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abstra ct

Structural polymorphism is a generic programming technique known within the func-

tional programming communit y under the namesof polytypic or datatype-generic pro-

gramming. In this thesis we show that such a technique con
icts with the principle of

data abstraction and proposea solution for reconciliation. More concretely, we show

that popular polytypic extensions of the functional programming language Haskell,

namely, Generic Haskell and Scrap your Boilerplate have their genericity limited by

data abstraction. We proposean extension to the Generic Haskell languagewhere the

`structure' in `structural polymorphism' is de�ned around the concept of interface and

not the representation of a type.

More precisely, polytypic functions capture families of polymorphic functions in one

single template de�nition. Instancesof a polytypic function for speci�c algebraic types

can be generatedautomatically by a compiler following the de�nitional structure of the

types. However, the de�nitional structure of an abstract type is, for maintainabilit y

reasons,logically hidden and, sometimes,even physically unavailable (e.g., precompiled

libraries). Even if the representation is known, the semantic gap betweenan abstract

type and its representation type makesautomatic generationdi�cult, if not impossible.

Furthermore, if it werepossibleit would neverthelessbeimpractical: the codegenerated

from the de�nitional structure of the internal representation is renderedobsoletewhen

the representation changes.The purposeof an abstract type is to minimise the impact

of representation changeson client code.

Data abstraction is upheld by client code, whether polytypic or not, when it works

with abstract typesthrough their public interfaces. Fortunately, interfacescan provide

enoughdescription of `structure' to guide the automatic construction of two polytypic

functions that extract and insert data from abstract types to concrete types and vice

versa. Polytypic functions can be de�ned in this setting in terms of polytypic inser-

tion, polytypic extraction, and ordinary polytypic functions on concrete types. We

propose the extension of the Generic Haskell languagewith mechanisms that enable

programmers to supply the necessaryinformation. The scheme relies on another pro-

posedextension to support polytypic programming with type-classconstrained types,

which we show are not supported by Generic Haskell.
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Chapter1

Introduction

In order to get to where I want to be from here, I would not start from

here. [Moo02]

1.1 General theme and contribution

Structural polymorphism is a Generic Programming technique known within the func-

tional programming communit y under the namesof polytypic or datatype-generic pro-

gramming. In this thesis we show that such a technique con
icts with the prin-

ciple of data abstraction and proposea solution for reconciliation. More concretely,

we show that popular polytypic extensionsof the functional programming language

Haskell, namely, Generic Haskell [HJ02, Hin02, Hin00, L•oh04] and Scrap your Boil-

erplate [LP03, LP04, LP05] have their genericity limited by data abstraction. We

proposea solution for Generic Haskell where the `structure' in `structural polymorph-

ism' is de�ned around the concept of interface and not the representation of a type.

Section 1.3 describes the research problem in more detail. Section 1.4 lists the thesis'

contributions. Section 1.5 provides a detailed list of contents.

1.2 Notes to the reader

Style of presen tation. The present thesis has been written in a discursive and

`reader-friendly' style where the tension betweenrigour and readability has beeneased

often in favour of the latter. Naturally , doctoral thesesare not textb ooks and a dis-

cursive style could fall into an excessof verbosity. However, thesesshould be meant to

be read by someoneother than the author and the examiners. Communicating ideas

to a wide audienceis also an essential aspect of scholarship and research.

I have had several typesof reader in mind during the writing. I hope to have beenable

to balancetheir dissenting expectations. The �rst type is that of graduatestudents, like

myself, who would like to make useof this work but may not be entirely familiar with

the background material and cannot indulge in fetching and studying the cited papers,

1
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often lessrecommendedasa �rst exposureand by their very nature lesscomprehensive.

I have tried to spell out the prerequisitesfor understanding and to be as self-contained

as possible. Inexorably, the organisation and exposition of background material is

personal. I hope the reader �nds it useful and interesting.

The secondtype of reader is an stereotyped practitioner for whom C++ is the only lan-

guagesupporting expressive Generic Programming features. Such a reader praisesthe

languagefor its `e�ciency' and backward-compatibilit y while neglecting its theoretical

and practical 
a ws. It may strike that a work concernedwith functional program-

ming should care about those who mistakenly regard functional programming as \to y

recursive programming with lists". Certainly, by comparison functional programming

is practiced by a minorit y, and functional polytypic programming by an even smaller

minorit y. Consequently, I have described Generic Haskell and Scrap your Boilerplate

in considerabledetail in Chapter 6, so we can thereafter explore whether there is life

beyond the C++ Standard Template Library that may be of interest to programmers

for whom data abstraction is a sine qua non.

The last type of reader is the functional programmer for whom the world of algebraic

types is not deemedlow-level. To my surprise, during a workshop discussionI found

amusing that the Haskell type:

data Ord a ) Tree a = Empty | Node a (Tree a) ( Tree a)

wasconsideredasde�ning an orderedbag. Why not an orderedset, or a priorit y queue,

or what have you? Some functional programmers despiseobject-oriented languages

becauseof orthogonal unsafe features such as downcasting. But object-orientation is

not only about objects passingmessages,but also about programming with �rst-class,

re-usable, and extensible abstractions, an aspect which is found wanting in Haskell.

Chapters 7 and 8, as well as parts of Chapter 4, have beenwritten with this reader in

mind.

Floating boxes will appear scattered throughout the text following a sequential

numbering within each chapter. Boxes1.1 and 1.2 on the next pagesare two examples.

Boxes expand on particular topics or discussissuescross-cutting several sections.

Cited work. I have made an e�ort to cite original authors and papers but, in some

cases,instead of standard or `classic'referencesI have opted for referencesthat I have



1.2 Notes to the reader 3

'

&

$

%

BOX 1.1: About FunctionalProgramming

We assumethe reader is familiar with functional programming in generaland

the Haskell language in particular. Let us recall that Functional Program-

ming [Rea89, BW88, Mac90] is basedon two central ideas: (1) computation

takesplaceby evaluating applications of functions to arguments and (2) func-

tions are �rst-class values. In particular, functions are higher-order (can be

passedto or be returned by other functions) and can be components of data

structures.

Functional languagesdi�er on whether they are strongly type-checked, weakly

type-checked, or untyped; whether they are dynamically type-checked or stat-

ically type-checked; whether they are pure or impure; and �nally whether they

are strict or non-strict.

In pure functional languages,an expressionproducesthe samevalue independ-

ently of when it is evaluated|a property called refer ential tr anspar ency .

Sidee�ects like input-output are carefully controlled and separatedat the type

level by so-calledmonads [Mog91, Nog05] or uniquenesstypes [PVV93]. Pure

languagesusually have non-strict semantics for functions and their evaluation

order is typically lazy (i.e., call-by-need). In contrast, impure functional lan-

guagesallow sidee�ects like imperative languages,they have strict semantics,

and evaluation order is eager (i.e., call-by-value). Purit y and non-strictness

are not just a matter of style. Programs in impure, strict languageswill look

and work quite di�eren tly than their pure counterparts. The main bene�t

of purit y is referential transparency. The main bene�ts of non-strictness are

higher modularit y and lower coupling from evaluation concerns[Hug89].

In the rest of the thesis, an unquali�ed function refers to a typed and pure

function that is a �rst-class value.
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BOX 1.2: The Haskell Language

Haskell is a strongly type-checked, pure, and non-strict functional language

which has becomeprett y much the de facto standard lazy language. The

readerwill �nd information about the Haskell languagein www.haskell .org .

Haskell's syntax is sugar for a core languagesimilar to System F ! with type

classesand nominal type equivalence. It supports rank-n polymorphism with

the help of type annotations [OL96, SP04]. (We explain what all this means

in Chapters 2 and 4.)

