1 details its set-theoretic formalisation and algebraic semartics. Section5.5

describesthe extension of the basic formalism with partial operators and conditional

equations. Section A.2 details the sematrtics of the extended formalism. Section A.3

glides over the categorial rendition of algebra; in particular, Section A.3.1 introduces

the notion of F-Algebra which is essetial for a full understanding of Chapter 9.

Partial algebraswere rst studied in [BW82] and the existence of initial models in
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[AC89]. Ordered-sorted algebis are a generalisationthat includesa notion of inclusion
(subtyping) among speci cations [GM89]. The books [LEW96, Mar98] are excellen
intro ductions to algebraic speci cations.

5.4 The basic specication formalism, by example

Our algebraicspeci cation formalism hasa syntactic part or signatur e and a semartic
part or theory . The syntactic part declaresthe name of the speci cation and the name
of the typesde ned, calledsorts in the jargon. A sort is a pieceof uninterpreted syntax,
a name, but it is meart to stand for something, i.e., a set of values. A signature also
lists the set of operator namesand their sort-signatur es which specify the arity and
sort of operator argumerts and return values. Nullary operators are called constarts.
Figure 5.1 shows a simple example.

signature NAT
sorts  Nat
ops

zero : ! Nat
succ : Nat ! Nat
end

Figure 5.1: Signature NAT.

Functional programmers expressthe same idea with dierent notation, where only
sorts, called ‘type names'in this case,and operator names,called “value constructors',
are de ned explicitly:

data Nat = Zero | Succ Nat

As shownn above, a signature starts with the keyword signature  followed by the sig-
nature's name (in uppercase),the keyword sorts followed by the list of (capitalised)
sort-names,and the keyword ops with the list of (lowercase)operator namesand their
sort-signatures. We assumeoperators are all pre x and written in functional style.
An optional use clause can be included to import other speci cations as shawvn in
Figure 5.2.

Whitespace in sort-signatures separatesargumert sorts. This notation is consistern
with most algebraic speci cation languagesand has the advantage that it can be in-
terpreted either as cartesian product or as function space(currying). This last inter-
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signature STRING signature CHAR
sorts  String sorts Char
use CHAR ops
ops ch0 : I Char
empty : ! String D
pre : Char String ! String ch255 : ! Char
end end

Figure 5.2: Signatures STRING and CHAR

pretation con icts with our previous assertionthat operators are rst-order. We make
an exception for operators that only return functions becausethere is an isomorphism
betweenthe typesA B! CandA! B! C. In somefunctional languagescurry-
ing seemsthe preferenceand we want to keepin mind the possibility of working with
algebraic speci cations in sud languages,even if not currently supported.

There is clearly a shift of emphasisfrom valuesto operators: programmersspecify the
permitted operators, and terms can be formed out of repeated applications of proper
operators to constarts. These terms must satisfy the well-sortednessproperty that
ewvery proper operator is applied to argumerts of the sorts speci ed by its sort-signature.
The functional style is important asit corveysthe notion of referential transparency:
terms are meart to stand for valuesof the type, and oneterm represerts a unique value.

For example, signature NAT de nes the sort Nat, which is meart to stand for the
set of natural numbers. The set of operators generatesterms that can be put in
correspondencewith natural numbers: zero for O, succ zero for 1, etc. A natural
number is represened by only one NAT term.

In general speci cations may cortain laws, that is, relations between terms| e.g,
equations or conditional equations|that specify the behaviour of operators. More
precisely relations are semantic constraints: an algebra must satisfy them in order to
be a model. Figure 5.3 shavs an example of an algebraic speci cation with laws.

The signature name has changed becausewe have added one operator. The semartic
part or theory embedsa signature part by precedingit with the keyword theory andthe
name of the theory (in uppercase).A theory adds (1) a list of free-\variable declarations
for variables appearing in the laws which are assumeduniversally quanti ed, and (2) a
list of laws (equations) which, in this example, specify the behaviour of plus .
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theory NAT,
signature NAT,
sorts  Nat
ops
zero : ! Nat
succ : Nat ! Nat
plus : Nat Nat ! Nat
vars
X,y : Nat
laws
plus x zero
plus x (succ )
end

X
succ (plus x y)

Figure 5.3: Theory NAT,.

Equality is an equivalence relation and therefore equations introduce equivalences
among terms. Consequetly, courtably in nite terms may denote the same value;
for instance:

succ zero
plus zero (succ zero)
plus (succ zero) zero
plus (plus zero zero) (succ zero)

all represent the natural number 1.

The meaning of an algebraic speci cation is a many-sorte d algebra: broadly, setsof
values, called carriers , and functions on those values, called algebraic operators ,
that satisfy the laws. Many dierent algebrascan be models of the speci cation,
i.e., we can make a correspondencebetweenterms and values,and algebraic operators
satisfy all the axiomatic equations and those derivable (syntactically provable) from
them. The initial algebra approad provides a de nition of the most natural model.
The carriers of an initial algebra contain valuesthat are represerted by at least one
term, i.e., there are no junk valuesin the algebra. And the algebraic operators only
satisfy the equations of the speci cation, i.e., there is no confusion betweenvalues;
in other words, the model doesnot satisfy extra equationsbetweenvaluesthat are not
re ected asequational axioms betweenterms, or as equationsthat can be derived from
the latter.
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Take signature NAT, for example. We assumethat it speci es the setof natural numbers.
Howewer, we can also make a correspondencebetweenthe set of terms and the set of
integers. In this case,negative integersare not represetted by any term (junk). We can
alsomake a correspondencewith the setf0; 1; 29, wheresucc isinterpreted as ‘addition
modulo 3', that is, 2+ 1= 0, but there are no laws in the speci cation re ecting this
property (confusion).

The following EBNF grammar describes the syntax of the specication formalism.
Non-terminals Uname, Cname, and Lname stand for upper-caseidenti er, capitalised
identi er, and lowercaseidenti er respectively:

Theory = theory Uname Signature Vars? Laws
Signature ::= signature Uname UselList? Param? Body
UseList := wuse Uname*

Body = sorts Cname" (ops OplList)?

OplList = (Lname : SortSig) *

SortSig = Cname ! Cname

Vars = wvars (Lname : Cname *

Laws = (Term = Term)*

Param = param Cname (OplList Vars? Laws)

We will often drop the vars clause,for free variables are those symbols that are not
declaredby other clausesand their sorts can beinferred from the context of usewithout
e ort.

As indicated by non-terminal Param, an algebraicspeci cation canbe parametric on an-
other algebraic speci cation. A formal parameteris declaredusing the keyword param
followed by the list of capitalised sort names and the set of constraints (laws) that
must be satis ed by the parameter speci cation. Without constraints, the paramet-
erised speci cation is (unbounded-)parametrically polymorphic, and with constraints,
bounded-parametrically polymorphic (Chapter 4).

Parameterised speci cations are functions on speci cations and they could be higher
order, i.e., parametric speci cations could take parametric speci cations asparameters.
The meaning of parametric speci cations can be studied directly in terms of signature
and theory morphisms [BG82, LEW96], which also describe other composition med-
anisms sud as inclusion, derivation, etc. Another possibility is to study the meaning
of actual instantiations, that is, of the speci cations resulting from the instantiation of
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the parametersto non-parametric (or manifest, if you will) speci cations. This is the
approac we follow in Appendix A, for it is the simplest.

5.5 Partial specications with conditional equations.

In strongly and statically type-chedked languagesthat separatetypesfrom values,ADT
operators may bepartial. Partial operators producestuck or non-reducibleterms (when
equationsare directed and turned into reduction rules). Examples of partial operators
aretos and pop, which return or remove respectively the top of a stadk. The following
are stuck terms:

tos emptyStack
pop emptyStack

Many peoplethink of stuck terms as being unde ned. Speci cation languagesof yore
ignored them for that reason. Howewer, the term “unde ned' is alsoa synorym of non-
termination, this meaning stemming from Partial Recursion Theory. A stuck term is
not the sameas a non-terminating term. We can always test whether the argumert
of a partial function meetsa condition (i.e., whether the stad is empty) at run-time
whereastesting for non-termination is in generalundecidableeven at run-time.

Partial functions introduce courtably in nite stuck terms if the grammar of terms is
recursive. For example:

empty ? (pop emptyStack )
push 1 (pop emptyStack )
push 2 (pop emptyStack )

Stuck terms do not stand for valuesin any carrier. Also, they cannot be proven equalto
any other term. They constitute junk and algebraic speci cations must somehav deal
with them. A possiblesolution is to intro ducethe notion of err or terms and axiomsfor
them which are reminiscert of the useof ? in Complete Partial Orders [Sto77, Ten7q.
More precisely we add to every speci cation:

1. One constart operator error_ s of sort s, for every s.

2This fact is what supports the idea of replacing run-time tests by static onesin richer type systems;
we would not expect richer type systemsto decide the halting problem.



2. An error-testing operator error_ s? of sort s'!
3. Equations for the above.

4. BOOLis imported and it has an if-then

5.5 Partial speci cations with conditional equations.

Bool , for every sort s.

-else conditional operator.

For example, Figure 5.4 shows part of a speci cation of stads.
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theory STACK
signature STACK
sorts  Stack
param Elem
use BOOL
ops
emptyStack
push
pop
tos
empty ?
error_Elem
error_Stack
error_Elem ?
error_Stack ? :
laws
tos error_Stack
tos emptyStack
tos (push x s)

pop empty Stack

Stack

Elem Stack ! Stack
Stack ! Stack
Stack ! Elem
Stack ! Bool
Elem

Stack

Elem ! Bool
Stack ! Bool
= error_Elem

= error_Elem

if error_Elem ? x then

else if error_Stack
else x

error_Stack

error_Elem
? s then error_Elem

Figure 5.4: STACKwith error terms.

Conditionals are usedfor testing at the object level whether variables stand for error

terms. Speci cations of this kind can be proven consistern, where ead carrier of the

initial algebra has one error value [Mit96, p200]. Howewer, they are low level and

di cult

to read and write.

Partial speci cations with conditional equations provide a higher-level approad that

makes speci cations more readable. Partial operators are pre xed by the keyword

partial

abbreviatesDEF (t) = true and assertsthat t is de ned, i.e., it is sugarfort = t.

. An object-level de nednesspredicate DEF is introduced such that DEF (t)
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Laws now contain conditional equations of the form:
tp=t9~r o r =t ) E

wheren 0 and E is either an equationt = t®or a partial equation t ' t°which
is syntactic sugar for DEF (t) » DEF (t% ) t = t% Premisesin conditional equations
represen preconditions; de nednessis only an example. An empty premise (n = 0)
givesrise to an equation E. Figure 5.5 shows the partial speci cation of stacks.

theory STACK
signature STACK
sorts  Stack
param Elem

use BOOL

ops
partial tos : Stack ! Elem
partial pop : Stack ! Stack
emptyS . Stack
push : Elem Stack ! Stack
empty? : Stack ! Bool

laws

DEF( tos (push x s) )
DEF( pop (push x s) )

tos (push x s) = X
pop (push x s) =s
empty? emptyS = true
empty? (push x s) = false

Figure 5.5: Partial speci cation of stadks.

We will usesyntactic sugar for booleanterms and write t instead of t=true and : t
instead of t=false  only in the premises of conditional equations. This sugar is used
in Figure 5.6 which shows the speci cation of FIFO queues.

5.6 Constrain ts on parametricit y, reloaded

ADT implementations are driven by pragmatic concerns.In the caseof parameterised
ADTs, someimplementations imposeconstraints on payload types. We have already
touched upon this in Section5.2. This sectionillustrates the problem with an algebraic
speci cation example.

Considerthe parametric ADT of setsshown in Figure 5.7. Setsare unorderedcollections
without repeated elemerns. Typical expected operators are construction, membership
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theory FIFO
signature FIFO
sorts  Fifo
param Elem
use BOOL
ops
emptyQ Fifo
enq : Elem Fifo ! Fifo
emptyQ? : Fifo Bool
partial front Fifo ! Elem
partial deq Fifo ! Fifo
laws
DEF( front (eng x Q) )
DEF( deq (eng x q) )
emptyQ? emptyQ = true
emptyQ? (enq x q) = false
(emptyQ ? q) ) front (eng x Q) = X
(emptyQ ? q) ) front (eng x q) = front ¢
(emptyQ? q) ) deq (enqg x @) = X
. (emptyQ? q) ) deq (enq x @) = engq X (deq Q)
en

Figure 5.6: Speci cation of FIFO queues.

test, and cardinality. Other possible operators not included in the gure are union,
intersection, complemern, etc.

Unconstrained sets are rather Spartan: payload elemens can be put in the set and
the cardinality can be calculated. Set membership, and operators derived from it
such as union and intersection, imposesan equality constraint on payload types. The
implemenrtation of set complemen may add another constraint.

Sets can be implemened in various ways. For example, as lists without repeated
elemerns whereinsert
the length of the list.

inserts unrestrictedly and card skips repeated elemens from the total

leavesonly onecopy of ead elemernt in the list and card returns
Sets can also be implemented as lists with repeated elemerts
where insert
count. Another possibleimplementation is in terms of hashtables where either insert

or card skip repeated elemerts when dealing with collision lists. This implementation
forcesa "hashable'constraint on the payload type. Setscan beimplemented in terms of
boolean dynamic vectors. In this casepayload elemers must be indexable, i.e., there
: Elem !

must exist an injective function indexOf Nat. The application insert x

setsthe position indexOf x in the vector to True .
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theory SET
signature SET
sorts  Set
param Elem
use BOOL
ops
equal : Elem Elem ! Bool
laws
equal x x = true
equal x y = true ) equal y x = true
equal x y = true ” equal y z = true ) equal x z = true
use BOOL NAT
ops
emptySet : Set
emptySet ? : Set ! Bool
insert : Elem Set ! Set
member? : Elem Set ! Bool
card : Set ! Nat
laws
emptySet ? emptySet = true
emptySet ? (insert X s) = False
insert x (insert x s) = nsert X s
insert x (insert 'y s) = insert y (insert X S)
member? x emptySet = False
member? x (insert y s) = equal x y or member? x s
card emptySet = Zero
card (insert X S)
= plus (card s) (f member? x s then Zero else Succ Zero)

Figure 5.7: A possiblespeci cation of Sets.

5.7 Concrete types are bigger

Concrete types are bigger than abstract types. The reasonfor this lies partly in the
context-free nature of the language of concrete types. Context-dependernt properties
sudh asrepetition or equality of payload elemens are not captured by type de nitions.
ADTs imposecontext-dependert constraints on concretetypesindirectly by meansof
equational laws and payload constraints.

Let's look at the problem from another angle. Consider the concretetype:
data Ord a) Tree a = Empty | Node a (Tree a) (Tree a)

This type can be usedin the implementation of di erent abstract types: binary seard
trees, priority queues,ordered sets, ordered bags, etc. In ead case, the operators
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available and their laws are dierent: the maximum elemeri in the left subtree of
a non-empty binary seard tree is at most the root, whereasin a priority queuethe
ordering in the tree could be dierent, with smaller valuesto the right of the root.
Binary seart trees, priority queuesand bags may corntain repeated elemerts; that
is not the casefor ordered sets. In a priority queuethere is the choice of inserting
elemerns with samepriority in FIFO fashion or via somecollision-resolution function,
etc. Elemens areremoved from a xed position (e.g.the front) in a priority queue. For
sets, bags,and binary seard trees, the elemer to remove must be indicated explicitly,

e.g.

remove : Elem ! Set ! Set

It is a mistake to think that Tree is the “natural' represenation type of any ADT. We
have already touched upon this in Chapter 1. This is the reasonwhy ADTs are encap-
sulated behind an interface of operators that maintain the implementation invariants
of the represenation type.

5.8 Embodiments in functional languages

Mainstream functional languages,notably Haskell and SML, are not concernedwith
algebraicspeci cations of data typesin any fashion. The following two sectionsdescribe
the medanismsavailable in Haskell and SML for de ning ADTSs.

5.8.1 ADTs in Haskell

Haskell supports ADTs poorly, relying on a module concept not dissimilar to C++'s
name-spacegStr92]. A module is a logical entity that doesnot necessarilycorrespond
to a program le, but this is usually the case. Modules are linguistic constructs for
cortrolling namescope and visibility. They arenot rst-class ertities. ADTs areimple-
mented using modules by meansof exporting (making public) type and operator names
while hiding value constructors and operator implemertations. There are medanisms
for controlling the way data and operators are imported such aslocal or quali ed im-
ports and transitivit y| e.g, if Mimports M' and M' imports type A, M cannot seeA
unlessexplicitly imported.

The Set ADT shown in Figure 5.7 can be corveyed to Haskell as shavn below. In this
example there is no separation between speci cation (only syntax) and implemerta-
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tion:

module Set (SetemptySet ,insert ,member,card) where
data Eq a) Set a = MkSet [ag]

emptySet @ Eq a) Set a
emptySet = MkSet []
insert @ Eqa) a! Set a! Set a

insert  x (s@(MkSet |)) = if elem x | then s else MkSet (x: I)

The module name Set is followed by a parenthesisedlist in the headingwhich declares
the exported names. The type name Set is exported but not its value constructor
MkSet. (The overloading of module and type-operator name is legal.) The constraint
on the payload typeis not shown in the export clausebut must be gured out by looking
at the type de nition. It must be included also in the type signatures of operators.
(Changing the implementation to boolean vectors would imposea di erent type-class
constraint which would a ect client code|Section 5.8.2).

Type classescan be employed to separatespeci cation from implementation as shown
in Figure 5.8.

module Set (Set (..)) where

class Set s where

emptySet :: Eqa) s a
!

insert o Egqa) a sal! s a

module Set' (Set ') where
import  Set
data Eq a) Set' a = MkSet [a]

instance Set Set' where
emptySet
insert  x (s@(MkSet [))

MkSet ]
if elem x | then s else MkSet (xl)

Figure 5.8: ADTs in Haskell using type classes.

In the rst module, the namesSet and Set' areoverloaded: Set hamesa type classand
the module whereit is de ned. A types is amember of type classSet if it implemerts
the required set operators. The type-classconstraint Eq a hasto be written in the type
signature of every operator. In the secondmodule, Set' is alsooverloaded: it namesa
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type operator and the module whereit is de ned. The Set' typeis made an instance
of Set by providing an implementation for every operator. The module exports only
the type, not the value constructor MkSet.

We concludewith an example of usage. Function addList addsthe elemerns of a list

into a set:
addList :: (Eqa, Set s) ) [a ! s a! s a
addList [] s =s

addList (x :xs) s

insert  x (insert XS S)

Notice the Set constraint in the type signature: s must satisfy the Set interface.
5.8.2 On constrained algebraic types

In Haskell, it seemsnatural to implement constrained ADTs in terms of constrained
type operators. A rst-order constrained type operator is type-classconstrained on
someor all of its payload.

Howewer, constrainedtype operators are contentious. Paraphrasing Section4.2.1of the
online Haskell Report,® a declaration sud as:

data Eq a) Set a = MkSet [4a]
is equivalert to the following:

data Set a where
MkSet :: Eqa) [a] ! Set a

That is, constrained type operators do not carry constraints, their value constructors
do. Hence,construction or pattern-matching with MkSet givesrise to an Eqg constraint.
‘[T]the cortext in the data declaration has no other e ect whatsoewver'. The last sen-
tence from the Haskell report is proven by the following snippet:

foo :: Set a ! Int

foo =3

foo (undefined = Set (Int ! Int))
> 3

Shttp://ww.haskell.org/onlinereport/d ecls. html#s ect4.2 .1
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The code type-chedks and runs despite that integer functions are not instancesof class
Eq. This is becauseMkSet is not involved. On the other hand, function bar belov has
a constraint in its type signature becauseit pattern-matches against MkSet:

bar : Eqa) Set a! a
bar (MkSet xs) =

The legality of a type such as Set (Int ! Int ) can be explained more accurately
using SystemF, notation (Section 2.7.4). The constrainedde nition of Set would give
the impressionthat at the type level the type application of Set to an argumert is legal
only when the latter is in classEq. However, as already explainedin Section2.7.4, the
kind system accouns for arity and order, not for class membership. Supposewe can
annotate kinds with classessud that, for instance, E9 is the collection of typesof kind

in classkg. The de nition of the Set type and its value constructor MkSet would be
expressedn this setting thus:

Set . Ea |

Set E . Eaq
MkSet : 8 : Eda:[ ]! Set
MkSet %' cBax o] ]ix

In Haskell, howewer, type classesare orthogonal to the kind system. Set retains its

! kind and MkSet carries the constraint. If constraints were assaiated with type
operators they would provide more security: writing expressionswith illegal typessud
asSet (Int ! Int ) would beimpossible.

Many Haskell programmers avoid constrained type operators and prefer to constrain
functions. This is practical from the point of view of type-operator reusability. For
example, there is only onetype of lists. Lists with constrained payload are not de ned
by a newtype, but manipulated by constrainedfunctions suc assort . In other words,
there is no sud thing as a constrained list type in the program.

Howewer, there are reasonswhy constrained types are useful. For once, becausethey
are constrained, the idea is that they are to be used for speci c applications. More
importantly, constraints are useful for documentation purposes. Logically, it makes
more senseto specify constraints in a single place (a type de nition) instead of in all
placeswherethe typeis used(functions). The fact that constraints in type signaturesof
functions can be inferred makesthis point stronger. However, explicit type signatures
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should be written down for documentation purposes(they are part of a function's
speci cation) and with higher-rank polymorphism they are unavoidable (Chapter 4).
This brings us to the point about the impact of constraints in maintainabilit y.

When it comesto ADTS, constraints are formally assaiated with the type operator: in
the caseof sets,for example, membership test imposesan Eq constraint on the payload
type. We can alsoarguethat ADT valuesare manipulated via exported operators and
that it is perfectly possibleto remove constraints from implemertation type operators
aslong as exported operators carry them. For example,in the module-basedde nition

of setsin Section5.8.1, MkSet is not exported and we could remove the constraint from
Set 's data declaration. Similarly for the class-basede nition.

But putting constraints on operators hinders maintenance [Hug99. We have touched
upon this in Sections5.2 and 5.6: payload constraints are fragile with respect to im-
plemertation changes.They canbe a ected by, and therefore disclose,implemertation
decisions.

For instance, changing the Set implementation from lists to dynamic boolean vectors
entails changing Eq to Ix (indexable) in the type signatures of set operators. (The
constraint is changed, not added, becausédx is a sub-type-classof Eq.) Client functions
using set operators are a ected by constraint propagation if their type signaturesare
given explicitly and cortain an Eq constraint on set payload. Grappling with this
problem leads to solutions basedon constraint or class parametrisation (Section 6.2
and Section 6.1.10).

5.8.3 The SML module system

ADTs are also implemerted in Standard ML with the help of modules. SML has a
more sophisticated module system with a sound theoretical basis (which employs the
machinery of dependert types) [Tof96, Pau96, DT88]. An SML module is an abstract
concept in terms of which SML programs can be structured. This section overviews
the linguistic constructs whosemanipulation and combination make up the notion of
SML module.

An SML signatur e bundles a set of type names, type signatures, exceptions, and
SML structure namesunder the samescope. Signaturesplay the role of speci cations
or interfaces, i.e., a signature is the module-level equivalent of the “type' of an SML



5.8 Embodiments in functional languages 100

structure.

An SML structur e bundlesa set of type and value de nitions under the samescope.
In short, a signature declaresa module's interface whereasthe structure declaresits
implementation. This model is similar to Ada's and Modula/2's.

Figure 5.9 shaws the signature Stack and a possiblestructure S1 implemerting Stack .
In SML, whether a function raisesan exception is not re ected on its type signature,
hencethe commerts.

signature Stack = sig
type t
exception  Empty
val empty : t
val push * t ! t
val tos t ! (* raises Empty *)
val pop t ! t (* raises Empty *)
end
structure S1 > Stack = struct
type t = list
exception  Empty
val empty =
fun push (x,s ) = xis
fun tos ] = raise Empty
| tos (xixs ) = X
fun pop ] = raise Empty
| pop (xiixs ) = xs
end

Figure 5.9: Signature Stack and structure S1 implemerting Stack .

Signatures and structures lack laws. A structure conforms to a signature when it
provides de nitions for all the signature's types, values, and structure names. SML is
an implicitly typed languageand the compiler is expected to infer the signature of a
structure. By default, the inferred signature cortains the typesof all declareditems in
the structure. Programmersmay imposestructure-to-signature conformanceexplicitly.
This is what :> denotesin Figure 5.9.

Structures do not hide information: “declaringa structure hardly di ers from declaring
its items separately exceptthat a structure declaration is takenasa unit and introduces
compound names' [Pau9q. Information hiding is achieved by omitting private items
from the signature; hence, a structure may cortain more items than specied by a
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signature.

Signatures are not type-terms and structures are not values: in SML, type-terms and
terms are separated;therefore, an ertit y that encompasseboth kinds of terms livesat a
di erent linguistic level. Structure valuesare created and manipulated at compile/link
time, where “type-level computation' amounts to enforcing scope and visibility plus
type cheding of constituent items and signature conformance.

Signatures can be combined in various ways to form new signatures and similarly for
structures. SML's module systemgoesa bit further and permits the de nition of para-
meterised modules, surprisingly called “functors'. An SML functor takesa structure
that conformsto a signature and createsanother structure asa result, which conforms
to another signature. Functors can be type-hedked and compiled to machine code
before applied to their argumerts. Figure 5.10 shows a functor example. The SET
signature declaresthe interface of a set. The EQ signature declaresthe interface of a
type with equality. Functor LIST_SET takesa structure conforming to EQand returns
a structure conforming to SET where setsare implemented as lists.

5.9 Classication of operators

Section 5.7 has already intro duced someoperator terminology, and we have beenusing
someof it when calling an operator a “constructor' or a “selector'. We now provide a
more detailed classi cation accordingto the role operators play in speci cations. This
classi cation is used by subsequenh chapters.

There are two major operator groups [Mar98, p189-190]: constructors and observ-
ers. Constructors generatevaluesof the type. They can be free or non-free(i.e., there
are or there are not equations among them). We have already seensome examplesto

which we add somemore:

emptyS : ! Stack

enq : Elem ! Fifo I Fifo

insert : Elem ! Set ! Set

mkTreeNode : Elem ! Tree ! Tree ! Tree

There can be multiple constructors . A typical exampleis the type of double-ended
gueueswhere we can queuevaluesat the front and at the rear of the queue. Lists can
be constructed using nil  and cons, nil and snoc, nil and singleton  and concat ,
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signature EQ = sig

type t
val eq : t *t ! bool
end

signature SET = sig

type Set

type Elem

val empty . Set

val isEmpty : Set ! bool

val insert . Elem * Set ! Set
val member : Elem * Set ! bool
val card : Set ! int

end

functor  LIST_SET (Element : EQ : SET = struct

type Elem = Element .t

datatype ListSet = Nil | Cons of Elem * ListSet

type Set = ListSet

val empty = Nil

fun isEmpty Nil
| iSEmpty

true
false

end

Figure 5.10: SML Functor example.

etc.

The secondgroup of operators is that of observers . Two important subgroupsare
(boolean) discriminators , which enquire about which constructor has created the
value, and (partial) selectors which enable the selection (extraction, if you will) of
data componerts. Examples of discriminators are:

isEmptyS : Stack ! Bool
isEmptyQ : Fifo ! Bool
isLeaf : Tree ! Bool

Examples of selectorsare:

head : List ! Elem
tail : List ! List
tos : Stack ! Elem
pop : Stack ! Stack

leaf : Tree ! Elem
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leftTree . Tree ! Tree
lookup : Key ! Table ! Elem

Removal operators are selectors. There are two kinds of removal: implicit and expli-
cit . For example:

implicit . ADT! (Elem, ADT)
explicit . Elem ! ADT ! ADT

Implicit removals are usually decomposedinto as many selectoroperators as necessary
For example, one selector returns an elemen and another returns a new ADT value
with that elemen removed. The elemen is not an argumert in either case, for its
“location' is xed, e.g.

front : Fifo ! Elem
deq . Fifo ! Fifo

Explicit removal consiststypically of a single selectorthat takesthe elemen to remove
asan argumert. For example:

remove : Elem ! Set ! Set

Selectorsare alsocalled modi ers by someauthors. Others usethe term destructor
We deprecatethe latter for it has deallocation connotations that are irrelevant in the
garbage-collectedfunctional world.

Interr ogators enquire about properties of the type. Examples are:

member : Elem ! Set ! Bool
cardinality : Set ! Int

Finally, enumer ators carry payload cortents to a dierent type, usually a concrete
one. For example:

enumerate : Set ! List
5.10 Classication of ADTs

This section provides a classi cation of ADTs which is usedby subsequeh chapters.

An ADT is unbounded when the internal arrangemen of payload elemerts is inde-
penden of any payload property. In other words, the structure of an unbounded ADT
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is described by the number and position of payload elemens, where by position we
mean the location of an elemern in the abstract type, not its implemertation type.

Examples of unbounded ADTs are stadks, FIFO queues,double-endedqueues,lists,
arrays, matrices, etc. Notice that unbounded ADTs may have constrained payload. A
FIF O queuecan be constrainedto payload with equality but only to make queueequal-
ity decidable. Arrays can be constrained to indexable payload, but in a referertially-
transparent world the position of an elemern is given by an indexing function and is
therefore constart; new array valuesare created by providing new indexing functions.

An ADT is bounded when the internal arrangemen of payload dependson a property
of the payload. More precisely there are context-dependert laws such as ordering, lack
of ordering, repetition, etc, which a ect the position of payload elemens and whose
conformancemay imposea constraint on the payload. What is more, the position of
an element may be irrelevant.

Examples of bounded ADTs are sets, bags, ordered sets, ordered bags, binary seard
trees, heaps, priority queues,random queues,hash tables, dictionaries, etc. Setsare
constrained on payload with equality not only to decide set equality but to be able
to de ne the ADT: setsdo not have repeated elemens and set menmbership has to
be implemened. (Sets are typical examplesof insensitive types where the position
of elemerts, being irrelevant, cannot be usedin their characterisation). Ordered sets
require an order relation on their payload. The payload of hashtables and dictionaries
must be, respectively, "hashable'and “keyable'.

Finally, an ADT is mixe d whenit is both boundedand unbounded. Examplesof mixed
ADTs are compositesof two ADTs where oneis boundedand the other is unbounded.
Such ADTs may have multiple payload types.

In practical programming, unbounded ADTs are generaland bounded ADTs are spe-
ci c with respect to applications. A very appealing quality of bounded ADTs is that
constructors are ‘'smart”: they take care of inserting payload within the abstract struc-
ture.

There are other possibleways of classifying ADTs. For instance, basedon their im-
plementation (which is usually the standard classi cation), on their purpose [Bud02,
p387], on the e ciency of foremost operators (e.g., searding a list takeslinear time,
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searting a random accesdist takesconstart amortised time, searting a vector takes
constart time. ..), etc.
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Chapter6
StructuralPolymaphismin Haslell

Domain Structure Principle: The structure of a function is determined
by the structure of its domain. [Mac90, p202]

Structural polymorphism, or polytypism if you like, pays justice to the dictum \the
structure of the problem immediately suggeststhe structure of the solution and the
structure of the data type immediately suggeststhe structure of ead function” [FH88,
p41]. In this chapter we examinetwo popular languageextensionsfor doing polytypic
programming in Haskell: Generic Haskel [Hin00, Loh04, HJ02] and Scrap your Boil-
erplate [LPO3, LP04, LPO5]. The latter can be understood as a blend of polytypic and
strategic programming techniques [VS04, LVV02], which are also explained.

It is surprising that the Domain Structure Principle quoted above hasbeenaround and
uttered ad nausem, yet nobody hastried to capture the generalpattern until recenly.

6.1 Generic Haskell

Generic Haskell is a polytypic languageextension of Haskell. It comesin two avours,
classic and dependency-style . In terms of expressibility, dependency-syle super-
sedesclassic style. The latter's principles can be summarisedin a few paragraphs.
Subsequeh sectionsspell out what these paragraphsmeanin more detail:

A polytypic function is structurally polymorphic on one! type operator argumert
of any kind. It capturesa family of polymorphic or overloadedfunctions on that
type operator.

The type of eady member of the family (or instance) dependson the kind of the
type-operator argumert. All the instance's types can be captured in a single
inductiv e de nition which provides a type for the polytypic function. This type
is a polykinde d or kind-indexe d type becauseit is parametric on the type
operator's kind [Hin02].

Multiple type-operator arguments are a dicult extension [Loh04, p207].

107
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The body of eacy menber of the family dependson the de nitional structure of
the type-operator argumert, i.e., its structure in terms of sums of products of
basetypes,type variables, and applications of type operators. All the instance's
bodies can be captured in a single inductive de nition and, what is more, only
the basecaseof the induction hasto be provided.

A polytypic function is somewhat ambiguously called a type-indexe d value. The
name is ambiguous becausepolymorphic functions are also type-indexed, i.e., para-
metric on a type as made explicit in System F (Section 2.7.3). Moreover, polytypic
functions are not rst-class valuesin Generic Haskell (Section 6.1.9).

Dependency-syle Generic Haskell has a type systemfor keepingtrack of dependencies
betweenpolytypic functions|other polytypic functions called by a polytypic function
appear on the latter's type signature (notice the potential impact on maintainabilit y).
Howewer, polykinded types are still used internally by the compiler [LohO4, p104].
Dependency-syle alsoprovidesmore exible notation and supports polytypic extension
which endaws polytypic functions with non-monotonic behaviour for particular types,
and polytypic types [HJLO4], i.e., typesthat are parametric onthe de nitional structure
of other types.

Generic Haskell is a languageextension with a generative implementation. More pre-
cisely the Generic Haskell compiler is a pre-processorthat generatespolymorphic in-
stancesof polytypic functions for actual type-operator argumerts. In order to generate
the instances,type-operator argumerts must be known at compile time (Section 4.7.1).

6.1.1 Algebraic data typesin Haskell

In most functional languages,user-de ned data types are algebraic. An algebraic
data type de nition simultaneously introducesertities at the type and value level. In
Haskell this is donein a data declaration of the form:

data Q) Taz::tan = C1 1100 1k J 20 1 Cm m1ii! mkm

where n and k may be 0, m > 0, subscripted a symbols stand for type variables, C
symbolsfor value constructors, T is atype name, subscripted symbolsaretype-terms,
and Q standsfor a quali cation or conext, i.e., alist of type-classconstraints on some
of T's type-variable argumerts.
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At the typelevel, adata de nition introducesa newtype-operator nameT with global
(i.e., module) scope that becomespart of the lexicon of type-terms. Typescan be
monomorphic (manifest) or parametrically polymorphic (type-lewel functions mapping
typesto types). Type operators can be higher-order (or higher-kinded). The cortext
Q restricts the range of type-variable argumerts to types belonging to the speci ed
type classes.Type de nitions can be recursive or mutually recursive. Type-terms are
kind-chedked and evaluated to manifest typesat compile time. Typesand valuesare
separated.

The syntax of a data de nition restricts typesto be constructed in terms of disjoint
sumg® of cartesian products of primitiv e typeslike Int or Bool , type variables, and
other manifest types, i.e., monomorphic or fully applied type operators including the

prede ned “function space'type operator ! '. Recordscan also be de ned in a data

construct but, at the time of writing, Haskell lacks a universally acceptedrecord system.
In Haskell 98, recordsare syntactic sugarfor products with labelled elds where labels
have global scope. At any rate, records are ignored as data-de nition medanisms by
most polytypic languageextensionswhich assumea world of algebraicdata types(i.e.,

sums of products).

At the value level, a data de nition introducesa set of value constructors which are
special value-lewel functions that becomepart of the lexicon of terms. Value con-
structors are di eren tiated from ordinary functions syntactically: they have capitalised
names. Value-constructor nameswithin the samemodule scope must dier. A value
constructor is introduced for ead of the sum's alternatives. Value constructors are
specialin the sensethat they provide the meansfor both constructing and representing
values of the type. The application of value constructor C to arguments tqq:::tgy, of
types 11::: 1k, respectively doesnot involve a function call but at most the evaluation
of the argumerts themselhes. In languageswith lazy constructors sud as Haskell, the
term C t11:::ty, isavalue of the algebraictype; in languageswith eager constructors,
the term C vi1:::vy, is avalue of the algebraictype, wherev; is the value of tj; .

Becauseof this represertation role and becauseof the lack of relations (e.g., equations)
betweenvalue constructors, the latter canbeusedin de nitions of functions by pattern
matching (Chapter 8). A function de ned by pattern matching is de ned over the

2*Disjoint' is sometimes replaced by “discriminated’ and ‘sum' by ‘union’, but the concept is the
same.
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de nitional structure of avalue of an algebraictype: value constructor namesact astags
that are the meansof discriminating (doing caseanalysis)| i.e., \has this algebraictype
been constructed using value constructor C1 or C, or ...?"|and their argumerts are
matched against pattern expressionsthat selectthe appropriate product componerts.
De nitions by pattern matching are translated by the compiler into caseterms of the
core language (e.g. Figure 2.3). The following is an example of a function de ned by
pattern matching:

length @ List a ! Int
length NIl =0
length (Cons x xs) = 1 + length xs

In type-theoretic jargon, construction, represenation without equations, and pattern
matching are technically called intr oduction, freeness and elimination [Pie02 Sd94).

Nullary value constructors (with empty product) of polymorphic type operators are
polymorphic values whosetype dependson the context (term) wherethey occur. A
typical exampleis Nil which hastype 8a: .List a.

Algebraic data typestake the adjective “algebraic' from the fact that they constitute
a free algeba (Chapter 5). the set of valuesis de ned entirely by meansof operators
(value constructors) applied to argumerts and nothing more.

Figure 6.1 shows a few examplesof type de nitions and their kinds. We usethe notation
tk to state that typet haskind k and retain Haskell's notation v:: t to state that
valuev hastypet. The type operator GTree is higher-order; it is not only parametric
on the elemerns it can storelits payload|, but also on other type operators that
provide the shape for its recursive substructure. For instance, in a GTreeList the
children of a GNode comein a List whereasin a GTreeFork they comein a Fork . We
could have de ned their instantiations directly:

data GTreelList a = GEmpty | GLeaf a | GNode (List (GTreeList a))
data GTreeFork a = GEmpty | GLeaf a | GNode (Fork (GTreeFork a))

The type operator GTree is a generalisationthat abstracts on (i.e., is parametric on)
the type operator applied to the recursive application:

data GTree f a = GEmpty | GLeaf a | GNode (f (GTree f a))
GTree : (! ) ! !