In Haskell, typesand valuesare separatedand its designersdeliberately over-

loaded notation at both levels. Examples are expressionslike (a,b) or [a]

which can be interpreted as value or type expressions.At the value level the

expressionsdenote, respectively, a pair of values and a singleton list value,

where the values are given by variables a and b. At the type level the ex-

pressionsdenote, respectively, the type of pairs with elements of type a and

elements of type b, and the type of lists with elements of type a. The over-

loading of parenthesesfor products and bracketing can also lead to confusion.

Since we cannot redesignHaskell, we have to stick to its actual syntax and

common conventions.
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studied in more detail or that may be of better help to unacquainted readers.

1.3 The problem in a nutshell

This section explains the research problem in a nutshell. Part I I of the thesis provides

all the details.

The state-of-the-art. Generic Programming is often associated with varieties of

polymorphism (parametric, subtype, etc). Structural polymorphism or polytypism is

onesuch variety in which programs(functions) can be obtained automatically from the

de�nitional structure of the typeson which they work.

Equality is an archetypical exampleof polytypic function: it can be de�ned automatic-

ally for algebraicdata typesthat lack function components (recall that function equality

is, in general,not computable [Cut80]). SomeHaskell examples:

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

Type Nat is the hoary type of natural numbers with its well-known value constructor

Zero and the rather rude Succ . TypeList is the hoary typeof lists.1 It is a parametric

type, i.e., List takesa non-parametric type through typevariable a and yields the type

of lists with data of type a.

Polytypic programming is founded on the idea that the structure of a function is de-

termined by the structure of its input type. Look at Figure 1.1. The equality function

for natural numbers takestwo natural-number arguments and returns a booleanvalue.

BecauseList is parametric, the equality function for lists needsthe function that com-

putes equality on list elements asan extra argument. The body of equality for Nat and

List is de�ned by pattern-matching on the value constructors. Di�ering value con-

structors are unequal. Identical value constructors are equal only if their components

are all equal. The structure of the functions clearly follows the structure of the types.

Becauseof this, it is possiblefor a compiler to generatethe typesand bodiesof equality

functions automatically. The fact that equality's function name is overloaded is a

somewhat orthogonal, yet important, issue: the type-classmechanism employed in

resolving overloading [Blo91, WB89, Jon92, Jon95b, MJP97] has several limitations

1Admittedly , looking at its constructors the type List is really the type of stacks.
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eqNat :: Nat ! Nat ! Bool
eqNat Zero Zero = True
eqNat Zero _ = False
eqNat _ Zero = False
eqNat (Succ n) (Succ m) = eqNat n m

eqList :: 8 a. (a ! a ! Bool ) ! (List a ! List a ! Bool )
eqList eqa Nil Nil = True
eqList eqa Nil _ = False
eqList eqa _ Nil = False
eqList eqa ( Cons x xs) (Cons y ys ) = ( eqa x y) && (eqList eqa xs ys)

Figure 1.1: Equality for Nat s and List s.

which restrict the sort of types for which equality can be automatically derived.

Generic Haskell is a languageextension in which programmers can de�ne a polytypic

function (a generictemplate) which is usedby the GenericHaskell compiler in the auto-

matic generation of instancesof the polytypic function for every type in the program

(Section 6.1). Equality is one such example.

Scrap your Boilerplate combines polytypic programming and strategic programming

techniques. The Glasgow Haskell Compiler supports the necessaryextensionsto gen-

erate instancesof special functions, called one-layer traversals,following the structure

of types. Programmers can de�ne generic functions in terms of one-layer traversals

(Section 6.2)

Con
ict with data abstraction. Functions on abstract data types cannot be ob-

tained automatically following the de�nitional structure of a type. For one thing, the

de�nitional structure (i.e., the internal representation) of an abstract type is, for main-

tainabilit y reasons,logically hidden and, sometimes,even physically unavailable (e.g.,

precompiled libraries). Even if the representation is known, the semantic gap between

an abstract type and its representation type makes automatic generation di�cult, if

not impossible. Furthermore, if it were possibleit would neverthelessbe impractical:

the code generated from the de�nitional structure of the internal representation is

rendered obsoletewhen the representation changes. The purposeof an abstract type

is to minimise the impact of representation changeson client code.

Let us illustrate this point with a particular example of abstract type: ordered sets
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implemented as ordered lists:

data Ord a ) Set a = MkSet (List a)

An equality function can be obtained from the de�nitional structure of the type:

eqSet :: 8 a. Ord a ) (a ! a ! Bool ) ! (Set a ! Set a ! Bool )

eqSet eqa (MkSet xs) ( MkSet ys) = eqList eqa xs ys

However, this de�nition would consider MkSet [1] and MkSet [1,1] unequal sets,

which is not the case.

The ordered-set type is more restricted than the ordered-list type, i.e., it is subject

to more laws: no repetition. Consequently, its equality function has to re
ect that

restriction somehow. If we changethe representation from lists to binary search trees,

say, a new de�nition of eqSet has to be generated.

Ordinary functions on abstract types typically accessthe latter's information content

via an interface of operators that enablethe observation and construction of valuesof

the type. In this setting, equality for setswould be programmed thus:

eqSet :: 8 a. Ord a ) (a ! a ! Bool ) ! (Set a ! Set a ! Bool )

eqSet eqa s1 s2

| isEmpty s1 && isEmpty s2 = True

| isEmpty s1 && not (isEmpty s2 ) = False

| not (isEmpty s1) && isEmpty s2 = False

| otherwise = let m1 = smallest s1

m2 = smallest s2

r1 = remove m1 s1

r2 = remove m2 s2

in (eqa m1 m2) && (eqSet eqa r1 r2)

This de�nition uses interface operators and, therefore, is not a�ected by changesof

representation. The question to addressis whether we can generatesuch de�nitions

following the `structure' provided by an interface, and how to put it to work. This is

the topic of this thesis.
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1.4 Con tributions

1. We provide a survey of Generic Programming in general (Chapter 4) and of Gen-

eric Haskell and Scrap your Boilerplate in particular (Chapter 6), discussingtheir

features,expressibility, limitations, di�erences, and similarities.

2. We show that polytypism con
icts with data abstraction (Chapter 7). This should

not be surprising: a function that is de�ned in terms of the de�nitional structure of

the type implementing an abstract type can wreak havoc, whether it is an ordinary

function or the instance of a polytypic function. However, it is important to drive

homethe point for those lured by the `generic'adjective, and there are alsocon
icts

speci�c to the nature of GenericHaskell and Scrapyour Boilerplate. We alsoexplain

why polytypic extension is an unsatisfactory solution.

3. Abstract typesare often implemented in terms of type-classconstrained types, i.e.,

parametric algebraicdata typeswith someor all of their argument typesconstrained

by type classes(Sections5.6 and 5.8.2). We show that GenericHaskell doesnot sup-

port constrained types(Section 6.1.10) and proposea solution in which polykinded

types are made context-parametric (Section 6.1.11). The proposal entails an ex-

tension to the Generic Haskell compiler, not the language. We discussthe wider

implications of constraints in abstraction in Chapter 5.

4. We provide a formal introduction to the syntax and semantics of algebraic speci�c-

ations with partial operators and conditional equations, which for us provide the

meaning to the word `abstract type'. Algebraic speci�cations have equational laws

which are important to us becausethey specify a type and, more relevantly, are

neededin our approach to polytypic programming with abstract types (Chapter 5

and Appendix A).

5. We de�ne the concept of unbounded and bounded abstract types and explain the

conditions that both classesof typesmust satisfy to be functors, i.e., to have a map

function (Section 5.10).

6. Polytypic functions and their instancesare de�ned by pattern matching, and pattern

matching con
icts with data abstraction. There are several proposalsfor reconciling

pattern matching with data abstraction and the �rst thing that comesto mind is

to investigate whether they can be of any usein reconciling polytypic programming
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with data abstraction. We survey the most popular and promising proposalsand

arguethat their applicabilit y to polytypic programming is unsatisfactory and limited

(Chapter 8).

7. We proposean extension to the Generic Haskell languagefor supporting polytypic

programming with abstract types. The key idea is to provide `de�nitional structure'

in terms of interfaces(algebraic speci�cations), not type representations. Working

with interfacesleadsto a form of Extensional Programming. We show that Generic

Extensional Programming is possible(Chapter 9).

More precisely, we introduce functorial views or F -views, which specify the func-

torial structure of operator interfaces,and named signature morphisms, which spe-

cify the conformanceof particular abstract types or concrete types to particular

F -views. Equational laws have to be usedby the programmer when declaring sig-

nature morphisms.

Observation and construction in abstract types may not be inverses. Polytypic

functions on abstract types cannot be programmed without the help of insertion

and extraction functions from/to the abstract type to/from someconcretetype. We

show that thesefunctions can be de�ned polytypically, i.e., instancesfor particular

abstract and concrete types can be obtained automatically following the structure

of F -views and using the operators provided by signature morphisms. We show that

polytypic functions on abstract typescan be de�ned in terms of polytypic insertion,

polytypic extraction, and ordinary polytypic functions on concretetypes. We show

that polytypic extension is supported. Finally, we introduce the notion of exporting

in order to support polytypic programming with non-parametric abstract types.

1.5 Structure and organisation

This thesisis organisedin three parts. Part I explainsbackground material usedby later

chapters. Part I I surveyspolytypic functional programming, describesthe con
ict with

data abstraction, and proposesa solution for reconciliation. Part I I I is an appendix

with technical details from Chapter 5.
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Part I. Background

Chapter 2: Language Games introducesconceptual terminology and notational

conventions. It also contains a brief account of types and typed programming, pin-

pointing their relevance to Generic Programming. Several families of Lambda Calculi

are then overviewed which are necessaryfor a full understanding of Chapters 4 and 6.

The overview is not meant to be a tutorial but a brushing up. Bibliographic references

are provided in the relevant sections.

Chapter 3: Bits of Category Theory . Category Theory provides a general, ab-

stract, and uniform meta-languagein which to expressmany ideas that have di�eren t

concretemanifestations. This chapter spells out several category-theoretical concepts

that are used in Chapters 6, 5, and 9.

Chapter 4: Generic Programming overviews the manifestations of genericity in

programming. Section 4.1 opens the chapter with a discussionon the two variants

of abstraction (control and data) and de�nes Generic Programming as the judicious

integration of parametrisation, instantiation and encapsulation. Section 4.2 overviews

the concept of data abstraction, which is expandedand formalised in Chapter 5. Sec-

tion 4.3 discussesthe role of Generic Programming in the wider context of Software

Engineering. Section 4.4 talks brie
y about the role of Generic Programming in Gen-

erative Programming and vice versa. Sections4.5 and 4.6 discussthe importance of

typed programming in Generic Programming, a topic resumedfrom Chapter 2. Sec-

tion 4.7 provides a coarseclassi�cation of genericity and its di�eren t manifestations in

programming. Finally, Section 4.8 winds up discussingwhere the present thesis stands

in the described setting.

Chapter 5: Data Abstraction. Data abstraction corresponds with the principle

of representation independence.But what are abstract types, really? How should we

formalise them?

We believe algebraic speci�c ations are the best route to the formalisation and under-

standing of abstract types. Algebraic speci�cations have several advantagesbeyond the

mere speci�cation of a formal object; in particular, they provide an interface for client

code, they can be usedin the formal construction and veri�cation of client code, there
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is a formal relation between the speci�cation and the implementation, and prototype

implementations can be obtained automatically [LEW96, Mar98, GWM + 93].

Mainstream languagesdo not support algebraic speci�cations or equational laws for

operators. However, we assumethat algebraic speci�cations have been used in the

designand implementation of abstract types. In particular, the presenceof equational

laws is important to motivate and describe our approach to Generic Programming.

The chapter starts discussingthe advantagesand disadvantagesof data abstraction in

Sections5.1 and 5.2 respectively, underlining the impact of parametricity constraints

on maintainabilit y, a recurring issuewhoseimport to GenericProgramming is discussed

in Chapter 6.

Sections5.3, 5.4, and 5.5 introduce algebraic speci�cations with partial operators and

conditional equations. Partial operators are those that may produce run-time errors.

They arecommonin strongly-typed languagesthat separatevaluesfrom types(a simple

exampleis the list function head ). Conditional equationsareneededto copewith parti-

ality. For readability, the formal and technical details have beenmoved to Appendix A.

The formalism presented is �rst order. Our aim is to explore Generic Programming

on classicabstract typeswhich can be described perfectly well in a �rst-order setting.

Higher-order functions such as catamorphisms will be written as generic programs

outside the type using the latter's �rst-order operators (Chapter 9).

The chapter presents several examplesof algebraicspeci�cations that are usedby sub-

sequent chapters (e.g., Chapters 7 and 9). Section 5.6 illustrates with an algebraic

speci�cation examplethe problemsof constrained abstract types,which werediscussed

in the context of the Haskell languagein Section 5.8.

The mechanisms available in Haskell and Standard ML for supporting abstract data

typesare described in Section 5.8.

The chapter concludeswith a classi�cation of abstract typesand their operators that

is assumedby subsequent chapters (Sections5.9 and 5.10).
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Part I I. Functional Polyt ypic Programming and Data Abstraction

Chapter 6: Structural Polymorphism in Hask ell examinesthe two most pop-

ular polytypic languageextensionsof Haskell: Generic Haskell [Hin00, Hin02, HJ02]

and Scrap your Boilerplate [LP03, LP04, LP05]. The latter combines polytypic and

Strategic Programming techniques [VS04, LVV02], which are also examined.

The version of Generic Haskell studied is the so-calledclassic one supported by the

Beryl releaseof the Generic Haskell compiler (version 1.23, Linux build). However, its

syntax has beensugaredto �t someof the notational conventions of Chapter 2. The

di�erences with Dependency-styleGenericHaskell [L•oh04] are alsooutlined. We do not

go into much detail concerningDependency-style Generic Haskell becausethere is an

excellent presentation [L•oh04] and, more importantly, becauseit is basedon the same

idea (structural polymorphism) as classicGeneric Haskell and is therefore subject to

the sameproblems we study in Chapter 7.

Section6.2describesthe Scrapyour Boilerplate approach paper by paper after an initial

exposureto the ideasof Strategic Programming.

The material for this chapter has been used in several talks. It is self-contained and

follows a tutorial style. The following topics are of special interest:

� The impact of nominal versus structural type systems(Sections 6.1.3 and 6.1.4),

and the question of expressibility (Section 6.1.5). It is also not clear what the

most generalpolykinded type of a function is (Section 6.1.2). There are polytypic

functions that are not expressiblein Generic Haskell (Section 6.1.7). Finally, we

arguein favour of parameterisingpolytypic functions on the casesfor manifest types

(Section 6.1.12).

� Section 6.1.10shows that Generic Haskell doesnot support constrained data types,

which play a major role in the implementation of abstract data types. (The reader

may want to read Sections5.2, 5.6, 5.7, and 5.8.1 in order to put the problem in

context.) Section6.1.11proposesa solution basedon making polykinded typespara-

metric on type-classconstraints. The moral of this contribution is that \p olytypic

functions possessconstrained-parametric polykinded types".
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� Polytypic function de�nitions are described categorially2 in Section 6.1.13. The

categorial rendition is used later in Chapter 9 to justify that it is not possible to

expresspolytypic functions on abstract typesin the sameway as on concretetypes.

Chapter 7: Polyt ypism and Data Abstraction shows that data abstraction

limits polytypism's genericity becausepolytypic functions manipulate concrete repres-

entations. The problemsare outlined at the beginningof Section7.1 and the rest of the

chapter elaborates with examples. Section 7.1.3 explains when a map function can be

programmed for an abstract type and discussesthe obstaclesinvolved in programming

it polytypically in terms of concreterepresentations. Section 7.2 arguesthat abstract-

ing over data contents is not a satisfactory way of dealing with manifest abstract types,

making the casefor `exporting', a mechanismto be introducedin Chapter 9. Section7.3

summarises:buck the representations.