6.1 Generic Haskell 111

data List a
data BTree a b
data GTree f a
data BGTree f a b
data Fork a
data BList a

-- Instantiations
type TreeCharint

Nil | Cons a (List a)

Empty | Leaf a | Node b (BTree a b) (BTree a b)
GEmpty | GLeaf a | GNode (f (GTree f a))
BGEmpty | BGLeaf a | BGNode b (f (BGTree f a b))
Fork a a

BNil | BCons a (BList (Fork a)) -- irregular

BTree Char Int

type ArithExp = BTree Int (Int ! Int ! Int)
type GTreelList = GTree List
type GTreeFork = GTree Fork
t1 : GTreeList Int -- GTree List Int
t1 = GNode [GLeaf 3, GNode [GLeaf 2, GEmpty]]
t2 :» GTreeFork Int -- GTree Tree Int
t2 = GNode (Fork (GLeaf 3) (GNode (Fork (GLeaf 2) GEmpty)))
Int
List !
List Int
List Char
BTree ! !
BTree Char !
BTree Char Int
GTree ( ! ) ! !
GTree List !
GTree List Int
BGTree (! ) ! ! !
BList !
Figure 6.1: Somedata typesand their kinds in Haskell.
GEmpty :: 8f: I . 8a . GTree f a
GlLeaf gf: I . 8a . a! GTree f a
GNode gf: I . 8a . f (GTree f a) ! GTree f a

The type operator BList

is an exampleof anirr egular type. A recursive type operator

is irregular wheniit is recursively applied in its de nition to arbitrary well-kinded type-

terms, not just type variables. Someauthors call thesetypesnested [BM98] and others

non-uniform

[Oka984d. Irregular typesare arrived at by a processof data-structural

bootstrapping [Oka98a Chpl0]. They capture structural invariants within the data

type itself that otherwise would have to be maintained by external operations. These

invariants are enforced by the type system when it cheds for term well-formedness.
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Also, irregular typesmay provide more e cien t represenations. For example,the type
BList is recursively applied to Fork a instead of a, which meansthat every recursive
substructure is a pair of BList , thus obtaining the type of balancedtrees as shown in
Figure 6.2.

Cons BCons
[\ I\
1 Cons 1 Fork
[\ / \
2 Cons BCons BCons
I\ [\ [\
3 Nil 2 BNil 3 BNiIl

Figure 6.2: List vs BList .

Functions onirregular typesmust be polymorphic ally recursive [Myc84, Hen93, i.e.,
ead recursive call may have a di erent type than that of the function. For instance,
the length function for BList hastypeBList a! Int whereasits recursive call must
have type BList (Fork a) ! Int .

6.1.2 From parametric to structural polymorphism

A polytypic function captures a whole family of polymorphic or overloaded functions
in a single de nition. Let us recall the function that returns the length of a list:

length :: List a ! Int
length Nil =0
length  (Cons x xs) = 1 + length xs

We canthink of similar functions for other type operatorssuch asBTree and GTree. All
thesefunctions are instancesof a more general, polytypic gsize function that returns
the “size'of an arbitrary type operator. What is the type of gsize ?

gsize @ ? ! Int

One of the insights behind Generic Haskell is that the type of gsize dependson the
kind of the type operator it works on. Let us write the type signaturesand bodies of
gsize instancesstarting from a kind- type operator and moving all the way up the
kind hierarchy. For a manifesttypet, gsize must be a constart function:

8t . gsizet = t ! Int
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Possibleexamplesare:

gsize_Int oo Int ! Int
gsize_Int = const O
gsize Char :: Char ! Int
gsize_Char = const O

Giving basetypesa zero sizeis a design decision whoserationale will be understood
shortly.

For a type operator of kind ! like List , instead of hardwiring the computation of
the size attributed to the payload in the function de nition we should generaliseand
passa function to do the job. Comparelength 's de nition to gsize List 's below.
(We depart slightly from Haskell's standard syntax and showv 8 and kind annotations
in type signaturesof members of the gsize family.)

length :: List a ! Int
length  Nil 0
length (Cons x Xxs) 1 + length xs

gsize_List D 8a . (a! Int) ! (Lst a! Int)
gsize List gsa Nil gsize_Unit Nil
gsize List gsa (Cons x Xxs) gsa X + gsize List gsa Xxs

gsize_Unit = const O -- fixed !

Notice that the size for valuesof Unit typeis xed, like those for kind- types. We
can de ne the original length function asa particular caseof gsize_List

length = gsize_List (const 1)
We can compute other notions of length by playing with function argumerts:

ords :: List Char ! Int
ords = gsize List ord

Let us repeat the sameprocessfor type operator BTree of kind ! !

size Tree : BTree a b ! Int
size Tree  Empty =0
size_Tree (Leaf Xx) =1

size Tree (Node x | r) =1 + size_ Tree | + size_Tree r
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gsize Tree ' 8a: . (@ ! Int) !
(8b: . (b ! Int) ! (BTree a b ! Int))

gsize_Tree gsa gsb Empty
gsize Tree gsa gsb (Leaf x)
gsize_Tree gsa gsb (Node x | r)

gsize_Unit Empty

gsa X

gsb x + gsize_Tree gsa gsb |
+ gsize_Tree gsa gsb r

Again, the gsize versiontakesan argumert function for every type variable and the
de nition for units is xed. Let us now write the gsize instance for higher-order
type operator GTree. The argumert function gsf assaiated with type variable f is a
parametrically polymorphic function whosetype is that of a gsize for a type operator
of kind !

gsize_GTree
gf. ' . (8a . (@! Int)! (f al! Int)) !
(8a . @ ! Int) ! (GTree f a ! Int))

gsize GTree gsf gsa GEmpty
gsize GTree gsf gsa (GLeaf x)
gsize_GTree gsf gsa (GNode vy)

gsize_Unit GEmpty
gsa X
gsf (gsize_GTree gsf gsa) y

There is an inductive pattern here which can be gleanedby looking carefully at the
type signatures:

8t . gsize  t ! Int
8tt ! . gsize = 8a . (@a! Int) ! (t a! Int)
gt I 1
gsize  8a . (@! Int)! (8h: . b ! Int)! (t ab! Int)
st( ! H)yr r |
gsize = 8t ' . (8a . @a! Int) ! (t a! Int) !
(8b: .. (! Int) ! (t t" b ! Int))

Each version of gsize takesa function for eat of the type operator's type variables.
The number of function argumerts is determined by the arity of the type operator and
the type signature of ead function argumert dependson the kind of the type variable.
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That is, the type of eat gsize is determined by the type operator's kind inductiv ely
from the type of the kind- case.This is captured by a so-calledpolykinded type:

type Size hi t =t ! Int
type Size hk! vi t = 8 a. Size hki a ! Size hvi (t a)

The notation Size Hki t indicatesthat Size is a polykinded type de ned by induction
on the kind k of type operator t. The polykinded type is specialisedfor every actual
type-operator argumert to get the typesof gsize instances. Figure 6.3 illustrates this
processfort = GTree. (We have renamedtype variablesin the gure to avoid variable

shadaving.)
Size h( ! )! ' i GTree
8f Sizeh! i f ! Sizegh! i (GTree f)

8f (8a Sizehi a! Sizehi (f a) !
(8a Sizehi a!l Size hi (( GTree f) a))
8f (8a (a! Int) ! fal Int) !
(8a. (a! Int) ! GTree f a! Int)

Figure 6.3: Specialisation of polykinded type Size rki t wheret is GTree and therefore
kis( ! )t |

Let us move on to the function bodies. In eat case,the particular instance of gsize
is de ned by pattern matching on the type operator's de nitional structure in terms
of sums of products. There is oneline for ead sum, i.e., for eat value constructor.
Nullary products are consideredequivalert to valuesof Unit type. The total sizeof a
proper product is calculated by adding the sizesof ead product componert: the sizeof
elemerts whosetype is given by atype variable is computed by the function argumerts;
the sizeof recursive substructuresis computed by recursive calls. Although not shovn
in the examples,componerts of other typessud as basetypesor user-de ned types
would have their particular instancesof gsize applied to them.

Consequetly, the body of ead gsize instanceis determined by the type operator's
de nitional structure. (This motivatesa pun in “poly-typical’: afamily of many typical
or expectedfunctions.) There remainsto collectall the bodiesinto a polytypic de nition

of a single gsize function. This function would compute the size of an arbitrary type
operator argumert of arbitrary kind. For a particular type operator, say List , a call
to polytypic gsize :

gsize hList i (const 1) [1,2,4]
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where angle brackets denote polytypic applic ation , \should amount" to a call to its
particular instantiation:

gsize_List (const 1) [1,2,4]

Another insight behind Generic Haskell is that polytypic function bodies neednot be
de ned by a fully- edged inductiv e de nition; it suces to de ne the basecaseof the
induction, i.e., the behaviour of the function for kind- types,binary sums,and binary
products. The Generic Haskell compiler \automatically takescare of type abstraction,
type application, and type recursion. .. in atype-safemanner” [HJ02, p13]. We should
also add that it automatically takes care of translating n-ary sumsand products into
compositions of right-asscciative binary ones. This translation is a designchoice that
plays an important role in understanding the instantiation processand the behaviour
of polytypic functions. Other represertations are possible| e.g, left assaiativit y|and
have an e ect on the semarics of the function: \most [polytypic] functions are insens-
itiv e to the translation of sumsand products. Two notable exceptions are [encaling
and decdling] for which [another represertation] is preferable” [HJ02, p47].

GenericHaskell forcesprogrammersto know the medanics of the instantiation process,
in particular, the internal way of encading products and sums, for that determinesthe
structure and therefore the body and semartics of the instance. At the time of writing,

there are someattempts at letting programmers specify assaiativity explicitly and to
allow typesto be treated (viewed) as other types[HJLO5].

In order to de ne polytypic function bodies, a canonical represertation of a type oper-
ator's de nitional structure is needed. It is at this point that representation types,
called structur e types in the Generic Haskell literature, are introduced. A represent-
ation type provides a canonical encading of a type in terms of compositions of binary
sumsof binary products of basetypesand type-operator applications. Represemation
typesare built on the following base representation types:

data Unit = Unit

data Suma b =1Inl a | Inl b
type Pro a b = (a,b)

type Fun a b =(!) ab

We ignore function space(Fun) in the following examplesand deferits discussionuntil
Section 6.1.4. For readability we will write a+b for Suma b anda b for Pro a b. As
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previously explained, the Generic Haskell compiler follows the corvention that + and
are right assaiative.

Figure 6.4 shows examplesof type operators represened by structurally isomorphic
represertation typeoperators. Let usignorefor the momert the fact that type-synorym
declarations (keyword type ) cannot be recursive. We will provide a better de nition
of represenation typesshortly.

data List a
type List' a

Nil | Cons a (List a)
Unit + (a  (List a))

data BTree a b = Empty | Leaf a | Node b (BTree a b) (BTree a b)
type BTree' a b = Unit + (a + (b (( BTree' a b) (BTree ' a b))
data GTree f a = GEmpty | GLeaf a | GNode (f (GTree f a))

type GTree' f a = Unit + (a + (f (GTree' f a)))

data BList a
type BList ' a

BNil | BCons a (BList (Fork a)) -- irregular
Unit + (a (BList ' (Fork a)))

Figure 6.4. Sometype operators and their respective representation type operators.
Thesede nitions are not legal Haskell 98: type synonyms cannot be recursive.

Value-constructor namesare dropped but the actual represeration type usedby the
Generic Haskell compiler includesinformation about value constructors (names, xit v,
arity, etc.), which is essetial for programming polytypic serialiserssud as pretty-
printers.

Polytypic functions are de ned on basetypesand baserepresenation typesasshown
in the rst box of Figure 6.5. The interesting casesare the sum and product ones.
The size of a sum a+b, whatever a and b, within a represenation type is computed
by pattern matching on whether the value of the sumtypeis anInl or Inr and then
by applying the appropriate argument function to it. The size of a binary product
a b, whatever a and b, within a represenation type is computed by pattern matching
on product componerts and adding their sizes,which are computed by the argumert
functions. The secondbox in Figure 6.5 is syntactic sugar for the box above wherethe
recursionis made explicit: the argumert functions gsa and gsb are instancesof gsize
for the typesa and b.
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gsize htk i :: Size hki t

gsize hChari = const O

gsize hint i = const O

gsize hBool i = const O

gsize hUnit i = const O

gsize hatbi gsa gsb (Inl x) = gsa X
gsize hatbi gsa gsb (Inr y) = gsb y

gsize ha bi gsa gsb (x,y) gsa X + gsb y

gsize htk i :: Size hki t
gsize hChari = const O
gsize hint i = const O
gsize hBool i = const O
gsize hUnit i = const O

gsize hatbi (Inl x)
gsize hatbi (Inr y)
gsize ha bi (xy )

gsize hai x
gsize hbi y
gsize hai x + gsize hbi y

Figure 6.5: Polytypic gsize with implicit and explicit recursion.

Figure 6.6 illustrates the instantiation process.The rst box shows instancesof gsize
for basetypes,units, and binary products and sums. All are generateddirectly from the
polytypic de nition. Their type signaturesare obtained by instantiating the polykinded
type Size .

The remaining boxes shaw the instances of gsize for represeration type operators
List , BTree', and GTree' . Theseinstancesfollow the type-operator's de nitional
structure to the letter. an argumert function is passedfor eat of the type-operator's
type variables; the occurrenceof a basetype in the represeration type translates to
a call to its gsize instance in the body of the function; the occurrence of a sum
translates to a call to gsize_Sum ; the occurrenceof a product to a call to gsize_Pro ;
type-operator application translates to function application.

As an improvemert, the type for kind- type operators can be expressedby a type
synornym and the type signatures of all the instancescan be written in terms of it as
shown in Figure 6.7.

There are two problemswith the schemepreseried. First, gsize hasbeende ned on
List  not List . The generatedinstantiation is gsize_List ', not gsize_List . And
similarly for the other type operators. Second,the type synoryms in Figure 6.4 are
invalid.



6.1 Generic Haskell

gsize_ Char :: Char ! Int

gsize_Char = const O

gsize Bool :: Bool ! Int

gsize_Bool = const O

gsize_lInt DoInt 1 Int

gsize_lInt = const O

gsize_Unit o Unit ! Int

gsize_Unit = const O

gsize. Sum = 8a (a ! Int) ! (8b. b ! Int) ! Sumab ! Int)
gsize_ Sum gsa gsb (Inl x) = gsa x

gsize Sum gsa gsb (Inr y) = gsb y

gsize Pro = 8a (a ! Int) ! (8b. b ! Int) ! Pro ab! Int)
gsize Pro gsa gsb (xy ) =gsa x + gsb y

type List ' a = Unit + a (List ' a)

gsize List ' & 8a (@ ! Int) ! List' al Int
gsize List ' gsa
= gsize_Sum gsize_Unit (gsize_Pro gsa (gsize List ' gsa))

type BTree' a b = Unit + a+ b (BTree ' a b) (BTree' a b)

gsize BTree
o 8a (@ ! Int)! (8b. (b! Int) ! BTree' ab ! Int)
gsize_ BTree ' gsa gsb =

gsize_Sum gsize_Unit
(gsize_Sum gsa (gsize_Pro  gsb
(gsize_Pro (gsize_ BTree ' gsa gsb) (gsize_ BTree ' gsa gsh))))

type GTree' f a = Unit + (a + (f (GTree' f a)))

gsize_GTree
x 8f (8a (a! Int) ! (f a! Int)) !
(8a. (a! Int) ! (GTree f a ! Int))
gsize_GTree ' gsf gsa
= gsize_Sum gsize_ Unit
(gsize_Sum gsa (gsf (gsize_ GTree ' gsf gsa)))

Figure 6.6: Instantiations of gsize .
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type Size t =t ! Int
gsize_Int 0 Size Int
gsize_Unit ;0 Size Unit
gsize_Sum » 8a Size a! (8h Size b ! Size (Suma b))
gsize_Pro  8a Size a! (8h Size b ! Size (Pro a b))
gsize List ' 1 8 a. Size a ! Size (List' a)
gsize BTree ' :© 8 a. Size a! (8b. Size b ! Size (BTree a b))
gsize GTree ' :: 8f (8a. Size a! Size (f a) !

(8a Size a ! Size (GTree' f a))

Figure 6.7: Type signatures of the functions in Figure 6.6 written in terms of a type
synorym.

The type synorym of Figure 6.7 will prove useful in understanding how the Generic
Haskell compiler sorts out this problem. Before delving into that, let us (1) shav some
examples of usage, (2) two more examplesof polytypic function de nitions and (3)
discusssometheoretical aspects of the approad in more detail (Section 6.1.3).

Let us supposethat recursive type synoryms were legal and assumethat a call to
gsize on atype operator T is somehav translated to a call on its represenation type
TC Figure 6.8 shavs examplesof usagethat illustrate the design objectives. Desired
results are showvn below eat application.

In the gure, type BTree Int Char has kind and therefore there is no argument
function passedto gsize . The type BTree Int haskind ! and therefore there is
an argumert function passedto gsize . More precisely the Generic Haskell compiler
replacesthe polytypic applications:

gsize hBTree Int Chari
gsize hBTree Int i

by callsto the instancesgsize_BTree_Int_Char and gsize_BTree_Int whosede n-
ition has beengeneratedas follows:

gsize_BTree_Int_Char > BTree Int Char ! Int
gsize_BTree_Int_Char = gsize_BTree gsize Int gsize_Char
gsize_BTree_Int o 8a (@ ! Int) ! BTree Int a ! Int

gsize_BTree_lInt gsa = gsize_BTree gsize_Int gsa
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aTree :: BTree Int Char
aTree = Node 'A' (Leaf 2) (Leaf 3)

gsize hBTree Int Chari aTree
>0

gsize hBTree Int i (const 1) aTree
> 1

gsize hBTreei (const 0) (const 1) aTree
> 1

gsize hBTreei (const 1) (const 1) aTree
> 3

gsize hList i (const 1) "hello  world "
> 11

gsize hList i ord "hello  world "
> 1116

Figure 6.8: Examples of usageof polytypic gsize .

The size computed is zero becausethat is the size given to integersand characters in
Figure 6.5, which make up the payload of the type. Had we de ned gsize dierently for
basetypesthen the computed sizewould di er. We comebadk to this in Section6.1.12.
Other examplesin Figure 6.8 shav how to obtain di erent sizes(e.g., counting nodes
or courting leavesin BTree s) by playing with function argumerts.

Polyt ypic map and polyt ypic equalit y. Figure 6.9 shows the de nitions of poly-
typic map and polytypic equality. The latter function shows that overloadedfunctions
(implemented using type classedn Haskell) are alsosubject to generalisationin a poly-
typic de nition. The polykinded type of polytypic map is at rst sight confusing.
According to what has beensaid sofar it might appearto be:

type Maph i t =1t !
type Maphk! vi t = 8 a. Maphki a ! Maphvi (t a)

Howe\er, this polykinded typeis not generalenoughas shawvn by the following counter-
example:

Maph ! i List 8a. Maph i a ! Maph i (List a)

8a. (@ ! a ! List a ! List a
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type Maph i t1 2 =11 | t2

type Maphk! vi t1 t2 =

8 al a2. Maphki al a2 ! Maphvi (1 al) (2 a2)
gmapht :k i ' Maphki t t

gmaphint i = id

gmaphUnit i = id

gmapha+bi (Inl  x)
gmapha+bi (Inr vy)
gmapha bi (x,y)

| (gmap hai x)
r (gmaphbi vy)

In
In
(gmap hai x, gmaphbi vy)

gmaphList i chr [65, 66, 67]
> "ABC"

gmaphBTree i ord chr (Node 'A' (Leaf 66) (Leaf 67))
> Node 65 (Leaf 'B') (Leaf 'C)

type Eghi t = t ! t ! Bool

type Eqghk! vi t = 8 a. Eqghki a ! Eqghvi (t a)
geqht: ki ' Eqghki t

geq hint i = (=2

geq hUnit i Unit Unit = True

geghatbi (Inl  x) (Inl x) = geqhai x X
geghatbi (Inl x) (Inr y) = False

geqhatbi (Inr y) (Inl x) = False

geqhatbi (Inr y) (Inr y) = geghbi y Vy

gegha bi (x.y) x, v geghai x x' && geqhbi y y'

geghList i (==) [1,2,4] [1,2,4]
> True

geqhList i (==) [1,2,4] [1,2,3]
> False

Figure 6.9: Polytypic map, polytypic equality, and examplesof usage.
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For type operators of higher kinds we needtwo di erent universally-quarti ed variables,
one for the sourcetype and another for the mapped target type:

Maph ! i List List 8ab. Maphi ab ! Maph i (List a) (List b)

8ab (@ ! by ! List a! List b

The polykinded Map type usestwo type variables from the start, but the polykinded
type of gmap is restricted to take the sametype operator.

Two remarks are in order. First, polytypic map is not de ned for function types:
function spaceis cortravariant onits rst argumert (Section3.10)and its type signature
therefore breaksthe pattern captured by the polykinded type of polytypic map. Second,
as its polykinded type indicates, polytypic map is slightly more generalthan a map.
For example, the type signature of gmap_GTree is:

map_GTree :: 8f g. (8ab. a@a! b)) ! (f a! gbh) !
(8ab (@ ! by ! GTree f a! GTree g b)

Categorially, GTree is a functor if it is functorial in the two arguments. More precisely
we can de ne two functions:

hmap :: (Functor f, Functor g) ) Nat f g ! Nat (GTree f) (GTree Q)
fmap i Functor f) (@ ! b) ! GTree f a! GTree f b

where Nat f g is the type of natural transformations from functor f to functor g:
type Nat f g =8a f a! ga

(The naturality conditions follow from parametricity, i.e., polymorphic functions are
natural transformations in Typ e.) Functions hmap and fmap must satisfy the functorial

laws:
hmap ( ) == hmap hmap
hmap (id :: Nat f f) == (id :: Nat (GTree f) (GTree f))
fmap (i )] == fmap i fmap j
fmap (id = a! a) == (id :: (GTree f) a ! (GTree f) a)
where:

Nat g h i b !
Nat f g jonoal
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Becauseit is possibleto manufacture a function of typef a! g a from a function k
oftype(a! b ! f al gb namely k id, map_GTree must satisfy the following
equation:

map_GTree k r == hmap (k id ) fmap r

The body of gmap is straightforward. For basetypes(we only shawv integersand units)
it is the identity. For sums and products it maps over the componerts. Examples of
usageare also shown in the gure.

The polykinded type of geq is also straightforward: for kind it is a binary predicate
on the typet. Regarding the body, equality for basetypesis standard equality; two
sumsare equal if they are both left or right componerts and their contents are equal;
and two products are equal if their componerts are equal. Examples of usageare also
shown.

Notice that we could have de ned a more generalpolykinded type for equality following
the spirit of polykinded type Map [HJOZ2]:

type Eghi t1 t2 =t1 ! 2 ! Bool
type Eqghk! vi t1 t2 = 8al a2. Eqhki al a2 ! Eqghvi (t1 al) (t2 a2)

wherenow geq would have to have polykinded type Eqgrki t t. The typeofits instance
for List  would be:

geg List ' = 8ab (a! b! Bool) ! List' a! List' b ! Bool

Surprisingly, the body of polytypic geq neednot change, so one wonders about what
is its most generl polykinded type and about the expressibility of polykinded type
de nitions. We comebad to this in Section6.1.5.

6.1.3 Generic Haskell and System F,

If instead of Haskell we were programming in SystemF, (Section 2.7.4), our overview
of polytypic programming would have cometo a conclusion. In System F, there is
a structural equivalencerelation betweentypes. A type operator and its represerta-
tion type are structurally equivalert and we would program with represenation types
directly. A polytypic extension of System F, would translate polykinded types and
polytypic functions following the schemesofar, treating named de nitions as sugar for
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(o}
I
=

gsize Unit X :Unit :0
gsizelnt © %m0
gsizeSum det gsa: ! Int:
: . gsb: ! nt :
Ss: + :case sof Inl Xxthen gsa[ | X ; Inr ythen gsb[ ]y
gsizePro et gsa: ! Int :
: . gsb: ! nt :
p: cplus (gsa[ J(fst [ J[]1p)) (gsb[ J(snd [ ][ 1))
List et 1+ (List )
gsizelist def gsa: ! Int
gsize Sum [Unit ] gsizeUnit
[ (List )] (gsizePro [ ] gsal[List ] (gsizelList [ ]gsa)

Figure 6.10: Writing and using instancesof gsize for lists in SystemF, . Type-terms
in universal type applications are shovn in square brackets.

lambda abstractions, with xed points when there is recursion.

For example, the code in Figure 6.10 shows the instancesof gsize for units, integers,
binary sums, products, and lists. For readability, we have used meta-lewvel recursive
namesand thus obviated the useof xed-p oint operators. Also, to distinguish universal
type applications from term applications more easily, ead type argumert in a universal
application is written betweensquarebrackets.

The following code is an exampleof usagewhere xs abbreviatesa value of type List Int
which correspondsto the Haskell list value [1,2]
def

Xs = Inr (;Inr (2;Inl unit ))
gsizelist [Int ] (x :Int :1) xs
> 2

The generationof instanceslike gsize List amounts to producing terms from type-terms,
where the latter are described by a type-level STLC (Chapter 2). The programmer
de nes the translation for basetypes, units, sums, and products. The rest can be
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taken care of automatically. A polytypic SystemF, compiler or interpreter assignsa
SystemF, term (an instance of a polytypic function, e.g. gsizelList) to a STLC term
(a type-operator, e.g, List) [HJO02, p42].

6.1.4 Nominal type equivalence and embedding-pro jection pairs

Among other things, Haskell di ers from SystemF, in that type equivalenceis nominal,
not structural. In type systemswith nominal type equivalenc e naming is not a
derived form but an explicit and essetial language construct. In such systemstwo
typesare equivalert if and only if they have the samename. For se\eral reasons[Pie02,
p251{254]nominal type equivalenceis the norm in mainstream programming languages.
It facilitates the treatment of recursion and plays an important role in enforcing data
abstraction. For instance, the types:

data Debit = Debit Int
data Credit = Credit Int

are structurally equivalernt but mistaking one for the other can have painful con-
sequenceslin Haskell the two typesaredi erent, a point underlined by the two di erent
value constructors. In System F, , which lacks names,we would only make use of in-
tegers.

A represettation type operator is structurally equivalent to many structurally iso-
morphic type operators, but in a nominal type system, programming with, say, a List'
iS not programming with a List

Generic Haskell solvesthis problem by de ning represertation typesin a di erent fash-
ion where they only capture the top-level structure of type operators. There is one
emledding function that translates a type operator to its represeration type oper-
ator and a projection function that performs the corverse. Figure 6.11 shaws their
de nitions for the caseof lists and binary trees. Embedding-projection functions also
follow the structure of the data and their de nitions are generated automatically by
the Generic Haskell compiler for arbitrary type operators [HJ02, p46{47].

The instancesof gsize have beende ned for the illegal represeration types of Fig-
ure 6.4. Howewer, for kind- typesand binary sumsand products theseinstancesneed
not change. They will work for the new represenation types of Figure 6.11 in the
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data List a
type List' a

Nil | Cons a (List a)
Unit + (a (List  a))

from_List » 8a. List a! List"' a
from_List Nil = Inl  Unit
from_List (Cons x xs) = Inr (X, XS)
to_List > 8a List' a! List a
to_List (Inl  Unit ) = Nil

to_List (Inr  (x,xs)) = Cons X Xs

data BTree a b = Empty | Leaf a | Node b (BTree a b) (BTree a b)
type BTree' a b = Unit + (a + (b (( BTree a b) (BTree a b))))
from_BTree @ 8a b. Tree ab ! Tree' ab

from_BTree Empty
from_BTree (Leaf X)
from_BTree (Node x | r)

Inl  (Inl  Unit )
Inr (Inl Xx)
Inr (Inr  (x,,n)

to BTree ' 8ab. Tree' ab ! Tree ab
to BTree (Inl (Inl Unit )) = Empty
to BTree (Inr (Inl X)) = Leaf x
to BTree (Inr (Inr (x,r))) = Node x | r

Figure 6.11: Generic Haskell's represenation typesfor lists and binary trees, together
with their embedding and projection functions.

forthcoming sdheme.

The ideaisto nd out what needsto be modi ed from the de nition of gsize_List
in order to de ne gsize_List . First, a new gsize_List ' must be generatedfor the
new represertation type of Figure 6.11 from the polytypic de nition. The occurrence
of type operator List in the represenation type signalsthe placein the body where
its gsize instanceis to be called:

gsize_List
gsize List ' gsa = gsize Sum gsize_Unit
(gsize Pro gsa (gsize_List gsa))

8 a. Size a ! Size (List ' a)

Second,looking closely at the typesof the functions:

gsize List ' @ 8a. Size a ! Size (List a)
gsize List ;> 8a. Size a ! Size (List a)

in order to de ne gsize_List  the remaining ingredient would be a function:
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foo :: 8 a. Size (List ' a) ! Size (List a)
which would a ord to tie the knot:

gsize List gsa = foo (gsize List ' gsa)
That is:

gsize List gsa = foo (gsize_Sum gsize Unit
(gsize_Pro gsa (gsize_List gsa)))

Fortunately, the embedding-projection functions can help attain this goal:

from_List ;» 8a. List a ! List' a
to_List > 8a. List' al List a

It remainsto de ne lifted versionsof types:

bar :: 8 a. Size (List a) ! Size (List a)
foo ' 8 a. Size (List ' a) ! Size (List a)

128

This lifting is performed by a special map function which must be polytypic on the

type synonym, asthe processmust be repeatedfor other polytypic functions and type

synoryms like equality:

type Eqa=a ! a ! Bool

geg List = 8a. Eqa ! Eq (List a)
bar @ 8a. Eq (List a) ! Eq (List ' a)
foo ' 8a. Eq (List ' a) ! Eq (List a)

The rst box in Figure 6.12 de nes a new data type EP and two selector functions

for manipulating embedding-projection pairs corveniertly. The secondbox de nes

instancesof a special map function mapEPwhich is the map for EP values: for units and

integers, embedding-projection pairs are identities; for sumsand products, embedding-

projection pairs can be obtained by mapping embedding-projection pairs assaiated

with their componerts. Notice that the arrow type operator is cortravariant onits rst

argumert (Section 3.10), thus the de nition of mapEP_Fun

As usual, the type of the instance mapEP_Size is obtained from the polykinded type:

MapEPh ! i Size =
8t t. MapEPh i t t ! MapEPh i (Size t) (Size t)
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data EPa b = MKEP(@ ! b) (b ! a)

from = EPab! (a ! b
from (MKEPf t) =f

to = EPab! (b! a)
to (MKEP f t) =t
mapEP_Int :: EP Int Int
mapEP_Int = MKEPid id
mapEP_Unit :  EP Unit Unit

mapEP_Unit = MKEPid id

mapEP_Pro : EPac ! EPbd! EP(a b) (c d)
mapEP_Pro (MKEP f1 t1) (MkEP f2 t2)
= MKEP (map f1 f2) (map t1 t2)

mapEP_Sum:: EPac ! EPbd! EP(a + b) (c + d)
mapEP_Sum (MKEP f1 t1) (MKEP f2 t2)
= MKEP (map, f1 f2) (map. t1 t2)

mapEP_Fun:: EPac ! EPbd! EP@ ! b) (c ! d)
mapEP_Fun (MKEP f1 t1) (MKEP f2 t2)
= MKEP (map t1 f2) (map fl1 t2)

type MapEPh i t1 t2 = EPtl t2
type MapEPk! vi t1 t2 =

8 al a2. MapEPki al a2 ! MapEPwi (1 al) (2 a2)
mapEPt:k i ' MapEhki t t

mapEPhInt i = mapEP_Int

mapEPhUnit i = mapEP_Unit
mapEPhat+bi = mapEP_Sum
mapEPha bi = mapEP_Pro
mapEPha! bi = mapEP_Fun

Figure 6.12: Embedding-projection pairs and polytypic mapEP
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8t t. EPt t' ! EP (Size t) (Size t)

Letting t=(List a) andt =(List ' a) would sealo the process.This is achieved by
creating an embedding-projection pair value for lists:

ep_List = 8a. EP (List a) (List ' a)
ep_List = MKEP from_List to_List

and by getting the body of mapEP_Size from its polytypic de nition, which follows to
the letter the de nitional structure of type synorym Size :

mapEP_Size @ 8t t. EPt t | EP (Size t) (Size )
mapEP_Size mapEPa = mapEP_Fun mapEPa mapEP_Int

Function mapEP_Size applied to ep_List givesus a value of type:
8 a. EP (Size (List a)) (Size (List a))
whoseto componert is our sough-after foo :

foo ' 8 a. Size (List ' a) ! Size (List a)
foo = to (mapEP_Size ep_List )

We can now provide the de nition of gsize_List

gsize_List > 8a. Size a ! Size (List a)
gsize List gsa = (to (mapEP_Size ep_List )) (gsize List ' gsa)

6.1.5 The expressibilit y of polykinded type de nitions

The polykinded type MapEP and the polytypic function mapEP are prede ned in the
Generic Haskell prelude. This function in part determinesthe expressibility of a poly-
kinded type, i.e., what sort of polykinded typescan be written. The Generic Haskell
compiler collectsall the polykinded type de nitions and generatesan instance of mapEP
for the type synoryms generatedfrom their kind- cases.As it currently stands, these
synornyms canonly contain applications of type operatorsto argumerts. In [HJ02, p51],
the de nition of mapEPis extendedsothat, in general, polykinded types can have the
form:

1
vy]

type Th i tl :::tn x iz
type Thk! vi t1 :::tn x:::z
8al::ran. Thki al:::an x:::z ! Thvi (1 al) :::(tn an) x:::z
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where B is a polymorphic type signature where universal quarti cation is permitted
over type variablesof kind and ! , and where x:::z are auxiliary type variables
that are passeduntouched to the basecase. Thesevariables are universally quanti ed

later when expressingthe polykinded type of particular polytypic functions sud as
polytypic reduce,shown in Figure 6.13 (notice how a somewhatspurious function has
to be passedto freduce in order to get a more meaningful type.)

type Reduceh i t x =x ! (x ! x! x ! t I x
type Reducehk! vi t x = 8 a. Reducehki a x ! Reducehvi (t a) x
reduce htk i :: 8 X. Reduce hki t X
{- body of reduce not shown here

8 x. Reduceh ! i List x

8x. 8a Reduceh i a x ! Reduceh i (List a x)

8x. 8a. x ! (x! x! x ! al! x)!

x ! (x! x! x) ! List a! x

-}
freduce ht: ! i = 8x x! (x ! x! x ! tx! x
freduce hti = reduce hti ( xy z ! 2
fsum ht i = freduce hti 0 (+)
fand ht i = freduce hti True and

Figure 6.13: Polytypic reductions.

We should also mention that Generic Haskell supports polytypic types, called type-
indexe d data types in the literature, i.e., typeswhosede nitional structure depends
on the de nitional structure of another type [HIJLO4]. Polytypic typesmay appear in
the kind- caseof a polykinded type. Instancesof polytypic typesare generatedbefore
generating the instancesof the polykinded type and the polytypic function.

Polykinded types also allow type-classconstraints in some situations. We defer this
discussionuntil Section 6.1.10.

6.1.6 Polyt ypic abstraction

Figure 6.13 also shaws two examplesof polytypic abstr action (called “generic ab-
straction' in the Generic Haskell literature) whereinstancesof a polytypic function are
de ned for type operators of particular kinds only. Functions fsum and fand work on
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type operators of kind ! only. Another exampleof polytypic abstraction involving
gsize follows:

flength ht: ! i = t a !l Int
flength hti = gsize hti (const 1)
length = flength hList i

6.1.7 The expressibilit y of polyt ypic de nitions

Generic Haskell allows us to expresscatamorphisms suc asgsize (Section 6.1.13).
It even allows usto expressmore genericonessuc asfreduce , or even more generally,
reduce . Notice that reduce is not quite a polytypic gfoldr . The type signature of
foldr  for a given type operator takes one argumert per value constructor. The base
caseof the polykinded type of a polytypic gfoldr  would not only depend on a type
operator's kind but also on what is to the right of the equalsin a data de nition.
Also, represenation typesconain binary products, not n-ary products which are the
argumerts taken by the functions that would be passedto gfoldr . For thesereasons,
gfoldr is not de nable in Generic Haskell.

Let usillustrate the problemsin more detail. The following code de nes foldr in terms
of atype Alg represeriing an operator algebra:

data Alg a b =Ag {nil : b, cons = al! b'! b}
fodr : Alg ab ! Lst a! b
foldr alg Nil = nil alg

foldr alg (Cons x xs) = cons x (foldr alg xs)

Particular algebrasare valuesof type Alg :

algSum
algLen

Alg{ nil = 0, cons +) 1}
Alg{ nil =0, cons = xy ! 1+y }

The following is an example of usage:

foldr  algSum [1,2,3]
> 6
foldr algLen [1,2,3]
> 3

It is common practice to write foldr alg asLvOf Mwherev standsfor nil alg and f
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for cons alg [MFP91].

The instance of gfoldr  for List should have the sametype signature as foldr . But
Alg not only dependson the kind-signature of List ; it also dependson the number
and type signature of List 's value constructors.

Even if we could de ne a polytypic type Alg hti of which Alg for lists is an instance,
the represenation of n-ary products into assaiations of binary products becomesan
issue. This is better illustrated in the caseof BTree . When it comesto dealing with
the tertiary product of a Node, reduce for BTree s takestwo functions, one for eah
binary product into which the tertiary product is arranged:

data Alg a b c = Alg{ empty : c,

leaf Doa !l ¢

node = b! ¢! c! ¢}
gfoldr_BTree alg Empty = empty alg
gfoldr_BTree alg (Leaf Xx) = leaf alg x

gfoldr_BTree alg (Node x tl tr) = node alg x (gfoldr_BTree alg tl)
(gfoldr_BTree alg t2)

reduce v | nl n2 (Inl  Unit) = v
reduce v I nl n2 (Inr (Inl X)) =1 x
reduce v I nl n2 (Inr (Inr (x@ , tn)) =nl x (n2 tl1 tr)

In other words, the gfoldr_BTree  generatedwould not be the one shonvn above, but
onetaking this algebra:

data Alg abc=Ag{ v : ¢
I = a! ¢
ni: b! ¢! g
n2: c! c¢c! ¢}

This is what di erentiates a fold from a crush. In Figure 6.13, polytypic reduceis a
crush.

6.1.8 Summary of instan tiation pro cess

The Generic Haskell compiler collects all the polykinded type de nitions Phi t and
generatestype synoryms P basedon that kind- case. It also expandsmapERPi. For



6.1 Generic Haskell 134

ead type operator T of kind k passedas an argumert to a polytypic function, the
compiler generatesits represenation type T' and the relevant machinery for dealing
with its assaiated embedding-projection pairs. Finally, the compiler generatesthe
instance of the polytypic function for T. The instance'stype is obtained by expanding
Prki T and the body follows to the letter the structure of T' with the exception of the
call to mapERPI on the embedding-projection value. The Haskell compiler does the
rest of the job: it type-cheds that generatedinstance bodies have the generatedtype
signaturesand compilesand optimises the code.

6.1.9 Polyt ypic functions are not rst-class

In Generic Haskell, polytypic functions are not rst-class, polytypic applications (i.e.,
generatedinstances)are. To make polytypic functions rst class,polykinded typesmust
be incorporated into Haskell's type system. Howeer, this would require an extension
of the type system beyond what is neededfor type-dedking polytypic functions. For
instance, polykinded-type reconstruction is an open question: a polytypic function need
not be assaiated with a unique polykinded type. (Recall the discussionregarding the
polykinded typesof gmap and geq on page 124 and Section6.1.5.)

First-class status is seldomnecessary:itype-terms in polytypic applications gh i must
be known at compile-time unlessstatic type cheding is given up. Consequetly, they
can be replacedby instances. Take, for example, the following function:

foo = 8t a 8p. ph! it! @ /! ¢ ! tal c
foo g f = ghti f

The value of type variable t must be known at compile time and its kind be !
Although universally quanti ed, p cannot be instantiated to Maph ! i t 1 t», which
expects two type variable argumerts. Finally, the usageof g in the body imposesthe
requiremert that:

ph! it=@? 1 ! ¢ ! tal! c
Let us x p andt respectively to a particular type-operator and polykinded type:

foo : 8t a. Sizeh! i Lst ! (@ ! ¢ ! List a! c
foo g f x = ghList i f Xx

Now foo canonly be passedgsize asan argumert and ¢ must beint . Thereis really
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no needfor parametrisation:

foo & (@ ! Int) ! List a! Int
foo f x = gsize hList i f x

6.1.10 Type-class constrain ts and constrained algebraic types

We have not de ned polykinded typesthat involve type-classconstraints. It is possible
to include constraints in polytypic abstractions, e.g.

gsumht: ! i = Numa) t a ! Int

It is not legal to write constraints in polykinded types. This makes sense:constraints
would appear on nested 8s due to the recursive nature of the general case. Polytypic
functions would only be applicable to type operators that have those constraints in all
type-variables.

Howewer, type-classconstraints introducedin data de nitions are ignored by the latest
versions of the Generic Haskell compiler at the time of writing. For example, the
represermation type generatedfor types:

data List a
data Ord a) List a

Nil | Cons a (List a)
Nil | Cons a (List a)

is exactly the same:
type List' a = Unit + (a (List  a))

Although the embedding-projection pair ep_List for the unconstrainedlist hastype:
8 a. EP (List a) (List ' a)

for the constrained list it must have type:
8a Ord a) EP (List a) (List a)

The Haskell compiler complains about the generted code, issuing a type error.

Constraints must also appear in the type signaturesof generatedinstances,e.g, in the
type signature of gsize_List . The reason: ep_List appearsin gsize_List 's body
and certainly if List hasits type argumert constrained so should gsize_List

gsize List > 8a. Ord a) Size a ! Size (List a)
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gsize List gsa = (to (mapEP_Size ep_List )) (gsize List ' gsa)
Notice the propagation of constraints:

ep List :: 8a. Ord a) EP (List a) (List ' a)
gsa 2 8a Ord a) Size a
(mapEP_Size ep_List )
8a Ord a) EP (Size (List a)) (Size (List ' a))

Howewer, the type signatures of instancesare all derived from polykinded typeswhich
cannot accommalate constraints becausethey are introduced by type-operator argu-
ments in polytypic applications. Indeed, if gsize is applied to the type:

data Eq a) Set a =
the constraint in the type signature of the instance di ers:
gsize Set : 8a Eqa) Size a ! Size (Set a)

The polykinded type Size hki t cannot capture all possibleconstraints that may appear
in the de nition of an arbitrary typeoperatort. Therefore, GenericHaskell fails to work
with type-class-constrainedype operators. It captures an “unbounded polymorphism’
kind of polytypism.

Interestingly, polytypic function bodies neednot change. The body of gsize List  for
an unconstrained List a is insensitive to the type a. The samepolymorphic function
body can compute with a constrainedlist aslong asthe constraint is accommalated in
the function's type signature. The implicit dictionary introduced by the constraint is

ignored:

gsize List i 8a Ord a) Size a ! Size (List a)

gsize_List gsa = (to (mapEP_Size ep_List )) (gsize_List ' gsa)
If List had beenEq constrained:

data Eq a) List a = Nil | Cons a (List a)
only the type signature would be a ected:

gsize List i 8a Eqa) Size a ! Size (List a)

gsize_List gsa = (to (mapEP_Size ep_List )) (gsize_List ' gsa)
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We concludethis sectionmertioning that, in Haskell, parametrically polymorphic func-
tions are often lifted automatically to constrained onesthat ignore their dictionary
argumerts, e.g.

silly > 8a Numa) (8a. Numa) a! a ! a! a
silly f x=1f (x + Xx)

sillyid 2 8a Numa) a! a
sillyid = silly id

In this example, function silly  expects a constrained function but it is passedan
unconstrainedid in sillyid . Behind the sceneswhat is really passedis a wrapped
identity that discardsits dictionary:

idwrap @ NumbDa ! a ! a
id_wrap dict x = X

6.1.11 Polykinded types as context abstractions

There are two possible ways of coping with constrained type operators in Generic
Haskell. One way is to deal away with them, i.e., never to de ne constrained type
operators and put constraints on the functions that compute with them. This has
advantages and disadvantageswhich have beendiscussedin Section5.8.2.

Another way is to extend Generic Haskell. Howevwer, the extension is surprisingly
simple; in fact, it is possibleto leave the languageunchangedand to only extend the
Generic Haskell compiler.

The idea is that the constraints for a gsize T instance, sa, are determined from
the constraints of type operator T. Therefore, the polykinded type Size hki t must
abstract over t's context (i.e., list of constraints). In other words, polykinded types
must be context-parametric. Fortunately, there is no needto changethe GenericHaskell
language Context-parametric polykinded typesand their expansionrulescanbehidden
from the programmer and manipulated internally by the Generic Haskell compiler.

Constrain t expressions and lists. We introduce the syntax of constraint expres-
sionsand constraint lists in Figure 6.14.

Constraint expressionsand constraint lists are type-terms. A constr aint list can be
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Type = ConstraintList

ConstraintList ::=
| Constraint # ConstraintList

Constraint n=

| TypeClassName

| TypeVar . Body
Body = ( TypeClassNameBasic ( , TypeClassNameBasic ) )
Basic n=  TypeVar

| Basic Basic

Figure 6.14: Grammar of constraints and constraint lists.

empty, denoted by , or constructed by pre xing a constraint expression(explained
shortly) to a constraint list using the # operator. As expected, # assiates to the
right and we allow the following syntactic sugar:

[C1;:i05¢n] def CQ# i HCH
whenn > 0.
Given a data declaration of the form:

data ) T ap:iian =

the constraint list T assaiated with atype operator T contains one constraint expres-
sion for every oneof T's type variables. The constraint expressionappearson the list in
the sameposition from left to right asthat of the variable in the data declaration. More
precisely whenn > 0, T= [c1;:::;¢y] and ¢ is the constraint expressionassiated
with a. Whenn=0, T=

A constr aint expression can be an empty constraint ;, a type-classname (e.g,
Eq), or a new form of lambda-abstraction whosebody consistsof applications of type-
class namesto (applications of) type variables. Lambda-abstractions collect all the
constraints asseiated with a type variable in a single constraint expression,e.g:

x. Eq x
x. (Eqg x, Show x)
Xx. Ord (a Xx)
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In the last exampletype variable a is free. We explain the role of free type variables
shortly.

Here are sometype operators and their assaiated constraint lists:

data Eqa) Tl a =

data (Ix a, Eq b)) T2 ab
data (Eq a, Show a) ) T3 a i
data (Eq a, Show a, Numb) ) T4 a b
data (Functor f, Eq (f a) ) T5f a
data Ord b) T6 a b =

TL =[ Eq]

T2 = [ Ix ; Eq]

T3 = [ x( Eq x, Show x) ]

T4 = [ x( Eq x, Show x) ; Num]
T5 = [ Functor ; x.Eq (a x) ]
T6 =[ ; ; Ord ]

Notice that in  T5, typevariable a occursfree. Freevariablesare chosenin alphabetical
order accordingto positionsin constraint lists. For example,in  T5, a refersto the type
variable to which the rst constraint expressionin  T5 is to be applied. In cortrast, in
a constraint expressionof the form x.Eq (b x), free variable b would refer to the type
variable to which the second constraint expressionin the constraint list is to be applied.
Free variables becomebound when expanding polykinded types, as shovn shortly.

A constraint list T only contains constraints assaiated with T's type variables, not
with the type variables of potential type-operator argumerts to T, which are unknown.
For instance, T5 List is alegaltype,but T5 doesnot mention constraints assaiated
with List 's type variables.

Context-parametric  polykinded types. A polykinded typePh i t whosegeneral
form is given in the rst box of Figure 6.15 can be translated automatically by the
Generic Haskell compiler to a context-p arametric polykinde d type P% i t shown
in the secondbox. The third box explains meta-notation. For simplicity, we ignore aux-
iliary freetype variables (Section 6.1.5) which are just carried around when expanding
polykinded types.
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Phi t =
Ph! it = 8T Phi— ! Phif(t)
Phi t = q
Pht! it = qg@:qg-) Phi— ! Phi(t )q
_ def )
- 1- n
t def ty1oitn
(t ) - (tl 1) (tn n)
—  def L.
q = (q 15 .- !q n)
n > 0

Figure 6.15: A polykinded type and its cortext-parametric version.

We have introduced a new form of abstraction using the symbol as binder:® a
-abstr action is a new type-term of the form qg: where g may occur free in
(In the P%hi case,however, g must be picked soas not to occur freein .)

A -applic ation is the application of a -abstraction to a constraint list. This is a
type-term of the form ( q: ) cs, wherecsis a type-term whosecompile-time value is a
constraint list. The new application is denoted by whitespacebut, aswe shav shortly,
its type-lewel reduction rules are more complicated than simple substitution. In the
secondbox of Figure 6.15,there aretwo -applicationsinthe Pt | i case:Ph i —
is -appliedto andP%h i (t )is -appliedto q.

The context-parametric versionsof Size (Figure 6.5) and Map (Figure 6.9) are shavn
in Figure 6.16.

Figure 6.17 shaws the type-reduction (or “expansion’)rules of cortext-parametric poly-
kinded types( rst box), which includesthe type-reductionrulesof -application (second
box), and the medanics of constraint-expressionapplication (third box).

Rule c-st art shows how the instance of a polykinded type Ph i T on an actual
type-operator argumert T is to be obtained by reducing its cortext-parametric ver-
sionPh i T T which takesT's list of constraints into accourt.

SCapital gamma is often used for denoting contexts, so lowercasegamma makes senseas a binder
for constraint lists.
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type
type

type
type

Size* hit= g t! |Int
Size' hk! vi t
g( 8a gqa) (Size "hki a ) ! (Size "hvi (t a q) )

Map'hi t, ty = g. tq ! to
Map' hk! vi t; t,
q( 8ar az. (9 a1, q az) )
(Map' hki a; a ) ! (Map'hvi (t 1 a1) (t2 a2) q) )

Figure 6.16: Context-parametric polykinded typesSize ' and Map .

PhiT I PhiT T (cstart)

(a@Ta7) ) I 87 [o=] (c-null )
(g @7 ag7) ) (#cg I 87 [g=cq (c-empty )
(@7 aq7) ) (c#cs) | 87 c7) [o=cd (c-push)
(g )cs I if gZ2FV( ) (c-dr op)
c— & (c 1;::55¢ n)
C i if c= C

(subscripti B)[xi= i] if c= xB

Figure 6.17: Type-reduction rules for cortext-parametric types.
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Rule c-null  shaws the reduction when the constraint list is empty: the context is
removed from the type-term and is substituted for gin . Rule c-empty shows the
reduction of a list with an empty constraint in the head: the context is removed from
the type-term and q is replaced by the tail of the list. This way other constraints are
pushed down to its assaiated variables. Rule c-push shaws the reduction when the
constraint list is not empty: the constraint expressionon the head is applied to the
universally-quarti ed type variables,and the tail of the constraint list is substituted for
gin . Rule c-dr op shaws the reduction whenq 2 FV( ): the abstraction is dropped.

Someremarks are in order. In the Phi case,q 2 FV( ) and therefore type reduc-
tion will always proceedby Rule c-dr op. In the general case,q is imposedon the
universally-quarti ed type variablesand it is -applied to the P%h i case,whereasan
empty constraint list is -applied to the P% i case. This is because T only includes
constraints assaiated with T's type variables, as explained above. Finally, notice that

ult asexpandingit with

The last box in Figure 6.17 indicates how the application of a constraint expression
to a type variable works. The rst line explains meta-notation. The secondline is a
reduction rule for the application of a constraint expressionc to a type variable ;.
The constraint expressionc cannot be ; becauseempty constraints are dealt with by

-application (c-empty ). If c is a type-classname C, constraint application simply
juxtap osesthe constraint to the variable. If c is a lambda expression x:B , rst the
auxiliary function subscripti B adds subscripts to B's free variables (including x),
performing multiple substitution where every free variable in B is substituted by ;.
Then, X; is substituted by ;. We omit subscripts implementation details which are
inessemial. Here are a few examplesthat illustrate how it works:

(g Baiigay ) ::2)[C

8a;. Cag )

8ai: (Cp a1;C a1) )

(o (Barqar ) ::3)) [x (Cx Cox)

(g @Baiga ) 1) [x: C(zx)] 8a1: C(z1 a1) )
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(g (Baiaz: (qa;gaz) ) ::)) [C] = 8Baiax: (Ca;Cay) )

( g (8ataz: (qap;gaz) ) ::3) [x (C1 x; Cox)]
= 8aay: ((C1 a1;C a1);(C1 az; G &) )

(o (Baiaz: (qa;qag) ) ::3) [xt C(zx)]
= 8a1a:(C(z1 a1);C (22 &) )

Instan tiation examples. We concludethis sectionillustrating the instantiation pro-
cessfor the example type-operators given above and for polykinded types Size and
Map. Universally-quarti ed variablesare chosenin order soasto avoid shadaving when
expanding context-parametric polykinded types.

The rst example involves T1 which has an Eq constraint on its type variable. For
reasonsof space,we omit the details of constraint-expression applications which take
placein rule c-push . We also obviate subscripts when polykinded typeshave only one
universally-quarti ed type variable:

Size h!i T1
I fcstart g

Size' h'!i T1[Eq]
I f def. of Size' ¢

(g (8a:ga) Size' hia ! Size'hi (Tl a) q) [ Eq]
I f c-push g

8a:Eqa) Size'hia ! Size'hi (Tl a)
I f def. of Size' (twice) g

8a:Ega) (qga! Int) ! (qg((Tia! Int)
I f c-dr op (twice) g

8a:Eqa ) (a! Int)! Tial! Int

The secondexample involves T2 which has two type variables, eat with a dierent
constraint:

Size h!! i T2



6.1 Generic Haskell 144

I fcstart g

Size' h!! i T2 [Ix ; Eq]
I f def. of Size' ¢

(g(Ba:ga) Size' hia ! Size'h! i(T2a)Qq)[Ix;Eq]
I f c-push g

8a:lx a) Size'hia ! Size'h!i (T2a)][Eq]
I f def. of Size' ¢

8a:lx a) (qga! Int) ! Size'h! i (T2a)][Eq]
I fcdropg

8a:Ix a) (a! Int)! Size'h! i(T2a)][Eq
I f def. of Size' ¢

8a:lx a) (a! Int)! ( g (8b:gb) Size'hi b ! Size' hi (T2 ab) q) [ Eq]
I f c-push g

8a:lx a) (a! Int)! (8b:Eqb) Size'hi b ! Size'hi (T2ab) )
I f def. of Size' ¢

8a:lx a) (a! Int)! (8b:Eqb) ( gb! Int) ! Size'hi (T2ab) )
I fcdropg

8a:lx a) (a! Int)! (8b:Eqb) (b! Int )! Size'hi (T2ab) )
I f def. of Size' ¢

8a:lx a) (a! Int)! (8b:Egqb) (b! Int)! (g (T2ab! Int) )
I fcdropg

8a:lx a) (a! Int)! (8b:Egqb) (b! Int )! T2ab! Int)

The following example involves T3 which has multiple constraints on its only type
variable:

Size h'!i T3
I fcstart g

Size' h!i T3 [x .(Eq X, Show x)]
I f def. of Size' ¢

(g (8a:ga) Size' hia ! Size'hi (T3 a)q) [Xx .(Eq X, Show X)]
I f c-push and constraint application g

8a: (Eq a, Showa) ) Size 'hi a ! Size'hi (T3 a)
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I f def. of Size' (twice) and c-dr op (twice) g
8a: (Eqa, Showa)) (a! Int )! T3a! Int

In the following example, there are two constraints on T4's rst type variable and one
constraint on the second:

Size h!! i T4
I fcstart g
Size' h!! i T4 [Xx .(Eq X, Show Xx); Nunj

I f def. of Size' ¢

(g (8a:ga) Size' hia ! Size'h! i (T4 a) ) [Xx .(Eq X, Show x); Nunj
I f c-push and constraint application g

8a: (Eq a, Showa) ) Size 'hia ! Size'h! i (T4 a) [Nunj

I f i g
8a: (Ega, Showa) ) (a! Int )! (8b:Numb) Size'hi b ! Size'hi (T4ab) )
I f i g

8a: (Ega, Showa) ) (a! Int )! (8b:Numb) (b! Int )! T4ab! Int)

The following exampleinvolvesT5 which hasa constraint on both of its type variables,
and the rst one has kind ( ! ). The example illustrates the use of free type
variables: the type variables after the 8 are chosenin the same alphabetical order
so that a free variable in position i in a constraint list is bound by the ith universal
quanti er introduced by a P%h i case. We could have worked up to somecortext of
free variables but we prefer to usethis corvertion for simplicity:

Sizeh( ! )! i T5
I f cstart g
Size' h( ! )!! i T5 [Functor ; x .Eq (a x)]

I f def. of Size' ¢

(g (8a:ga) Size' h!i a ! Size'h!i (T5a)g) [Functor ;x .Eq (a x)]
I f c-push g

8a: Functor a) Size'h! ia ! Size'h! i (T5a) [x .Eq(ax)]
I f def. of Size' ¢
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8a: Functor a) Size'h! ia ! (g (8b:gb) Size'hi b ...)) [x.Eq(ax)]

I f c-push g

8a: Functor a) Size'h! ia ! (8b:Eq(ab)) Size'hib ...)
I f i g

8a: Functor a) Size'h! ia ! (8b:Eq(ab) (b! Int)! ...)
I f i g

8a: Functor a) (8b:(b! Int )! ab! Int)!
(8b:Eq(ab) (b! Int)! T5ab! Int)

We have not shavn Rule c-null  at work. It hasbeenusedin the stepsfrom the perul-
timate equation to the last. For reasonsof space,let us usethe following abbreviation:

def

etc= (8b:Eq(ab) (b! Int)! T5ab! Int)

Theseare the details of the derivation:

8a: Functor a) Size'h! ia ! etc
I f def. of Size' ¢

8a: Functor a) ( g (8b:gb) Size'hi b ! Size'hi (ab)qg) ! etc
I f c-null g

8a: Functor a) (8b:Size' hib ! Size'hi (ab )! etc
I f def. of Size' and c-dr op (twice) g

8a: Functor a) (8b:(b! Int )! ab! Int)! etc

The following example involves T6 and shows Rule c-empty at work:

Size h!! i T6
I f cstart g
Size' h!! i T6 [;;0rd]

I f def. of Size' ¢

(g (8a:ga) Size' hia ! Size'h! i (T6a)Qq) [;;0rd]
I f c-empty g

8a:Size' hia ! Size'h! i (T4 a) [Ord]
I f i g

8a:(a! Int )! (8b:Ord b) (b! Int )! T4ab! Int)
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Lastly, the following example shows the expansionof Map' which has two universally-
quanti ed type variables, thus illustrating the useof subscript

Map'h( ! )! 'i T5[Functor ; X .Eq (a x)]
I f def. of Mapg

( o (Bayaz: (qai;qaz) )

(Map'h! iaa )! (Map'h! i (T5az1) (T5 ap) Q) [Functor ; x .Eq (a x)]
I f c-push g

8ajay: (Functor ai, Functor ap) )

(Map'h! iazay )! (Map'h! i (T5a;) (T5 a) [X .Eq (ax)])

We abbreviate the result of reducingMap'h ! i ay a, asfollows:

o

ef

S = (B (! b)! agb! ahby)
And resume:

8ajay: (Functor ai, Functor ap) ) S'!
(Map'h! i (T5 az) (T5 a2) [x .Eq (a x)])
I f def. of Map' ¢
8ajay: (Functor ai, Functor ap) ) S'!
(C o (8ube: (qby;aby) )
(Map'hi byl ) ! (Map hi (T5 a1 by) (T5 az k) 0)))
[x .Eq (ax)])
I f c-push (invoking subscrip} g
8aiay: (Functor aj, Functor ap) ) S'!
(8bybp: (Eq (a1 by), Eq (a2 b)) )
(Map'hi byl ) ! (Map hi (T5 a1 by) (T5 az bp) ))
I f..g
8aiay: (Functor aj, Functor ap) ) (Bhilp: (k! )! atby! aybp)!
(8bibp: (Eq (a1 bu), Eq (a2 b)) ) (! bp) ! (TS5 aiby)! (75 a by))

Expansion and instance generation. We concludethe sectiondiscussinghow the
expansionof context-parametric types ts into the overall generationprocess.For eath
polytypic application ghl ;::: i where T is a type operator of kind and ; are
well-kinded type applications of kind ;, the Generic Haskell compiler must generate
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the g_T instance whosetype is obtained by expandingP%h i T T, where PCis the
context-parametric polykinded type of g. The polytypic applications gh ji must be
compiled to instancesg_ ; whosetype is obtained by expandingP% ;i 7 , wherethe
constraint list is empty. Consequetly, constrained type operators cannot be applied
to other constrained type operators. This restriction can be overcome by modifying,
among other things, the de nition of constraint lists to accourt for constraints in j,
and by -applying the Pt i — casein a context-parametric polykinded type to the

constraint list of ; during expansion.

At any rate, we have intro duced context-parametric polykinded typesin this thesisto
be able to write polytypic functions on rst-or der ADTs which may be implemented in
terms of constrained types (Chapter 9). First-order type operators cannot be applied
to proper type operators, let alone constrained ones. The solution preseried here is
su cien t for our purposes.

6.1.12 Parameterisation on base types

The values for basetypes and units are xed in polytypic function de nitions. For
example,in the caseof gsize , the sizefor integersis 0 and sois the size computed for
avalue of List Int type. It is necessaryto abstract over a type-operator's payload to
compute the size properly:

gsize hList Int i [1,2,3]

>0

gsize hList i (const 1) [1,2,3]
> 3

Fixing the value for base types can be limiting. For instance, the size for units is
0 and it is therefore impossibleto count things such as the number of empty trees
hanging from leavesin a BTree . Serialisation functions (e.g. encalers) take into ac-
court units and basetype values;their de nition must be changed and recompiled if
their encaling needsto be changed. Furthermore, every time a basetype is added
to the system (for example by linking with a library), the polytypic de nition hasto
be modi ed and recompiled unlessthe new caseis added by extending the polytypic
function (dependency-syle supports “polytypic extension' [Loh04)).
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type Sizehi t =Int ! Int ! t ! Int
type Size hk! vi t = 8 a. Size hki u ! Size hli (t a)

gsize htk i : Size hki t

gsize hChari vw _=v

gsize hint i vw_=v

gsize hBooli v w_=vVv

gsize hUnit i v w_ = w

gsize hatbi v w (Inl x) = gsize hai v w X

gsize hatbi v w (Inr y) = gsize hbi v wy

gsize ha bi v w (xy ) = (gsize hai v w Xx) + (gsize hbi v wy)

gsize hList i ( vwa ! 0) 01 [123]
> 1

Figure 6.18: Parameterising gsize on the valuesof basetypesand units.

Parametrisation allows us to usecode onceby adapting parameterswhereasextension
requires us to provide new de nitions for specic types. And dierent (overlapping)
de nitions for the sametype are not possible.

A somewhatugly solution is to parameterise every polytypic function de nition with
valuesfor basetypesand units. For instance, Figure 6.18 shaws a rede nition of Size
and gsize where the sizefor basetypes (argument v) and for units (argumert w) is
passedasan argumert to gsize andto its argumert functions. This de nition is coarse-
grained: basetypesare given the samesize. Making distinctions would require more
argumerts, and the addition of new basetypeswould require editing the polykinded
type, forcing recompilation and a ecting client code.

6.1.13 Generic Haskell, categorially

This sectionis concernedwith expressingpolytypic function de nitions in a way that
abstracts from the concreterepresertation of binary sumsand products. Following the
categorial de nitions and conceptsdiscussedin Section 3.9.2, in this section we read
a b anda+b assugarfor Prod a b and CoProd a b respectively. Figure 6.19shows the
de nitions of gsize , gmap and geq in the light of this change. Notice that gsize and
gmap both take one value argument and follow the samepattern. Figure 6.20 shows
their instantiations for a couple of functor expressions.

The generalpattern of a polytypic function de nition that takesonevalue argumert is
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gsize hli = const O

gsize hint i = const O

gsize ha+bi = gsize hai O gsize hbi

gsize ha bi = plus map gsize hai gsize hbi

where plus p = exl p + exr p

gmaphli =id

gmaphint i = id

gmapha+bi = (asLeft gmaphai) O (asRight gmaphbi)
gmapha bi = id map gmaphai gmaphbi

geq hli = const (const true )

geghint i = (==

geq hatbi cl1 c2 if (isLeft cl && isLeft c¢2) then
ghai (asLeft cl) (asLeft c2)

else if (isRight cl && isRight c¢2) then
ghbi (asRight cl1) (asRight c2)

else False

geqha bi pl p2 geqhai (exI pl) (exI p2) &&

geghbi (exr pl) (exr p2)

Figure 6.19: Polytypic gsize , gmap, and geq in terms of products and coproducts.

a
f

Inn
B e
+ +
v QD

F
G a

gsize_ F gsa
gsize_ G gsf gsa

gsize_Unit O (gsa 'plus ° (gsize F gsa))
gsize_Unit O (gsa 'plus ° (gsf (gsize G gsf gsa)))

gmap_F gma (asLeft gmap_Unit ) O

(asRight (gma ‘prod ° (gmap_F gma))

gmap_G gmf gma = (asLeft gmap_Unit ) O

(asRight (gma ‘prod ° gmf (gmap_F gmf gma)))

Figure 6.20: Somefunctors and their polytypic function instances. Notice that map 's
de nition hasbeenexpanded.
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1 B A - A+B B
@
@@
ca gRAI- @ cg ghBi
? ? ?
C C C
A exl A B exr B
Pa ghAi P QMBI
? ? ?
c exl c o c exr c
?
C
ghii = 0
ghBi = O
ghA+Bi = (ca ghAi) O (cg ghBI)
where ca g = cafter, g chefore,
Cg g = cafterg g cheforeg
grA Bi = (Pa ghAi)  (ps grBI)
where | r = (I exl) M(r exr)
pa g = pafter, g phlefore,
Pe g = pafterg g pheforeg
Figure 6.21: General pattern of a polytypic function de nition expressedcategorially.

B rangesover basetypes.
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shawvn in Figure 6.21. The rst box depicts ead caseas a diagram. The programmer
de nes ca, Cg, pa, pg and . The latter function speci es what is to be donewith eadt
product member after the (possibly) recursive application of the polytypic function.
The casesfor units and basetypesare xed.

Notice that geq takestwo value argumerts and follows a di erent pattern. In order to
expressits de nition in point-free fashion, like gsize , we would have to de ne a sort
of zipping pairwise extensionof O, M, and

Figure 6.21 illustrates more clearly the fact that a polytypic function de nition has
the recursive structure of a catamorphism [MFP91, BdM97]. We comebadk to this
gure in Chapter 9 when exploring its adaptability in the presenceof data abstraction.

6.2 Scrap your Boilerplate

The Scrap your Boilerplate (SyB) approac to generic programming [LP03, LP04,
LPO5] is a blend of polytypic and strategic programming ideas. Section 6.2.1 explains
Strategic Programming and Section 6.2.2 provides a paper-by-paper tour of SyB.

6.2.1 Strategic Programming

Data structures are heterogeneoudrees of sorts. Computing with them entails travers-
ing them (recursion scheme) and performing actions at every node in the structure.
Some actions may involve combining results of other actions into a value (so-called
type-unifying computations sudh as catamorphisms), or transforming a value (so-
called typ e-pr eserving computations sud as maps).*

Given a set of data types, programming by hand functions on them by pattern match-
ing is non-generic, laborious, fragile with respect to changesin the type's de nitions,
and rigid with respect to the recursionschemeand traversal cortrol. Functions are not
parametric on \the ability to determine which parts of the represertation are visited in
which order and under which conditions" [VS04, p16]. This problem becomespartic-
ularly annoying when functions only work on someparts of the structure, making the
rest of the code which traversesit (i.e., which recursesin order to get to those parts)
boilerplate code.

“The terminology has beenborrowed from [LVKOO].
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The use of higher-order functions capturing recursion schemesis of little help. Ex-
amplesof sud functions are genealised folds [Hut99, GHAO1, SF93 BP99, MH95]. In
particular:

The fold function for every type hasto be programmed explicitly and sois ead par-
ticular fold algebra(operators that replacevalue constructors) with which we want
to compute. An exception is the programming language Charity,®> where folds are
automatically generatedby the compiler for rst-or der type operators. Program-
mers may assumethe existenceof thesefolds when writing their programs.

Folds are rigid with respect to traversal cortrol: the recursion schemeis xed and
control re nement has to be hardwired in algebraic operators. For example, to
“stop folding' over a binary tree upon a certain condition we needto hardwire the
stop condition in algebraic operators (fold would not “stop' but simply collapsethe
pruned subtree into a default value) :

fold_until p: (@ ! Bool) ! Alg ac! List a! c
fold_until pag | =foldr alg"' |
where
alg' = Alg {nil = nil alg,
cons = xy ! if p x then nil alg else cons alg x vy}

In [LVKOO] a solution is proposed for reusing algebras by extension and overriding
which is implemerted in terms of extensible records.

Strategic Programming [VS04, LVV02] is a more general, paradigm independent solu-
tion to generictraversal (computation) with heterogenousstructures. It is basedon
the following key ideas: action at a node and traversal must be separated, and tra-
versals must be decomposedinto one-layer traversals on the one side and recursion
sthemesgiven by an explicit xed-p oint de nition on the other side. This separation
of concernspermits composition and parametrisation: actions can be composedand
one-layer traversalsand recursionschemescan be provided asaction-parametric generic
combinators.

In order for an action at a node to be generic, Strategic Programming assumesthe
possibility of type-baseddispatch, usually implemented in terms of a dynamic type-case

®http://www.cpsc.ucalgary.ca/Research/ chari ty/hom e.html
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i.e., code that enquiresabout a value's type at run time (run-time type information
or RTTI) in order to perform the appropriate computation. Enquiring about type
information makes "generic' code more ine cien t than non-generic,purp ose-built code
(chedk out [LPO3] and Section 4.3).

id , fail Primitiv e actions

seq, choice Action composition

adhoc Type-baseddispatch

all , one One-layer traversal

topdown , bottomup  Recursion schemes

ft Apply strategy f to input term t

Table 6.1: Examples of Strategic Programming conmbinators.

Table 6.1 lists a few paradigm-independert combinators [VS04]. The rst row lists the
actionsid and fail which are applied to an input node. The former returns the node
untouched and the latter returns a special value denoting failure or raisesan exception.
The secondrow lists someways of composing actions. Actions can be composed by
seq f g which applies rst f and then g to the node, or by choice f g which applies
g only if f fails. The third row is the dynamic type-casecombinator adhoc f g which
applies g to the node if g's sourcetype is the sameasthat of the node, or otherwise
appliesf , which must have the samesourcetype asthe node's. The fourth row lists two
one-layer traversal conbinators: all f which appliesf to all the immediate subnodes
of its input node, and one f which applies f to the leftmost subnode only. These
conmbinators are not recursive. Recursionis achieved by tying the knot:

topdown f = seq f (all (topdown f))
bottomup f seq (all (bottomup f)) f

Notice here the pattern:

traversalscheme f = combinators traversalschemef

which is indeed a xed-p oint de nition of the form f x = F f x wheref is a xed
point of F.

The following example illustrates the power of Strategic Programming: given a het-
erogeneousdata structure t which cortains, among other things, integer values, the
following combinator only incremerts the valuesof thoseintegers, traversing the struc-
ture in top-down fashion:
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incints t = (topdown (adhoc id (+1))) t

Notice the separationbetweengenericity (traversalschemewith identit y) and speci city
(action at speci ¢ nodesonly).

Combinators are composable and have nice algebraic properties. This permits the
de nition of new combinators for particular purposes.Theoretically, it seemsthat two
conmbinators su ce to expressall strategic programs [LV02c].

Strategic Programming combinators are paradigm independent. There are incarnations
with running applications for term-rewrite systemsand attribute grammars [VS04],
for object-oriented systems as improvemerts of the Visitor pattern [Vis01] and, in
the functional paradigm, there is the Strafunski bundle which includes a functional
comrbinator library and tool support for doing Strategic Programming in Haskell.®

6.2.2 SyB tour
This section describes SyB paper by paper.

The rst paper [LPO3] beginsby preseriing a dynamic nominal type-case oper-
ator. It is called type-safe cast in the paper for historical reasonsand becauseit is
implemented using a cast operator that cannot causerun-time errors.

The implementation of cast relieson clewver type-classand re ection tricks that enable
it to determine the type of a value at run time by meansof applying the instance for
that type of an overloadedfunction typeOf that hasbeen gured out at compile time
by the type-teder.

More precisely the cast operator hastype:
cast 1 (Typeable a, Typeable b) ) a ! Maybe b

where the Typeable type class declaresthe aforemeriioned typeOf function. The
de nition of typeOf is derived automatically by the compiler for a data type using
Haskell's deriving  clause. The function returns a value that makesfor the represet-
ation of a manifest type.

Operationally, the application cast x within a context of manifesttype Maybe T returns

8Strafunski comesfrom Strategic and Functional programming resenbles the music of Igor Stravinski
(http://www.cs.vu.nl/Strafunski ).
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Just x if x hastype T, otherwise returns Nothing :

(cast 1) : Maybe Int
> Just 1

(cast 1) : Maybe Char
> Nothing

In other words, we get a Just value when, at run-time, a=b. The name “cast' is
justied in that a value of type Maybe b is obtained from a value of type a. Howe\er,
the behaviour of cast x isthat of atype-casehat cheds at run time whether the value
x is of type T, returning Just x of type Maybe T if the answer is positive or returning
Nothing of type Maybe T' if the answer is negative, where T' is the actual type of x.

The paper goeson to intro duce se\eral operators that can be seenas versionsof adhoc
implemented in terms of cast : mkT for type-preservingactions, mkMfor monadic type-
preserving actions, and mkQfor type-unifying actions. For example, given a function
f oftypea! a, mkTf x appliesf to x only if x hastype a, returning x otherwise.
Clearly, mkT f corresponds to adhoc id f. Function mkT (or ‘'make transformation')
lifts a transformation (action in Strategic Programming jargon) on a value of a xed
type into a transformation on a value of type 8a. Typeable a ) a. It is therefore
called a generic transformation by the authors.

There are three one-layer traversals called gmapT (type-preserving), gmapM (monadic
type-preserving)and gmapQ (type-unifying) de ned in type classData :

class Typeable a ) Data a where

gmapT :: (8b. Data b) b! by ! a! a

gmapM: Monad m) (8b. Data b) b ! mb) ! a! ma
gmapQ: (8b. Data b) b! n ! al |[r]

Their behaviour is sketched below for an arbitrary n-ary value constructor C. One-layer
traversalsare polytypic, i.e., de ned on the structure of the node:

gmapT mt (Ctl :::tn) = C (mt tl) :::(mt tn)

do t1' mt tl

gmapMmt (C t1 :::tn)

tn mt tn

return cCti' :::tn'
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gmapQmt (Ctl :::tn) = [mt t1, :::,mt tn]

In words, gmapT appliesa generictransformation mt (built using mkT) to all the imme-
diate subchildren of “node' C whereasgmapMapplies a monadic generictransformation
(built using mkN). In cortrast, gmapQapplies a generic query (built using mkQ which
returns a result) to the immediate subchildren but returns a list of results. Functions
gmapX can be applied to any data type that has beenmade an instance of type class
Data . The compiler can be instructed to generatethe instancesautomatically using
the deriving  clause.

Rank-2 polymorphism is required for typing generic transformations and queries. It
is alsorequired for typing traversal combinators which take generictransformations or
gueriesas argumerts. There are three traversalsfor the three modes: everywhere f x
applies a transformation to every node in a data structure in bottom-up fashion:

everywhere mt x = mt (gmapT (everywhere mt) X)

Similarly, there is a monadic traversal scheme everywhereM and a type-unifying tra-
versal shemeeverything , all declaredas members of type classData .

The paper shows that all one-layer traversalsare idioms of a one-layer traversal called
gfoldl

class Typeable a) Data a where
gfoldl > 8wa (8ab Data a) w@ ! b) ! a! wh
! (8g9g. g! wg) ! a! wa

Its behaviour is sketched below for an arbitrary n-ary value constructor C. The function
is polytypic, i.e., de ned on the structure of a ‘node":

gfoldl kz(Ctl :::tn) =k (::: (k (z C t1) :::) tn

An ordinary fold would replacethe value constructor by an n-ary function. In cortrast,
gfoldl  passesthe value constructor C to its secondargumert and applies its rst
argumert, function k, to the result and the rst sub-node. The value produced is
passedagain to k which is also passedthe secondsub-node, and so on. Like function
application, k asseiatesto the left, hencethe name gfoldl  and not gfoldr . For a
nodet:
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gfoldl (% id t ==1t
where ($) is pre x function application.

The one-layer traversal gmapT can be de ned in terms of gfoldl  approximately as
follows:

gmapT mt = gfoldl k id
where k x y = x (mt vy)

For instance, given a binary value constructor C.

gmapT mt (C t1 t2)

gfoldl  k id (C t1 t2)
= k (k (d C) t1) t2

= k (C (mt t1) t2

= (C (mttl)) (mt t2)

= C(mt t1) (mt t2)

The de nition is an approximation becauseit doesnot type-died: the value returned
by gmapT hastype a, not wa. The authors shav how to x the de nition of gfoldl
sothat wis an identity type,i.e., wa = a.

The paper also introduces conbinators for action composition and other traversal
schemes. It usesas a running example a set of heterogeneouskind- data types but
arguesthat instancesof Data can be generatedautomatically for irregular and para-
metric type-operators. However, Haskell's type-classmedanism imposeslimits with
respect to the kind of type-operators, and the dynamic nominal type-cases performed
on manifest types, not parametric type-operators.

A gsize function can be implemented in SyB as follows:

gsize :: Data a) a ! Int
gsize x = 1 + sum (gmapQ gsize Xx)

The type-unifying one-layer traversalgmapQappliesgsize recursively to the immediate
subchildren of x, addsup the list of results, and adds oneto accourt for the sizeof the
preseri node.

We have already seensomeexamplesof gsize in Generic Haskell:

gsize hList i (const 1) (Cons 1 (Cons 2 Nil)
> 2
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gsize hList Int i (Cons 1 (Cons 2 Nil)
>0

In SyB, howe\er:

xs : List Int

xs = (Cons 1 (Cons 2 Nil)
gsize xs

> 5

First, we have to provide the type of xs explicitly in an annotation, the application:
gsize (Cons 1 (Cons 2 Nil)

will confusethe type chedker which cannot decide whether type variable a in gsize 's
type signature is constrained by Data or Num The culprit is Haskell's monomorph-
ism restriction. Second,gsize couns ewery value constructor into the nal size, as
illustrated by the evaluation trace:

gsize (Cons 1 (Cons 2 Nil)

= 1 + sum (gmapQ gsize (Cons 1 (Cons 2 Nil )))

= 1 + sum ([gsize 1, gsize (Cons 2 Nil )]

=1+ sum ([ + sum (gmapQ gsize 1), gsize (Cons 2 Nil )])
=1+ sum ([1, 1 + sum (gmapQ gsize (Cons 2 Nil ))])

=1+ sum ([1, 1 + sum ([gsize 2, gsize Nil ]

=1+ sum ([1, 1 + sum ([1,1])])

=5

The trace alsoillustrates that every recursive call to gsize addsoneto the sum of the
size of the subnodes. In cortrast:

gsize x = sum (gmapQ gsize Xx)
gsize xs
>0

No size! Finally, notice that gsize is applied to a manifest type of type classData
and, so far, we cannot be parametric on the sizeof its payload.