Chapter 8: Pattern Matc hing and Data Abstraction. Pattern matching is an-

other languagefeature that con
icts with data abstraction. There are several proposals

for reconciling pattern matching and data abstraction. This chapter overviews them

and arguesthat their application to reconciling polytypic programming and data ab-

straction is unsatisfactory and limited. Resistanceto bucking the representations is

futile.

Chapter 9: F -views and Extensional Programming beginswith an examina-

tion of somepossibleways of reconciling polytypic programming with data abstraction,

and narrows down the list after analysing the pros and cons. The remaining sections

introduce and develop our proposal in detail.

Bucking the representations meansprogramming with abstract types has to be done

through their interfaces. This leadsto a form of Extensional Programming whereclient

functions are concernedwith the data contents of a type and ignore its representation.

Somenotion of structure is neededfor polytypism to be possible. The clients of an ab-

stract type can provide a de�nition of structure in terms of F -views. Observation and

construction must be separated. Observation is performed by a polytypic extraction

function that extracts payload from an abstract type into a concrete type that con-

forms to the sameF -view. Correspondingly, construction is performed by a polytypic
2Following [Gol79] we usecategorial instead of categorical in order to distinguish the technical from

the ordinary use of the adjective.



1.5 Structure and organisation 14

insertion function that inserts payload from the concretetype to the abstract type.

In Section 9.8 we demonstrate that many of the ideas can be encoded in Haskell for

particular families of abstract types. From Section 9.9, we generaliseand show how

insertion and extraction can be de�ned polytypically: their typesare polytypic on the

structure provided by an F -view and the signature morphisms are used in the gener-

ation of their bodies by a compiler. Section 9.11 shows how polytypic functions on

abstract types can be de�ned in terms of polytypic insertion and extraction. Sec-

tion 9.12 shows how polytypic extension or specialisation can be done in our system.

Section 9.13 introducesthe idea of exporting in order to support polytypic program-

ming with manifest abstract types. Sections9.14and 9.15discusssomeapplications of

polytypic extension.

Chapter 10: Future W ork discussesfuture lines of research and other design

choicesand the challengesthey present.

App endix

Details from Chapter 5. The appendix contains the technical details of the formal

syntax and semantics of the algebraicspeci�cation formalism of Chapter 5. Of particu-

lar importance is the conceptof �-Algebra (De�nition A.1.7) which involvesthe notion

of symbol-mapping. This is an important but often obviated ingredient that is also

present in the de�nition of signature morphisms, �- homomorphisms, and partialit y.

Signature morphisms and F -algebras (Section A.3.1) are essential for understanding

and justifying our approach to Generic Programming (Chapter 9).
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Chapter2

LanguageGames

\In order to recognisethe symbol in the sign we must consider the sig-

ni�can t use." Ludwig Wittgenstein. Tratactus Logico-Philosophicus,

Proposition 3.326

This chapter presents some concepts, terminology, and notational conventions used

throughout the thesis. It is not meant as an introductory exposition but as a brushing

up. Bibliographic referencesare provided in the relevant sections. The treatment of

Category Theory is postponed to Chapter 3.

2.1 Ob ject versus meta

We assumefamiliarit y with the distinction between object language , a particular

formal language under study, and meta-language , the notation used when talking

about the object language.

2.2 De�nitions and equalit y

It is common practice in mathematics to use equality as a de�nitional device. Since

equality is also used as a relation on already de�ned entities, we distinguish equality

from de�nitional equality and usethe symbol def= for the latter. A de�nition inducesan

equality in the sensethat if X def= Y then X = Y; the converseneednot be true.

In somechapters we make heavy use of inductiv e de�nitions expressedas natural de-

duction rules and rule schemaswhich have the following shape:

antecedent 1 : : : antecedent n

consequent 1 : : : consequent n

where n � 0. Rules can be read forwards (when all antecedents are the case then

all the consequents are the case)or backwards (all the consequents are the caseif all

the antecedents are the case). Inductiv e rules will be used for expressingconditional

16
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de�nitions and inference rules of formal deduction systems. Variables in antecedents

and consequents are assumeduniversally quanti�ed unlessindicated otherwise.

2.3 Grammatical conventions

WeuseEBNF notation to expressthe syntax of several formal languages.Non-terminals

are written in capitalised slanted. Any other symbol stands for a terminal with the

exception of the post�x meta-operators ?, + , and � . Their meaning is as follows: X?,

X� , and X+ denote, respectively, zeroor oneX, zeroor more X, and oneor more X, where

X can be a terminal or non-terminal. Parenthesesare also used as meta-notation for

grouping, e.g., ( X Y) � .

The following EBNF example is a snippet of C++'s grammar [Str92]:

CondOp ::= if Cond Block ( else Block)?

Cond ::= ( Expression )

Block ::= Stmt | { Stmt + }

In the �rst production parenthesesare meta-notation. In the secondthey are object-

level symbols becausethey are not followed by a post�x meta-operator.

2.4 Quan ti�cation

We follow the widely used and well-known `quanti�er-dot' convention when denoting

quanti�cation in logical formulae. For example, in 8x:P the scope of bound variable x

starts from the dot to the end of the expressionP. Also,

8x2S: P abbreviates 8x: x2S ) P

2.5 The imp ortance of t yp es

We deliberately use term to refer to English terms (for instance, `overloading' is a

term) and to program terms. Following the convention of most strongly type-checked

programming languages,we distinguish betweenvalue-level terms and type-level terms,

called typ e-terms or just typ es. Originally typeswere introducedas a mechanism for

optimising storagein early programming languageslike f or tran [CW85, p7�]. Types
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classify syntactically well-formed terms.1 Every well-formed term is associated with

one or perhaps more type-terms. Thus, types introduce a new level of description

that is re
ected grammatically and semantically. This has important repercussionson

languagedesign:

� The classi�cation of terms by type-terms provides a syntactic method for proving

the absence of particular classesof execution (run-time) errors, generically called

typ e err ors . A typ e system is a precisespeci�c ation of such a method and a typ e

checker a feasibleand hopefully e�cien t implementation.

Type errors typically include incompatibilit y errors|whic h arise when operators

are applied to terms of the wrong type|and those related to enforcing abstraction,

e.g., scoping, visibilit y, etc. A precise de�nition of what constitutes a type error

is determined, amongst other factors, by the expressibility of the type language

(Box 2.1).

Type systemsusually comein the guiseof logical proof systems,and type checkers

in the guiseof specialisedproof-checking algorithms. Type systemsmust be able to

decidably prove or disprove propositions, herecalled judgements , which assertthat

a well-formed term t hasa particular type-term � in a type-assignment �, the whole

judgement typically written as � ` t : � . A type-assignment contains the type-terms

of the term's free variables that are in scope. Termswith no free variablesare called

closed terms .

Type-terms and terms are de�ned by means of context-free grammars, but their

association is established in a context-sensitive fashion by infer ence rules , usu-

ally written in natural deduction style, which establish compositional implications

between judgements. Compositionality meansthat the type of a term can be de-

termined from the typesof its constituent subtermsand associated type-assignments.

Type checking is the processof proving a judgement by deduction, i.e., of provid-

ing a derivation of the judgement from someaxioms by the application of the type

inferencerules.

We de�ne some type languagesand systems in Section 2.7. The following refer-

encesare excellent introductions to typesand type systemsin relation to program-

1This sentence is deliberately ambiguous; both interpretations are true: types classify terms syn-
tactically and these terms are syntactically well-formed.
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ming: [Car97, CW85, Mit96 , Pie02, Pie05, Sch94].
'

&

$

%

BOX 2.1: Type SoundnessCanBe Deceptive

A type systemcomeswith a de�nition of what constitutes a type error. A pro-

gram is wel l-typ ed if it passesthe typechecker. Typesoundness meanswell-

typed programs are well-behaved, where wel l-behaved programs are those

that don't crash becauseof a type error. A formal semantics is neededto

prove type soundness[Car97, Pie02].

Typesoundnesscanbedeceptive: a well-behavedprogram may still crashif the

sourceof the error is not included in the type system'sde�nition of type error.

One must be careful when spouting the old chestnut `well-typed programs

cannot go wrong'. In many popular type systemsit is disproved at the �rst

counterexample|lik e computing the headof an empty list in languagesof the

ML family or downcasting to the wrong classin C++ or Java.

� Type checking may in
uence term-languagedesign; for instance, its feasibility may

restrict the permitted recursion schemes(e.g., structural, generative, polymorphic,

general,etc). In practice, the languageof types is designedwith a particular type-

checking algorithm in mind [CW85, p11]. However, type reconstruction,2 alsoknown

astype inference, neednot restrict the languageof types,for disambiguating annota-

tions can always be given by the programmer, e.g. [OL96]

� Value-level terms areevaluated at run time; type-level terms areusually evaluated at

compile time (Box 2.2). A powerful and sophisticated languageof typescan become

prett y much a static (compile-time) mini-programming language,with more e�ort

and computation performed by the type checker. By `e�ort' we not only mean

that type checking or type reconstruction may require substantial computation, but

that someform of compile-time `execution' of type-level terms is also taking place.

How involved this execution is depends on the complexity of the type language.

(Section 2.7.4 shows a trivial example.)

Type-level computation hasan impact not only on software development (i.e., being

able to widen the de�nition of type error and catch more correctnesserrors stat-
2The processof �nding automatically the most general type of a term that has no type annotations.
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BOX 2.2: Strong/Weak,Static/Dynamic

Static typ e-checking is typically distinguished from dynamic typ e-

checking in that programsare typechecked without evaluating them, whereas

in the latter they are type checked while evaluating them. With modern lan-

guagesthis account of static type-checking is somewhat imprecise;we should

rather say that programs are type checked without evaluating the whole of

them.

The di�erence between str ong and weak typ e-checking hinges upon the

de�nition of type error or, in other words, on whether the languageof types

is sophisticated enoughto guarantee that well-typed terms don't crash.

Strong/W eak is orthogonal to Static/Dynamic. For instance,Lispy is strongly

and dynamically type-checked. C is statically and weakly type-checked.

From the standpoint of program development, the advantages of strong and

static type-checking should be clear after reading the previous de�nitions in

a di�eren t light: dynamic type-checking puts run-time errors and type errors

at the same level. Weak type-checking is about being happy with narrower

notions of type error and passing the hot potato to the programmer. Pro-

grammers of the C era revel on their bestowed responsibilit y, but \the price

of freedom is hours spent hunting errors that might have been caught auto-

matically" [Pau96, p7].

In this thesis we take strong, static type-checking for granted.

yLots of Insidious and Silly Parenthesis.
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ically), but also on aspects related to Generic Programming such as the abilit y to

de�ne typed languageextensionswithin the languageitself, automatic program gen-

eration, and meta-programming, e.g., [CE00, LP03, KLS04, L•au95, MS00]. Types

are also essential for Generic Programming for other reasonsthat not only have to

do with typed programming: they are a necessaryprecondition for genericity in a

typed world (Chapter 4).

� Type-level languagesvary in complexity according to their term language. For

instance, Haskell has some sort of `prologish' language at the type level due to

its type class mechanism [HHPW92, Blo91, Jon92]. C++ Templates are Turing-

complete: it is possibleto write programsthat `run' at compile time [VJ03, CE00]. In

dependently-t yped languageslike Epigram [MM04], there is no separation between

type-terms and terms and the type checker also deals with (normalising) values of

computations. In Epigram, the semantic properties of programs are encoded in the

language directly as types, which expressrelationships between values and other

types|for example, one can de�ne the type List a n, that is, the type of lists of

payload a and length n.

Of course,not all semantic properties are decidablestatically, for they may depend

on dynamic information. After all, we have to run programs in order to compute;

compiling them is not enough. However, many `interesting' properties can be ap-

proximated by types. To the author's knowledge,a sort of Rice's Theorem on type-

languageexpressibility has not been enunciated; the range of semantic properties

that are decidableand feasiblevia type approximations is still a matter of research

in type languages,the theoretical limit being the halting problem. However, it has

yet to be elucidated whether programming in that fashion is more convenient. What

is certain is that Generic Programming techniques will be essential [AMM05].

� Sincetypesprovide a conservative, static, and decidableapproximation of program

semantics, they also play an important role in program speci�cation and construc-

tion. Of course, program values are not fully understood just by looking at their

types,but the more sophisticated the type language,the more properties captured

by them. For instance,many properties of functions can be obtained from just their

types, e.g. [Wad89], and function construction can be interactively guided by type

information in languageswith rich type systems,e.g. [MM04].
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� Finally, types are useful in documentation, security, e�cien t compilation, and op-

timisation, e.g.: [HM95, Wei02] [DDMM03, GP03]

2.6 Denoting functions

In mathematics, the application of unary function f to x is written f (x) and f 's de�n-

ition is expressedas f (x) def= E. Here E abbreviates an expressionwhere x may occur

free. The notation generalisesnaturally to n-ary functions. We follow this convention

at the meta-level. For us, variables may be strings, not just characters, and therefore

notations such as f x or F X are deemedconfusing. In functional languagessupporting

currying, function application is denotedby whitespace,with parenthesesbreaking the

convention. For example, f(x ) , f x , and f (x) are all valid applications. Inexorably,

we follow this convention at the object-level.

2.7 Lam bda Calculi

The Lambda Calculus [Chu41, Mit96 , Bar84] introducesa uniform and convenient

notation for manipulating unnamed �rst-class functions. Initially a formal (i.e., sym-

bolic) language of untyped functions that was part of a proof system of functional

equality, it has developed into a family of systemsthat model di�eren t aspectsof com-

putation. Typed extensions with polymorphism, recursion, built-in primitiv es, plus

naming and de�nitional facilities at value and type level make up the core languagesof

functional languages[Lan66, Pie02, Mit96 , Rea89]; in fact, many functional language

constructs are syntactic sugar or derived forms [Pie02, p51]. Improvements to the core

language'soperational aspects form the basisof functional languageimplementations.

We assumethe reader is familiar with the Lambda Calculus. In the following pages

we glossover the syntactic, context-dependent, and operational aspects of the family

of calculi that make up most of Haskell's core language. Theseare necessaryfor a full

understanding of Chapter 4 and Chapter 6. For axiomatic and denotational semantic

aspects the reader is referred to [Mit96 , Sch94, Sto77, Ten76]. We only mention in

passing that, commonly, types and functional programs are taken to be objects and

arrows in the category of Complete Partial Orders [Mit96 ], but such interpretation is

slightly inaccurate [DJ04]. Category Theory (Chapter 3) provides, amongother things,

a uniform meta-languagefor talking and moving about semantic universes.
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2.7.1 Pure Simply T yp ed Lam bda Calculus

Type ::= � �� basetype
| Type ! Type �� function type
| ( Type) �� grouping

Term ::= TermVar �� term variable
| Term Term �� term application
| � TermVar : Type . Term �� term abstraction
| ( Term) �� grouping

�( x) = �

� ` x : �

� ` t1 : � ! � � ` t2 : �

� ` (t1 t2) : �

� ; x : � ` t : �

� ` (�x : � : t) : � ! �

(�x : � : t) t0 B t[t0=x]
�

t1 B t0
1

t1 t2 B t0
1 t2

li1
t2 B t0

2

x t2 B x t0
2

li2

t B t
ref

t1 B t2 t2 B t3

t1 B t3
trs

Figure 2.1: The Pure Simply Typed Lambda Calculus.

Figure 2.1 shows the syntax, type rules, and operational semantics of the Pure Simply

Typed Lambda Calculus (PSTLC). There are terms carrying type annotations and for

that reasonit is dubbed`explicitly typed'|or �a la Church, who �rst proposedit [HS86].