Another important feature presentied in [LPO3] is polytypic function extension or
specialisation, i.e., the ability to override the polytypic function's behaviour for speci c
monomorphic types. As expected, there are three extension combinators: extT , extM,
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and extQ . An application ext X g f x appliesthe specialisedmonomorphic function f
to x if at run time x's type matchesf's sourcetype; otherwise it appliesthe polytypic
function g. Certainly, these operators are another manifestation of adhoc, only that
the default behaviour is now provided by a polytypic function. An exampleinvolving

gsize :
f i Company ! Int -- provides size for Company values
gsize = gsize_default extQ T f
where gsize default Xx = 1 + sum (gmapQ gsize x)
The original de nition of gsize is rewritten into a default case,gsize_default , and

a specialisedcase,f , for valuesof type Company. Notice the xed-p oint nature of the
de nition: gsize passesgsize_default to extQ and gsize_default calls gsize .
Notice alsothat the type-speci ¢ behaviour, f, is xed in gsize 's de nition. Adding
new type-speci ¢ behaviour entails the recompilation of gsize :

h i Client ! Int -- provides size for Client values .
gsize = gsize_default extQ T f "extQ T h
where

Providing the extensionin a newfunction will not avoid recompilation: gsize_default
hasto call the new function:

gsize = gsize ‘extQ * h
gsize
where gsize_default x = 1 + sum (gmapQ gsize ' Xx)

Finally, notice there are no cheds for overlapping extensions;the following is possible:

gsize = gsize_default extQ T f TextQ T f ‘extQ T f

The second paper [LP04] extends the original approadh endaving the classes
Typeable and Data with re ection operators that allow programmersto dynamically
enquire about a value's type, its value constructor names, their xit y, etc. Re ection
operators can be derived automatically by the Haskell compiler. Their implementation
follows much of the type-classtrickery usedin the implementation of cast .

The paper shows how to program serialiserssud as pretty-printers and encaders, de-
serialisersthat illustrate the benets of lazy evaluation, and test-data generators. It
also adds new one-layer, zip-like combinators for traversing two data structures at the
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sametime, thus enabling the de nition of functions such asgeq. Finally, new versions
of cast are provided for performing dynamic nominal type-caseon type-operators
of up to sewen type argumerts of kind . Eacdh cast livesin a separate type class
Typeable i (i : 1:::7) which can again be derived automatically by the compiler. The
generalisation of cast a ords the generalisation of the extension combinators extT i,
extQ i, and extMi, which now support polymorphic extension of polytypic functions.
For example, in extQl g f x, function f is polymorphic on a type-operator of kind
I ;inextQ2 gf x,f ispolymorphic on a type-operator of kind ! I, etc.

The implementation is carried out within Haskell, or one should say, within the Haslkell
compiled by the Glasgav Haskell Compiler which supports the required non-standard
extensionsand the automatic derivation of classesData and Typeable .

The third paper [LPO5] re nes SyB further with the possibility of extendinggeneric
functions in a modular fashion. In [LPO3], polytypic extensionis achieved by meansof
combinators sud as extQ , but extending a polytypic function with new type-specic
casesentails recompilation|recall the gsize and gsize default examples.

In cortrast, Haskell's type classessupport an open-world approadc to function exten-
sion: for every newly-de ned type, the specic instance of an overloaded function for
that type is de ned by declaring the type an inhabitant (instance ) of the type class
in which the overloaded function name is declared. The instance declaration provides
the body of the function for that type. For example:

class Size a where

size = a ! Int

instance Size Int where
size x =1

instance  (Size a, Size b) ) Size (Pro a b) where
size (X, y) = size x + size y

The problem with overloading is that it is not generic. Each version of the overloaded
function hasto be programmedexplicitly. Providing instancesis an incremertal process
in which there is no needto edit and recompile previously written code.

Mo dular polytypic extension combines polytypism and the incremertal extension
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provided by the type-classmedianism. The ideais to get at something like:

--  Pseudo - code
class Size a where
gsize = a ! Int

instance  Size a where
gsize x = 1 + sum (gmapQ gsize Xx)

instance  Size Company where
gsize = f

A polytypic function name is now a type-classoperation. Its code and extensionsare
provided in instances. The rst instance above speci es gsize 's default behaviour for
all typesa. The secondspeci es the behaviour for Company values. Unfortunately, the
code doesnot type-ched: type variable a is constrained by type classData in gsize 's
type signature, and this constraint must appear in the instance  heading:

instance Data a ) Size a where
gsize x = 1 + sum (gmapQ gsize Xx)

Furthermore, gmapQexpectsa rst argumert of type:
Data a) a! r

but it is passedgsize , whosetype is lessgeneraland has a di erent type-classcon-
straint:

Size a) a ! Int

The authors arguethat making Size a superclassof Data would solve the problem, but
the type-classmedanism works by extending superclassewith subclassesand not the
opposite. The authors proposeto extendthe type-classnetanismwith typ e-class ab-
straction and type-class applic ation in type-classand instance declarations. They
showv how to encade the extensiondirectly in Haskell using someof the ideasin [Hug99].

The rest of the paper is dewoted to deweloping the necessarymachinery. The most
problematic point is the de nition of recursive instance  declarations suc as:

instance Data Size t ) Size t where
gsize x = 1 + sum (gmapQfjSize ,t jg gsize x)
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There is a xed-p oint “equation’ in the instance heading which may compromisethe
decidability of type inference,a problem whosefull solution is consideredfuture work
(braceswith vertical bars denote type-classapplication).

Now, the RTTI tests of ext X are avoided and which gsize function to call on a value
of atypeis decidedat compile time: either there is an instance of gsize for that type
or otherwise polytypic gsize is applied. Notice that this meansthere is no way of
overlapping or extending a polytypic function in di erent ways for the samedata type
unlessthe compiler supports overlapping instance s.

Notice that by making polytypic functions memnbers of type classesthesetype classes
will appear in the type signaturesof client functions.” For example [LP05, p4]:

gdensity 1 (Size a, Depth a) ) a ! Int
gdensity x = gsize x / gdepth X

Thereis a possibleimpact on maintainabilit y: changingthe implementation of gdensity
may a ect type-classconstraints and, hence,a ect its client functions. In the original
scheme, the type of gdensity wasthe more general:

Data a) a ! Int

A possible patch that localisesthe change would consist of hiding classesSize and
Depth behind a Density  sub-classwith no operators:

class (Size a, Depth a) ) Density a

gdensity :: Density a) a ! Int
gdensity x = gsize x / gdepth x

A changein gdensity may entail a changein Density but client functions are unaf-
fected.

We concludethis sectionwith an examplethat illustrates the advantages of polytypic
extension. On page 159, we shaved how polytypic gsize counts value constructors
when calculating the size of a list. With polytypic extension, we can customisethe
gsize for lists to court only payload elemerts:

"Compare with Dependency-style Generic Haskell, where the type of a polytypic function includes
the names of other polytypic functions it calls.
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instance  Size a ) Size (List a) where
gsize Nil =0
gsize (Cons x xs) = gsize X + gsize Xxs

We cannot be parametric on the sizeof the payload type|whic his computedby gsize 's
instance for the Int type|, but at least value constructors are avoided in the total

court:
Xs 1 List Int
xs = (Cons 1 (Cons 2 Nil)
gsize xs
> 2

6.3 Generic Haskell vs SyB

Generic Haskell and SyB di er in approac and style.

In Generic Haskell, polytypic functions have polykinded types. The former are de ned
by induction on the structure of represenation type operators (where only the beha-
viour for basetypesand baserepresenation typesis required). The latter are de ned
by induction on kind signatures. The Generic Haskell compiler replacespolytypic ap-
plications by calls to generatedinstances. It also generatessomeinternal macdhinery:
represertation type operators, embedding-projection pairs, etc.

In SyB, polytypic functions are de ned in terms of generic one-layer traversals that
can be derived automatically by the Haskell compiler for manifest types and type
operators whose kind signature is described by the grammar = | ! up to
sewen expansions.

In SyB represenation typesare unnecessary:type-baseddispatch is nominal and re-
lies on typeOf . In corntrast, Generic Haskell has represeration typesand type-based
dispatch is unnecessary

SyB employs Strategic Programming ideasto separatespeci city (nominal action at a
node) from genericity (traversal basedon structure). Generic Haskell is purely struc-
tural and speci city can only be achieved via polytypic extension.

SyB is carried out within Haskell with a (supposedly) minimal extension: instructing
the compiler to generatetype classesTypeable and Data . In cortrast, Generic Haskell
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is a language extension requiring a pre-processingcompiler. But polytypic functions
are not type-thedked independertly of their instantiations. It is the Haskell compiler
the one that type-diedks that genemted instance bodies conform to genented type
sighatures.

Generic Haskell and SyB di er in the model of computation. In SyB there is a set of
one-layer traversalsthat are usedin the de nition of polytypic functions on manifest
types SyB also supports monadic traversals. In corntrast, polytypic functions in Gen-
eric Haskell work on unconstrained type operators of arbitrary kinds. The fact that
SyB's implementation is type-classbasedimposestechnical limits: there are only seven
Typeable i classes.

In SyB, gfoldl and one-layer traversal idioms perform computations on value con-
structors. In Generic Haskell, polytypic functions can perform computations on value
constructors but seldomdo so (contrast the gsize examplesin page 159).

Despite the di erences, we consider Generic Haskell and SyB polytypic language ex-
tensions of Haskell. Abstractly, polytypic programming is characterisedthus: in poly-
morphic languages,functions are “separated'by the typeson which they work. Poly-
typic functions must work on values of di erent types. They are a generalisation of
families of overloaded or polymorphic functions whosetypes and bodies can be gen-
erated automatically in regular fashion. Polytypic functions are used as if they were
a single function. Interestingly, this “single' function can be given a type. The rest is
implemenrtation detail.

We conclude the section with a short description of the paper [HLOO06] which is, in
part, an attempt to explain the dynamic behaviour of gfoldl by meansof making the
dynamic type information explicit at compile time. More precisely the paper de nes
a generalised algebraic data type [PWWO04] for represerning type information as
valuesin programs:

data Type :: ! where
Tint . Type Int
TChar : Type Char
TPair :: Type a ! Type b ! Type (ab)

TSum :: Type a ! Type b ! Type (Sum a b)
TList @ Type a ! Type (List a)
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For example, the value constructor TInt is a value represenation of the type Int ;
the value constructor TChar is a value represertation of the type Char ; the expression
TPair TInt TChar is a value represertation of the type (Int , Char) .

When types are explicitly represened as values at run-time, generic functions can
simulate type-baseddispatch, for instance:

gsize : Type a! a ! Int
gsize Tint i =0
gsize TChar c =0

gsize (TPair ta th) (xy)
gsize (TSum ta th) (Inl x)
gsize (TSum ta th) (Inr vy)
gsize (List ta) xs

gsize ta x + gsize th vy

gsize ta x

gsize th vy
sum (map (gsize ta) xs)

In the paper, atype a is said to be typedif it is represened by a Type a value:
data Typed a = HasType a (Type a)

The authors intro duce another generalisedalgebraicdata type, called Spine that plays
the samerole asalisp S-expression.There is a "generic'toSpine function that trans-
lates Typed valuesto (‘un-Typed') Spine values:

data Spine ! where

Constr :: a ! Spine a

() : Spine (@ ! b) ! a! Spine b
toSpine 1 Type a ! a !l Spine a

In the de nition of Spine , Constr playsthe role of z and the role of k in the de nition
of gfoldl , which is now expressedthus:

gfoldl o Type a! (8ab w(a! b)) ! Typed a! wh)
I (8a a! wa)
I a! wa

gfoldl t k z = foldSpine k z toSpine t

Howewer, the generalisedalgebraic type Type is not extensible: the translation from
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Haskell to lisp (i.e., from Typed valuesto Spine values)explains gfoldl 's dynamic
behaviour statically within Haskell for one compilation. In SyB, when new typesare
added the compiler generatestheir gfoldl  instances. In corntrast, extending Type
entails its recompilation.

6.4 Lightweight approac hes

There are lightweight approacesfor doing polytypic programming within Haskell. The
most notable onesare (1) [CHO2] which relies either on existertial types® or on gen-
eralised algebraic data types[PWWO04] to enforcethe correspondencebetweena type
and its represenation type; (2) [Hin04] that extendsthe previous approadc in order
to de ne polytypic functions on type-operators of order 1 within Haskell 98; and (3)
[OGO05] which generalisesand collects the ideas into a programmable design pattern
and considerspolytypic functions with polytypic (type-indexed)types.

8Type-terms where universal quanti cation occursin contravariant position; not to be confusedwith
other notions of existential typesthat model data abstraction [Pie02].



Chapter7
Polytypismand Data Abstraction

If you make a small changeto a program, it can result in an enorm-
ous change in what the program does. If nature worked that way, the
universewould crash all the time. (Jaron Lanier)

Successfulkoftware always gets changed. (Fred Brooks)

In GenericHaskell, polytypic functions are de ned by induction on the concrete de ni-
tional structure of atype operator, and their polykinded typesby induction onthe type
operator's kind signature. In SyB, polytypic functions are de ned in terms of one-layer
traversalswhosegeneratedinstancesare applied to the concrete structure of a "'node'.

Accessto concreterepresenmations con icts with the principle of data abstraction. More
precisely data abstraction limits polytypism's genericity.

The presern chapter articulates the previous statemert. Somereadersmay deemthis
unnecessary For them the step from the fact that \functions that accessADT repres-
entations can wreak havoc" to the fact that \ polytypic functions [or their instancesfor
that matter] that accessADT represertations canwreak havoc" requiresno argumerts
nor examples. But it is important to drive homethe point for those lured by the “gen-
eric' adjective. There are also conicts speci c to the nature of Generic Haskell and
SyB. Calling a function structurally polymorphic highlights the fact that the function
is dependent on structure and whether structure changes.

The whole issueis bound to spur philosophical disagreemeh Accessto concreterep-
reserations is one of the dearesttools of the functional programmer|jor at least of
‘non-Lispers'. Think for example of functions de ned by pattern matching. Or think
about the fact that complex data-structure de nitions sud as rst-class, extensible
higher-order records, or rst-class modules for that matter, are ignored by polytypic
languageswhich always assumea world of algebraicdata types(i.e., sumsof products).
In Haskell 98, the standard record and module systemis even found wanting.

168
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7.1 Polyt ypism conicts with data abstraction

First and foremost, concrete represettations are logically hidden and often physically
unavailable (e.g. pre-compiledlibraries). Second,if polytypic functions were allowed to
sneakily accessan ADT's represertation, or weretipped o by an oracle, they would
not work satisfactorily. Data abstraction brings about a di erent game. More precisely:

1. A pure function must return the sameresult when applied to the sameargumert.
This also applies to functions on ADT values. If the function computesits result
by accessingthe ADT's represettation and the represenation changes,the value
computed may alsochangedespitethat the function is applied to the same abstract’
value. Polytypic functions are subject to this problem just like ordinary, non-generic
ones.

In particular, functions accessingrepresertations can be a ected by implement-
ation clutter , i.e., data relevant only to the implementation of the type. More
precisely an ADT may be implemented using various concretetypes, parts of which
may contain data usedfor e ciency or structuring purposes.The well-known trade-
0 betweentime and spaceindicates that this is bound to happen often: extra data
will be usedin order to improve operator speed. It would be rather dicult, if
not impossible, for a function to ascertain the pertinence of data componerts in
implementations and to know what to do with them in a semarics-preserving way.
(Notice that clutter is not the sameasjunk: clutter can be part of a non-junk value
of the concretetype that represerts a value of the abstract type.)

2. A function accessingADT represenations may violate the implementation in-
variants which guararntee that concretevaluesare valid represertations of abstract
values. Theseinvariants are maintained by ADT operators and are the raison d'étre
for hiding the represerniation behind an interface. A violation of the implementation
invariants most certainly entails a violation of the type's semariics, i.e., the value
computed is not a value of the ADT.

3. Polytypic functions also have problems of their own:

(&) A manifest(kind- ) ADT hasthe samestatus asa basetype. Polytypic function
de nitions have to provide casesfor them like they do for integersor booleans
(Section 6.1.12).
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In Generic Haskell, adding a new basetype requires editing and recompiling
polytypic function de nitions (except those de ned by polytypic abstraction),
unlessthe new caseis added incremertally using polytypic extension. In SyB,
the ADT has to be made an instance of Typeable and Data by the ADT
implementor, who is the only one ertitled to the internals of the type.

In both cases,if the ADT implementation changesthe de nition of the poly-
typic function must be changedaccordingly. Client code may be a ected if the
results computed by the new de nition dier from its previous version.

From the viewpoint of Generic Programming, it is better to rely on paramet-
risation than to rely on extension. Parametrisation allows usto write code once
by adapting parameters whereasextension requires us to provide new de ni-
tions for speci c types,i.e., there is no "generic' programming here other than
name reuseand, furthermore, providing di erent (overlapping) de nitions for
the sametype is currently not possible.

(b) GenericHaskell doesnot support constrainedtypes(Section 6.1.10)which arise
frequertly in ADT implementations: order in binary seart trees, equality in
sets, etc. In cortrast, SyB supports constrainedtypeswhen the payload is also
constrained on Data , e.g.

instance (Data a, Ord a) ) Data (OrdSet a) where
gfoldl k z s =k (z fromList ) (toList s)

With polytypic extension,gsize hasa Size constraint instead of a Data con-
straint, soOrd must be declareda superclassof Size . The type-classparamet-
risation framework suggestedin [LPO5] is undergoing researd.

4. Polytypic extensionis not a satisfactory solution. Let us illustrate this point using
gsize asa running example.

With polytypic extensionit is possibleto write a de nition of gsize for a given
ADT sud that it upholdsthe implementation invariants and ignoresimplementation
clutter. But there are two problemswith this:

(&) Who writes the de nition? It could be written by the polytypic programmer if
granted accesdo the ADT's implementation. Howewer, it is disturbing to de ne
a function that accesseshe implementation outside the ADT. The de nition
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should be provided by the ADT implementor, who can update the de nition if
the implementation changes. However, providing gsize asan ADT operator
amouns to providing the size operator directly. The fact that gsize is an
overloaded operator name and that there exists a polytypic version of it is an
orthogonal issue. The ADT implementor must provide a size operator and
the polytypic programmer must de ne the polytypic extensionof gsize for the
ADT in terms of size .

Unfortunately, it is not possiblefor an ADT implementor to foreseeall possible
operators that can be employed in the polytypic extension of future polytypic
functions. Polytypic extensiontakes place after a polytypic function has been
de ned.

In sum, we end up in a visibility problem: polytypic programmers are ADT
clients and cannot customisetheir polytypic functions for those ADTs by ac-
cessingtheir implemenrtation.

(b) Where is the genericity? Of course, polytypic programmers can use ADT
interfacesto de ne their extensions. However, we would like to have a polytypic
gsize that works for all types,concreteor abstract, not one whoseversion for
every new ADT hasto be explicitly programmed. What is desiredis automatic
polytypic extension.

The following sectionselaborate and illustrate thesepoints with a few examples. Please
note that this chapter is not meart to be a criticism of Generic Haskell or SyB. That
would be unfair, for copingwith ADTSs is not a designgoal of theselanguageextensions.
We just aim at exposing polytypism's genericity limitations in order to argue the case
for our solution.

7.1.1 Foraging clutter

It is typical of many ADT implementations to useelaborate concretetypeswith clutter
of xed typesor payload type.

As atypical example, considerordered setssupporting the following operators: empty ,
isEmpty , insert , member, and remove . An ordered set can be implemerted in terms
of Red-Bladk Treesor in terms of Leftist Heapswhich contain, respectively, colour and
height componerts usedfor re-balancingthe tree during insertion and removal [Oka98a
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p197,p203]:

data Colour Red | Black
data RBT a E | N Colour a (RBT a) (RBT a)
data LHeap a = E| NInt a (LHeap a) (LHeap a)

Polytypic functions take these clutter componerts into accourt. In Generic Haskell,
their cortribution to the computation dependson the de nition for units and integers|
recall Figure 6.5 and Section 6.1.12. Polytypic gsize calculates the size correctly
becausethe size for integers and units is zero. Howewer, serialisation functions sud
as pretty-printers or encaders would print or encade the clutter componerts. In SyB,
gsize courts all the value constructors in nodes,e.g.

t : LHeap Int
t =NOS5EE
gsize t

> 5

It is more reasonableto expect the size (cardinality) of the set f5g to be 1, count-
ing only the number of payload elemertis. ADT clients care lessabout internal value
constructors. Polytypic extensioncomesto the rescue:

instance  Size a ) Size (LHeap a) where
gsize E =0
gsize (N i x| r) = gsize x + gsize | + gsize r

but, as arguedin Section 7.1, from the viewpoint of Generic Programming this is an
unsatisfactory solution.

Clutter can be of payload type. Let us presert a simple example rst. Imagine an
ordered cachal container CSet a for which the membership test for the last inserted
elemert takesconstart time. It could be implemented in terms of orderedlists or binary
seart trees, as shown in Figure 7.1. For brevity, only the implemenrtation of insertion
is shawn.

Value constructor CE represens an empty CSet and value constructor C a non-empty
CSet with a caded elemen and a concrete type with all the payload. In the list
implementation, a value Ct Nil , wheret is an arbitrary term, does not represen a
CSet value and constitutes junk (Chapter 5). Similarly, aterm Ct BinTree .empty in
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module CSet (CSet ,empty ,iSEmpty ,insert ,member) where
data Ord a) CSet a = CE| C a (Payload a)

-- List implementation
type Payload a = [a]

insert = Ord a) a! CSet a! CSet a
insert x CE = Cx [x]
insert x (Cy ys) = Cx (x:ys)

-- BinTree implementation
import  BinTree
type Payload a = BinTree .BinTree a

I CSet a ! CSet a
C x (BinTree .insert X BinTree .empty )
C x (BinTree .insert X yS)

insert :: Ord a)
insert x CE
insert x (Cy ys)

1 o

Figure 7.1: CSet implemented in terms of ordered lists or binary seard trees with
respective implementation of insertion.

the binary seard tree implementation constitutes junk.

Both represenations contain clutter: a unit value and a caded value of payload type.
In the list implementation, Generic Haskell's gsize counts the latter when computing
the size:

c =foldr ( xy ! CSet.insert X y) CSetempty [1,2]
gsize hCSeti (const 1) c
> 3

The result should have been2. The extra unit is also counted by SyB's gsize :

c i CSet Char

¢ = CSet.insert '‘A'  CSet.empty
gsize ¢

> 5

The results for the binary seard tree implemenation depend on the concrete type
implemerting BinTree . If implemened as a Red-Blak Tree then SyB's gsize will
return a di erent value than if implemented as an ordinary binary seard tree.

FIF O-queueimplementations a ord many examplesof clutter. The FIFO-queueinter-
faceis shown in Figure 7.2 (top box). There are many possibleimplemenrtations [Oka983
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p186{189]. Batched Queues Physicist's Queues,Banker's Queues,Hood-Melville Queues,
etc. Their represenation typesare shown in Figure 7.2 (bottom box).

module Queue(Queue (..)) where
class Queue q where

empty g a
iISEmpty g a! Bool
enq al! ga! qa
front qga! a
deq ga! qa
data BatchedQueue a BQ[a] [a]

BnQ Int [a] Int [a]
PQ[a] Int [a Int [a]

data BankersQueue a
data PhysicistQueue a

data RotationState a = Idle
| Reversing Int [a] [a] [a] [a]
| Appending Int [a] [a]
| Done [a]
data HoodMelvilleQueue a = HMQInt [a] (RotationState a) Int [a]

data BootStrappedQueue a = E
| QInt [a] (BootStrappedQueue [a]) Int [a]

Figure 7.2: Queueinterface and somepossibleimplementations.

A Batched Queue usestwo lists where the rst contains the front elemerts in correct
order and the secondthe rear elemeris in reverseorder. When the front list is emptied
the rear list is rotated and becomesthe front list. A Banker's Queue keepsalso the
length of both lists. Elemerts are moved from the rear to the front periodically when
length == length r + 1, replacingf by f + reverse r, i.e., an expressionthat in
a lazy languagelike Haslkell is only evaluated on demand (a suspension).

A Physicist's Queuealso tracks the lengths of the lists but it keepsanother list that is
a pre x of the front list to avoid the constart evaluation of the suspension.

A Hood-Melville Queuetracks the lengths of the lists and usesan auxiliary data struc-
ture that capturesthe state of the reversal explicitly.

A Bootstrapped Queueis arecursiveirregular type (Section6.1.1) with oneunit elemen
represerting empty queues.The recursive casehastwo integers,onecourting the length
of the front list plus the length of all the suspendedlists in the recursive substructure,
and another courting the length of the rear list. Irregular typescan be converted into
regular ones\in troducing a new datatypeto collapsethe di erent instancesinto a single
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type... [irregularity] really refersmore to how we think about a datatype than to how
it is implemened" [Oka98a pl43]. Irregular types are neverthelesspreferred for the
reasonsgiven in Section 6.1.1. An irregular type can be changedinto a regular one
introducing more auxiliary types,i.e., more clutter.

The readeris referred to [Oka984 for details about the implementation of thesequeues
and other functional data structures.

All queueimplementations conform to the Queue interface. We expect functions oper-
ating on queuesnot to be a ected by changesin their implemertation. This is not the
casewhen the represenation is accessedlirectly.

In SyB, gsize would produce di erent results becausethe number and type of node
componerts changesdramatically, e.g:

gsize Queue. empty -- BatchedQueue : BQ Nil Nil
> 3

gsize Queue. empty -- BootStrappedQueue : E
> 1

In Generic Haskell, redundant elemens of payload type are added by gsize into the
total court, e.g.

g=foldl ( xy ! Queueenq y X) Queue.empty [7,5,9,4,6]
> PQ [7,5,9] 5 [7,5,9,4,6] 0] -- implemented as PhysicistQueue

gsize hQueuei (const 1) ¢
> 8 - instead of 5

7.1.2 Breaking the law

Considerthe ADT of ordered sets. Among the type's laws there is one indicating that
ordered setshave no duplicates, e.g:

insert  x (insert X 8) = insert X s
Supposethat lists without duplicates are usedas concreterepresertations:

module Set (Set, empty ,isEmpty ,insert , member) where
data Ord a) Set a = MkSet [a]
empty = Ord a) Set a
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empty = Set |[]
insert = Ord a) a! Set a! Set a
insert  x (MkSet xs) = MkSet (( sort nub) (x:xs ))

Function nub removesduplicates from a list.

The application of gmap may intro duce duplicate elemeris making the result a list that
is no longer a valid represenation of a set. For example, mapping const 5 over the set
f1;2; 3g should yield f5g. This is not the case:

s =foldr ( x y ! Set.insert X y) Set.empty [1,2,3]
gmaphSet i (const 5) s
> MkSet [5,5,5]

Ordered sets can also be implemerted in terms of boolean vectors, where payload
elemernts are indices, or hash tables, where hashed payload elemerts are indices (Sec-
tion 5.6). Howewver, the map function for a vector mapsthe elemerts in the vector, not
the indices, let alone the valuesto which a (perhapsnon-invertible) indexing function
has beenapplied in order to obtain the indices.

Now considerthe type of ordered trees of Section 5.7 which can be usedto implement
binary seard trees, ordered sets, and priority queues. Again, the application of map
over the implementation can break the structural invariants.

(7.A) (-7, A)
!\ - I\
(5. B) (9, O (-5,B) -9, O

Figure 7.3: Mapping negation over a binary seart tree represerting a priority queue
yields an illegal queuevalue.

Supposean ordered tree implemernts a priorit y queuewherethe priority is given by an
integer value (Figure 7.3, left tree). If we invert priorities, mapping (x,y) ! (-xy ),
the resulting tree (Figure 7.3, right tree) is not a valid represetation of a priority
gueue. The correct represertation would be the mirror tree where the elemen with
highest priorit y in the left subtree has at most the root's priorit y.

Consider a parameterisedMemoList ADT supporting the following operators:

nil o (a ! a ! MemolList a
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module MemolList (MemolList ,nil ,cons ,head ,tail ,memo) where
import Prelude hiding (head, tail, null)

data MemoList a = ML ([ a] ! a) a [a]

nii :: (@ ' a ! MemolList a
niik f =MLf (f $ [ 1

null  :: MemoList a ! Bool

null (ML _ _ []) = True

null (ML _ _ (xixs )) = False

cons & a ! MemoList a ! MemoList a

cons x (ML f yys) = MLf (f $! xs) xs
where xs = xuys

head :: MemoList a ! a

head (ML _ _[D = error "Empty List "
head (ML _ _ (xxs )) = X

tall ;. MemoList a ! MemolList a

tal (ML _ _[D error  "Empty List "

tail  (MLf _ (xxs )) MLf (f $' xs) xs

memo: MemoList a ! a
memo(ML _ x ) =X

Figure 7.4: A MemoList implementation.

null ' MemoList a ! Bool

cons :: a ! MemoList a ! MemoList a
head :: MemoList a ! a

tall @ MemoList a ! MemoList a
memo:: MemoList a ! a

A function on ordinary lists is passedwhen creating an empty MemoList using nil
This function remains xed during operation. The value of this function is recalculated
in strict fashion every time an elemert is inserted (cons ) or removed (tail ) from the
memo list. The value of the calculation can be obtained in constart time using memo
Operators cons and tail are ine cien t becausethe value of f on list elemerts, which
could take linear time to compute, is executed every time these operators are called.
Memo lists are meart to be usedin situations wherethere is a high degreeof persistence
and high demand for the memoisedvalue.
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Figure 7.4 shawns an obvious implementation. The in x strict application $! eagerly
evaluates its secondargumert and then the application of its rst argumern to the
result. The represertation value MLf mxs represerts an f -memoisedlist with the
implemenrtation invariant m= f xs. Ordinary list operators canbereadily programmed,

e.g:

mlength @ MemoList a ! Int

mlength ml = if null ml then O else 1 + mlength (tail ml)
And we expect typical list equationsto hold:

mlength (mconcat xs ys) == mlength xs + mlength ys

(Unfortunately, the type-deder cannot stop mconcat from concatenating memoised
lists built using di erent memoisedfunctions of the sametype, for function equality is
undecidable.)

Generic Haskell's gsize courts the memoisedvalue.! But more worryingly, the ap-
plication of gmap can easily break the implementation invariants and produce concrete
valuesthat do not represen valuesof the ADT:

mlA
miB

cons 1 (cons 1 (cons 1 (nil  sum)))
cons 1 (cons -2 (cons 3 (nil max))

gsize hMemolList i (const 1) mlA
> 4 -- should have been 3
gmaphMemolList i (+1) mIA

> ML ? 4 [2,2,2] -~ sum yields 6 not 4
gmaphMemolList i negate mIB
> ML ? -3 [-1,2,-3] -- max yields 2 not -3

Broadly speaking, the instance of gmap for MemoList behavesthus:
gmaphMemolList i g (ML f mxs) = MLf (g m) (gsize hList i g xs)

The implementation invariant breakswheng mé f (gmaphList i g xs).

YIn point of fact, gsize (Figure 6.5) must provide a case for the arrow type operator or the
application would produce a run-time error: memoisedlists contain functions as data.
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7.1.3 On mapping over abstract types

Some readers may wonder whether “'map’ is justied in the case of non-free types.
Categorially, a type is a functor if we can de ne its map function that satis es the
functorial laws:

id (7.1)

map id

map f map g (7.2)

map (f g)

The bits of category theory described in Chapter 3 assumedan unboundedly poly-
morphic world. It is becauseof this parametricity assumptionthat properties of poly-
morphic programs (natural transformations) can be obtained directly from their types
(functors) [Rey74 Wad89.

The map function for unbounded ADTs (Section 5.10) must respect the number and
position of elemerns. Howewer, for bounded ADTs this doesnot have to be the case:
there are conext-dependert properties sudh as ordering, lack of repetition, etc, that
must be presened by map.

Let us concretisethe point. Think of unbounded ADTs sud as lists, staks, FIFO
queues,etc. For these ADTs the following equation is upheld by map:

map f (con xy) ==con (f x) (mapf vy

Here con stands for the binary constructor. Replacecon by cons in the caseof lists,
by push in the caseof stadks, and by eng in the caseof FIFO queues. The fact that
stacks and queuesare subject to more equationsis an orthogonal issuethat relatesto
how map is actually de ned in terms of the available obseners. In particular, FIFO
gueuesdo not satisfy the product law:

con (exl qg) (exr q) ==
wherecon is enq, exl isfront , and exr is deq (Section 9.4).

The map equation may not hold for bounded ADTs, as demonstrated by all the ex-
amplesin Section 7.1.2. Replacecon by insert in ordered sets or enq in priority
gueuesand the equation only holds when map presenesthe order. Consequetly, in
the previous examplesgmap is not the right function to apply to these ADTs, but a
law-abiding gmap that presenesthe semartic properties of the ADTSs.
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Is such function really a map? It is if it satis es the functorial laws. Take ordered
sets, for instance. First, let us make Set an instance of Functor . We use a multi-
parameter type class Functor becauseSet 's implemertation type is constrained by
Ord and therefore we cannot make Set an instance of the Functor classprovided by
the Haskell prelude [MJP97]:

class Functor f a b where
map:: (a! by ! fal! fb

instance  (Ord a, Ord b) ) Functor Set a b where
map f (MkSet xs) = MkSet (( sort nub map f) xs)

Notice the overloading: map on the right hand side is map on lists.

Set is a functor not becauset hasbeenmade an instance of Functor but becausethe
de nition of map satis es the functorial laws. Let us usethe following abbreviation:

= sort nub

Equation (7.1) is trivial to prove: if the setis empty then map returns another empty
set, and the identity of an empty setis an empty set. If the setis not empty then the
identity is mapped over the list which is not changed.

Equation (7.2) is also trivial to prove for the caseof empty sets. For the non-empty
case,let us rst expandthe left hand side of Equation (7.2):

map (f g) (MkSet xs)
f def. of map for Set g
MkSet (( map (f g)) xs)
f List isa functor g

MkSet (( mapf mapg) xs)
Let us now expand the right hand side:

mapf mapg (MkSet xs)
f def. of map for Set g

mapf (MkSet (( map g) xs))
f def. of map for Set g

MkSet ( ( mapf) (( map g) xs) )
f composition g
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MkSet (( map f map g) xs)

Both expansionsare equal if the following holds:
map f map g = map f map g
We can prove this is the caseusing the de nition of at this paint.

Howewer, let us indulge in a more general discussion: What is ? It is a function
that is applied to a value of the implementation type in order to make it satisfy the
implementation invariants. In the caseof ordered sets, it sorts and removesrepetitions
from the list.

We can provide a better de nition of such remiring functions in terms of the whole
implementation type. For ordered sets:

" (MkSet xs) = MkSet ( xs)

A map on setsis obtained by mapping over the payload type (list) and then applying

to re-establishthe implementation invariants:
map f (MkSet xs) ="' (MkSet (map f xs))

In balancedtrees,’ performsthe balancing. In binary seard trees,' turns a BTree
into a binary seard BTree , etc.

Recall the implemenation type of memolists from Section7.1.2:
data MemoList a = ML(a] ! a) a [a]
The map for MemolList is de ned asfollows:

instance Functor MemolList where
fmap f (MLg x xs) = ML g (g ys) Vys
where ys = map f xs

In other words:

fmap f (ML g x xs) ="' (ML g x (map f xs))
where ' (ML g x xs) = MLg ( g Xs) Xs
g xs = g Xs

Again, the payload part of the concrete type is mapped and the implementation in-
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variant is maintained by ' . Notice that g and x are implementation clutter and g is a
function componert that cannot be mapped by Generic Haskell's gmap (Section 6.1.2).
Howewer, the ADT is a functor, for we can de ne a map that satis es the functorial
laws.

Summarising, a map for a bounded ADT may be de ned in terms of a function that
maps over the payload parts of the implemenrtation type and another function ' that
re-establishesimplemertation invariants. The ADT is a functor if the functorial laws
are satis ed.

We concludethe sectiondiscussingthe impact of theseissueson Generic Programming.
Set hasbeenmadean instance of Functor by de ning mapin terms of the implemert-
ation type. Therefore, it is assumedthat the instance declaration has been written
by the ADT implementor. Howewer, our aim is to program a generic map outside the
ADT. If we attempt to de ne it in terms of the implementation type then we have to
somehav gure out ' polytypically for any given ADT. This is not only a Herculean
task; if the represenation changes,it is also uselessfor ' is no longer valid. Howeer,
the reader may have noticed that ' 's job is already performed by insert ! Interface
operators seemto be part of the solution.

7.2 Don't abstract, export.

Section6.1.12discussedhe drawbacdks of providing xed valuesfor units and basetypes
in polytypic function de nitions. Programming with ADTs worsensthe situation. It
is impossibleto give a meaningful casefor all possiblenon-parametric (kind- ) ADTs
in polytypic function de nitions. It may not be possiblephysically or logically to turn
them into parameterisedADTs by abstracting over the payload type.

An example: an evert-driven GUI system keepsa queueof events. The type hasbeen
de ned in a module:

module EventQueue (EventQueue ,empty ,isEmpty ,enq ,deq,front ) where
import Event
import Queue
data EventQueue
empty

isEmpty (MmkEQ q)

MKEQ (Queue . Queue Event .EventType )
MKEQ Queue.empty
Queue.isEmpty ¢
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TypeEventQueue isanADT whoseimplemertation in terms of a Queue ADT is hidden
(the module only exports the type name and the operators). EventQueue is de ned as
a new type, not a type synorym, to enforceabstraction further. Programmerswriting

other parts of the GUI only know about the interface, and write their code accordingly.
EventQueue is a manifest type. It plays the samerole asa kind- basictype. Generic
Haskell's gsize on an EventQueue value always returns O and gmap is the identit y.

Let us leave asidethe fact that EventQueue could have beenbundled by a third-part y
provider as part of a pre-compiled library and its represeration type would therefore
be unknown (the library is closedsource)and physically inaccessible.lt makesno sense
to abstract EventQueue into EventQueue a, for a is always Event .EventType ; this
is tantamount to using Queue directly. Abstraction is necessaryonly to use polytypic
functions:

type EventQueue = Queue.Queue Event . EventType
gq :: EventQueue
gsize hQueue.Queue i (const 1) ¢

The type synornym is used everywhere in the program but polytypic function applic-
ations. The situation is rather strange: the programmer usesthe type synonym and
thinks in terms of EventQueue but hasto use Queue.Queue when calling polytypic
functions.

Now considerthis scenario: after somebeta testing, EventQueue implementors decide
to usea direct implementation in terms of their own fancy queuetype:

data EventQueue = EmptyQueue | Fancy [Event] Int Blah Blahdiblah
Polytypic applications with Queue. Queue becomea ected by this change.

It would be preferable for polytypic functions to be able to cope with the typesin a
software designthan to adapt the software designto what polytypic functions can or
cannot do.

Finally, it will be commonfor manifest ADTs to be usedin the implemertation of other
manifest ADTs. We are facedwith a cascadingchain of abstractions which would force
programmersto, pretty much, give up encapsulation:
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module ProcessQueue ( ProcessQueue ,empty ,isEmpty , enqg,deq ,front ) where
import  Process

import  Queue

data ProcessQueue = PQ (Queue .Queue Process .ProcessType )

module ProcessManager (ProcessManager ,create ,run kill) where
import  Process
import  qualified ProcessQueue as ProcQ
data ProcessManager = PM{
current ;> Process .ProcessType ,
sleeping :: ProcQ. ProcessQueue |,
running . ProcQ. ProcessQueue

Another worrying aspect of abstracting over payload is that it might dredge paramet-
ricity constraints, a ecting interfaces and client code. Using EventQueue is simple:
programmers create EventType valuesand store them in values of EventQueue . Us-
ing Queue requires knowledge of the type's constraints. If implemerted as a binary
seart tree, the constraint Ord becomesvisible or, worse, other constraints imposedby
the represeration type implemernting Event .EventType , someof which may be type
classesonly known by implementors.

What is neededis a di erent linguistic medanism that allows manifest ADTs to in-
dicate or export payload types. It is straightforward to have EventQueue 's interface
specify that its payload is Event .EventType . It is a dierent thing to have to work
with Queue whosepayload we know it always to be Event .EventType . The payload
type remains the sameewen if the implementation of the cortainer changes,or ewen if
the interface changes. Exporting is explored in Chapter 9.

7.3 Buck the representations!

The readeronly needsto glancethrough the functional data structures in [Oka984 to
realisethe gap betweenconcrete represenation typesand abstract types. The former
are bigger. They contain implementation clutter: valuesthat capture properties of the
structure such assize,rank, depth, etc; or parts of the structure itself, or distinguished
payload elemerts, or even part of the data structure's state represened as data (e.g.
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Hood-Melville queues).

The examplesin this chapter are simple. One could provide more complicated examples
of rather obscurerepresertation typesbut wewould haveto explain their purp ose.Some
ADT implementations are quite a feat of engineeringand cleverness,and the systematic
study of e cien t functional data structures is still an ongoing eld of researd.

At any rate, our examplesillustrate the hoary point that accessingconcrete repres-
entations may produce unintended results and may break implementation invariants
and semartics. This is why concreterepresenations are hidden behind an interface of
operators that maintain them and enable construction and obsenation (a view) of the
relevant data.

Polytypic functions are no di erent from ordinary functions in this regard. Their "gen-
ericity’ is due to structural parametrisation alone.

It is perfectly conceiable for future languagesto enable compilers to choose ADT
implemenrtations at compile-time basedon operator-usageanalyses. It is also possible
for a program to manipulate simultaneously di erent implementations of the sameADT
aslong asthey are not mixed up in operations. Finally, implementations may change,
but results produced by client code should not.

There are situations in which data seldom changes. A well-designedabstract syntax
tree is rarely changedand compilersusually manipulate its concreterepresenation dir-
ectly. But more often than not, implemenors have to prepare for change. Generic
Programming is about making this preparation unnecessarywith respectto code: gen-
eric functions work for all typesor, at least, for a big set of types. Polytypic function
de nitions should not changewhen the data changesand should provide accurate and
meaningful results. In short, polytypic functions must not accessthe concrete de ni-
tional structure of ADTs. The reader may wonder how structural polymorphism may
be possibleat all. It dependson what we mean by “structure' (Chapter 9).



Chapter8
Pattern Matchingand Data Abstraction

Pattern matching and data abstraction are important concepts...but
they do not t well together. Pattern matching depends on making
public a free data type represenation, while data abstraction depends
on hiding the represenation. [Wad87]

In Chapter 7, we have arguedthat polytypic programming con icts with the principle
of data abstraction. Pattern matching is another languagefeature that conicts with
data abstraction, for pattern matching is performed upon unencapsulated, concrete
data types,and therefore its applicability is limited to within the modulesimplement-
ing ADTs. There are seweral proposals for reconciling pattern matching with data
abstraction and the rst thing that comesto mind is to investigate whether they can
be of any usein reconciling polytypic programming with data abstraction|p olytypic
functions pattern-match over concretede nitional structures.

There are two major approadesfor reconciling pattern matching and ADTs. The rst

approad is basedon providing views of the ADT in terms of exprted concretetypes
together with translation functions from the ADT's internal concreterepresenation to
the exported view and vice-versa[Wad87]. The secondapproad is basedon providing
only one translation, keeping constructor operators and turning some discrimination
and selectionoperatorsinto pattern expressionswhich, logically, are syntactic sugarfor
the former [PPN96, WC93].

In this chapter we review why the rst approad is not satisfactory (in fact, it hasbeen
dropped entirely) and why the secondapproad is of limited help. We also describe
other lesswell-known, and even less suitable, approaces. We provide the chapter's
conclusions upfront in the next section and elaborate the details in the remaining
sections.

186
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8.1 Conclusions rst

In this chapter we overview the most popular approacesfor reconciling pattern match-
ing with data abstraction. Theseare someof the lessonsto be learned from them:

1. Pattern matching is, logically, syntactic sugarfor obsenation.

2. Trying to ewlve the value-constructor concept for obsenation leadsto problems.
More precisely construction and obsenation may not be inversesand therefore must
be separated. The latter may be provided by somepattern-matching construct. The
former should be performed by ordinary ADT operators.

3. For pattern matching to be e ective, it must be possiblefor computation to take
place at matching time; i.e., e ective componert selectionrequires computation.

4. Relying on canonical valuesis deprecated.

Generic Haskell and SyB are oblivious to the secondpoint in the list. We could embark
on a project to adapt them accordingly, but this is downplayed by the remaining points.
In order to program polytypic functions on ADTs it is necessaryto de ne a uniform
notion of structure. Interfacesmay provide suc structure. The introduction of elabor-
ated pattern-matching mecanismsand their luggage(e.g. changesto the type system,
possibleundecidabilities, etc) is an extra complication, and there is the problem that
construction must take place via operators.

But polytypic functions can be de ned in terms of ADT operators. At the end of the
day, ADT operators provide a "view' of an implemertation type. In ordinary program-
ming the need for pattern matching is more pressing: there are issuesof conciseness,
readability, structural de nitions and proofs, etc. In Generic Programming these pres-
suresare localisedin the de nition of genericfunctions, which can be provided in two
parts (construction and obsenation) basedon the structure of interfaces(Chapter 9).

8.2 An overview of pattern matc hing

Conceptually, data types are either concrete or abstract (Section 4.2). In functional
languages,concretetypesare either primitiv e typesor algebraictypes (Section 6.1.1).
At the value level, algebraictypesintroduce a free algebra (Chapter 5) generatedby a
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= \Variable
|  ValueConstructor Pattern
| ( Pattern, Pattern (, Pattern) )

Pattern ::

Figure 8.1: A simple language of patterns consisting of variables, value constructors
applied to patterns, and n-ary tuples of patterns.

set of value constructors which play sewral roles. More concretely given the Haskell
data type de nition template introducedin Section6.1.1:

data Q) Taz::tan = C1 11170 1k J 20 JCm m1ii% mkm
value constructors C; play the following roles:

1. Introduction (construction), e.g, a term Cp ti1:::ty, introduces (constructs) a
value of the algebraictype, wherety; is an arbitrary term of type ;.

2. Represetation (freeness),e.g. the term Cj t11:::tyy, represerts (denotes)a value.
Unlike regular functions, the value computed by an application of a value con-
structor to its argumerts is denoted by the application itself. Thus, values carry
their structure explicitly. This is possible becausethere are no eguations between
value constructors that suggestthe need of further computation in order to satisfy
them.

3. Elimination, e.g., the pattern Cjy p11:::piw,, Where py are sub-patterns, can be
usedfor discriminating among sum valuesof an algebraictype and for selecting the
product componerts. Patterns are allowed in case expressionsof core languages!
and in top-level function de nitions, lambda abstractions, and let-expressionsof
most fully- edged functional languages. A small language of patterns is shaovn in
Figure 8.1.

Notice that patterns can be nested; an example would be Cons x (Cons y ys).
Of particular interest are simple patterns of the form C x1:::x, where C is a
value constructor and x; are variables. If the variables are all di erent the pattern
is line ar . Writing the samevariable in di erent positions imposesan equality test:
the values matched against the various occurrencesmust be the same.

1Case expressionsfor pattern matching are more general than those of Section 2.7.2 which only
pattern-matc h against values of a sum type.
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4. Value constructors also play the lessconspicuousrole of aids to the type cheder and
of enabling the de nition of iso-recursive type operators [Pie02 p275{277,445].

The rst three roles are illustrated by the following function de nition:

insert = Ega) a ! List a! List a
Cons x Nil

insert  x Nil
insert x (Cons y ys) =if x ==y then Cons y ys
else Cons y (insert X yS)

which is sugar for a de nition by caseexpression:

insert Xx | = case | of
Nil I Cons x Nil
(Cons y ys) ! if x ==y then Cons y ys

else Cons y (insert X ys)

The term Cons y ys is usedasa pattern in the left hand side of the secondarrow and
as a term on the right hand side. As a pattern it discriminates whether the second
argumert to insert  is constructed using Cons and binds the newvariable y to the value
of the rst product componert, and the new variable ys to the value of the second.
Finally, there is computation with selectedvaluesat ead discriminated branch.

Tednically, the matching processconsists of the application of a boolean predicate
(discriminator) followed by an optional processof selection,binding into locally-de ned
variables, and computation with selectedcomponerts. As rightly pointed out in [Pal95,
p4], uni cation in logic programming languagesis a similar but more expressie con-
struct than pattern matching.

Without pattern matching, insert  would be written using list operators in a style
familiar to LISP programmers:

insert x| =if null | -- discrimination
then cons x nil -- computation
else let y = head | -- selection and binding
ys = tail |
in cons y (insert X ys) -- computation

This is alsothe mannerin which insert  would be written if the list type were abstract.
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With pattern matching, discrimination and selection are expressiely conbined and
can be compiled e ectively. The number of discriminated alternatives (humber and
name of value constructors) is xed and known at compile time so, depending on the
language of patterns, it is possibleto chedk statically whether alternatives overlap or
are exhaustive, i.e., whether patterns in caseexpressionscapture all possibleforms of
values. However, partial operators and polymorphic non-terminating terms are allowed
in functional languages,making it possibleto write caseexpressionghat produce run-
time errors or do not terminate:?

case | of Nil ! head |

But what goeson to the left of the arrow is safe, i.e., discrimination between the
alternatives of a disjoint sum can be exhaustive and selection of product componerts
into local variablesis type-safe.

Another bene t of pattern matching is concisenessnd expressieness.The rst de n-
ition of insert is easierto read and understand. It closelyfollows the structure of the
data it works on. Properties on well-ordered, recursive algebraic types can be proven
by structural induction [Mit96]. Pattern matching can also be used when de ning
functions over co-recursiwe algebraictypesand in their proofs [GHO5].

Howewer, pattern matching is incompatible with data abstraction, for patterns are
meart to capture the concrete structure of a value. It has also other disadvant-
ages[Tul0O, p3]:

1. Pattern matching imposesan evaluation order. patterns in caseexpressionsare
evaluated from left to right and from top to bottom. This has consequencesn
the semartics of functions and therefore on how they must be de ned. A typical
exampleis the zip function. The reasonfor an evaluation order comesfrom how
nested patterns are decomposedinto nested caseexpressionswith simple patterns.

2. Pattern matching \b egsfor extension upon extension": there are irrefutable pat-
terns, as patterns, guarded patterns, etc.

3. Patterns can be nestedand make it dicult for the eye to determine whether they

2Unde ned terms enable the de nition of partial operators. The reader should bear in mind the
di erence betweenunde ned and non-terminating terms. The former are stuck terms, the latter have
no normal form.
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overlap or are exhaustive, e.g..

foo Nil =
foo (Cons 1 Nil )
foo (Cons _ xs )

In fact, testing for exhaustivenessmay be toggled o or demoted into a warning:
\partial but total” auxiliary functions are not atypical. For example,although local
function bar is partial, it is always supplied a value on its domain:

foo Nil
foo xs
where bar (Cons y ys) =

0
bar xs

4. It isimportant to di erentiate betweenpatterns and terms: patterns intro duce new
variables and have di erent semartics, e.g.

I I let x =Nil in case | of x ! O

Pattern matching over sumsof products demonstrateshow low-level these data de n-
ition medanisms are and the pitfalls of positional selection. Named records provide
a much better abstraction medanism as shovn below|the exampleis adapted from
[Pal95, p9l

data Person = P String String Int
birthday .;» Person ! Person
birthday P fsa )y =P TfFfs (atl) :::)

data Person = P{name: String , surname: String , age: Int , :::}
birthday .;» Person ! Person
birthday (person@P {age = a,_}) = person {age a + 1}

In the last line, pattern matching only requires the value of the age eld, which gets
‘updated' by the function. Notice also the possibility of record subtyping and the
closenesso ADT programming.

8.3 Prop osals for reconciliation

The following sections outline the most important proposalsfor reconciling pattern
matching with data abstraction.
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8.3.1 SML's abstract value constructors

Abstract value constructors are an implemerted feature of the "Standard ML of
New Jersey' compiler [AR92]. Strictly speaking, they are not really a proposal for
reconciling pattern matching with data abstraction, but can be usedfor that purpose
in restricted situations.

An abstract value constructor C is de ned as follows:
C X1 :i: X, match P

whereto the left of match there is a simple linear pattern and to the right an arbitrary
SML pattern P. The compiler replacesthe left hand side by the right hand side, i.e.,
abstract value constructors are macro-substituted by “real' patterns.

Abstract value constructors can be usedin pattern matching and in construction. This
double role imposesrestrictions on the simple pattern and on P:

When usedin pattern matching, P must be linear and must cortain all the variables
of the simple pattern. For example, the following abstract value constructors are
illegal:

C x y match C' x

C x match C' x x
In the rst line, variable y is de ned and, therefore, possibly usedon the right hand
side of the arrow in a caseexpression,but nothing is matched against it when the
abstract value constructor is macro-expandedto C' x. In the secondline, a linear
pattern is macro-expandedinto a non-linear one.

When usedin construction, all the variablesin P must occur in the simple pattern.
Look at this illegal example:
C x match C' x vy

If the left hand side is macro-expandedto the right-hand side, variable y is not
bound to any value and the term cannot construct anything.

The following is an exampleof an abstract value constructor that can be usedin pattern
matching and construction:
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data Complex = Complex Real Real
PureReal r match Complex r O

Functions on complex numbers can be de ned by pattern matching over PureReal .

foo (PureReal r) =
foo (Complex r i) =

We can write foo 's body in the secondcaseunder the premisethat i 6 O.

Abstract value constructors are not only limited in expressibility becauseof their use
in patterns and construction, but also becauseselectiondoesnot involve computation.
Recallthe FIF O-queueADT of Chapter 7, in particular the BatchedQueue implemernt-
ation of Section 7.1.1. It would be very interesting to be able to de ne two abstract
value constructors Empty and Eng for pattern matching over FIF O-queuevalues,e.g..

Empty match BQT[ [
Eng x g match BQ (Xx::xs) r

Unfortunately, Eng's de nition is illegal and we needsomeway of specifying computa-
tion:

g =xs @(reverse )
8.3.2 Miranda's lawful concrete types

The functional programming language Miranda supports so-called lawful algebraic
types which are algebraic types with equations between value constructors [Tho86].
Theseequationsare actually rewrite rules for transforming valuesinto canonical ones.
Consequetly, rewrite rules must be con uent and terminating.

More precisely a value of the concreterepresenation type may not represen a value of
the ADT (junk), and multiple valuesof the concreterepresenation type may represert
the sameADT value (confusion). One way of supporting pattern matching and equality
on concretetypesis to normalise every constructed value into a canonical value sothat
patterns are matched against, and equality is performed on, canonical values that
uniquely represent ADT values?

There follows an example of a lawful concrete type for setsimplemented as lists or,

3Notice that canonical values may still contain implementation clutter.
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more precisely as an algebraictype structurally isomorphic to the List type:

data Eq a) Set a = Empty | Insert a (Set a)
Insert  x (Insert y s) == if x ==y then Insert vy s
else Insert vy (Insert X S)

Insert 1 (Insert 1 (Insert 2 Empty))
> Insert 2 (Insert 1 Empty)

Notice the equation involving abstract value constructor Insert . The equation shows
that value constructor Insert  plays not only the role of a constructor but also the
role of a normalisation function. More precisely the lawful type has the following
normalisation function:

insert @ Eqa) a! Set a! Set a
insert  x Empty = Insert x Empty
insert x (Insert y s) =if x ==y then Insert vy s

else Insert y (insert X S)

The problemswith this approac are not dicult to see:

1. Cheding that rewrite rules are con uent and normalising requiresa lot of e ort and
is, in the generalcase,undecidable.

2. Normalisation into canonical valuesis ine cien t, forcesparticular represerations,
and might not be possibleor recommended. Recall the FIF O-queue implemerta-
tions of Section7.1.1 which relied on unevaluated data componerts to achieve their
amortised e ciency .

3. There is not that much abstraction from the represenation: functions working on
valuesof type Set a are de ned by pattern matching on Empty and Insert  but we
might want to changethe implementation. Wadler's views (Section 8.3.3) arguesfor
thesetwo value constructors to be part of a view of the Set type.

4. Selectioninvolving computation is not possibleduring pattern matching: normal-
isation takesplace during construction, not matching.

5. There are serious problems with equational reasoning: the fact that patterns are
matched against valuesin canonical form is not re ected in the valuesthemseles.
For example, given the following de nition:
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select (Insert Xx s) = X

the following equations hold:

== f select 's de nition g

select  (Insert 1 (Insert 2 Empty))
== f Insert 's de nition g

select (Insert 2 (Insert 1 Empty))
== f select 's de nition g

In order to reasonwith valuesof the concretetype we have to reducethem to normal
form and therefore know the details of the implementation. In particular, the clients
of Set should not be obliged to know details of normalisation.

8.3.3 Wadler's views

A lawful type in Miranda is a subsetof a concretetype: its canonical forms. In con-
trast, Wad ler's views [Wad87] specify an isomorphism between subsetsof concrete
types. This becomesparticularly useful when dealing with ADTs, for they can be
implemented by many concretetypes. ADT designersmay chooseone of thesetypes
as the implementation type and allow clients to work with (possibly many) view types
isomorphic to (a subsetof) the implementation type. Value constructors of the view
type can be usedin pattern matching and construction. Becauseof this double role,
there must be a correspondencebetweenead view type and implementation type, and
vice versa.

An illustrativ e exampleis perhapsthe type of natural numbers. The Peanorepreseit-
ation in terms of Zero and Succ is handy but ine cien t. Programmers usually work
with the basetype of positive integers? An ADT of natural numbers can be imple-
mented in terms of positive integers but viewal in terms of its Peano represenation.
A possiblesyntax for declaring this follows:

view Int = Zero | Succ Int

4Surprisingly, natural numbers are rarely o ered as a basetype by most functional programming
languages.
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where
in n
| n == = Zero
| n>0 = Succ (n-1)
| otherwise = error "Negative Integer "

out Zero =0
out (Succ n)

n+1

The keyword view declaresthat Int can be viewed as a recursive algebraic type with
Peanovalue constructors. Behind the scenesthe compiler translates this view into the
following non-recursive type:

data View = Zero | Succ Int

Functions in and out are translation functions from the implementation type to the
view type and vice versa:

in 2 Int ! View
out : View ! Int

We needtwo functions becausePeanovalue constructors may occur in pattern matching
(which requires calls to in ) and construction (which requirescallsto out ).

The factorial function can be de ned on the Peanoview:

factorial o oInt ! Int
factorial Zero = Succ Zero
factorial (Succ n) = (Succ n) factorial n

The de nition can be translated by the compiler to a factorial on integersby inserting
callsto in and out at appropriate places:

factorial DoInt ! Int
factorial n = case (in n) of
Zero I out (Succ (out Zero))
Succ n ! (out (Succ n)) factorial n

Functions in and out are similar in spirit to the embedding-projection pairs of Sec-
tion 6.1.4. Thesefunctions must be inversesof eat other and this cannot be chedked
by a compiler.

In particular, out must betotal and injective or otherwiseit would introducejunk and
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confusionrespectively: there would be valuesof the view type that are not represerted
in the implementation type, and there would be values of the view type that would
have the samerepresertation in the implementation type, thus intro ducing an implicit
equation betweenthe former values.

Also, in must be injective and its domain must be out 's image. If the domain is a
proper superset, there are implicit equationsin the implementation type. If the domain
is a proper subset, there is junk in the implementation type.

Moreover, it might not be possiblefor a view type and an implementation type to
satisfy them: for instance, it might be the casethat a value of the view type is al-
ways represertable by multiple valuesof the implementation type. Palao [Pal95, p32]
illustrates this situation using complex numberswhere the implementation type is the
cartesian represenation and the view type the polar represenation. Multiple repres-
entations introduce implicit equations which hinder equational reasoning. This is the
main reasonwhy Wadler's views were not included in the Haskell de nition. Other
problems with views are [Pal95, Chp4]:

1. The needto take into accourt the side conditions of functions in and out during
equational reasoning.

2. The fact that seemingly total functions are indeed partial. For example, in the
factorial example,with the Peanorepresenation the function triggers a run-time
error if fed a negative integer. Haskell's type systemcannot ched statically whether
Succ is always applied to positive integersduring construction.

3. It might be the casethat valuesof the view type should be given in somecanonical
form (e.g, complex numbers in polar represertation), again introducing implicit
equations.

4. There is a logical separation between pattern matching and construction. Using
value constructors for both makesno sensein many situations. Take for example a
BatchedQueue implemenation of queues(Chapter 7):

data BatchedQueue a = BQ[a] [q]
data View a = EmptyQ | Front a (Queue a)

Queue elemerts must be inserted at the rear of the queue, yet value constructor
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Front can be used for construction. Notice that introducing an extra value con-
structor:

data View a = EmptyQ | Front a (Queue a) | Enq (Queue a) a

would also introduce an implicit equation: the same queue value can be pattern-
matched against a Front pattern and a Enq pattern. Thesetwo value constructors
are not free amongthemsehes. In general, all possibleobsenations cannot be cap-
tured by a single view.

5. However, it isillegal, for implementation reasons;o do pattern matching ondi erent
view typessimultaneously. In the BatchedQueue example,we could have provided
the Enq pattern in a dierent view but we would not be able to pattern match
against Front and Enq simultaneously. This is unproblematic for simple queuesbut
not sofor double-endedqueues,whereinsertion can take place either at the front or
at the rear.

6. Finally, there are many possibleways in which dierent ADT operations could be
expressedn terms of view types;implementing all of them could be too expensiwe.

Most problems with Wadler's views are due to the double role of value constructors
in view types. This is pointed out in [WC93], where view types are restricted to
pattern matching alone, with construction carried out by operators. The out function
disappearsand there is no restriction onin . Howewer, pattern matching over di erent
view typesis still illegal becauseof implementation reasons:the represenation typeis
transformed into the view type before the matching is performed.

8.3.4 Palao's Activ e Patterns

According to Palao et al [PPN96, p112], the limitations of the previous approades
stem from trying to \evolve the [value] constructor concept instead of starting the
problem from scratch”. For instance, Wadler's views are a way for programmers to
move acrosspossible implemenation types, but obsenation is performed by means
of a value constructor. In non-free types, construction and obsenation may not be
inverses. For example, FIFO queuesare constructed by inserting elemerts at the rear
whereasselectionfrom non-empty FIF O queuestakesplace at the front. Construction
and obsenation must be separated.
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As underlined in Section 8.2, obsenation consistsof discrimination followed optionally

by selectionand binding of selectedvaluesinto new local variables. Pattern matching

is just syntactic sugarfor this, with added cheds for overlapping and exhaustive cases.
Nested patterns only add expressibility to nested obsenation.

This is the idea behind Palao's Active Patterns [Pal95 PPN96], which can be
regarded as an extension of SML's abstract value constructors (Section 8.3.1) where
there can be computation after the matching is performed (hencethe “active’) and their
usein construction is banned.

The languageof Activ e Patterns is built from ordinary patterns, active destructors ,
and compositions of Activ e Patterns via the @operator, which is explained shortly:

AP = Variable
| ValueConstructor AP
| ActiveDestructor AP
| AP @ AP

The main advantagesof Activ e Patterns are their expressibility, their support for equa-
tional reasoning,and their smooth integration with algebraic speci cations, the latter
an important aspect that is ignored by the previous approadies. ADT operators canbe
replaced, expressed,or accompaniedby active destructors whoseaxiomatic semarics
are de ned in terms of the operators themseles.

An active destructor consistsof a label together with optional positional argumerts:
the label denotes an alternative and the positional argumerts are expressions that
selectcomponerts. The translation goesfrom the implementation type to the active
destructor (the “view'), which is not a concretetype, and translation takesplace after
matching.

For example, given an ADT of complex numbers:

module Complex (Complex ,realPart ,imgPart ,modulus ,argument ) where
data Complex = Complex Real Real

any operator could be provided as an active destructor. For example:

RealPart r match Complex r _
Modulus m match Complex r i where m= sgrt (r2 + i2)
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The rst active destructor, RealPart , is a projection identical to an SML abstract
value constructor. The second,Modulus , is also a projection but the projected value m
involves a computation which is performed after matching. The reader should not be
conned by the notation: if Modulus were an ordinary value constructor then mwould
match Modulus 's argumert. In cortrast, mis an output value and, therefore, the type
of Modulus is not Real ! Complex. It is not a function and cannot be used for
construction. (Typesfor active destructors are mentioned at the end of the section.)

Informally, the operational semartics of the matching processis as follows. Suppose
function foo has one caseinvolving Modulus :

foo (Modulus m") = E

where E is an expressionwhere m' may occur free. In the application foo e, the value
of e is pattern-matched against the ordinary pattern Complex r i. If the matching
succeedsthen we have in m' the modulus of the complex number|the value of min
the active destructor's de nition.

Pattern matching occurs behind the scenesyespecting data abstraction: the matching
of e's value against the concrete type and the computation involved in getting the
modulus is hidden from foo 's writer, who only caresabout having the value of the
modulus in m' when the matching succeeds.

In code, foo 's de nition involving Modulus is equivalert to:

foo = e ! case e of
Complex r i ! E where m' = sqrt ("2 + i"2)

Variablesr andi only occur free in the de nition of mi , and m' may occur freein E.
It becomesclear now that Modulus is just an abstract label. It doesnot play any role
in the compiled code.

We have useda local variable min the de nition of Modulus but the selectingexpression
can be written directly in the active destructor:

Modulus (sqrt (r2 + i"2)) match  Complex r i

FIF O queuesillustrate the expressibility of active destructors, which can be provided
by the interface. For example,in a BatchedQueue implementation:
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EmptyQ match BQ [ ]
Front x match BQ (x :)
Deq ¢ match BQ[ ] r where
Deq ¢ match BQ (_:f) r where q

BQ (reverse 1) ]
BOQf r

Becausematching takesplace over the ordinary patterns after the match keyword, we
can provide multiple de nitions of the same active destructor, in this caseDeq. We
could have provided a single active destructor Deq' that selectsboth the front and the
remaining queue.

The following function usesthe previous active destructors:

sizeQ : Queue a ! Int
sizeQ EmptyQ =0
sizeQ (Deq q) =1 + sizeQ q

To belabour the point, active destructors EmptyQ and Deq hide the represertation type
BQ A Queue value could be implemented as a physicist's queue or what have you.
Function sizeQ would not be a ected aslong as active destructors are de ned for the
new implementation.

The following function illustrates the useof @

showQ :: Show a) Queue a ! String
showQ EmptyQ ="
showQ (Front x) @(Deq q)

show x + showQ g

Here, the @operator matches showQ's argument against Front and Queue, obtaining
the appropriate valuesfor x and q if the matching succeeds.

We can de ne the aforemeriioned Deq' active constructor in terms of Front and Deq
using @
Deq" x g match (Front x)@(Deq Q)

Indeed, the pattern onthe right canbe an Activ e Pattern (but active destructors cannot
be directly recursive). Now:

showQ :: Show a) Queue a ! String
showQ EmptyQ ="
showQ (Deq' Xx Q)

show x + showQ g
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In functional languages,@is used for "as patterns' where the ordinary pattern x@p
matches an argumernt against the ordinary pattern p but binds x to the argumert.
Generalisingfrom the fact that variable x is itself a pattern, giventwo Activ e Patterns
p1 and py, the Active Pattern p;@:; is a conjunction of patterns which succeedsonly
if the argumert matches both p; and p,. For ordinary patterns this operator is less
useful: a value matches p; @, when both patterns have the samevalue constructor.

Unlik e corvertional value constructors, active destructors neednot be freeamongthem-
selwes, so Eng can be usedin conjunction with any other active destructor:

Eng x g match BQf (xxxs ) where q = BQf xs

extremes @ Queue a ! (a, a)
extremes (Front x ) @Engy p) = (X V)

An interesting aspect of Activ e Patterns is that whether obsenation is provided in terms
of operators or active destructorsis not an irrevocable decision. New active destructors
can be de ned in terms of available ones(e.g., Deq' ) or in terms of existing operators.
In fact, active destructors could be de ned by ADT clients, not implementors, purely
in terms of operators, e.g.

EmptyQ match q, if isEmpty ¢
Front x match g, if not (isEmpty q) where x
Deq 0 match g, if not (isEmpty q) where ¢

front @
deq q

Here we have made use of guards. Matching against an active destructor succeedsf
matching againstthe pattern on the right succeedsand the guard is satis ed. Herethe
pattern on the right is a variable, g, and matching against it always succeeds. This
exampleclearly showsthat Active Patterns are sugar for discrimination and selection
operators.

The generalform of an active destructor de nition is:

C e1:::enp match p;, if G; where D;

Cent:ii€mn match pm, if Gn where Dp

where C is the active destructor name, g are expressions,p; are Active Patterns
(in which C cannot appear at the top level), G; are guards, and D; are declarations



8.3 Proposalsfor reconciliation 203

providing bindings for variablesin ej. A guard G; may use variablesin D; and p;.
Notice that in all casesthe active destructor must have the same arity'. Unlike value
constructors, active destructors cannot be partially applied.

Active Patterns in function de nitions must be linear. Nested Active Patterns are
possiblebecausee; are arbitrary expressions.For example, here the queue'spayload
is a binary-tree node:

foo (Front (Node x | r))@( Deq q) =

The value ‘returned to' Front is pattern-matched against ordinary value constructor
Node.

Activ e Patterns can be integrated into algebraic speci cations: active destructors can
be de ned in terms of conditional equations involving ADT operators. Recall the
FIF O-queue example above. The active constructors all follow the pattern:

Cvi:::vy, match v, if G where vy = s; Vv

Vn:SnV

Equational reasoning proceedsby chedking guards and substituting selection expres-
sions s;, which involve ADT operators, by active destructor variables (see [PPN96,
pl118] and [Pal95, Sech.3]for examples). Using equational reasoningit is possibleto
prove, for particular functions, whether Active Patterns are exhaustive and do not
overlap.

Two di erent compilation algorithms for transforming Activ e Patterns to caseexpres-
sionswith simple patterns are givenin [Pal95, Sec5.5].It is not clearly speci ed whether
the algorithms ched that Active Patterns are exhaustive and do not overlap. Active
Patterns are exhaustive if ordinary patterns and guards are exhaustive. This is in gen-
eral undecidable: guards are unrestricted boolean expressions.The ability to compose
patterns could make chedking for exhaustivenessalso dicult to the eye, as Active
Destructors could be conjugated in di erent fashion via the @operator. If matching
failure occurs, the run-time systemcan only provide information about which active de-
structor failed and at which point; it cannot provide information involving the concrete
type without compromising abstraction.

Activ e destructors can be rst-class citizens if the type system provides a type for
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them. A proposalis givenin [Pal95, Sec5.7.1ogether with type-teding rules. Type
inferencein a Hindley-Damas-Milner type systemis only conjectured.

8.3.5 Other prop osals

Erwig's Active Patterns [Erw96] must not be confusedwith Palao's. The former
also allow computation at matching time, rearranging the concretetype to somede-
sired pattern, but can be usedfor construction and functions compute directly with
represertations.

First-class patterns [Tul0O0] are an attempt at providing a conmbinator languagefor

patterns, which are now functions of typea ! Maybe b. Caseexpressionsare restricted

to be exhaustive and cannot contain nested patterns. Pattern combinators are built

using somebase combinators, operators for composing patterns (e.g., or-match, then-

match, parallel-match, etc.), and an operator for lifting value constructors to pattern

conmbinators. Syntactic sugaris o ered in order to make rst-class pattern expressions
more readable.

SML views [Oka98H carry the ideasin [Wad87 and [WC93] to Standard ML, its
module system, and its call-by-value semartics with e ects.



Chapter9
F-viewsand Polytypic ExtensionaProgramming

From the practical point of view, not only for econony of implemertation
but also for conveniencein use, the logically simplest represenation is
not always the best [Str00, p38]

In Chapter 6 we have overviewed the two main polytypic languageextensionsof Haskell.
In Chapter 7 we have argued that the idea in which they are based, structural poly-
morphism, con icts with data abstraction and is therefore limited in its applicability
and genericity.

Structural polymorphism is founded on a regularity: the structure of a function follows
the structure of the data. Data abstraction destroys the regularity. Abstract valuesare
represered by a subsetof concretevalues,thosethat satisfy implementation invariants.

Data abstraction is upheld by client code, whether polytypic or not, when ADTs are
accessedhrough a public interface. Interfaces supply operators that satisfy imple-
mentation invariants and deal away with clutter. The question we must askis whether
ADT interfaceso er a su cien tly regular description of structure that may enablethe
de nition of polytypic functions. Before trying to answer the question, let us discuss
other alternativ e solutions.

9.1 An examination of possible approac hes

We consider someways of dealing with the problemsraisedin Chapter 7 and cortrast
their advantagesand disadvantages.

1. Howewer tempting, canonical represenations are a blind alley. We have already
touched upon their drawbadks in Section 8.3.2.

2. For many, ADTs should provide the relevant functionality, i.e., comeequipped with
their own map, foldr, and foldl operators which are expectedto be e cien t due to
their privileged accesgo the represertation. This approad has seeral drawbadks.
Firstly, there is no Generic Programming here. Secondly we have already discussed

205
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fold's problemswith respectto cortrol abstraction (Sections4.3and 6.2.1). Thirdly,
ADT implementors cannot anticipate all the possible functionality|recall the ar-
gumerts against polytypic extension (Section 7.1). Lastly, regarding e ciency, the
implemenrtation of map asan ADT operator may require reshu ing the whole struc-
ture. Think of ordered setsimplemented as ordered lists, of heapsimplemerted as
binary seart trees, of dictionaries ashashtables, etc. The folds follow suit, for map
can be programmed in terms of them. The e cien t implemenation of map may
require a represertation tailored for that purpose.

In cortrast to providing full functionality, ADTs can provide a minimal or narrow
interface. Control abstraction can be provided in terms of external and generally
applicable (i.e. generic) functions. We considermaps and catamorphisms examples
of such functions. In this sensewe adhereto the philosophy of the C++ STL [MS96,
MS94], but for us genericity meanspolytypism, not just polymorphism.

. An intermediate solution is the iter ator concept proposedby the C++ STL. An
iterator is an abstraction of a pointer which is manipulated via operators o ered by
and implemented within the ADT. Catamorphisms can be de ned externally using
iterators.

The iterator approad has its drawbadks. First, iterators are tailored to specic
ADTs and are not polytypic. Second,the pointer abstraction only enableslinear
traversals, e.g., top-down breadth- rst, bottom-up breadth- rst, top-down depth-
rst, etc. Third, for type-safey reasonsone iterator is neededper payload type.

In a purely functional setting an iterator correspondsto a function that attens the
ADT into somelinear concretetype, for example, a list. Its inverse,a co-iter ator

builds an ADT from a list. What is desiredis a polytypic iterator that extracts
payload from any ADT to particular concretetypes, not just lists. Dually, what
is desired is a coiterator that can build a value of the ADT from values of those
concretetypes.

. It might be possiblefor a polytypic function to discern automatically whether a
piece of data is clutter and to abstract over clutter without losing information. It
might even be possiblefor compilersto ched, with the help of assertions,whether
polytypic functions break implemenrtation invariants. But even if sud a feat were
feasibleand decidablein theory, it would be uselessn practice. Making changesto
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ADT implementations forcesthe recompilation of client code for clutter and security
chedks. And if the cheds fail, what should we do?

5. Lastly, we could move into richer type languageswhere concrete types faithfully
encale abstract typesand capture structural properties as data. In other words, we
could move to languageswherewe can expresswithin a concretetypewhat otherwise
hasto be expressedvia operators and their semartics. This path leadsto dependent
types[Pie05 Hof97]. Unfortunately, dependert typesare designedand tailored to
the structure of the problem at hand, and this hinders their reusability. We have
to rely again on someform of Generic Programming and intro duce somenotion of
data abstraction to cope with data change[AMMO5]. This is a resear® topic of its
own. In this thesis we content ourseheswith making polytypic programming cope
with ADTs in the presern state of a airs.

9.2 Extensional Programming: design goals

ADT interfacesprovide a view of payload data. A function computing with an ADT
is computing with its payload values alone. How these values are stored internally is
irrelevant and opaqueto client code. For lack of better terminology, let us call this
form of programming via interfacesExtensional Pr ogramming .

Is Generic Extensional Programming possible? The answer is positive. The following
are our assumptionsand goals:

1. We assumeADTs are rst order and speci ed algebraically (Chapter 5). The pro-
gramming languageat hand (for us, Haskell) neednot support algebraic speci ca-
tions, but we assumethey have beendewelopedin the designof every ADT. Algebraic
speci cations enable programmersto reasonabout their ADTs and are a contract
for implementors. We will show that algebraic speci cations are also neededin the
dewvelopmert of polytypic functions.

2. We assumeADT interfaces are narrow and provide the minimum necessarycon-
structors and obseners (discriminators and selectors). Polytypic functions will be
written outside the ADT using the rst-order operators.

3. “Structure' must be de ned in terms of interfaces so that polytypic functions are
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structurally polymorphic but also uphold encapsulationand respect the ADT's se-
mantics.

4. Polytypic extensionmust be supported. Programmersmust be ableto usespecialised
operators when available. There is no needto generate,say, an instance of gmap for
an ADT if it comesequipped with its map operator.

5. It must be possibleto de ne extensional polytypic functions on manifest ADTSs.
The map for a queueof integers, say, must not be the identity. The solution must
not rely on abstraction over the payload type (recall Section7.2).

The functor de ned by an ADT's interface can be put to useasthe required notion of
structure that enablesthe de nition of polytypic functions onthe ADT. The elaboration
of the details make up the bulk of the chapter. In Section 9.3 we explain someof the
ideasusing so-calledlinear' ADTs asrunning examples. From Section 9.9 onwards we
generaliseand shov how to de ne typed polytypic functions that work on arbitrary
ADTs. Section 9.12 discussegolytypic extension and Section 9.13 discussessupport
for manifest ADTSs.

9.3 Preliminaries: F-algebras and linear ADTs

Recall the notion of F -Algebra from SectionA.3.1. The polynomial functor F provides
a speci cation of “structure'. Howewer, we have complainedin Section A.3.1 that the
mediating S-function is not informative about operator names, and that the same
functor can capture the signature of theorieswith di erent equations.

For example, many ADTs are characterised by the signature shown in the rst box of
Figure 9.1. The secondbox shaws its rendition asa Haskell type class.