The following paragraphselaborate.

Terms and t yp es. The PSTLC has a language of types (non terminal Type) for

expressingthe typesof functions inductiv ely from a unique baseor ground type � , and

a languageof terms (non-terminal Term) which consistsof variables, lambda abstr ac-

tions (unnamed functions), and applic ations of terms to other terms.3 Variables

stand for formal parameters or yet-to-be-de�ned primitiv e values when not bound by

any � . In a lambda abstraction �x : � :t, the � symbol indicates that x is a bound
3That application is denoted by whitespace is not quite deducible from the grammar alone. In

order for the two terms to be distinguished there must be some separator token between them which
is assumedto be whitespace.
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variable (i.e., a formal parameter), � is the type of x, and t abbreviates an expression

where x may occur free.

In the rest of the chapter, we stick to the meta-variable conventions shown in Table 2.2.

Table 2.1 lists the symbols whose notation at the meta-level and object level (i.e.,

Haskell) di�er. An exception is the `haskind' symbol (Sections2.7.3 and 2.7.4) which

is not standard Haskell 98. (The Glasgow Haskell Compiler supports `haskind', written

:̀: ', but we use :̀ ' instead to di�eren tiate kind from type signatures.)

� , � , . . . range over types.
x, y, . . . range over term variables.
t, t0, . . . range over terms.
� rangesover type-assignments.
� , � , . . . range over type variables (Section 2.7.3).
� , � range over kinds (Section 2.7.3).

Figure 2.2: Meta-variable conventions for Lambda Calculi.

Notion Meta-level symbol Haskell symbol

De�nition def= =
Equality = ==
`Has type' : ::
`Has kind' : :
Type variable � , � , . . . a, b, . . .
Lambda abstraction �x : � : x �x ! x

Table 2.1: Di�erences in notation at meta- and object level. Type annotations are
provided separately from terms in Haskell.

Typesand terms areseparatedwith the only exceptionthat typescanappearasannota-

tions in lambda abstractions. The type of a function is also called its typ e signatur e.

It describes the function's arit y, order, and the type of its arguments. The arity is

the number of arguments it takes. The or der is determined from its type signature as

follows:

order(� ) def= 0

order(� ! � ) def= max ( 1 + order(� ); order(� ) )

Let � be the type of a lambda abstraction and supposeorder(� ) = n. If n = 1 then

the lambda abstraction may either return a manifest (non-function) value of type � or

another lambda abstraction of order 1 as result. If n > 1, then it is a higher-order
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abstraction that either takesor returns a lambda abstraction of order n.

Occasionally we blur the conceptual distinction betweenmanifest valuesand function

valuesby consideringthe former asnul lary functions and the latter aspr oper func-

tions .

The �xity of a function is an independent concept. It determines the syntactical

denotation of the application of the function to its arguments. In some functional

languages,functions can be in�x, pre�x, post�x, mix�x, and have their precedenceand

associativit y de�ned by programmers. In the PSTLC, lambda abstractions are pre�x,

application associates to the left|for example, t 1 t2 t3 is parsed as (t1 t2) t3|and

consequently arrows in type signaturesassociate to the right|for example, � ! � ! �

is parsedas � ! (� ! � ).

Multiple-argument functions are represented as currie d higher-order functions that

take one argument but return another function as result. For example, the term:

�x : � : �y : � ! � : y x

is a higher-order function that takes a manifest value x and returns a function that

takesa function y as argument and applies it to x.

Related terminology . An operator is a term whosevalue is a function (a precise

de�nition of `value' is given on page 26). It also has a more speci�c use in relation

to abstract data types and algebra (Chapter 5). Sometimesoperation is used inter-

changeably with operator. The term metho d has wider connotations than operation

and is used in its object-oriented sense[Bud02]. A cal l site is another name for an

applic ation of an operator to an operand.

An operand is a term that plays the role of a par ameter or ar gument . A formal

parameter or argument appears in a de�nition whereasan actual parameter or argu-

ment appears in an application. The following are synonyms: X is a parameter of Y

(or Y is parameterisedby X), Y is indexed by X (or Y is X-indexed), Y is dependent

on X (or Y is X-dependent).

We usethe word `type' not only in referenceto type-termsbut also in referenceto data

typ es, i.e., a concrete realisation of the type in an implementation design or actual

code. We usedata structur e for data of more elaborate structural complexity, usually
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involving not only type operators but perhaps other linguistic constructs (e.g., mod-

ules). In a purely functional setting, data-type valuesare immutable and persistent :

operations on valuesof the type produce new values. Occasionally, however, it is con-

venient to treat all thesevaluesasa \unique identit y invariant under changes"[Oka98a,

p3]. This �gure of speech is the persistent identity .

T yp e rules. The type rules listed in Figure 2.1 can be employed to check the type

of a term compositionally from the type of its subterms. The type of a term depends

on the type of its free variables. This context-dependent information is captured by a

type-assignment function � : TypeVar ! Type which acts as a symbol table of sorts

that stores the types of free variables in scope. The operation � ; x : � denotes the

construction of a new type-assignment and has the following de�nition:

(� ; x : � )(y) def= if x = y then � else�( y)

The type rules are rather intuitiv e. Notice only that � is enlarged in the last rule

becausex may occur free in t.

Op erational semantics. The call-by-name operational semantics is shown in the

last box of Figure 2.1. A reduction relation B is de�ned betweenterms. Brie
y , Rule �

captures the reduction of an application of a lambda abstraction to an argument. The

free occurrencesof the parameter variable are substituted (avoiding variable capture)

by the argument in the lambda abstraction's body. This is what the operation t[t 0=x]

means, which reads \ t where t0 is substituted for free x" [Bar84]. Rule li1 speci�es

that an application t1 t2 can be reduced to the term t0
1 t2 when t1 can be reduced

to t0
1. Rule li2 speci�es that reduction must proceed to the argument of an applic-

ation when the term being applied is a free variable. Together, these rules specify a

leftmost-outermost reduction order. Rules ref and trs specify that B is a re
exiv e

and transitiv e relation.

A value is a program term of central importance. Operationally, the set of valuesV

is a subsetof the set of normal forms N , which is in turn a subsetof the set of terms

T, that is, V � N � T. These setsare to be �xed by de�nition. A term is in normal

form if no reduction rule, other than re
exivit y, is applicable to it. In the PSTLC, all

normal forms are valuesand they are de�ned by the following grammar:

NF ::= TermVar j � TermVar : Type . Term
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That is: variables and lambda abstractions are normal forms, which meansthat func-

tion bodies are evaluated only after the function is applied to an argument. This is

re
ected in the operational semantics by the deliberate omissionof the following rule:

t B t0

�x : � : t B �x : � : t0

It can be the casein other languagesthat there are normal forms that are not values.

Examples are stuck terms which denote run-time errors.

Example. The following derivation provesa reduction:

(�x : � ! � : x) (�x : � : x) B (�x : � : x)
�

(�x : � ! � : x) (�x : � : x) y B (�x : � : x) y
li1

(�x : � : x) y B y
�

(�x : � ! � : x) (�x : � : x) y B y
trs

The following is an examplereduction of a well-typed PSTLC term to its normal form.

The subterm being reducedat each reduction step is shown underlined.

(�y : � ! � : y z) (( �y : � ! � : y) (�x : � : x))

B (( �y : � ! � : y) (�x : � : x)) z

B (�x : � : x) z

B z

2.7.2 Adding primitiv e t yp es and values.

The PSTLC is impractical asa programming language.Given a term t, its freevariables

have no meanings. The PSTLC extended with various primitiv eshasbeengiven speci�c

names. In particular, the language PCF (Programming Computable Functions) is

a PSTLC extended with natural numbers, booleans, cartesian products, and �xed

points [Sto77, Mit96 ].

In Figure 2.3 we extend the grammar of terms and types of Figure 2.1 to include

some primitiv e types. The base type � is now removed from the languageof types.