We call an ADT line ar if there is a signature morphism (De nition A.1.8) from it to
the LINEAR signature. Linear ADTs are described by the equation:

L(X) = 1+ X L(X)

and may satisfy various laws. The equation can be expressedasthe xed point of the
functor F(Y)=1+ X Y.

L(X) = F(L(X))
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signature LINEAR
sorts  Linear
use BOOL
param Elem
ops
con0 : ! Linear
conl Elem Linear ! Linear
dscO Linear Bool
sell0 Linear Elem
selll Linear Linear
module Linear (Linear (..)) where
class Linear | where
con0 | a
conl = al! | a! | a
dscO | a ! Bool
sell0 Il a! a
selll Il al! | a

Figure 9.1: Signature and Haskell classde nition of linear ADTSs.

con0 conl
1— LX) X L(X)
@
sell0 dsd@@selll
@
? ®
X Bool L(X)
\ List \ Stak \ FIFO Queue \
dscO = null dscO = isEmptyS dscO = isEmptyQ
con0 = Nil con0 = -emptyStack | con0 = emptyQ
conl = Cons |conl = push conl = enq
sell0 = head |sell0 = tos sell0 = front
selll = (tail selll = pop selll = deq

Figure 9.2: Lists, stadks, and FIFO queuesare examplesof linear ADTSs.
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Figure 9.2 (rst box) depicts the signature diagrammatically. There are two construct-
ors conO0 and conl, two selectorssell0and selll, and one discriminator dscO. Each
constructor takes a product argumert: conO takes a nullary product (Section A.3.1
and 3.6) and conltakesa binary product.

L (X) is the coproduct of the product typesof constructor argumerts. The numbersin
constructor namesdenote the position of their argumert's product typein L(X) from
left to right, starting from 0. In Haskell, operator con1hasa curried type (Section 5.4).
Dually, there are obsener operators: a discriminator dscO assaiated with the only
coproduct and two selectorssell0and selllassaiated with the binary product. There
is nothing to selectfrom a value constructed with conO.

The signaturesof seweral ADTs can be mapped by a signature morphism to the signa-
ture of the diagram. Figure 9.2 (secondbaox) shows the mapping for lists, stacks, and
FIFO queues!

Perusing [Oka98d, we also nd that the signatures of the following ADTs can be
mapped by a signature morphism to the diagram:

Catenablelists, which have an e cien t concatenation operator but its interface sup-
plies all ordinary list operators.

Priority queues for they o er the sameoperators asFIFO queues,only that intern-
ally elemerts are stored accordingto priority (a function on elemerts).

Ordered sets and ordered bags In general,these ADTs only provide an interrogator
(membership test) and possibly a removal operator. For the mapping to work we
needoperatorsthat may be assignedio sell0and selll. The most natural two would
be:

choice 1 Set a! a
remove : a ! Set a! Set a

Function choice is a deterministic  choic e operator that given two equal sets
returns the same elemen from the set. For ordered sets, it can just return the
minimum elemen. Function remove removesa given elemert from the set. We can
assumesimilar operators for ordered bags. With these operators at hand, ordered

!Signature morphisms are examples of adapters [GHJV95].
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setsand ordered bagsbecomelinear ADTSs:

sell0 = choice
selll = s ! remove (choice s) s

The choice operator is absernt from ordinary sets and bags. These ADTs only
require equality on their payload type and choice is non-deterministic, i.e., it may
be the casethat s; = s; but (choice s;) 6 (choice s5).

Sortable collections [Oka98a p202],if a choice is implemented.

Heaps whoseHaskell signature follows (adapted from [Oka98a p197]):

emptyH ©» Heap a

isEmptyH ' Heap a ! Bool

insert > a! Heapa! Heap a
merge > Heap a ! Heap a ! Heap a
findMin  Heapa! a

deleteMin :: Heap a ! Heap a

with the following mapping of operators:

dscO = isEmptyH
con0 = emptyH
conl = insert

sell0 = findMin
selll = deleteMin

Heapsdi er from orderedsetsin that (1) only the minimum elemert canbe removed
from a heapwhereasany elemen canberemoved from an orderedset, and (2) heaps
may cortain repeated elemens. Heapscan be implemented functionally in many
ways [Oka984d: leftist heaps,splay heaps,skew binomial heaps,bootstrapped heaps,
pairing heaps,etc.

Finally, nite maps tables and dictionaries canbe mappedtoo but only if they o er
discriminators and selectors. In [Oka98g p204]weonly nd the following operators:

emptyT : Table k a
insert = k! a! Table k a! Table k a
lookup @ k ! Table k a ! Maybe a

Function lookup is an interrogator. We needthe following operators:
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iISEmptyT :: Table k a ! Bool
choice . Table k a ! (ka)
remove o (ka ) ! Table k a ! Table k a

where choice is deterministic. We can then provide the following mapping of op-

erators:
dscO = isEmptyT
con0 = emptyT
conl = curry insert
sell0 = choice
selll = t ! remove (choice t) t

Double-endedqueues(or "deques’)are examplesof ADTs with multiple constructors
that havethe sameargumert types. In particular, there are alternativ e ways of mapping
dequeoperators to conl, sell0,and selll. The list of dequeoperators follows:

isEmptyD : Deque a ! Bool

emptyD ;o Deque a

engfront i a ! Deque a ! Deque a
enqgrear > a ! Deque a ! Deque a
degfront :: Deque a ! Deque a
degrear ;. Deque a ! Deque a

front . Deque a ! a

rear > Deque a ! a

The following mappings turn dequesinto stads:

dscO = isEmptyD dscO = isEmptyD
con0 = emptyD con0 = emptyD
conl = engfront conl = enqgrear
sell0 = front sell0 = rear
selll = deqgfront selll = deqgrear

The following mappings turn dequesinto FIFO queues:

dscO = isEmptyD dscO = isEmptyD
con0 = emptyD con0 = emptyD

conl = engrear conl = engfront

sell0 = front sell0 = rear

selll = deqgfront selll = deqgrear
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9.4 Construction vs Observ ation

Construction and obsenation in ADTs may not beinverses.Consequetly, it is not pos-
sible in generalto program polytypic functions on them in a single de nition following
the pattern givenin Figure 6.21.

Let usrecall the casefor products which involvesselectionand construction (coproducts
involve discrimination):
ghA Bi = (Pa ghAi)  (ps gHBI)
where | r (I exl)y M(r exr)
Pag = paftery g pheforey
pg g = pafterg g pheforeg

In linear ADTSs, arrows exl and exr correspond to sell0and selllrespectively, and conl

correspondsto prod in the de nition of O (recall Figure 3.3). When construction and
selectionare not inversesin products, the following is the case:

sellO(conlxy) 6 X
selll(conlxy) 6 vy

That is:

exl (prod Xx y) 6 X
exr (prod X vy) 6 vy

Howewer, accordingto the de nitions of Figure 3.3, the equations:

exl (prod x )
exr (prod X )
prod (exl p) (exr p) =p

1
<

are product laws. More precisely the rst two equationsare equivalent to:

1
—h

exl (f Mqg)
exr (f Mg)

(9.1)
(9.2)

1
(@]

For instance:

exl (f Mg) = f
= f extensionality g
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exl (f Mg)x = f x
f def.of M g
exl prod(f x) (gx) = f x

f generalisationand def. of composition ¢

exl (prod xy) = x

Consequetly, when construction and selectionin products are not inversesthe product
laws are not satis ed.

FIFO queuesare examplesof ADTs where this occurs. According to Figure 9.2, we
have the following mapping:

prod = eng
exl| = front
exr = deq

Howeer, the product law:

enq (front q) (deq q) =q
is only satis ed by empty queues.For non-empty queueswhat is satis ed is the follow-
ing:
enqg (front q) (deq gq) = deq (enq (front q q)
which is derivable from the queuelaw (Figure 5.6):
(emptyQ ? q) ) deq (eng x q) = eng x (deq q)

by working under the assumptionthat the queueis not empty, by substituting front q
for x on both sides,and by reversing the equation. The equation can be expressedin
point-free style thus:

enq (front M deq) = deq enq (front M id)
Clearly, enq 6 (front Mdeq) 1.

In Figure 6.21, the casefor products ghA Bi assumesthe product laws hold. Fig-
ure 6.21cannot expressthe map function for FIF O queues. Suc function must satisfy:

map_Fifo f (engq x ) = enq (f x) (map_Fifo f q)

There are two natural ways of writing map_Fifo . The rst usesqueue reversal to
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accourt for the fact that product laws do not hold:

map _Fifo = (@ ! b) ! Fifo a! Fifo b
map_Fifo f = reverseQ map_Fifo ' f
where map_Fifo ' f q = if (isEmptyQ q) then ¢
else let fg = front ¢
dg = deq q
in enqg (f fq) (map_Fifo ' f dq)

The secondusesan accurrulating parameter, performing “reversal' during construction:

map _Fifo = (@ ! b) ! Fifo a! Fifo b
map_Fifo f g = map_Fifo ' f g emptyQ
where
map_Fifo * f g = ac ! if (isEmptyQ ac) then ac
else let fg = front ¢
dg = deq q

in map_Fifo ' f dq (enqg (f fg) ac)

In the rst de nition, map_Fifo ' is a catamorphism. Howewer, map_Fifo ' is an aux-
iliary function. Function map_Fifo is not a catamorphism but the composition of
a partially applied catamorphism (reverseQ = map_Fifo ' id ) to map_Fifo ' . (We
recall that, in general, catamorphismsare not closedunder composition [GNP95].)

In the secondde nition, map_Fifo ' is a catamorphism (we prove this at the end of
the section), but it is also an auxiliary function. The original map_Fifo is not a
catamorphism.

Consequetly, polytypic gmapwritten accordingto Figure 6.21cannot expressmap_Fifo .

Let us illustrate the problem from another angle. Recall the notion of represetation
type in Generic Haskell (Section 6.1.2). We can de ne a represenation type for linear
ADTs and concomitart embedding-projection pairs using the operators of the linear
interface:

type Linear ' a = Unit + a (Linear a)
from_Linear ;> 8a. Linear a ! Linear ' a

from_Linear | =if dscO | then Inl Unit
else Inr (sell0 I, selll 1)
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to_Linear > 8a. Linear ' a ! Linear a
to_Linear  (Inl  u) = con0
to_Linear (Inr — (1,n) =conl | r

Unfortunately, for somelinear ADTSs, e.g. FIF O queues,the following is not the case:
to_Linear from_Linear == id

(The equation is certainly not the casefor most bounded ADTs. Think of ordered sets,
for example. We postpone their discussionuntil Section 9.6).

We conclude the section with a proof that map_Fifo ' in the secondde nition of
map_Fifo is a catamorphism. The proof usesthe universality property of catamorph-
isms [Hut99]. In what follows, g abbreviatesmap_Fifo ' f:

g = LcOdM,
iSEmptyQ q ) g g
iSEmptyQ q ) g g

C
d (front  q) (g9 (deq q))

First, the proof for empty queues:

c=90q
= f gempty g
c = g emptyQ
= f def.ofg g

c= ac! ac

f polymorphism g
c =id

Now the proof for non-empty queues:

d (front q) (g (deq g)) =g ¢
f g non-empty and def. of g @

d (front g (g (deqg q)) = ac ! g (deq q) (eng (f (front g)) ac)
f x=front gandy =deqq g

dx (gy) = ac! gy (eng (f x) ac)
f generalisingz =gy g

dxz= a ! z (eng (f x) ac)
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Thus:

map Fifo ' f = Lid O( xzac ! z (eng (f x) ac)) M
9.4.1 Finding dual operators in lists

In mathematics, \often duality is assaiated with somesort of generaloperation, where
nding the “dual' of an object twice retrieves the original object".? Inspired by the
notion of duality in booleanalgebras(e.g., De Morgan principles) it is possibleto de ne
a function dual that when appliedto a list operator returns its dual operator [Tur90Q]:

dual head == last

dual tail == init

dual Cons == snoc

dual Nil == Nil

dual foldl == foldr flip
dual foldr == foldl flip

[Jon954 shows how to de ne function dual usingtype classes.ClassDual is the class
of typeswith a function that maps valuesto their duals:

class Dual a where
dual = a ! a

with the proof obligation that:
dual dual == id
Extending duality to function typesallows usto nd duals of functions:

instance  (Dual a, Dual b) ) Dual (@ ! b) where
dual f = dual f dual

It is easyto prove the following equations:

dual (f x) = dual f dual x
dual (f g) = dual f dual g

Duality in lists involveslist reversal:

instance Dual a) Dual (List a) where
dual = reverse map dual

230urce: Wikip edia.com.
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9.4.2 Finding dual operators in linear ADTSs

We can try to de ne instancesof dual for other linear ADTs. For instance, for FIFO
gueuesthere are seweral possibilities:

prod = enqg prod = dual enqg
exl = dual front exl = front
exr = dual deq exr = deq

With these mappingsthe product laws are satis ed. Glossingover the represenation-
type madhinery (Section 6) and the fact that in Figure 6.21 function g is de ned by
pattern matching, the following de nitions of map_Fifo could be instancesof ghFifo i,
whereg = gmap:

map_Fifo f g = if (isEmptyQ q) then ¢
else let fg = (dual front ) ¢
dg = (dual deq) ¢
in enqg (f fg) (map_Fifo f dq)
map_Fifo f q = if (isEmptyQ q) then q

else let fg = front ¢
dq = deq g
in (dual enqg) (f fq) (map_Fifo f dq)
Howeer, there are seweral problems. First, dual and map_Fifo are mutually recurs-
ive:
instance Dual a) Dual (Fifo a) where
dual = reverseQ map_Fifo dual

In lists, dual and list map are not mutually recursive. The above instance declaration
doesnot type ched. The inferred type of map_Fifo is:

(@! a ! Fifo a! Fifo a

which is not general enough. Second,dual front , dual deq, and dual enq cannot
beidentied with any FIFO operator. Third, if it run, map_Fifo would be extremely
ine cien t. ewery call to dual reversesthe queue.
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9.5 Insertion and extraction for unbounded linear ADTs

In order to de ne polytypic functions on ADTS, construction and obsenation must be
separated. In other words, the pattern in Figure 6.21 must be “de-fused'. Obsenation
can be de ned asthe processof extracting payload into something and construction
asthe processof inserting payload from something There remainsto nd a something
that a ords a uniform and generalde nition of insertion and extraction, and to study
whether theseoperations can be de ned polytypically. We begin the study focusing on
linear ADTs rst.

9.5.1 Choosing the concrete type and the operators

Given an unbounded ADT whoseinterface can be mapped to LINEAR by a signature
morphism, it is possibleto write extraction and insertion functions from/to the ADT
to/from a concretetype with the sameinterface functor, suc that:

1. The extraction function producesa concrete-type replica of the ADT. The value of
the concretetype constructed must mirror the logical positioning of payload in the
ADT. (Observer operators determine the way in which payload is extracted.)

2. The insertion function is the left inverse of the extraction function. Howewer, the
extraction function is not, in general, the left inverseof the insertion function: the
linear ADT satis es more laws.

For linear ADTs, the obvious choice of concrete type is the list type. Let us call
extraction and insertion functions extracT and inserT  respectively:3

extracT 1 Linear a ! Linear a
extracT t = if dscO t then c_conO
else c_conl (sell0 t) (extracT (selll t))

inserT :: Linear a ! Linear a
inserT t =if c_dscO t then conO
else conl (c_sell0 t) (inserT  (c_selll t))

3We have capitalised their last letter to avoid name clasheswith ordinary ADT operators. In
Section 9.6 we de ne inserT for ordered setswhich already have an insert  operator.
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We have distinguished ADT operators from list operators by pre xing the latter with
the symbol c_, which standsfor “concrete'. For instance,c_sell0 isthe sell0 operator
in the concretetype (lists, for now).

For many linear ADTs (e.g., FIFO gueuesand stadks) there is only one possiblesigna-
ture morphism giving valuesto con0, conl, etc. For ADTs with multiple constructors
(e.g. double-endedqueues),there may be more. For concretetypes,there are also sev-
eral possiblesignature morphisms giving valuesto c_con0 , etc. Thesemust be chosen
sothat inserT and extracT satisfy the requiremerts stated at the beginning of the
section. In other words, the following “product laws' must be satis ed:

(c_sell0 extracT ) (conl Xy) =X
(c_sell1 extracT ) (conl Xy) =y
(sell0 inserT ) (c.conl Xx y) = x
(selll inserT ) (cconl xvy) =y

The laws of the ADT must be usedfor this task, i.e., programmers must usealgebraic
speci cations in the de nition of inserT and extracT

Recall the algebraic speci cations of FIFO queuesand stads given in Figure 5.6 and
Figure 5.5 respectively. In FIFO queueswe disposeof enq, front and deq. We must
nd the appropriate c_conl , c_sell0 , andc_selll in the list type. Functions front ,
deq, and enqg satisfy, in lists, the samelaws as head, tail and snoc, respectively.
Obsenation and construction are not inverses; queue reversal is neededand this is
captured by dual . Thus, for extraction, the following mapping satis es the product

laws:
c conl = dual snoc
sell0 = front
selll = deq

A list replica of the FIFO queueis constructed. For insertion, the following mapping
satis es the product laws:

conl = enq
c_sell0 = dual head
c_selll = dual tall

Insertion and extraction functions for FIFO queuesare shavn below:
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extracT : Fifo a ! List a
extracT g = if isEmptyQ q then Nil
else (dual snoc) (front q) (extracT (deq Q))

inserT : List a! Fifo a
inserT | =if null | then emptyQ
else enq (dual head I) (inserT (dual tail )

Similarly, we disposeof tos , pop, and push in stadks, which satisfy, in lists, the same
laws as head, tail , and Cons respectively. Fortunately, obsenation and construction
are inverses. For extraction, the following mapping satis es the product laws:

c_conl = Cons
sell0 = tos
selll = pop

For insertion, the following mapping satis es the product laws:

conl = push
c_sell0 = head
c_selll = tall

Insertion and extraction functions for stadks are shovn below:

extracT :: Stack a ! List a
extracT s = if isEmptyS s then Nil
else Cons (tos s) (extracT (pop S))

inserT  List a ! Stack a
inserT | =if null | then emptyS
else push (head I) (inserT (tail 1)

9.5.2 Parameterising on signature morphisms

Calls to dual are terribly inecient, they involve calls to reverse and map (Sec-
tion 9.4.1). Fortunately, a concretetype is equipped with inverse obseners for every
constructor, or they can be programmed for this purpose.

Functions inserT and extracT must be parametric on two signature morphisms, one
mapping ADT operators to linear operators and another mapping concrete-ype oper-
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ators to linear operators.
In this section we shov a Haskell implementation and discussits limitations.

First, we de ne LinearADT , a type classthat describesthe operators of the linear
interface:

class LinearADT f where

dscO @ f a ! Bool
con0 = f a

conl = a! f al f a
sell0 == f a! a

sel11 = f a ! f a

We then de ne LinearCDT , atype classthat describesthe operators of a concretetype
with a linear interface:

class LinearCDT c_f where

cdscO : cf a ! Bool
ccon0 : cf a

cconl : a! c¢cf a! cf a
csell0 = cf al!l a

cselll : cf a! cf a

We re-de ne inserT and extracT in terms of thesetype classes:

extracT : 8 a. (LinearADT f, LinearCDT cf) ) f a ! c_f a
extracT t = if dscO t then c_conO
else c conl (sell0 t) (extracT (selll 1))

inserT  :: 8 a. (LinearADT f, LinearCDT cf) ) cf a !l f a
inserT  t if ¢ dscO t then conO
else conl (c_sell0 t) (inserT (c_selll 1)

Programmers have to provide the appropriate signature morphisms, i.e., to declare
their ADTs instancesof LinearADT , and to declare their concrete typesinstances of
LinearCDT . Programmersmust use ADT laws when choosing operators soasto make
inserT  the left inverseof extracT

instance LinearADT Stack where
dscO = isEmptyS
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con0 = emptyS

conl = push
sell0 = tos
selll = pop

instance LinearCDT List where

c dscO = null
c_con0 = Nil
c_conl = Cons
c_sell0 = head
c_selll = tall

instance LinearADT Fifo where
dscO = isEmptyQ
con0 = emptyQ

conl = enq
sell0 = front
selll = deq

instance LinearCDT List where

c_dscO = null
c_con0 = Nil
c conl = Cons
c_sell0 = last
c_selll = init

The rst List instanceis to be usedwith stadks whereasthe secondinstanceis to be
usedwith FIFO queues.Unfortunately, there are two problemsto tackle:
1. There are two overlappinginstances of LinearCDT List . Given an application:

(extracT ) : List Int

where q has type Fifo Int , the compiler cannot determine which instance of
LinearCDT List to use.

2. We have only dealt with unbounded ADTs with unconstrained payload.

The Haskell languagedoesnot allow usto nameinstance declarationsand to refer to
them by name. That would enableusto de ne di erent instancesfor the sameconcrete
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type and also for the same ADT when it has multiple product constructors and there

are se\eral ways of making it conform to the linear interface. Someexamples:

instance
conO

instance
conO

instance
dsc0
con0
conl
sell0
selll

instance
dsc0
con0
conl
sell0
selll

We tackle this problem in Section9.10.2. First we deal with bounded linear ADTs.

LinearADT
= MemolList

LinearADT
= MemolList

LinearADT
= isEmptyD
= emptyD
= enqfront
= rear
= deqrear

LinearADT
= isEmptyD
= emptyD
= engrear
= front
= deqfront

MemolList where

.nil max

MemolList where

.nil sum

Deque where

Deque where

9.6 Insertion and extraction for bounded linear ADTs

Extraction in bounded ADTs behavesin the sameway asin unbounded ADTSs:

it

extracts data in a deterministic order imposedby the choice of discriminators and

selectors. In cortrast, constructors are ‘clewver' and arrange the payload internally:

think of insert

in ordered sets. Although product laws may not be satis ed, there is

no needto nd inverseobsenersin the concretetype of “clever' ADT constructors.

Indeed, an unbounded ADT with functorial interface F can be viewed as a concrete

type with interface F where the laws restrict the way in which payload is inserted
or selectedfrom the type. In conrast, the laws of a bounded ADT impose conext-
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dependert restrictions that rely on properties of the payload type. Sud restrictions
are taken into accourt by “clever' constructors.

For example, extraction and insertion for ordered setscan be de ned as follows:

extracT ' 8a. Ord a) Set a ! List a
extracT s = if isEmptyS s then Nil
else Cons (choice s) (extracT  (remove (choice s) s))

inserT > 8a Ord a) List a! Set a
inserT | =if null | then emptySet
else insert (head I) (inserT (tail 1))

It doesnot matter whether inserT is de ned otherwise as:

inserT o 8a Ord a) List a! Set a
inserT | =if null | then emptySet
else insert (last 1) (inserT  (init 1))

Payload elemerts are arranged internally by insert accordingto order, and only ele-
ments not already in the set make it. In both cases,inserT is the left inverse of

extracT

There is an obstacle: the presenceof the Ord constraint. It not only appearsin the
typesof extracT andinserT , but alsoforcesusto de ne LinearADT and LinearCDT
as multi-parameter type classes(recall the discussionin Section 7.1.3). A possible
solution is to introduce -abstraction (Section 6.1.11):

extracT = g. 8. (q a, LinearADT f, LinearCDT cf) ) f a ! cf a
inserT :: g. 8. (q a, LinearADT f, LinearCDT c¢f)) cf a! f a

Fortunately, we can encade these functions in Haskell using a technique proposed
in [Hug99. The only hurdle remaining is the lack of overlapping instances. In Sec-
tion 9.8 we presen the details of the encading and shav how to de ne generic func-
tions on linear ADTs in terms of inserT and extracT . The section usesextensional
equality asan exampleof genericfunction. We rst explain what extensionalequality
meansin the following section.
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9.7 Extensional equality

Extensional equality comparesADTs by comparing their payload cortents, not their
internal represettation. Extensional equality on two valuesx and y of the samelinear
ADT can be de ned as follows:

gegLinear ega x y = geghList i eqa (extracT X) (extracT vY)
Function eqgLinear is de ned under the assumptionthat the following laws hold:

(dscO x) ~ (dscO vy) ) x =y

(dscO x) ~ :(dscO vy) :(dscO x) ™ (dscO y) ) x 6 vy

:(dscO x) ™ :(dscO )
X =y, (sell0 x

sell0 y ™ selll x = selll vy)

For instance, orderedsetswith deterministic choice andremove satisfy the conditions.
We cande ne (extensional) equality for orderedsetsprovided the payload type supports
ordinary equality:

instance Eq a) Eq (Set a) where

(==) sx sy = let x = choice sx
y = choice sy
in x == y && (remove X sx) == (remove Yy sYy)

It is possibleto test whether two di erent ADTs that conformto the linear interface are
extensionally equal. For example, it is possibleto test whether a stadk and an ordered
set are extensionally equal by extracting their payload into two values of the same
concretetype and comparing them for ordinary equality. Unfortunately, this general
notion of extensional equality requires signature morphisms for every ADT involved,
two in this case.We comebadk to this in Section9.15.

9.8 Encoding generic functions on linear ADTs in Haskell

This sectionshows a Haskell implemertation 4 of inserT , extracT , and of genericsize,
map, and equality functions for linear ADTs, whether bounded or unbounded.

To handle constraints we encade both bounded and unbounded ADTs as restricte d
types [Hug99. The key idea is to encale constraints using explicit dictionaries in-

“We have compiled the code using the Glasgov Haskell Compiler v6.2.1, which supports multi-
parameter type classesand explicit kind annotations.
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stead of the implicit dictionaries created by the compiler, and to de ne LinearADT
and LinearCDT as multi-parameter type classeswhere one parameter is an explicit
dictionary. ADTs and concretetypesthat are instancesof theseclassesare parametric
on constraints, and so are functions de ned on them.

data TopD a = TopD{ my_id = a ! a}

data EqD a = EgqD{ eq : a ! a ! Bool }

data OrdD a = OrdD{ It :: a! a ! Bool, eqOrd :: EgD a }
class Sat t where dict = t

instance  Sat (TopD a) where -~ universal constraint

dict = TopD{ my_ id =id }

instance Eq a) Sat (EqD a) where
dict =EgqD{ eq = (==) }

instance Ord a) Sat (OrdD a) where
dict = OrdD{ It = (<), eqOrd = dict }

Figure 9.3: Explicit dictionaries and Sat proxy.

First, we explain the encading of explicit dictionaries. The rst three linesin Figure 9.3
declarethe explicit dictionary typesTopD, EqD, and OrdD. The rst is a "universal' dic-

tionary which is assaiated with unbounded ADTs. It hasto be provided because
LinearADT and LinearCDT will expect an explicit dictionary argumert. Howewer,

unbounded ADTs do not make use of the dictionary's "dummy' operator. An EgD dic-

tionary hasan equality operator eq and an OrdD dictionary “extends'an EgD dictionary

with a comparisonoperator It (lessthan). An Eq constraint is encaded by the explicit

dictionary EgD, and an Ord constraint by the explicit dictionary OrdD.

ClasssSat is a proxy, i.e., atype classthat is usedby programmersto tell the compiler
that an explicit dictionary exists. More precisely a type a has a dictionary D (or is
D-constrained) if D a is an instance of Sat. Figure 9.3 showvs how TopD, EqD, and
OrdD are made instancesof Sat . Notice that the last two dictionaries use operators in
implicit dictionaries.

Figure 9.4 shows type classesLinearADT and LinearCDT which now take the expli-
cit dictionary parameter cxt . The dictionary appears as a “constrairt' in the type-
signatures of operators.



9.8 Encoding genericfunctions on linear ADTs in Haskell

class LinearADT | cxt where
dscO Sat (ext a) ) | cxt a ! Bool
con0 Sat (ext a) ) | cxt a
conl Sat (ext a) ) a! | ext a! | cxt a
sell0 Sat (ext a) ) | cxt a! a
selll Sat (ext a) ) | ext a! | cxt a
class LinearCDT | cxt where
c_dsc0 Sat (ext a) ) | cxt a ! Bool
c_con0 Sat (ext a) ) | cxt a
c_conl Sat (ext a) ) a! | ext a! | cxt a
c_sell0 Sat (ext a) ) | cxt a! a
c_selll Sat (ext a) ) | ext a! | coxt a

Figure 9.4: Type classed.inearADT and LinearCDT .

Functions extracT and inserT are shawvn in Figure 9.5. Function extracT takesan
ADT argumert that is an instance of LinearADT and whosepayload is constrained on
cxt . It returns a concretetype that is an instance of LinearCDT whosepayload is also

constrained on cxt . Function inserT is the left-inverseoperation.

extracT :: (LinearADT | cxt, LinearCDT [I' cxt, Sat (cxt a))
) I ext a! |' cxt a
extracT | = if dscO | then c¢_con0O
else c_conl (sell0 1) (extracT (selll 1))
inserT  :: (LinearADT | cxt, LinearCDT ' cxt, Sat (cxt a))
) I' ext al | cxt a
inserT  I' =if c¢_dscO I' then con0O
else conl (c_sell0 I) (inserT  (c_selll 1))

Figure 9.5: Generic functions extracT and inserT

The rst box in Figure 9.6 shaws the de nition of type List . We cannot use ordinary
Haskell lists becausean instance of LinearCDT must have the sameconstraints asthe
ADT that is made an instance of LinearADT , and Haskell's built-in list type is not a
restricted type. TypelList is alsoparametric on an explicit dictionary cxt , whosekind
is written explicitly becauseit cannot be properly inferred by the compiler (it infers
kind by default). List

ordinary list operator we de ne a List

operators also have to be programmed from scratch. For eadh
onewhosenameis pre xed by the letter r (from
‘restricted’). The secondbox in Figure 9.6 shaws two examples. The third box shows
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the de nitions of map and sizefor List . The de nition of equality has beenomitted
for reasonsof space.

Figure 9.7 shaws the FIF O-queue interface QueueClass and a batched implemernt-
ation (Chapter 7). The QueueClass interface is de ned within a module named
QueueClassM . (ADT operators will be qualied by module name in later gures.)
As with the List type, the implementation type BatchedQueue is parametric on cxt .

Figure 9.8 shows the stadk interface StackClass and an implemertation in terms of
Haskell's built-in list type. The StackClass interfaceis de ned within a module named
StackClassM

Notice that a TopD dictionary is assaiated with FIFO queueswhereasa TopD' dic-
tionary is assaiated with stadks. Two dictionaries are neededbecauseoverlapping
instancesof LinearCDT List TopD areillegal.

Figure 9.9 shaws the ordered-setinterface SetClass and one possibleimplementation
in terms of ordered (Haskell) lists. The SetClass interface is de ned within a module
named SetClassM . SetList is made an instance of SetClass with constraint OrdD.
Notice how explicit-dictionary operators are usedin the implementation of insert and

remove .

Figure 9.10 shows the encading of signature morphisms. Ordered sets, FIFO queues,
and stadks are made instancesof the LinearADT classwith the relevant constraints.
There are seweral LinearCDT List instancesassaiated with theselinear ADTs. The
assaiation is establishedby the sharedexplicit dictionary.

Finally, Figure 9.11de nes map, size,and equality for linear ADTs. The concretetype
hasbeen xed to List , which is an instance of classLinearCDT .

It would be preferableto usepolytypic functions on the concretetype, that is, to de ne,
s&, sizeLinear  asfollows:

sizeLinear sa = gsize hList i sa extracT

Unfortunately, GenericHaskell doesnot support constrainedtypes(Section6.1.10)and
the instance of gsize generatedwould be the instance for the restricted List type. In
our encaling, we have to usesizeLinear

Admittedly , there is no polytypism in the code. From Section9.9 onwards we shov how
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data List (cxt ! ) a =Nil | Cons a (List cxt a)
rNull  :: Sat (cxt a) ) List cxt a ! Bool
rNull  Nil = True
rNull  (Cons _ ) = False
rHead :: Sat (cxt a) ) List cxt a ! a
rHead Nil = error "rHead : empty list"
rHead (Cons x ) = x
mapList : (Sat (cxt a), Sat (cxt b))
) (@ ! b) ! List cxt a! List cxt b
maplList f Nil = Nil
mapList f (Cons x xs) = Cons (f x) (mapList f xs)
sizeList o Sat (ext a)) (@ ! Int) ! List cxt a! Int

0
sa X + sizelList sa XS

sizeList sa Nil
sizeList sa (Cons x Xxs)

Figure 9.6: List type and functions mapList and sizeList

class QueueClass q cxt where

empty @ Sat (ext a) ) g cxt a
isEmpty :: Sat (ext a) ) g cxt a ! Bool
enq  Sat (ext a) ) a! qgext al! qgext a
front : Sat (ext a) ) gext a! a
deq © Sat (ext a) ) gext al g cext a
data BatchedQueue (cxt :: ! ) a = BQJ[a] [a]

instance  QueueClass BatchedQueue TopD where
empty = BQ[ [

isEmpty BQ f r) = null f
enqg x (BQ f r) = check f (xr )

error  "Empty Queue"
X

front (BQ [] )
front (BQ (x: f) 1)

deqg BQ [ _)
deq (BQ (x:f) r

error  "Empty Queue”
check f r

Figure 9.7: FIFO-queueinterface and a possibleimplemenrtation.
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class StackClass s cxt where
empty Sat (cxt a) ) s cxt a
iISEmpty Sat (ext a) ) s cxt a ! Bool
push Sat (ext a) ) a! scxt a! s cxt a
tos Sat (ext a) ) scxt a! a
pop Sat (ext a) ) s cxt a! s cxt a
data Stack (cxt ! ) a = ST [a]
instance  StackClass Stack TopD' where
empty = ST ]
iSEmpty (ST xs) = null xs
push x (ST xs) = ST (x: xs)
tos (ST [ = error "tos: empty stack "
tos (ST (xixs )) = X
pop (ST []) = error "pop: empty stack "
pop (ST (xixs )) = ST xs

Figure 9.8:

Stad interface and a possibleimplementation

inserT , extracT , and functions on ADTs de ned in terms of them canbe programmed

polytypically by generalisingthe solution preserted in this Section.

We conclude the section with examplesof usagein Figures 9.12 and 9.13. The reader

may want to comparethe results with those of Chapter 7. (N.B.: pretty-printing show

functions were de ned for every type.)
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class SetClass s cxt where

isEmpty :: Sat (ext a) ) s cxt a ! Bool
empty  Sat (ext a) ) s cxt a
insert @ Sat (ext a) ) a! socxt al s coxt a
choice D Sat (ext a) ) secxt al a
remove @ Sat (cxt a) ) a! scxt al!l s coxt a
member : Sat (cxt a) ) a! s cxt a ! Bool
data SetlList (cxt ! ) a = SL [a]
instance  SetClass SetList OrdD where
empty = SL ]
iISEmpty (SL xs) = null xs
insert x (SL xs) = SL (insert ' x Xxs)
where
insert ' x [] = [X]
insert ' x (1@(y: ys))
| eq (eqOrd dict ) x y =1
| (It dict ) x vy = (X :y1ys)
| otherwise =y : (insert ' Xx ys)
remove X (SL xs) = SL (remove ' X Xs)
where remove' X [] =
remove' Xx (yiys) = if eq (eqOrd dict) x y then ys

else y : (remove' X ys)

member x (SL xs) any (eq (eqOrd dict ) x) xs

choice (SL [])
choice (SL (x:ixs ))

error "choice : empty set"
X

Figure 9.9: Ordered-setinterface and a possibleimplemenrtation.
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instance  LinearADT SetList OrdD where
dscO = SetClassM . isEmpty
con0 = SetClassM . empty
conl = SetClassM . insert
sell0 = SetClassM . choice
selll = s ! SetClassM .remove (SetClassM .choice s) s
instance  LinearCDT List OrdD where
c_dscO = rNull
c_con0 = Nil
c conl = Cons
c_sell0 = rHead
c_selll = rTail
instance  LinearADT BatchedQueue TopD where
dscO = QueueClassM .isEmpty
con0 = QueueClassM .empty
conl = QueueClassM .enq
sell0 = QueueClassM .front
selll = QueueClassM .deq
instance  LinearCDT List TopD where
c_dscO = rNull
c_con0 = Nil
c conl = Cons
c_sell0 = rLast
c_selll = rinit
instance  LinearADT Stack TopD' where
dscO = StackClassM .isEmpty
con0 = StackClassM .empty
conl = StackClassM .push
sell0 = StackClassM .tos
selll = StackClassM .pop
instance  LinearCDT List TopD' where
c_dscO = rNull
c_con0 = Nil
c_conl = Cons
c_sell0 = rHead
c_selll = rTail

Figure 9.10: Ordered sets, FIFO queues,and stads are linear ADTSs.
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mapLinear : (LinearADT | cxt, LinearCDT List cxt ,
Sat (cxt a), Sat (cxt b))
) (@ ! by ! I ext a! | cxt b
mapLinear f = inserT mapList f extracT
sizeLinear ;> (LinearADT | cxt, LinearCDT List cxt, Sat (cxt a))
) @ ! Int) ! | cxt a! Int

sizeLinear sa = sizeList sa extracT

egLinear : (LinearADT | cxt, LinearCDT List cxt, Sat (cxt a))
) @ ! a! Bool) ! | ext a! | cxt a ! Bool
egLinear eqga Ix ly = eqList ega (extracT Ix) (extracT ly)

Figure 9.11: Map, size,and equality as genericfunctions on LinearADT s.

s i Setlist OrdD Int s = foldr ( x y ! SetClassM .insert X Y)
SetClassM . empty [5,1,2,4,3,2,1] >{ 1,2,3,45 }

sO = mapLinear (const 0) s

> {0}

mapLinear negate s

> f-5,-4,-3,-2,-1 g

sizeLinear (const 1) s

> 5

sizeLinear (const 1) sO

> 1

egLinear (==) s s

> True

egLinear (==) s (remove (choice s) s)

> False

egLinear (==) s (insert (choice s) s)

> True

Figure 9.12: Computing with ordered sets.
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q BatchedQueue TopD Int

g=foldl ( xy ! QueueClassM.enq y x) QueueClassM .empty [2,5,1,6]
> <2516 >

mapLinear negate q

> <-2,-5,-1,-6 >

k :: Stack TopD' Int
k = foldr ( x y ! StackClassM .push x y) StackClassM .empty [1,2,3]
> 1,2,3|

mapLinear negate Kk
> -1,-2,-3]

egLinear (==) k (pop k)
> False

Figure 9.13: Computing with FIFO queuesand stacs.
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9.9 Extensional Programming = EC[I]

In this and the following sectionswe generaliseour solution for linear ADTs to arbitrary
ADTs that can be madeto conform to somefunctorial interface. We also show that
inserT , extracT , and other functions on ADTs can be de ned polytypically.

The previous sections have introduced the notion of Extensional Programming and
made the casefor the separation of insertion and extraction when attempting the
de nition of genericfunctions on ADT values.

Let us abbreviate and call EC[I] the model of computation with ADTs where Exten-
sional Programming is carried out in terms of Extraction to a concretetype, Computation
on this type, and optional Insertion. The following diagram depicts its generalform:

tracT
ADT, 2. cpT,
g c.g
?  inserT ?
ADT, =0 cpT,

The acrorym CDT stands for "concretedata type'. Function g takesan ADT ; value
and returns an ADT » value. It is implemerted in terms of c_g, inserT , and extracT
Function ¢_g takesa CDT ; valueand returns a CDT , value. Function extracT returns
a CDT 1 value with ADT ;'s payload, and inserT takesa CDT , value and producesan
ADT , value using CDT ,'s payload.

Notice the similarity with the principles of the C++ STL where ADTs are containers
with payload and iter ators a ord to decouplefunctions from containers. In the EC[I]
model, iterators are replacedby concretetypes.

In type-unifying computations, there is no insertion and therefore CDT » is a manifest
type like Int or Bool . In type-preservingcomputations, CDT ; and CDT» need not
be the sametype, but both must be parametric on the samepayload typesin order to
passpayload around.

What is desiredis a polytypic EC[I] model whereall the arrows are polytypic functions:

ghADT 1, CDT 1, ADT 5, CDT,i =
inserT hADT ,, CDT i c_g hCDT i extracT hADT ., CDT ;i
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Every function exceptc_g is polytypic on more than one argumert. This function is
an ordinary Generic Haskell function. Extraction and insertion functions needto know
the functorial structure of their source and target types. Consequetly, CDT ; and
CDT , must be provided as argumerts to g or otherwise their valueswould be xed in
g's body. ADT; and CDT; must conform to the samefunctorial interface. However,
ADT 1 and ADT , neednot conform to the samefunctorial interface.

We will considerasimplied EC[I] model whereADT ;1 and ADT » are the sameabstract
type and CDT; and CDT , are the sameconcretetype:

tracT
ADT 2% cpr
@
@
. @ c9
inserT ~@
@ P
CDT

That is:

ghADT, CDTi = inserT hADT, CDTIi c_ghCDTi extracT hADT, CDTIi

The reasonsare simple:

1. All polytypic functions on ADTs take the samenumber and type of argumerts.

2. FunctionsinserT and extracT are polytypic on the structure of interface functors,
and choosing a free CDT 1 with the samefunctorial interface as CDT , is choosing
the sameconcretetype, namesof value constructors and operators notwithstanding.
Function inserT  will be a catamorphism, not an anamorphism [MFP91].

3. When CDT and ADT have the same functorial interface then structural inform-
ation cannot be lost. Structural information is lost if extracT is left without a
corresponding inserT , making type-preservingfunctions unde nable. Furthermore,
inserT  must be the left inverseof extracT

inserT extracT == id

In the caseof unbounded ADTs, the CDT must provide all the required operators so
that the above equation can be satis ed. In the caseof bounded ADTSs, there is no
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needto worry, for there are “clewver' constructors that properly reconstruct the ADT
(Section 9.6).

Nonethelessfor sometype-unifying computations, suc ascalculating the sizeor testing
for equality, loosingthe information required for building badk the original ADT is not
a problem (Section 9.14).

9.10 Polyt ypic extraction and insertion

Insertion and extraction functions are structurally polymorphic on the functorial struc-
ture of an interface and, consequetly, their de nition can be generatedautomatically
by a compiler. Such functorial structure is declaredby the genericprogrammerin what
we call an F-view .

9.10.1 F-views

An F-view is a languageextensionfor declaring the functorial structure of ADT inter-
faces. We introduce the syntax using someexamples. The following F -view is similar
to the type classLinearADT of Section 9.8:

fview Linear a =1 + a (Linear a)

The structure of the F-view automatically determinesthe following operators:

dscO g 8. g a) Linear a ! Bool

con0 g 8. g a) Linear a

conl g 8. ga) a ! Linear a ! Linear a
sell0 g 8. ga) Linear a! a

selll g. 8. g a) Linear a ! Linear a

The discriminator dscO comesfrom the presenceof the coproduct. There are two
products and hencetwo constructors con0 and conl. There is no selectorfor a nullary
product and there are two selectorssell0 and selll for the binary product.

Every F -view F automatically determinesanother F -view c_F where every operator op
in Fisnamedc_op inc_F:

fview c Linear a =1 + a (c_Linear a)
c_dscO g 8. ga) c lLinear a ! Bool
c_con0 g 8. g a) c Linear a
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c_conl g 8. ga) a! clinear a ! c Linear a
c_sell0 g 8. ga) clinear a! a
c_selll g 8. ga) clinear a ! c_Linear a

Other examplesof F-views are shovn in Figure 9.14. Reading an F -view declaration
from left to right, every ith coproduct has an assaiated discriminator dsci. Every ith
product has one constructor coni with selectorssel i0 to sel im, wherem is the arity
of the product.

fview Binl a =1 + a (Binl a) (Binl a)
dsc0 g. 8. ga) Binl a ! Bool
con0 g. 8. g a) Binl a
conl g 8. qga) a! Binl a! Binl a! Binl a
sell0 g. 8. ga) Binl a! a
selll g. 8. ga) Binl a! Binl a
sell2 g. 8. ga) Binl a! Binl a
fview Bin2 b=1+a+b (Bin2 a b) (Bin2 a b)
dscO g. 8. ga) Bin2 ab ! Bool
dscl g. 8. ga) Bin2 ab ! Bool
con0 g. 8. ga) Bin2 ab
conl g 8. ga) a! Bin2 ab
sell0 g 8. ga) Bin2 ab! a
con2 g- 8. qga) b! Bin2 ab! Bin2 ab! Bin2 ab
sel20 g. 8. ga) Bin2 ab! b
sel2l g. 8. ga) Bin2 ab! Bin2 ab
sel22 g. 8. ga) Bin2 ab! Bin2 ab
fview Composite3 a b ¢ = a b c
con0 g. 8. ga) a! b! ¢! Composite3 abc
selo0 g. 8. ga) Composite3 abc ! a
selol g. 8. ga) Composite3 abc! b
sel02 g. 8. ga) Composite3 abc! c

Figure 9.14: Examples of F -view declarations and their implicitly-de ned operators.

9.10.2 Named signature morphisms

ADT interfacescan be made to conform to F-views by providing named signatur e
morphisms . We have already showved in Section 9.5.2 examplesof signature morph-
isms. In this sectionwe explain the new syntax by example.

Set instance Linear by SetL where
dscO = isEmptySet
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con0 = emptySet

The syntax declaresthat there is a signature morphism SetL from the ADT Set to the
Linear F-view. A signature morphism betweena concretetype and ¢_Linear must
be declaredin similar fashion:

List instance c_Linear by L1 where

c_dscO = null
c_con0 = Nil
c conl = Cons
c_sell0 = head
c_selll = tail

List instance c_Linear by L2 where

c dscO = null
c_con0 = Nil
c_conl = Cons
c_sell0 = last
c_selll = init

The two morphisms have di erent namesand therefore can cohabit in a program. In
Section 9.8, F -views were encaded as type classesand signature morphisms were en-
coded asinstancedeclarations. In that setting, overlapping instanceswere not allowed.
We show a possible implementation of F-views and named signature morphisms in
Section 9.10.3.

To the compiler, every named signature morphism has two assaiated meta-functions
calledtype and view. The rst returns the typethat is madean instanceof the F -view,

e.g.
type SetL = Set
type L2 = List
The secondreturns a represertation of the functorial structure declaredby the F -view,
e.g.

view Linear =1 + a (Linear a)
view Composite3 = a b c
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9.10.3 Implemen ting F-views and named signature morphisms

F -views and named signature morphisms are language extensions. In this section we
show that they are reasonableand feasible extensionsby indicating a possibleimple-
merntation.

An F-view declaration can be translated by the compiler to a multi-parameter type
classwhere one parameter is an explicit dictionary parameter (Section 9.8) and another
is a name parameter, i.e., a type encaling a signature morphism name. Every function
in the classtakesan extra argumert of that type.

Named signature morphisms can be translated by the compiler to instancesof the type
classthat provide actual valuesfor dictionaries and ‘name'types.

Figure 9.15showsthe translation for F-viewc_Linear and namedsignature morphisms
L1 and L2.

class C_Linear cxt n where

I
c_dscO 8a. Sat (ext a) ) n! | cxt a ! Bool
c_con0 8a. Sat (ext a) ) n! | cxt a
c_conl 8a. Sat (ext a) ) n! al! | cxt a! | cxt a
c_sell0 8a Sat (ext a) ) n! | cxt a! a
c_selll 8a. Sat (ext a) ) n! | ext al! | cxt a
data L1 = L1
data L2 = L2

instance C_Linear List TopD L1 where

c_dscO = const null
c_con0 = cons Nil

c conl = const Cons
c_sell0 = const head
c_selll = const tall

instance C_Linear List TopD L2 where

c_dscO = const null
c con0 = cons Nil

c conl = const Cons
c_sell0 = const last
c_selll = const init

Figure 9.15: Possibleimplementation of F -views and named signature morphisms.

The F-view is compiled to a type classC_Linear which takes an explicit dictionary
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parameter cxt and a ‘name' parameter n. Every operator has an extra parameter of
type n.

The signature-morphism names L1 and L2 are compiled to new types with nullary
value constructors of the samename. The signature morphisms are implemented as
instancesof C_Linear where operators discard their rst argument.

The typesLl and L2 help the compiler resolve the overloading. More precisely op-
erators c¢_op only occur in the bodies of inserT and extracT , which take signature-
morphism argumerts (we discussthe details of this in the next section). When inserT
or extracT are passedsignature morphism L1 as an actual argumert, the compiler
generatestheir bodies writing c_op L1 where a call to c_op would have been expec-
ted. The compiler can deducefrom the application that c¢_op must be of type L1 !

for sometype . The other possibility, L2 ! doesnot type-diedk. Similarly, when
inserT  or extracT are passedsignature morphism L2 as an actual argumert, what
are generatedare callsto c_op L2.

9.10.4 Polyaric types and instance generation

We now de ne inserT and extracT polytypically. Their typesare parametric on the
arity of the type componert of a signature morphism and their bodies are generated
following the functorial structure provided by the view componert. Operator names
are also obtained from signature-morphism argumerts.

More precisely inserT and extracT are parametric on two signature morphisms that
provide all the information. One morphism mapsan ADT to an F-view F and another
maps a CDT to the related F-view c_F. The bodies are structurally polymorphic
on the functor de ned by the F-view. Like Generic Haskell, we follow a generative
approad and generateinstancesof inserT and extracT for actual signature-morphism
argumerts in polytypic applications. Generic programmers do not have to specify
anything. The type-signaturesand bodies of instancesare generatedautomatically by
the compiler.

We introduce the notion of polyaric type,i.e., a type that is parametric on the arity
of an ADT, not the kind. The reasonfor this is that we deal with rst-order ADTs
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whosekind is described by the grammar:
=g !

Functions extracT and inserT posses$olyaric types,and sowill polytypic functions
de ned in terms of them.

TypesExtracT andInserT arerespectively the polyaric typesof extracT andinserT

ExtracT mityt, 0 g8aga) tia! trya
InserT Mityt, = g8aga) ta! tia
extracT h;cfi : ExtracT harity type) fi (typef) (typecf) ( typef)
insertT hf;cfi : InserT Warity type)cfi (typef) (typecf) ( typef)

wheren > 0 and a &' ai:::ap. The casen = 0 appliesto manifest ADTs and cannot

be explained until we introduce our notion of exporting in Section 9.13.

Let F and C_F betwo signature morphisms. The polytypic application extracT h-,C_Fi
in the program triggers the generation of the instance of extracT for those signature
morphisms, namely, extracT_F_C_F , whosede nition is generatedby:

genCopo(t ; view(F))

wheret is a chosenvalue-parameter name, view(F) = Pg+ :::+ P, for somen 0
coproducts of products P; = Xijo ::: Xim for somem 0, and genCopp is a
compiler meta-function whosede nition for extraction is shovn in Figure 9.16.

genCopo(t, Po+ :::+ Py) =
if (dscO t) then genPro(t, Po)

else if (dsc (n 1) t) then genPr(t, Pn 1)
else genPno(t , Py)

genPro(t, 1) = c.coni
genPro(t, Xip ::: Xim) = c_coni genTerm(t , Xio) ::: genTerm(t, Xim)
genTerm(t , a; ) sel ij t

genTerm(t , (F @);) = extracT (sel ij t)

Figure 9.16: Meta-function genCopo generatesthe body of extracT at compile-time
following the structure speci ed by its secondargumert.

An almost identical meta-function is de ned for inserT whereinserT occurs instead
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of extracT and c_op operators occur instead of op operators and vice versa.
9.10.5 Generation examples

We illustrate the generation processfor ordered sets and FIFO queues. First, the
signature morphisms:

Set instance Linear by SetF where

dscO = isEmptyS

con0 = emptyS

conl = insert

sell0 = choice

selll = s ! remove (choice s) s

Queue instance  Linear by QueueF where

dscO = isEmptyQ
con0 = emptyQ
conl = enq
sell0 = front
selll = deq

For the concretetype, we usesignature morphism L2 from Section9.10.2. The polytypic
application extracT hSetF ,L2 i triggers the generationof aextracT_SetF_L2  instance
whosetype is given by expanding the polyaric type:

ExtracT hli Set List [Ord]
The resulting type-signatureis:
extracT_SetF_L2 > 8a Ord a) Set a ! List a

Similarly, the polytypic application inserT hSetF L2 i triggers the generation of an
inserT_SetF_L2  instance whosetype is given by expanding the polyaric type:

InserT hli Set List [Ord]
which yields the type-signature:

inserT_SetF_L2 o 8a Ord a) List a! Set a
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The bodies of extracT_SetF L2 and inserT_SetF L2 are generatedby the compile-
time evaluation of:

genCopo(t;1+ a (Linear a))

whereF -view operator namesare replacedby the actual onesprovided by the signature

morphisms:

extracT_SetF L2 t =
if iSEmptyS t then Nil
else Cons (choice t) (extracT (( s ! remove (choice s) s) t)

inserT_SetF_L2 t =
if null t then emptyS
else insert (last t) (inserT  (init 1))

(If F-views and named signature morphisms are implemented as suggestedin Sec-
tion 9.10.3,list and set operators in the previous de nitions must be applied to an L2
argumert rst.)

FIF O queueshave no payload constraints. The following polytypic applications:

extracT hQueueF, L2i
inserT hQueueF,L2 i

trigger the generation of the following type-signatures:

extracT_QueueF_L2 : ExtracT hli Queue List []
inserT_QueueF_L2 0 InserT hli Queue List ]

and the generation of the bodiesusing the operators provided by the signature morph-

isms:

extracT_QueueF L2 ' 8a. Queue a ! List a
extracT_QueueF L2 t = if isEmptyQ t then Nil
else Cons (front t) (extracT (deq t))

inserT_QueueF L2 ' 8a. List a ! Queue a
inserT_QueueF L2 t = if null t then emptyQ
else enq (last t) (inserT  (init t))
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9.11 Dening polytypic functions

Polytypic functions such as gsize , gmap, or geq can now be programmedin terms of
inserT and extracT . Polytypic functions on rst-order ADTs posses$olyaric types.

The genericprogrammer rst de nes the polyaric type of the function:

G

Q
3 2

i gaGia! Gm 1(ta)

which is translated automatically by the compiler into a context-parametric version:

= q:
g8aqa) Gloia ! Gm 1i(ta)q

()
)
—| |

Ghmi
A polyaric type can be converted into a polykinded type by mapping arity argumens

to kind argumerts:

kindOf (0)
kindOf (n)

' KindOf (n 1)

A polyaric type can be expandedby rst transforming it into a polykinded type and
then using the type rules described in Section6.1.11.

The genericprogrammer then de nes the body of the function:
ghf;cfi n GHIf
gf;cfi g X = B(X inserT H;cfi; ghcfi g; extracT H;cfi)

Sewral remarks are in order:

The polytypic function is parametric on two named signature morphisms, one map-

ping the ADT to an F-view and another mapping the CDT to the implicit F-view

generatedby the former. For example,in the polytypic application ghM 1; M2i, M1

is a signature morphism mapping the operators in type(M ;) to view(M1) whereas
signature morphism M, maps the operators in type(M») to view(My), sud that

view(M,) is F, for someF -view F, and view(M») is c_F.

We deprecatethe transformation of n-ary (co)products in F-viewsto assaiations of
binary ones. In a generative approad, it is possibleand reasonableto de ne poly-
typic functions and their typesastemplatesthat are parametric on arity. Thus, func-
tion g takesa vector of function arguments g = g1 :::gn, Wheren = arity (type(f)).
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The special symbol is a languageextension. The type of ead g; argumert is given
by the polyaric type, that is:

g g8aga) Ghiag

The body of ghf ;c_fi is a function B of the argument variables X, of the inserT
and extracT for the samesignature morphisms, and also of the ordinary Generic
Haskell function ghc_f i applied to the vector g.

The polytypic application ghF; C _Fi triggers the generationof the instanceg F C F

whosetype-signatureis given by expanding:
Gharity type)Fi (type F) ( type F)
The generatedbody is:
B(X; inserT _F_C_F; ghTi g1:::0n; extracT _F_C.F)

whereT = type(C_F) and n = arity (T). For simplicity, generatedinstancescortain
callsto polytypic functions on the concretetype. It would be possibleto generatein-
stancesfor thosefunctions simultaneously, i.e., to generateg_T whosetype-signature
is given by:

GhkindOf arity type)C_Fi (type C_F) ( type CF)

where G is the context-parametric polykinded type of the ordinary Generic Haskell
function.

Polytypic function de nitions can be type-cheked. The Generic Haskell compiler
relieson the Haskell compiler to do the job, i.e., it generatesthe typesand bodies of
instancesand lets the Haskell compiler ched that they match. We also follow this
approad.

Figure 9.17 shaws the de nition of gsize , gmap, and geq.
We concludethe sectionwith generation examplesfor ordered sets.

The polytypic application gsize hSetF ,L1 i triggers the generation of the instance:
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GSIZEhOi t = g. t ! Int
GSIZEhni t = g. 8. qa ) GSIZEhOi a ! GSIZEhn-1i (t a) q
gsize hfc f i @ GSIZEhfi f
gsize hfc f i gt =gsize hcfi ¢ extracT hfc f i t
GMAPOiI t1 t2 = q. t1 ! t2
GMARPNi t1 t2 = qgq. 8l a2. gq al a2 )
GMAPOi al a2 ! GMAPN-1i (t1 al) (2 a2) ¢
gmaphf ,c f i :: GMARfi f
gmaphf,.c f i gt = inserT hfc f i gmaphc fi g extracT hf, c fi t
GEQOi t = g t ! t ! Int
GEQni t = . 8. ga) GEQOi a ! GEQn-1i (t a) q
geghf, c fi = GEMfi f
geqhf, c fi g tl t2 = geqhc fi g (extracT hf,c f i t1)
(extracT hf,c f i t2)

Figure 9.17: Polytypic gsize , gmap, geq de ned in terms of inserT and extracT

gsize_SetF L1 1 GSIZEhli Set [Ord]
that is:
gsize SetF L1 : 8a. Orda) (@ ! Int) ! Set a! Int

gsize_SetF L1 g t = gsize hList i ¢ extracT_SetF_L1 t

Generated instances cortain calls to polytypic functions on the concrete type. If in-
stancesfor them are generatedsimultaneously then the result is:

gsize SetF L1 : 8a. Orda) (@ ! Int) ! Set a! Int
gsize SetF L1 g t = gsize List g extracT_SetF L1 t

The polytypic application gmaphSetF ,L1 i triggers the generationof the gmap instance:

gmap_SetF L1 :: GMARLli Set [Ord]

that is:
gmap SetF L1 :: 8a (Ord a, Ord b)) (@ ! b) ! Set a! Set b
gmap_SetF L1 g t = inserT_SetF L1 gmaphList i ¢ extracT_SetF L1 t

Finally, the polytypic application geqhSetF, L1i triggers the generation of the geq
instance:
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geq_SetF L1 :: GEQli Set [Ord]
that is:
geqg SetF L1 :: 8a Orda) (@a! a! Bool) ! Set a! Set a! Bool

geq_SetF L1 g t1 t2 =
geqhList i g (extracT_SetF_L1 t1) (extracT_SetF F1 t2)

9.12 Polyt ypic extension

Polytypic extension can be accommalated in our systemin a similar way in which
template specialisation is done in C++. Polytypic extension amouns to providing
a de nition of specic instancesof polytypic functions for speci c ADTs. Specialised
functions canbe provided for inserT , extracT , and already de ned polytypic functions
with polyaric types.

Suppose,for example, that ordered sets come equipped with the following operators:

enumerate i 8a Ord a) Set a ! List a
fromList i 8a Ord a) List a! Set a
cardinality > 8a Ord a) Set a! Int

It makessenseto usetheseoperatorsin the de nitions of inserT , extracT , and gsize
for ordered sets. This can be speci ed by the genericprogrammer thus:

instance  extracT htype =Set, type =List i enumerate
instance  inserT htype =Set, type =List i = fromList

instance  gsize htype =Set, type =List i

cardinality

We reusethe keyword instance  to avoid multiplication of keywords. The rst declara-
tion instructs the compiler to useenumerate instead of generatingan extracT instance
when the type attribute of its rst signature-morphism argumert is Set and the type
attribute of its secondsignature-morphism argumernt is List . The declaration only
mertions types, not F-views, becauseextracT is not generated. The compiler must
make sure that enumerate 's type-signature matches that of an instance of extracT
for setsand lists, that is, it must ched that:

ExtracT hli Set [ Ord]

expandsto:
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8a Ord a) Set a ! List a
which is the case.

Similarly, the seconddeclaration instructs the compiler to use fromList  instead of
generatingan instance of inserT . Finally, the third declaration instructs the compiler
to use cardinality instead of generating an instance of gsize when the typesin
the signature morphisms are Set and List . Again, the compiler must ched that
type-signaturesmatch, which is the casein theseexamples.

9.13 Exp orting

The di erence between exporting and abstracting over payload is somewhat analog-
ous to the di erence betweenlambda abstractions and let-expressions. Exporting in
F -views is basedon carrying this di erence to the type level.

Recall the EventQueue example of Section 7.2. To make it conform to the Linear
F -view we have to specify that the payload typeis xed. The keyword export is used
for this purpose:

EventQueue instance Linear by EventQL where
export a = Event .EventType
dsc0 EventQueue . isEmpty
con0 EventQueue . empty

The declaration informs the compiler that type variable a in the functorial structure
of Linear will always be Event .EventType

We can explain now how polyaric typeswork when the type attribute of a signature
morphism hasO0 arity, a discussionthat was postponedin Section9.10.4. Theseare the
basecasesof polyaric typesinserT and ExtracT :

ExtracT HOi tytp, 0 t1 !ty (payload tq)

InserT HOi t1t, i to (payload tp) ! tg
Compile-time function payload returns the payload type speci ed in an export declar-
ation for its type argumert.

Let us shav someexamplesof particular instantiations:
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extracT hEventQL ,L1 i :: ExtracT hOi EventQueue List []

In this example:

type(EventQL )
arity (EventQueue )
payload(type(EventQL ))

The result of the expansionis:

EventQueue
0
Event.EventType

extracT_EventQL_L1 .» EventQueue ! List Event .EventType
Also:
inserT hEventQL ,L1 i :: |InserT hOi EventQueue List []

after expansion:
inserT_EventQL_L1 .o List Event .EventType ! EventQueue
Let us shav what should happen with polytypic functions:

gsize heventQL ,L1 i :: exprt (GSIZE hli EventQueue [])
EventQueue [Event .EventType ]

The compile-time meta-function export expandsits rst argumer, the polyaric type
GSIZE, and on the resulting type-signature replacesEventQueue a by EventQueue
and it replacesall remaining occurrencesof a by Event . EventType . The resulting
type-signature of the gsize instanceis showvn below:

gsize_EventQL L1
(Event .EventType ! Int ) ! EventQueue ! Int

In general,let Pmi T [] expandto type-signatureS. The evaluation of:

where E = payload(T), yields the type-signature:
(T @)=T][a=E]S

Exporting is essetial in dealing with composite manifest ADTs. Take for example a
Date ADT whoseimplementation type is hidden. It comeswith the following operat-
ors:



mkDate
getDay
getMonth
getYear

Day ! Month !
Date ! Dat
Date ! Month
Date ! Year
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Year ! Date

We can compute with datesby de ning a signature morphism using the export facility.

Recall the Composite3 F -view from Section 9.10.1:

Date instance

export a = Day
b = Month
c = Year

con0 = mkDate

sel00 = getDay

sel0l = getMonth

sel02 = getYear

type Tuple3 a b c = (abc )

tuple3

tuple30
tuple31
tuple32

Tuple3
c_con0
c_sel00
c_selol
c_sel02

mapDate ::

Xy z=(xy,
(x.y.2)
(x.y.2)
(x.y.2)

instance

2)

N < X

c_Composite3

tuple3

tuple30
tuple3l
tuple32

(Day !
I Date !

Day) !
Date

Composite3 by DateC3 where

by Tuple3F where

(Month I Month) ! (Year ! Year)

mapDate = gmaphDateC3,Tuple3F i

In Haskell, n-ary tuples are constructed using bracket notation and there are only

prede ned selectorsfor binary tuples, namely, fst

and snd. The reader will agree

that concrete types of the form Tuple n for n > 0 could be assumedby the generic

programmer and their type, constructors, and selectorsbe generatedautomatically by

the compiler.
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Tuple typesare alsoconveniert for dealingwith random accessstructures suc asarrays
of xed length. For example:

type Array3 a = Array Int a

Array3 instance = Composite3 by ArrayComposite3 where

con0 = xvyz ! aray (02) [0, %, w2, 2)
selo0 = (10)
selol = (11)
selo2 = (12)
mapArray3 : (a ! b) ! Array3 a ! Array3 b

mapArray3 = gmaphArray3 ,Tuple3F i
9.14 Forgetful extraction

In type-unifying computations in which there is no needfor insertion, it is possibleto
cheat and extract payload from an ADT into a concretetype with dierent functorial
structure; more precisely to a concretetype with a polynomial functor of lower coef-
cient but equal number of payload. For instance, it is possibleto extract data from
an ADT conformingto Binl (de ned in Section9.10.1)to a list. The trick is to make
List conform to c_Binl , which is possible becauselist selectorsare not used when
inserT  is omitted:

List instance C_Binl by ListBinl  where

c_dscO = null

c_con0 = Nil

cconl = xyz ! Cons x (y #+ 2z)

c sell0 = x ! error "attempting to select "
cselll = x ! error "attempting to select "
c sell2 = x ! error "attempting to select "

Combining ADTs and CDTs with dierent functorial interfacesertails an exponertial
increasein the number of signature-morphism argumerts. We comebad to this topic
in Chapter 10.
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9.15 Passing and comparing payload between ADTs

BecauseinserT and extracT are parametric on signature morphismsfor abstract and
concretetypes,it is possibleto write non-genericfunctions that “copy' payload between
dierent ADTs aslong as the functorial structure is the sameand the intermediate
concretetype is the same, ewven if the two signature morphisms for the concretetype
dier. A simple example:

set2queue :: Ord a) Set a ! Queue a
set2queue = inserT hQueueF, L2i extracT hSetF L1 i

Notice that type(L1)=type(L2) and that queueselectorsin L2 are never usedand list
selectorsin L1 are never used.

It is not possiblehowewer to write payload-copy functions polytypically becauseinser-
tion, extraction, and polytypic functions with polyaric types are parametric only on
one signature morphism assaiated with an ADT.

It is also possibleto compare payload between ADTSs, i.e., to program extensional
equality (Section 9.7):

let = extracT hSetF L1 i
y = extracT hQueueF,L1 i
in x ==y

Notice that the samesignature morphism is usedfor both extraction functions.



Chapterl10
Future Work

I have no illusions about the prospects of the theory | am proposing: it
will suer the inevitable fate of being proven wrong in many, or most,
details ... what | am hoping for is that it will be found to contain a
shadowy pattern of truth. .. [Koe89 p18]

Programming with ADTs is programming with their data corntents, not their hidden
structure. But for structural polymorphism to be possible we need some notion of
structure.

In this thesis we have shovn how polytypic programming can be reconciledwith data
abstraction. More precisely inspired by the conceptof F -Algebra and signature morph-
ism, we have proposeda way for generic programmersto de ne “structure' in terms of
ADT interfacesand to de ne polytypic functions that are parametric on sud structure.

We list somepossibilities for future work and researd:

1. The languageextensionsproposedfrom Section9.9 onwards haveto beimplemented.
The reader should bear in mind, however, that the Generic Haskell compiler is not
an open-sourceproject and the inclusion of any extensioninto an ocial release
requires the authorisation (and, for practical purposes,the collaboration) with the
designteam.

2. Our proposal has focusedon rst-order ADTs. It would be interesting to investig-
ate ADTs that are higher-order (take parameterisedADTs as parameters) or have
higher-order operators. Polyaric typeswould have to be "upgraded'to special poly-
kinded typesthat capture not only the arity but alsothe order of ADTs. Also, the
reduction rules for context-parametric polykinded typesmust take into accourt the
possibility that higher-order ADTs may be passedconstrained ADTs asargumerts.

Another issueto addressis that, with higher-order operators, discriminators and
partial selectorsdisappearin favour of higher-order eliminators. For instance, partial
selectorsnull , head, and tail in lists may be replacedby eliminator:
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caseList ' 8ab. (Unit ! ¢) ! ((List a) ! ¢) ! Lst a! c
caseList f g | =if null | then f unit
else g (head I, tail 1I)

Functions on lists can be programmed in terms of eliminators:

length @ List a ! Int

length = caseList (const 0) ((+1) length snd)
And so would polytypic functions be programmed using eliminators. F-views and
named signature morphisms would have to be adapted accordingly.

. Objects can be seenas rst-class ADTs with higher-order operators. We believe
the dewvelopmert of polytypic programming in object-oriented languageslike C++
or Java will have to follow an EC[I] model. In this thesis we have not taken into
accourt the possibility of subtyping. Haskell doesnot support subtyping but this
may changein the future. Polytypic programming in object-oriented languagesis
certainly a path worth investigating and carrying the ideasof polytypic extensional
programming to theselanguagesis an interesting starting point.

. We would like to carry out the ideaspreseried hereto the SyB approad. First, in-
stancesof gfoldl  could be generatedautomatically following the de nitional struc-
ture of user-de ned F -views. More precisely in SyB there are instancesof gfoldl
for linear ADTs for which there exists an extraction function toList and an inser-
tion function fromList , e.g.

instance (Data a, Ord a) ) Data (OrdSet a) where
gfoldl k z s = k (z fromList ) (toList s)

If extraction and insertion functions are not o ered by the interface they could be
obtained automatically usinginserT and extracT

instance (Data a, Ord a) ) Data (OrdSet a) where
gfoldl k z s =Kk (z inserT hSetF,L1 i) (extracT hSetF, L1i s)

Notice it would be possibleto useinsertion and extraction functions from/to other
concretetypesthan lists.

Second,genericfunctions on ADTs could be generatedautomatically by the compiler
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aspolytypically-extended versionsof ordinary SyB genericfunctions. More precisely
the instance:

instance  Size a ) Size (OrdSet a) where
gsize = gsize extracT hSetF L1 i

could be generatedautomatically from the polytypic application:

gsize hSetF L1 i

provided the programmer has given the de nition:
gsize hf, c_f i = gsize htype (c_f) i extract hf,c_f i

which tells the compiler that gsize hype (c_f) i isto be the instance of gsize for
the concretetypein c_f .

. The separation of insertion and extraction calls for code optimisation techniques
in the form of fusion [AS09. In particular, it is important to investigate whether
insertion and extraction in bounded ADTs can be fused.

. The possibility of using di erent F-views in polytypic de nitions could be invest-
igated. There are someproblems to tackle. For instance, it is possibleto extract
payload from a tree into a list in the order imposedby calls to discriminators and
selectors,but there are many ways of constructing a tree from a list, and perhaps
they cannot be captured uniformly.

Furthermore, sometimesit is not possibleto de ne a suitable F-view for an ADT.
A simple examplewould be a Tree ADT with the following operators:

iISEmptyT :: Tree a ! Bool

emptyT o Tree a

insert w al!l Tree a ! Tree a
node i Tree a ! a

left  Tree a ! Tree a

right  Tree a ! Tree a

The functor describedby constructorsisTa = 1+a (T a) whereasthe onedescribed
by discriminators and selectorsisTa = 1+a (Ta) (T a). We may argue that
it is possibleto wrap the Tree interface behind a Heap one (Section 9.3). Or we
may arguethat it is possibleto de ne ajoinT operator that mergestwo treesinto
a single tree sothat Tree 's interface can be mapped to the Linear F-view thus:
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Tree instance Linear by TreeL where
dscO = isEmptyT
con0 = emptyT

conl = insert
sell0 = node
selll = t ! joinT (left t) (right t)

We may alsoarguethat it is possibleto rely on polytypic extension:

instance  gmaphtype =Tree , type =List i g =
inserT hTreeL ,L1 i flattenT gmaphBTree i g
extracT hTreeF, BinTreeF i

where;:

flattenT . BTree a ! List a
is a function that attens the tree into a list.

Howewer, it seemsreasonableto investigate the possibility of de ning polytypic F-
view transformers that would enable programmersto write polytypic functions on
ADTs using di erent F-views by meansof thesetransformers.

. Polytypic functions are not parametric on basetypesin Generic Haskell, nor in our
stheme (Section 6.1.12).



Part ||

App endix

259



AppendixA
Detailsfrom Chapters

A.1 Our specication formalism, set-theoretically

Formal or symbolic systemsaretypically preserted (not necessarilycortriv ed or grasped)
in four steps:

1. De ne the syntax of terms and the context-dependent information, e.g., sort rules
that inductively de ne the set of well-formed, well-sorted terms.

2. De ne the semariics syntactically by meansof relations between terms. An ax-
iomatic semantics de nes equations betweenterms which are axiomsin a proof
system of syntactic equality. An axiomatic semartics also provides a speci cation
of what is wanted: entities conforming to the speci cation are models. An opera-
tional semantics de nes a reduction relation betweenterms, usually by directing
the equationswhich becomerewrite rules.

3. Investigate the denotational semantics , i.e., provide a translation to another
formal system that provides the semarics: syntactic terms are mapped to se-
mantic values and syntactic relations to semairiic relations. This mapping is in-
teresting if more than one syntactic term may stand for the same sematriic value.
The translation is provided by an interpreter (poshly called “semaric function')
[Sto77, S94, Ten7q, which is expressedin a meta-languagewith care to avoid
circularity [Rey9§. The transformation of interpreters into operational sematriics
or abstract madhines has beenstudied recertly, e.g. [ABDMO03].

4. Make sure the translation works, i.e., that the syntactic and semarnic formalisms
are the same. More precisely prove the syntactic consistency of the proof system
(roughly, it cannot prove all possibleequationsbetweenterms), the semantic con-
sistency (roughly, there is someequation that is not satis ed by the models), the
soundness (if two terms are related by an equation their meaningsare the same),
the semantic completeness (if two meaningsare equal, the syntactic equation
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betweentheir symbolising terms can be proven syntactically), and syntactic com-
pleteness (the set of equations given is enoughto prove all desirable equations
betweenterms).

Consistency and soundnesscan be proven from properties of the rewrite system. For
instance, if the system of induced rewrite rules is strongly normalising (every term
has a normal form) and con uent (the normal form is unique), then it is consistert
and we can prove an equation betweenterms by testing whether they have the same
normal form. Also, soundnessan be usedto provethat an equationis not syntactically
provable by nding a cournterexample,i.e., model that satis es the axioms but not the
equation.

In Chapter 5 we have described our formal system of algebraic speci cations by ex-
ample. In this appendix we provide its set-theoretic formalisation. In Section A.3 we
alsodescribeits categorial rendition, which is more concisebecausethe low-level details
provided by the set-theoretic formulation are abstracted away by the conceptswielded.
Thesedetails are important for us becausewe are concernedwith the structure of the
objects involved. Moreover, explicit signaturesand laws are essefial in our approac
to Generic Programming.

The set-theoretic formalisation is preseried in painstaking detail for reasonsof pre-
cision which inexorably entails a bit of verbosity that might make "the obvious seem
impressiwe' and might look “overly abstract' [BG82]. Of particular interest is our de n-

ition of -Algebra and F-Algebra. We have borrowed some concepts and notation

from [BG82, Bai89, Ber01, Hei96, Mar98, Mit96]. Our presenration makesheavy useof
inductiv e de nitions in natural-deduction style interspersedwith discursive expositions
of the intuitions involved.

Our basic formalism can be described informally in a few sertences: all the elemers
preseri in all speci cations are collected into sets: a set of all the de ned sorts, a set
of all operator symbols, a set of all equations, a set of well-sorted closal terms that
can be formed from proper and constart operators, a set of well-formed open terms
that can be formed by allowing free variablesto be terms, etc. Operators and terms
are classi ed according to their sort-signature and sort respectively. Equations are
axioms in a proof system of syntactic equality. Issuesof consistency soundness,and
completenessare discussedthereafter. Algebras provide meaningsto speci cations and
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are also described set-theoretically.
A.1.1 Signatures and sorts

It is convenient to usethe set of sorts as an indexing device for other sets. Box A.1
(page 263) provides the relevant maciinery. The following de nition allows usto index
the set of operators corveniertly.

Definition A.1.1 GivenasetS, wede ne S asthe smallestlanguage(set of strings)
de ned by the following inductiv e rules:

s2S x2S y2S
2S quote(s) 2 S Xy 2 S

where is the empty string, function quote returns the symbol of its argumen as a
string, and string concatenationis denoted by string juxtap osition.

We de ne S* asthe setS S:

w2S s2S
(w;s) 2 S*

We write ws as syntactic sugar for (w;s). In what follows w will always range over
strings of S and s over symbols in S. Sort-signatures have the form w ! s with
the corvertion that w is treated as a string and the whitespace separating argumert
sorts is ignored. For example, the plus operator in Figure 5.3 has sort-signature
NatNat ! Nat.

Definition  A.1.2 A signatur e isapair (S;) whereSisa nite setof sorts and

is an S* -set of operator-symb ol sets,i.e., =f ,sjw2S ~ s2Sg. Operator
symbols are sorted according to their sort-signature, i.e., an operator :w! sisin
the set s.

It is assumedthat operator symbols have a unique sort-signature (this holds in the
previousde nition because s isaset). For simplicity, we alsoassumethat all operator
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BOX A.1: S-setsandtheir operations

A non-empty and erumerablesetof setsC canbeindexedhby a non-empty and
enumerable set S if there is a total surjectioni : S! C. To abbreviate, we
say C is an S-set and for every s2S we write Cg for i(s). Thus the following
equality: C = fCsjs2 Sg

We de ne S-setoperations as pointwise liftings of set operations. Let C;D be

S-sets:
S-null set: O def f;s]js2Sg
S-inclusion : C _D i 8s2S: Cs Dg
S-pr oduct c_D % ¢ Cs Dsjs2Sg
S-union CLD % fcs[Dsjs2Sqg
S-arr ow cC!_D det fCs! Dsjs2Sg

Notice that 06 ;, hencethe change of name and symbol.

An S-function f : C! D is an S-set of functions ffg : Cs ! Dg | s2Sg
which is an injective, surjective, or bijective S-function i every fs is an in-
jective, surjective, or bijective function respectively. Other notions sud as
S-composition can be de ned in a similar fashion.

An S-relation R is an S-subsetof an S-product: R _ C _D, i.e., for every
s2S, Rs Cs Dgisarelation. R is an equivalene@ or an order S-relation
if every Rg is an equivalenceor an order relation respectively. R is de ned as
an S-relation on C whenR _ C _C.