Of particular interest are cartesian product and disjoint sum types that endow the

Extended STLC (referred to asSTLC from now on) with algebraictypesroughly similar
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to those supported by functional languages.

We only show a tiny sampleof type and reduction rules for primitiv es,the latter called

� -rules in the jargon, to illustrate how the extension goes. Consult [Car97, CW85,

Pie02, Mit96 ] for more detail. Primitiv e typesare all manifest and therefore their order

is 0.

Example. The following is an example reduction of a well-typed STLC term:

(�x :Nat : if x > 0 then 1 else x + 1) (( �y :Nat : y + y) 4)

B if (( �y :Nat : y + y) 4) > 0 then 1 else (( �y :Nat : y + y) 4) + 1

B if (4 + 4) > 0 then 1 else (( �y :Nat : y + y) 4) + 1

B if 8 > 0 then 1 else (( �y :Nat : y + y) 4) + 1

B if true then 1 else (( �y :Nat : y + y) 4) + 1

B 1

2.7.3 Adding parametric polymorphism: System F

The STLC is not polymorphic. For example, the identit y function for booleansand

naturals is expressedby two syntactically di�eren t lambda abstractions:

(�x :Nat : x) : Nat ! Nat

(�x :Bool : x) : Bool ! Bool

However, they only di�er in type annotations. System F [Gir72, Rey74] extends the

STLC with universal parametric polymorphism (seealsoChapter 4). It addsnew forms

of abstraction and application where typesappear as terms, not just annotations. The

new syntax can be motivated using the above identit y functions. A parametrically

polymorphic identit y is obtained by abstracting over types(universal abstr action ),

e.g.:

� � : � : �x : � : x

This term has type:

8� : � : � ! �

(We explain the role of � in a moment.) A capitalised lambda `�' is introduced to

distinguish universal abstraction over types from term abstraction. Dually, there is
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Type ::= Nat �� naturals
| Bool �� booleans
| Type � Type �� products
| Type + Type �� disjoint sums
| 1 �� unit type

Term ::= Num �� natural literals
| true �� boolean literals
| false
| + | � | ... �� arithmetic functions
| not Term �� boolean functions
| if Term then Term else Term
| ...
| ( Term , Term) �� pairs
| fst Term
| snd Term
| Inl Term �� sums
| Inr Term
| case Term of Inl TermVar then Term ; Inr TermVar then Term
| unit �� unit value

� ` true : Bool � ` unit : 1

� ` t : Bool � ` t1 : � � ` t2 : �

� ` (if t then t1 else t2) : �

(if true then t1 else t2) B t1 (if false then t1 else t2) B t2

t B t0

(if t then t1 else t2) B (if t0 then t1 else t2)

Figure 2.3: The (Extended) Simply Typed Lambda Calculus. The base type � is
removed from the language of types and new productions are added for terms and
type-terms to those in Figure 2.1. Only a small sampleof type and reduction rules are
shown.
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universal applic ation , e.g.:

(� � : � : �x : � : x) Nat B (�x :Nat : x)

A universal application is evaluated by substituting the type-term argument for the

free occurrencesof the bound type-variable in the body of the universal abstraction.

Another example:

(� � : � : (� � : � : �x : � : x) � ) Nat B (� � : � : �x : � : x) Nat

Figure 2.4shows the additions to the grammar, to the type rules, and to the operational

semantics. Becauseof the introduction of type variables, rules for type-term well-

formednessare provided (a few are shown in the �rst row of the secondbox).

We reintroduce � at a new level and call it a baseor ground kind. Kinds classify types

and are explained in detail in Section2.7.4; for the moment, type variables in universal

abstractions always have kind � , for they can only be substituted for basetypeswhich

are all manifest, but we usein advancethe kind meta-variable � becausethe language

of kinds is extended in Section 2.7.4. Type-assignments now also store the kinds of

type variables.

The type rules for universal abstraction and application are shown in the secondrow

of the secondbox. Notice that a type-level, capture-avoiding substitution operation is

assumedwhich replacestype variables for types in terms. The last box in Figure 2.4

enlargesthe reduction relation to account for universalapplications. Universalabstrac-

tions are normal forms like regular term abstractions.

2.7.4 Adding t yp e operators: System F !

System F! extends System F with typ e operators , i.e., functions at the type level.

They are also called typ e constructors , but we prefer to use `constructor' at the

value level when referring to the terms associated with type operators, called value

constructors . (For personalreasons,we deprecatethe term data constructor .) An

exampleof type operator is List which when applied to a manifest type � returns the

type of lists of type � . Its associated value constructors are:

Nil :: 8 a: � . List a

Cons :: 8 a: � . a ! List a ! List a
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Kind ::= �

Type ::= TypeVar
| 8 TypeVar : Kind . Type ! Type

Term ::= � TypeVar : Kind . Term �� universal abstraction
| Term Type �� universal application

�( � ) = �

� ` � : �

� ` � � ` �

� ` � ! �

� ; � : � ` �

� ` 8� : � : �
: : :

� ; � : � ` t : �

� ` (� � : � : t) : (8� : � : � )

� ` t : (8� : � : � ) � ` �

� ` t � : � [� =� ]

(� � : � : t) � B t[� =� ]

Figure 2.4: SystemF extensions.
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which are namesfor primitiv e constants without � -rules| e.g., a term like Cons t Nil is

in normal form, whatever the t (Section 6.1.1). Manifest typessuch asNat or Bool are

`values' at the type level. A fully applied (i.e., closed)type operator also constitutes a

manifest type, e.g.: List Nat . Occasionally, we blur the distinction betweenmanifest

types and type operators by considering the former as nul lary typ e operators and

the latter as pr oper typ e operators .

To model type-level functions, the PSTLC of Figure 2.1 is lifted to the type level as

shown in the �rst box of Figure 2.5, so that terms such as � , �� : � : � , and � � (that is,

typ e variables , typ e-level abstr actions , and typ e-level applic ations ) are de�ned

as legal type-terms.

The kind of a type-term is somewhat inaccurately described as the `type' of a type-

term. But kinds only describe the arity and order of type operators. The kind of a

nullary type operator (a manifest type) is � . The kind of a proper type operator is

denotedas � ! � , where � is the kind of its argument and � the kind of its result. The

order of a type operator is determined from its kind signatur e as follows:

order(� ) def= 0

order(� ! � ) def= max ( 1 + order(� ); order(� ) )

Kinds do not have a status as the `types' of types when there are orthogonal features

in the type language(e.g. quali�ed types[Jon92]) that render them inaccurate as such.

For instance, the following two Haskell de�nitions of the type operator List have the

samekind, but the secondis constrained on the range of type arguments:

data List a = Nil | Cons a (List a)

data Ord a ) List a = Nil | Cons a ( List a)

Type checkers kind-check applications of type operators to arguments to make sure

the latter have the right expected kind. Kind-checking rules are shown in the second

box of Figure 2.5. The �rst three lines establish the kinds of manifest types and also

depict the kind-checking rules for primitiv e type operators such as + and � , etc. The

last line contains the type rules of the PSTLC but lifted as kind rules (compare with

Figure 2.1).