Let R be an S-equivalence relation, the S-quotient is de ned as follows:
(C=R)s def Cs=Rs where Cs=Rs denotesthe partition of the set Cg into the
equivalenceclassesggeneratedby Rs.

In the following pageswe “drop dots' and overload set operators and S-set
operators. Whether an operator is an S-set operator or a set operator will be
determined from whether its argumerts are S-setsor not.

263

%
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symbols are di erent (not overloaded) but this is not a strict requiremert, for sort-
signatures are not inferred (Section 4.7.2). Becausethe number of operators in a
speci cation is nite, many sets s will beempty. In subsequehde nitions predicates
of the form 2 5 are placedasrule premises.

A.1.2 Terms, sort-assignmen ts and substitution

Given a signature we can de ne the set of closedterms (with no free variables), but
becauseequationsinvolve free variablesit is better to de ne the set of open terms from
the start and de ne the set of closedterms as a special case. Variables are also sorted.
For corvenience,instead of assumingthe existenceof an S-set of variables we make
useof the notion of sort-assignmen, i.e., a nite set of pairs that is the extensionof a
nite function from variablesto sorts.

Definition A.1.3 A sort-assignment : X I Sisa nite function from a nite
set of variablesto the nite set of sorts.

We use sort-assignmers both intensionally (i.e., ( x) is a sort) and extensionally as
setsof pairs. Being a set, X has no repetitions.

Definition A.1.4 Given a signature = (S;) and a sort-assignmemn we de ne
the S-set of open terms :

Term( ;) = fTerm( ;)sjs2Sg

for every sort s inductiv ely as follows:

(x)=s 2 s
x2Term( ;) s 2 Term( ;) s
2 susps ti 2 Term( ;) g i2fl:::ng n>0

tp 1iith 2 Term( ;) s

The S-set of closedterms Term( ;;) is thus de ned as a special case. It follows from
the above de nition that Term( ;;) Term( ;).
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Becauseof the uniform treatment of constart and proper operators, the secondinduct-
ive rule in De nition A.1.4 could be embeddedin the last one by making n 0, but
it would losethe avour of a de nition by structural induction. Notice that De ni-
tion A.1.4 de nes the set of terms by induction on the following recursive grammar of
terms:

t u= xj ] tyiiity
wherex is a meta-variable standing for any object variable, isameta-variable standing
for any constart operator symbol in the secondalternative, and for a proper operator

of arity n > 0 in the last alternative. In subsequeh de nitions or proofs, the phrase
“by structural induction on terms’ will mean by induction on this grammar.

Figure A.1 (page 266) formally describesthe signature of a speci cation example of
strings and charactersin a given sort-assignmei

The S-set of closedterms can also be de ned in terms of a substitution of all free
variablesin open terms for closedterms. Sinceterms have no bound variables, the set
of free variables of a term can be de ned easily

Definition A.1.5 Givenatermt 2 Term( ;) s, the set FV(t) of free variables of t
is de ned inductiv ely on the structure of t asfollows:

x2Term( ;) s 2 Term( ;) s
FV(x) € fxg Fv() € ;
2 spsys ti 2 Term( ;) s i2fl:::ng n>0

FV( toiit) & PV [ o[ FV ()

We rst de ne the substitution of free variables for open terms and then de ne the
substitution of free variables for closal terms as a special case.

Definition A.1.6 Given term t of sort s in which variable x may occur free, and
another term t% with the samesort as x, the substitution of t° for x in t produces
another term of the samesort ast. A substitution is a function from open terms to
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266

signature STRING signature CHAR
sorts  String sorts  Char
use CHAR ops
ops ch0 . I Char
empty : ! String D
pre Char String ! String ch255 : ! Char
end end
def (S;) where S def f Char; Stringg
= f char; String »  CharStringString 9
Char & fcho;:::;ch255
def
String = femptyg
def
CharStringString = fpreg
U (c;Char); (s;String) g
Term( ;;)char def f chO;:::;ch255¢g
Term( ;) char = fecg[ Term( ;;)char
def

Term( ;) sting

= f s; empty; precs; pre c empty; pre chO empty;
pre chl empty; :::; pre c (pre chO empty); :::g

Figure A.1: Strings and charactersin a given sort-assignmen
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open terms which we denote as [t%x]t. The following de nition providesits “type"

t2 Term( ; [ f(x;s9g)s t°2 Term( ;)
[t%ex]t 2 Term( ;) s

is enlargedto guarartee the existenceof variable x with sort s® Notice that is a
function sofor the union to yield a valid sort-assignmen there cannot be a binding for
X in . This devicewill be usedin subsequeh de nitions.

The "body' of substitution is de ned inductiv ely as follows:

x 2 Dom() y 2 Dom() y 6 X 2 Term( ;) s
[t%=x)x €t 1=y <y 1]
2 spnses ti 2 Term( ;) s i2fl:::ng n>0
(5 tooity) T ([t ([(t5Ntn)

The substitution of a variable for a closel term is a special casewheret2 Term(  ;;)so.

Substituting all remaining free variables in t again for closedterms producesa term
in Term( ;;)s. Recall that for ead s, Term( ;;)s Term( ;) s and therefore all
possiblesubstitutions of open-term variablesfor closedterms will produce closedterms
in Term( ;;)s. This is consistert with our use of universally quantied variables as
standing for the possibly countably in nite closedterms of the samesort, which enables
us to write a nite set of equations involving variables (perhaps we should call them
equation schemas instead of a courtably in nite number of them involving closed
terms.

A.1.3 Algebras

The semartics of a signature  (no equations) is provided by an algebra A. Free
variables for equations are added by a theory. In order to save de nitions, let us
de ne the meaning of a signature in the presenceof a sort-assignmem (which becomes
necessarywhen equations are added later on). The semariics is formalised by de ning
a ‘symbol-mapping' S-function that maps sorts to carriers and operator symbols to
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algebraic operators, plus a semaric S-function that provides the meaning (value in a
carrier) of aterm when given the value-assignmehthat providesthe meanings(values)
of its free variables.

Definition A.1.7 A -Algebra A for a signature def (S;) and sort-assignme
is a pair (jAj; A) where:
1. jAj is an S-setof carrier sets,ead providing valuesfor ead sort in S.

2. Aisan S*-set of algebraic operators . It is common mathematical practice to
use cartesian products in the carrier-signatur  es of algebraic operators, i.e.,

A A
2 S1::SnS

A DJAs; it JAIs, b JAls

3. There is an overloaded symbol-mapping S-function 1, I, that consisterily maps
sorts to carriers and operator symbols to algebraic operators. That is, | : S! jAj
andl : ! A sud that:

s2S 2 S1:1SnS n 0
I(s) = jAls ()2 élz::sns

In other words:

D S1:iisy ! os n O

() : I(s)):::1(sp) ! 1(s)

4. There is a value-assignment or nite function : X ! jAj s from variables to

S
valuesof the carriers that conforms to , i.e.: (X) 2 JA] ( y)-

5. There is a semantic S-function h where:
[ .
hs:Term( ;)s! (X! JAjs)! jAls
S

It has becomestandard practice in denoting semaric functions to use the symbol
of the entity providing the semartics and a double-braket notation for semartic

1Or if the reader prefers, two S-functions with overloaded name.
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function application in order to underline the fact that argumerts are syntactic
ertities that are interpreted in a particular semariic universe[Mit96, Sto77, Ten74q.
In the rest of the chapter wewrite A sJ Kinstead of hs and A JK insteadof (hs(t))( ),
breaking our corvertion of using explicit parenthesesfor application at the meta-
level only for this function (Section 2.6).

AsJKis inductiv ely de ned on the structure of terms asfollows:

(x)=s 2 s
e seml det sem?2
AXK = (X) AJ K = 1()
2 spses ti 2 Term( ;) i2fl:::ng n>0

et sem3
Asd tg i thK = (1( )(As dt1K; i1 Ag, JtnK)

The following property follows from the de nition. In words, the property states that
if a term of sort s is in the set of open terms then its meaning with respect to a
value-assignmenh giving meaning to its free variablesis in the carrier giving meaning
to s:

t2 Term( ;) s
AdtK 2 jAjs

In some presenations the set of variables X is an S-set, and consequetly  and
are S-functions; in particular s:Xs! jAjs. In this setting, the semartic S-function
can be seenas an extension of value-assignmets for variablesto value-assignmets for
terms (domain extension), and is sometimesdenotedas # (seealso Section A.3).

Figure A.2 (page 271) shows two possible algebras giving meaning to the algebraic
speci cation of characters and strings of Figure A.1. The rst box de nes the S-sets
jAj and A. It alsode nes that, asrequired by De nition A.1.7(3), |(s) et jAj s for
all s2fChar; Stringg. Finally, the value-assignmeh is empty becausethere are no
variablesor equationsin Figure A.1. Thesede nitions are the samefor the two algebras

given in the secondand third boxes.
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In the secondbox the carrier for charactersis the (extended) ascii table and the carrier
for strings is the set of strings that can be formed with charactersfrom the ascii table.
The reader may want to recall De nition A.1.1 where the star operator, , and string

concatenation are de ned.

Notice that the de nition of 2, . is informal. The carrier jAj char COMains constart
values, not algebraic operators. We can consider constarts c2jAj char as functions
C:JAj1! JAjcnar by positing the existenceof an extra sort name 1 with carrier jAj q
which is the carrier of nullary cartesian products (seeSections3.6 and A.3.1).

There are two algebraic operators with signature jAj char  JAj string !  JA] string called
“append' and “prepend' whosedescription follows:

C2 ascii s 2 ascii
append(c;s) 2 ascii append(c;s) et s(c)
C2 ascii S 2 ascii
prepend(c;s) 2 ascii prepend(c;s) def cs

I mapspre to prepend, but it could have mapped it to append.

In the third box, the carrier for characters is a singleton set with elemert $. All chi
operators are mapped by | to $. Therefore, if the specication had the equations
ch0 =chl, ..., ch254 = ch255, this algebrawould satisfy them whereasthe algebra
in the secondbox would not (Section A.1.6). Again, &, is informally de ned to be
JAJ char » but bearin mind that formally there is a lifting of constarts to functions. The
meaning for strings is provided by stadks. The empty string is the empty stad [ ], and
pre is mapped to the push operator for stacks. Thus, jAj siring Cortains all the stack
valuesthat can be formed by stacking $s.

A.1.4 Substitution lemma

Each S-indexed semartic function is compositional: the meaning of a term depends
on the meaning of its subtermsin a value-assignmeh As expected, the substitution

lemma holds: the meaning of [t%:x]t is the same as the meaning of the term t in a
value-assignmen that assignsto x the meaningof t° To state the substitution lemma
we need the notion of value-assignmen enlargement denoted hx 7! vi, where is
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Al % A char: 1A suing @
ACE AL Sting:  CharStingstring 9
I (Char) ' A char
I(string) =" A sting
oty
Ajchar & ascii
JA string ©f ascii
Brar €' A char
étring e g
CharstringString E' f append, prependg
| (cho) %" nul
I (chl) %' soh
| (ch2s5) %
| (empty ) det
| (pre ) def prepend
Achar £ f3g
Aisuing E f[1[8]L[88} 3% g
Brar & AT char
&g = Tllg
CharstringString E' f pushg
I(cho) %" g
| (ch255) % ¢
(empty) %' []
| (pre ) def push

Figure A.2: Two possiblealgebraic semartics for the speci cation of Figure A.1.
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enlargedwith the pair (x; v) suc that v2jAj (). Context enlargemen binds stronger
than application. An enlargemen createsa new value-assignmenh that overlays any
previous binding for x, that is:

hx 7! vi(y) & it y = X then v else (y)

Lemma A.1.1 (Substitution) Let = O°[ f(x;s9g

t2Term( ;)s t92Term( ; 9  [t%x]t 2 Term( ; 9s

AJIEXE K = AgdKhx 7! AxXKi

(Because ©has lower cardinality than , open terms can be turned into closedterms
by repeated substitution.)

Pr oof: by straightforward induction ont (assumingthe preconditions hold):
tis x:

AsJ [t%x]x K

f Substitution g
AsJtOK

fxX2FV(tY g
Asdx Kk 7! AsdtKi

tisyandyé6 x:

Asd [t%Ex]y K

f Substitution g
AgJy K

fx2Z2FV(y) g
Asdy Khx 70 AKX

tis and 2 q:

AJ[t%:x] K
f Substitution g
AsJ K
fxX2ZFV()g
Asd K 7! AdXKi
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tis tiiiity

AItEX]( t1:::ty) K
= f Substitution g

Asd  ([t%x]ty) ::: ([t%X]tn) K
= f Denition of AgJK g

(L D(ASIEEXK; o0 At EX]th K
= f Induction hypothesisg

= f De nition of AcJJK ¢

A.1l.5 Signature morphisms

Before discussingtheories and homomorphismswe introduce the notion of signature
morphism. A signature morphism is similar to a symbol-mapping S-function (De ni-
tion A.1.7), but sorts and operatorsin onesignature are mapped to sorts and operators
in another signature instead of to carriers and algebraic operators.

Definition  A.1.8 A signatur e morphism M : ! 0 between two signatures

©(s;) and °%"(S® 9 s an overloaded S-function that consisterlly maps sorts

to sorts and operator symbols to operator symbols:

s2S 2 spusns n O
M (S) 2 SO M ( ) 2 ﬁ/l(sl):::M (sn)M (s)

D S1iiisp!los n O

M() : M(s1):::M(sp)! M(s)

that is:

The set of open terms Term( ¢ ) can be de ned from Term( ;) using a signature
morphism M by a sort of “syrtactic S-function' similar in spirit to AJKonly that it
maps ewvery term in Term( ;) s to aterm in Term( %) (s)» for every sort s2S. In
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order to be preciseabout the fact that every variable in Dom() is mapped to itself,
and to be able to de ne alsothe setof openterms Term( ¢ 9 where °6 , we need
another device, a variable-assignment :Dom() ! Dom( 9 suchthat if (x)=s
then q (x)) = M(s). We do not use variable-assignmets again and only mertion
them for the sake of precision.

A.1.6 Theories and homomorphisms

Variables have beentaken into accourt in the previous de nitions which assumedthe
existenceof a sort-assignmen . A basictheory adds equations to a signature. Since
we consider conditional equations in Section 5.5, we generalisein advance and speak
about laws instead of equations. Equations are betweenterms of the samesort and
therefore the laws form an S-set. Equations t; = t, are formalised by triples of the
form hy;ty; i. Mentioning the sort-assignmen explicitly is more preciseand will be
necessaryin order to specify the proof system of which the equations are axioms, in
particular Leibniz's rule (i.e., substitution of equalsfor equals)where equality is made
compatible with substitution.

Definition  A.1.9 A basic -Theory (or just theory) T isapair ( ;L) where is
a signature and L is an S-set of laws (equations) where:

Ls f hHqty; 1 jti2Term( ;) s to2Term( ;) s @

In what follows we shall usesyntactic sugarand write hty = ty; i insteadof hq;ty; i.

The following is an example equation:
hpop (push x s) = s; f(x; Nat); (s; Stack)g i

Equations intro duce equivalence relations among terms and constitute axioms in a
proof system of syntactic equality which we now de ne precisely (We follow standard
notation and write = if the formula  can be proven in the proof system from the
axioms by application of rules of inference.)
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First, equality is an equivalencerelation so we can write down the following rules of
inference:
B ST PHE o=ty Ty =ty

—ref ——————— sym trs
T h=t i T oho=tq; i T ohy=ta i

Second,equality must be compatible with operator symbols:

leto; [ X |’tn=t9]; [ 2 spiisns n O
ops
h ty:iiity = 90008
When n = 0, the equationh = ; i istrivially true.

Third, equality must be compatible with substitution, which provides Leibniz's rule of
inference:

hy=ty; [f(xs9g  ~ h9=1t% i %192 Term( ;) o

Ht9=x]t; = [t9=x]ts; |

sub

The sort-assignmem is enlarged in the premise to guararntee that there is a sort for
variable x. Notice the rule is more generalthan the typical one where the sameterm
is replacedon both sidesin the consequeh

Sort-assignmeits can be extendedin premisesor conclusionsby adding extra variables:

Y Hp=ty) Cohy =ty [ f(xs)gi
enll enl2

hi =1ty [ f(x;9)gi T ohty =t i

We have not provided a proof system at the semariic level for it would only corntain
Rule ref . more than oneterm may stand for the samevalue but valuesare all distinct.
The following three de nitions make precisethe meaning of a theory.

Definition  A.1.10 An algebraA satis es an equation in the value-assignment when
the semaric S-function assignsthe samemeaningto both terms. That is, for any t1
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andty in Term( ;) s:

AsdtiK = AsdoK
AFE Hi=ty i

An algebrasatis es the laws in a value-assignmentwhen it satis es all the laws in L.
The algebrais a model if it satis es all equationsin all possiblevalue-assignmets.

Notice that the notion of validity (an equation that is satis ed by all algebras)is in our
caseuninteresting aswe are only concernedwith equationsthat are satis ed by speci ¢
classesof algebras.

We are now in a position to discussconsistency soundnessand completeness.At the

semartic level there is no notion of proof but of semantic implic ation : an S-set of
equationsL semartically implies another equation (not in L) if that equation is satis ed

by the modelsthat satisfy L. The S-set of equationsL must be closedunder semattic

implication (semartic completenessknd syntactic provability (syntactic completeness).
It must also be semartically consistent (i.e., there is someequation not semartically

implied by L) and syntactically consisten (i.e., there is some unprovable equation).

A proof systemwhere all equations are provable would prove cortradictions. A model
where all equations are semarically implied would be a model of cortradictions.

Completeness,consistency and soundnessare proven with respect to the given equa-
tional axioms of a speci cation. It is the task of the speci cation designerto prove
these properties formally, certainly a non-trivial task. Soundnessis the easiest: the
equational proof systemis soundwhen syntactically provable equationsare satis ed by
all models. A proof of soundnessfor the equational system can be found in [Mit96,
pl165]. Briey, axioms and rules of inference are proven sound (if the anteceder is
sound so must be the consequet) so that syntactic proofs can only produce sound
equations. Consequetly, given a speci cation, designersonly needto prove the sound-
nessof axioms.

Proving completenessand consistencycan get intricate in the caseof complex speci c-
ations. There is howewer a systematic method for writing a set of equations that will
most probably axiomatise the imagined type [Mar98, p189-190]. This method hasbeen
usedin the production of all speci cation examplesdiscussedin this work. Briey , the



A.1 Our speci cation formalism, set-theoretically 277

method consistsin (1) identifying the setof constructor operators that generateall the
terms represening values of the type, (2) writing equations between constructors to
make equal values congruert, and (3) writing equationsthat specify the behaviour of
the remaining operators on constructor terms.

Completenesss essetial to guarartee that we have speci ed the intended model. How-
ever, we want our speci cation to be satis ed by a unique model (up to isomorphism).
We are interested in a least-model completeness,namely, that equations satis ed by
the least model are syntactically provable. This form of completenesdails for algebras
with empty carriers? (which we bar by at), or laws with disjunctions (which is not our
case)[Mit96, p157-179]. The least model is unique (up to isomorphism) and in order
to de ne it we needthe notion of homomorphism (literally , “same-form-ism') between
algebras.

In the absenceof equations, the S-sets Term( ;;) and Term( ;) are themseles
algebraswhere the symbol-mapping and semariic S-functions are identities and where
the carrier for sort s is Term( ;;)s. This construction receives the name of free
algebra from the fact that an algebra is obtained for free only from terms, where
syntactically dierent terms are taken as semariically dierent values. This algebra
constitutes a least model.

In the presenceof equationsand sort-assignmen , terms are classi ed into equivalence
classes.It is common practice to denote by [t] the equivalenc e class of term t which
contains all those terms equal to t as establishedby the equationsin L or those that
can be proven syntactically from them. Let us denoteby | the equivalencerelation
on terms generatedby the proof system, that is:

t Lt , S hn=t% |

Inferencerule ops statesthat syntactic equality is compatible with the operators of the
algebra,making | acongruenc e relation onterms. In this case,the S-setof closed
terms partitioned by equivalence classesconstitutes the least model. The following
de nitions elaborate the technical sca olding.

Definition A.1.11 A -homomorphism betweentwo algebrasA and B is an over-

2The set of sorts is not empty so if carriers are empty there cannot exist a value-assignmen con-
forming to any sort-assignmert.
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loadedtotal mapH : A! B consisterily mapping valuesand operatorsin A to values
and operators in B. More precisely H standsfor an S-function H : jAj ! |Bj and an
S*-function H : A1 B sud that:

V2IjAjs A A, i JAs ! AT n O
Hs(v) 2 jBjs Hs,:sns( A) » Hs,(JAls;) it Hs (JAjs,) ! Hs(Ajs)

SinceH's sort index is equal to the sort/sort-index of its argumert, let us drop it and
rewrite the rule as follows:

V2IjAjs AU AIs i JATs ! JATs n O
H(v) 2 jBjs H(?) @ H(Ajs,) 0 H(Ais)! H(Ais)

H must presene the algebraicstructure, i.e., the equationssatis ed by * are satis ed
by H( A) in B. This is captured by the following rule:

A A
2 S1:1SnS

Vl 2 JAJ S1 Vn 2 JAJ Sn n 0

hom

There can be -homomorphisms from algebrasthat satisfy fewer equationsto algebras
that satisfy more equations but not the opposite; otherwise, di erent valuesin jBjs
would be imagesof the samevalue in jAjs, for somes, and therefore H : jAj | |Bj
would not be an S-function. We are interested in models that only satisfy equations
syntactically provable from axioms (no confusion) and where every value is symbolised
by at least oneterm (no junk).

Algebraic models can be ordered by a ‘lessjunk and less confusion than' pre-order
relation which, like any pre-order, hasa unique least (or initial) elemen and there is a
unique -homomorphism from it to any other model [LEW96].

With non-empty carriers, the initial model always exists. It is trivial to ched (and
we do so in a momert) that in the absenceof variables and equations, Term( ;;)
consideredasan algebrais by construction the initial model, wherethe S-set of carriers
is Term( ;;) itself and the S-set of algebraic operators is just . In the presence
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of variables and equations, is not empty and we assumethe existenceof a value-
assignmen that conformsto . Howewer, recall from De nition A.1.6 that under
repeatedsubstitution Term( ; ) becomesTerm( ;;). Sincesubstitution is compatible

with syntactic equality, the proof system induces a least congruenceS-relation |

between closedterms that partitions the set of closedterms into equivalence classes
yielding the S-quotient Term( ;;)= L, which is the initial model.

A.1.7 Initial models

In order to keepthe distinction betweensyntax and semariics, and for consistencywith
the use of cartesian products in carrier-signatures, we de ne the notion of open term
algebraasdierent from the set of open terms.

Definition  A.1.12 The open term algebra is T det GT j; T ) wherejT jis

an S-setof carriersand T is an S* -set of algebraic operators sud that the carrier
jiT s of open term valuesof sort s is de ned inductiv ely as follows:

(X)=S 2 S 2 S1:::Sn'S t|21T jsi |2flng n>0

X 2T s 2T s (t;:ii5tn) 21T s

The changeof notation from Term( ;) to T andfrom to T issimilarto atype
castwherethe sameertity is consideredas having a di erent meaning. Notationally,
is the setof syntactic symbolswhereas T hasthe sameelements as now considered

as algebraic operators:
. S]_ - :Sn I S 2 S1:::Sh S n O
T dse i 0T s T s 2 Gitses

Sort-signatureshave changedto carrier-signatureswith cartesianproducts. The gram-
mar of open terms is now:

With closedterms, = ; and there is no needfor value assignmems: the closed term

algebra is T T -
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Now, it is not dicult to glean from De nition A.1.7 that the symbol-mapping and
the semariic S-functions both make up a -homomorphism. The overloaded symbol-

mapping S-function hastypesl :S! jT jandl: ! T sud that:
s2S D S1:iisp ! os n O

def . . I . I

1(s) €T s LC) =0T sy win T sy b T s

The rightmost consequen follows from the fact that:

2 s
def

1) =

inj
where | is an injection, not an identity. In De nition A.1.7, there is already a rule for

I in similar format asthat of De nition A.1.11:

D S1:iisy! s n O

() :I1(s1) 0 I(sn)! 1(9)

Let us overload | even more and use it to name the semarnic S-function in De ni-
tion A.1.7, that is, for all s let uswrite | for AgJK In De nition A.1.7, Rule sem1l has
to be removed becausehere are no variables. Rule sem2holds by Rule inj . Rule sem3
can be rewritten as:

vi 2T js, Vn 2T s, 2 T n 0

S1::Sn'S
def

FC (vasisive)) = (HCD(E(va);izi5 1 ()

Finally, a de nition induces an equality (Chapter 2), making the previous rule an
instance of Rule hom in De nition A.1.11.

In the presenceof equationsthe proof systeminducesa least congruenceS-relation |
between closedterms that partitions the set of closedterms into equivalence classes
yielding the S-quotient Q il L which is de ned inductiv ely as follows.

Let [t] denote the equivalenceclassof term t:

20T js 2 Iiss ti 2 Qs i2fl1:::ng n>0
[ 12 Qs [ (t1;::::th)] 2 Qs
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Because [ is acongruence,[ (t1:::ty)] = ([t1];:::;[tn]). Furthermore, becausethe

substitution lemma holds, the meaning of an openterm of T = | can be determined

from the meaning of its free variables, which is given by the equivalenceclassof value-
. def

assignmets [ ], where[ ]1(x) = [ (X)].

By construction, Q is aninitial model: all the valuesof the carrier are represened by at
least oneterm and Q satis es all the equationsof L closedunder syntactic provability.
T constitutes a free algebrathat is an initial model of the theory with no equations.

A.2 Our partial formalism, set-theoretically

We now provide a set-theoretical formalisation of partial speci cations and their se-
mantics. Only the theory part must change;the de nitions of , Term( ;), T and
T remain. The di erence now is that unde ned terms are junk and do not symbolise
any algebraic value.

Definition A.2.1 A Partial -Algebra A is a pair (jAj; *) wherefor 2 s:

1( ) %" A may beunde ned whenw = |, that is, A 2jAjs.

() &t A may be partial whenw = s;:::sp, that is, forn > Oandi2f 1:::ng, it
may be the casethat vi2jAj s, and A2 £ .. cbut A(vi;iiivy) Z2jAjs.

A -homomorphism between partial algebrasis a total S-function and can only map
de ned valuesin carriers to de ned values.

Definition A.2.2 A -homomorphism H : A ! B betweentwo partial algebrasA
and B is a total S-function that satis es the following:

A2 Lgs Alviiiiiive) 2 jAj s n 0

A2 Lgs Alviiiiive) 2 jAj s n 0
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The fact that the symbol-mapping S-function I may be unde ned for certain constarts
meansthe semaric S-function may also be unde ned for someterms. It can also be
unde ned for terms involving proper partial operators. Consequetly, | and AJKno
longer make up a -homomorphism, which must be a total S-function (Section A.1.7).
T is nolonger an initial algebra, for it cortains junk.

By de nition, given a -homomorphism H : A ! B betweentwo partial algebras,
jBj may have more de ned terms than jAj but not the opposite; otherwise, di erent
values in jBjs would be imagesof the samevalue in jAjs, for somes, and therefore
H :jAj ! jBj would not be an S-function.

There is a ‘lesspartial than' relation between partial algebras. The initial partial
algebra has a unique -homomorphism from it to any other partial algebra. For a
closedterm algebrato be an initial model it must have least junk (contain only those
terms that are de ned in all models), least confusion (two de ned terms have the
samevalue only if they doin all models), and there is at leasta de ned term symbolising
ewvery intended value.

We rst reviseour de nition of theory to accouri for conditional equations.

Definition  A.2.3 A partial theory isapair ( ;L) where isasignatureandL isa
setof lawsinvolving termsof Term( ;) inaconext . More precisely equationsin L ¢
have the form P ) E; i whereP is a possibly empty conjunction of preconditions
and E is an equation t = t% or a partial equationt ' t% Preconditions consist of
equations. A conditional equation P ) t' tCis syntactic sugar for:

P A DEF(t)» DEF(t9) t=t°

and predicate DEF (t) is syntactic sugarfor t = t.

The proof systemdoesnot have to be enlargedwith introduction and elimination rules
for conditional equations. Conditional equationscan be consideredobject-level repres-
entations of meta-lewvel inferencerules. Every conditional equation lE1 " ::: " Ep, )
E; i wheren > 0 introducesan inferencerule:
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An equation betweentwo terms must be satis ed in all models (their interpretation
must produce the samevalue). For partial equations, if both terms have values (are
de ned in the model) then their interpretation must be the same. If one or both terms
are unde ned the equation is vacuously satisifed. Consequetly, we only have to add
de nednesspremisesin the de nition of model.

Definition  A.2.4 An algebra A satis es an equation E def hy, = ty; 1 ora partial
equation E def ity tp; 1 in the value-assignmeh when:

AdtiK 2 jAis  AgdK 2 jAis  AsdtiK = AgdtK
AE E

An algebra A satis es a conditional equation P ) E; i in the value assignmem
when:

o

jef

P¥EA":::"E, AE E; AEE, n O

AE E

An algebrasatis es the laws in a value-assignmentwhen it satis es all the lawsin L.
The algebrais a model if it satis es all equationsin all possiblevalue-assignmets.

A partial theory hasan initial model that is the least de ned: it hasleastjunk (a term
is de ned if and only if it is de ned in all models), it has least confusion (two terms
have the samemeaningonly if they do in all models), and every value is symbolised by
at least oneterm. Sud a model is de ned in terms of the subsetof T that contains
all de ned terms, which we denote by Dom |, and a congruencerelation betweenthose
terms induced by the proof system of conditional equations, which we denoteby .

In order to characterise the initial algebra precisely we needto de ne the notion of
immediate subterm of a term.

Definition  A.2.5 The setof imme diate subterms Sub(t) of a term t is inductively
de ned as follows:

2 2 spuses ti 2 Term( ;) s i2fl:::ng n>0
)

: Sub( ti:::tp) def fti;::::thg
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With this setin hand we can de ne an immediate subterm relation 2 betweenterms:
t°2 t, t2Sult).

Definition A.2.6 Givenatheory ( ;L), let the setDom, T , and the congruence
L Dom_ Dom_ be the smallest set and congruencethat satisfy the following
properties:

1. For ewery equation it = to; i, every immediate closedterm t°of sort s in Sulb(t1)
and Sul(t,) is de ned, that is, AsJtK 2 jDom_js.

2. Dom_ is closedwith respect to the immediate subterm relation:

AdK 2 jDomijs t°2 Term( ;) o t°2°t
AxdtXK 2 jDomjso

3. The congruenceis re exiv e, symmetric and transitiv e:

t 2 jDom, js t1 Lt t1 L t2 t, L t3

t ot t L t1 t1 L t3
Notice that re exivit y is conditional on de nedness.

4. The congruenceis compatible with substitution of variables for values: for every

conditional equationhE,:::E, ) E; iinL sudthat E; defy = t®and E defy - o

t;;t92 Term( ;) s A K | AgdXK i2fl:::ng n O
AsdK 2 jDomijs  AsdtK 2 jDomijs  AsdK | AsdK

In particular, if n = 0 the consequeh becomesan axiom.

5. The congruenceis compatible with operators: either applications of operators to
de ned and congruert term argumerts are de ned and congruert, or are unde ned.
More precisely either:

2 gisps ti;ti02 jDomy jg; G tio i2fl:::ng n>0
(¢ N(tq;:::ty) 2 jDomy js
(1 )(td;:::t]) 2 jDom js
() [CHEE 1S IR (N ) [T &)
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or:

2 guss  tipt?2jDomyjs ot L t° i2fli:iing n>0
(1C)(taiiitn) Z2jDomejs (1 ))(tE::::t]) 2 jDomyjs

Theorem A.2.1 The initial algebraof a theory ( ;L) with partial conditional equa-

tions is the quotient Dom_= | . The set of carriers is jDomj= | . Let us denote by

[t] the equivalenceclassof the term t of sort s in jDom| js. For every operator symbol
2 s;us,s Wheren  O:

(
00Nl ) % [OCN(tas )] Sif (1O ))(tas 205 ta)2) Domy js

A.3 Our formalism, categorially

In the set-theoretical formulation, the sameconceptsappear again and again, namely,
the existenceof objects and structure-preserving arrows betweenthem. The categorial
study of speci cations canfocuson the syntax or the semartics aslong asthe categorial
axiomsare satis ed by the particular objects and arrows at hand. Furthermore, in some
categoriesthere are distinguished initial objects (e.g., leastmodel, leastde ned model).

For example,we have the category of sorts, where objects are sorts, arrows are operator
symbols, and signature morphisms are functors (recall De nition A.1.8). We also have
the category of algebras,where objects are carriers, arrows are algebraic operators, and
ewvery Hs is a functor (recall De nition A.1.11).

-Algebras and partial -Algebras with their respective -homomorphisms both con-
stitute categories. In both cases,the identity arrow is the identity -homomorphism
and composition is S-composition of -homomorphisms. The reader can ched that
the categorial axioms are satis ed. In both cases,the object of interest is the initial
object of the category

Recall from SectionA.1 that the unique-arrow property of the initial object is satis ed.
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In the category of algebrasthis property can be depicted as a diagram:

T —— A
@
@@'B H
@@ ?
B

A similar diagram can be written for T . Let us denote the initial object as0. The
following diagram depicts the relationship in any category of algebras:

0o—— A
@

@@;B H

@@ ?

B

Recall from page269that the semartic S-function canbe seenasan extensionof value-
assignmers consideredas S-functions : X ! jAj. Let uswrite T (X) instead of T

to underline the role of the, now, S-set of variablesX. T (X) is the initial model and
there is a unique -homomorphism from it to any other algebra. At the carrier level
(category Set whereobjects are carrier setsand arrows are total functions on sets), it is
witnessedby the existenceof # which makesthe following diagram commute [BG82]:

#
T (X)) ---= A
6
X
X
That is, # x = . Function x mapsvariablesto themselesas values(again think

of a cast). The notation givesaway the fact that x is a natural transformation and
that T () is a functor; more precisely :1d I' T , whereld is the identity functor.



A.3 Our formalism, categorially 287

A.3.1 F-Algebras

There is a categorial construction which provides an elegan de nition of algebrasin
terms of functors. Let us rst illustrate the idea by example. Take speci cations NAT
and STRING from Figures 5.1 and 5.2. Let us assumethe existenceof an implicitly
de ned extra sort 1 with only a constart operator unit. Recalling Section 3.6, we
can view all other constart operators :! s asproper operators : unit ! s, sud
that where before was a valid term in Term( ;;) now it is written unit, and
consequetly (unit) 2 T .

Suppose A is a model of NAT. The set jAj 1 is now the carrier of nullary products.
De nitions involving sort- and carrier-signatureshave to be adapted to accourt for the
existenceof this carrier:

W = W = S1:::Sp n>0

- def ... - def ... -

Alw = A Alw T jAls, i A,
A2 ISA A2 élZZ:SnS n>0

AJAIL! A A A, it JAs ' JAs

NATSs algebraic operators are described by a diagram with objects and arrows in the
category Set . More precisely let

o
=

| (zero) € zerd

o

I (succ) %' sucd

The diagram in Figure A.3(left) characterisesoperator names,their sources,and their
targets. The diagram hasa limit as shavn in Figure A.3(right), i.e., a coproduct with
arrows inl and inr. By universality there is a unique mediating arrow denotedby  nat -

In Set, coproducts are disjoint sumswhoseinternal structure is described in terms of
labelled pairs. Let us useoperator symbols as labels:

JAI 1+ JA] Nat def f (zerov) jv2jAj1 g [ f(sucgv)jVv 2 jAjnat 9
By universality na is unique: nat = (zero® O sucd)

Recall that coproducts are also functors. Let us denote the coproduct functor by F.
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A1
@@@zeroA
@@
JA Nat
succ
JA Nat

A1
@
inl @@;eroA
@
o Nat @
JA] 1+ JAJ Nat e o JAJ Nat
@
@@
inr- @ succ
@
jAj Nat

288

Figure A.3: Diagram describing operator names, sources,and targets. The coproduct

is the limit.

At the object level it is de ned as follows:

F(X)

d_6fx

2 ws

Xw

For example, in the algebraof natural numbers we have operators:

zerd®

sucd

therefore:

A1 !

jAj Nat

jAj Nat ! JAJ Nat

F(X) = X1+ Xnat

The type of ng IS:

Nat © JAJ 1+ JAINat ! JA] Nat

which can be described more succinctly using F:

Nat

: F(jAj Nat) ! JAJ Nat
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At the arrow level F is de ned as follows:

h @ jAj ! jBj hs : jAjs! jBjs s 2 f1;Natg
F(h) : FGA))! F(Bj) Fs(hs) © Fs(iAjs)! Fs(iBjs)
V2 ijAjq V 2 JA] nat
(F1(h1))(zero;v) €' (zero;hq (v)) (Frat (Nt ))(succ; v) E' (sucg hyar (v))

If we carry out the sameconstruction for STRING, assumingA is now its model, we
obtain two functions, one for ead sort:

char ¢ JAI1t it A1 A char
char = (ch0® O:::0 ch255")

sting - JAI1+ JAl charstring | JA] string
(empty” O pre?)

String

Clearly, :F(jAj)! jAj isan S-function. In generala -Algebra A canbe character-
isedin terms of the S-set carrier jAj and the S-function . This construction receives
the name of F-Algebra. F is the S-functor fFs: Set! Set|js 2 Sgwhere objects
in Set are the carriers jAj s.

We provide a de nition of F-Algebras for algebraswith one carrier. For many-sorted
algebras,the de nition below canbeadapted by replacing Set with S-Set (the category
of S-Sets). In that setting, jAj is an S-Set, is an S-function, and F is an S-functor.

Definition A.3.1 An F-Algebra in Set is a pair (A; ) where jAj is an object in
Set, :F(Aj) ! JjAj is an arrow in Set, and F : Set | Set is a functor. An
F-homomorphism h: (jAj; ) ! (jBj; ) is an arrow that makesthe following dia-
gram commute:

F(h
Faai) ) sy
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The reader may have realisedthat and are particular instances of the natural
transformation :F !' Id (Section 3.12).

The simplicity and concisenes®f this de nition is due to what it doesnot sa. It only
involves carriers, and the mapping from operators in A to operators in B that is part
of a -homomorphism is not mentioned. Such mapping maps operators to operators
respecting carrier-signaturesand constitutes another functor. Finally, mediating arrows

are not informativ e about the name of operators nor their carrier-signaturesif the
diagram of which the coproduct is a limit is not shavn. Providing the diagram amounts
to providing the carrier-signatures of algebraic operators explicitly .

One of the goodies of category theory is that, asexpected, the de nition of F-Algebra
can be generalisedto any category C:

Definition A.3.2 Let C beacategoryandF : C! C afunctor. An F-Algebrais a
pair (X; ) whereX isanobjectand :F(X)! X anarrow. An F-homomorphism
h:(X; )! (Y; )isanarrow that makesthe following diagram commute:

Fo) M Fe)
? h ?
X =~ Y

It is important to notice that di erent algebrasmay be described by the sameF, e.g,

:F(@A)) ! JAj and : F(jBj)! jBj where 6 . In particular, A could be the
algebragiving meaningto an algebraicspeci cation without equationsand B the algebra
giving meaning to an algebraic speci cation with equations. Informally speaking, the
sameF may capture the signature of theories with wildly dissimilar equations. We
comebadk to this point when introducing F -views (Chapter 9).
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