The third box in Figure 2.5 shows a type-levelreduction relation I betweentype-terms

that is re
exiv e, transitiv e, and compatible with all ways of constructing type-terms.
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Kind ::= �
| Kind ! Kind

Type ::= Type Type �� type application
| � TypeVar : Kind . Type �� type abstraction

� ` Nat : � � ` Bool : �

� ` � 1 : � � ` � 2 : �

� ` (� 1 ! � 2) : �

� ` � 1 : � � ` � 2 : �

� ` (� 1 � � 2) : �

� ` � 1 : � � ` � 2 : �

� ` (� 1 + � 2) : �

� ; � : � ` � : �

� ` 8� : � : � : �

�( � ) = �

� ` � : �

� ` � 1 : � ! � � ` � 2 : �

� ` (� 1 � 2) : �

� ; � : � ` � : �

� ` (�� : � : � ) : � ! �

(�� : � : � ) � 0 I � [� 0=� ]

� 1 I � 0
1

� 1 � 2 I � 0
1 � 2

� 2 I � 0
2

P � 2 I P � 0
2

� 1 I � 0
1 � 2 I � 0

2

� 1 + � 2 I � 0
1 + � 0

2

� 1 I � 0
1 � 2 I � 0

2

� 1 � � 2 I � 0
1 � � 0

2

� 1 I � 0
1 � 2 I � 0

2

� 1 ! � 2 I � 0
1 ! � 0

2

� I � 0

8� : � : � I 8� : � : � 0 � I �

� 1 I � 2 � 2 I � 3

� 1 I � 3

� � �

� 1 � � 2

� 2 � � 1

� 1 � � 2 � 2 � � 3

� 1 � � 3

� 1 � � 1 � 2 � � 2

� 1 ! � 2 � � 1 ! � 2

� � �

8x : � : � � 8x : � : �

� � �

�� : � : � � �� : � : �

� 1 � � 1 � 2 � � 2

� 1 � 2 � � 1 � 2 (�� : � : � ) � 0 � � [� 0=� ]

Figure 2.5: SystemF! addstypeoperators, a reduction relation (I ), and an equivalence
relation (� ) on type-terms.
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The symbol P standsfor a primitiv e type, i.e., Bool , Nat , or 1, which is in normal form.

The reduction relation is static: type-level applications are reducedby the type-checker

at compile time. This relation is a trivial exampleof type-level computation.

The last box in Figure 2.5 de�nes a relation of structur al typ e equivalenc e which

speci�es that two type-terms are equal when their structure is equal. The relation is

re
exiv e, symmetric, transitiv e, and compatible with all ways of constructing types.

Normal forms of type-termsare type variables,primitiv e types,type-level abstractions,

and type-terms of the form � 1 � � 2, 8� : � : � 1, � 1 + � 2, and � 1 ! � 2, when � 1 and � 2 are

themselves in normal form.

Notice that there are three sorts of substitutions, two at the term level (one replacing

term variables for terms in term abstractions and another replacing type variables for

type-termsin universalabstractions) plus oneat the type level (replacing type variables

for type-terms in type-level abstractions).

2.7.5 Adding general recursion

All the languagesdescribed so far are strongly normalising, i.e., terms and type-terms

always reduce to normal form [Pie02, Mit96 ]. However, in order to use System F !

for real programming we need to introduce some form of recursion. In this section

we extend the language of terms and types to cater for general recursive functions

and type operators. In functional languages,functions (term-level or type-level) are

recursive when the function name is applied to another term within its own body.

For instance, the recursive de�nition of the list type and the factorial function can be

written in Haskell as follows:

data List a = Nil | Cons a (List a)

factorial n = if n==0 then 1 else n � factorial (n-1)

Which can be translated to the lambda notation of SystemF ! as follows:

List = � a: � . 1 + (a � ( List a))

factorial = � n: Nat. if n==0 then 1 else n � factorial (n-1)

But term and type lambda abstractions are unnamed; the naming mechanism above is

meta-notation. Recursion must be achieved indirectly. Let us abstract in both cases

over the name of the function to remove the recursion:
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List � = � f: � ! � . � a: � . 1 + (a � f a)

factorial � = � f:Nat ! Nat . � n:Nat . if n==0 then 1 else n � f (n-1)

It is typical at this point to resort to meta-level arguments or denotational semantics

to explain that the equations:

List = List � List

factorial = factorial � factorial

have a least solution in somesemantic domain that givesmeaningto SystemF ! syntax.

Such solution is the least �xed point of the equation. Fortunately, there is no need

to resort to meta-level arguments. Operationally, recursive functions are reduced by

unfolding their body at each recursive call. This unfolding can be carried out at the

object level by two new primitiv e term and type constants fix and Fix respectively.

They are called �xe d-point operators because,semantically, they return the least

�xed point of their argument. 4 Their type- and kind-signatures are respectively:

fix : 8� : �: (� ! � ) ! �

Fix : 8�: (� ! � ) ! �

Their type-checking and reduction rules are shown in Figure 2.6. The intuition is that

at the meta-level, the following equationsmust hold:

(fix f � ) = f � (fix f � )

(Fix F� ) = F� (Fix F� )

which turned into reduction rules give:

(fix f � ) B f � (fix f � )

(Fix F� ) I F� (Fix F� )

but since F� and f � abbreviate respectively type and term lambda abstractions, we

have:

(fix ( �x : � : t)) B ( �x : � : t) (fix ( �x : � : t))

B t[ x=(fix ( �x : � : t))]

(Fix ( �� : � : � )) I ( �� : � : � ) ( Fix ( �� : � : � ))

I � [ �= (Fix ( �� : � : � ))]

4Fixed-p oint operators are also denoted Y and � in the literature.
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Type ::= Fix Type
Term ::= fix Term

� ` � : � ! �

� ` Fix � : �

� ` t : � ! �

� ` fix t : �

Fix (�� : � : � ) I � [�= Fix (�� : � : � )] fix (�x : � : t) B t[x=fix (�x : � : t)]

Figure 2.6: Extension of SystemF ! with �xed-p oint operators.

Figure 2.6 collects thesestepsin a single reduction rule. Call-by-name guaranteesthat

recursive calls are unfolded only when their value is required.

Going back to our examples,the terms:

Fix ( � f: � ! � . � a: � . 1 + (a � f a))

fix ( � f:Nat ! Nat. � n:Nat . if n==0 then 1 else n � f ( n-1))

are both legal System F! syntax that represent the recursive list type operator and

the factorial function. The following is an example reduction that demonstrates the

unfolding (ellipsis abbreviate somesubexpressionsand reduction steps):

(fix ( � f:Nat ! Nat . � n: Nat. if n==0 then 1 else n � f (n-1))) 2

B ( � n:Nat . if n==0 then 1 else n � (fix : : : ) (n-1)) 2

B if 2==0 then 1 else 2 � (fix : : : ) (2-1)

B if false then 1 else 2 � ( fix : : : ) (2-1)

B 2 � ( fix : : : ) (2-1)

B 2 � ( � n:Nat . if n==0 then 1 else n � (fix : : : )) (2-1)

B 2 � if (2-1)==0 then 1 else (2-1) � (fix : : : ) ((2-1)-1)

: : :

B 2 � if false then 1 else (2-1) � (fix : : : ) ((2-1)-1)

B 2 � (2-1) � (fix : : : ) ((2-1)-1)

: : :

B 2 � (2-1) � 1

: : :
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B 2

Et Voil�a.



Chapter3

Bits of Category Theory

[C]ategory theory is not specialisedto a particular setting. It is a basic

conceptualand notational framework in the samesenseasset theory . . .

though it dealswith more abstract constructions. [Pie91, p.xi]

Category Theory is heavily used in programming language theory, especially in de-

notational semantics, algebraic speci�cation, and program construction. The central

conceptsof thesedisciplinesare usually wielded in their categorial formulation because

Category Theory provides a general,abstract, and uniform meta-languagein which to

expressmany ideasthat have di�eren t concretemanifestations.

Abstraction is of special interest to us and certain category-theoretical conceptswill be

usedwhen talking about polytypic programs and abstract data typesin Chapters 6, 5,

and 9. More precisely, the categoriesof particular interest to us are the category of

typesand the categoryof algebrasand partial algebras. Further referenceson category

theory are [SS03,Fok92, BBvv98, BW99, Pie91].

3.1 Categories and abstraction

For mathematical structures to constitute categoriesoneneedsto identify `entities with

structure', called objects , and `structure-preserving' mappings between them, called

arr ows . Preservingstructure meanspreservingthe property of being a valid object of

the category. Due to their often graphical presentation, a collection of objects and a

collection of arrows is called a diagr am . (We use the word `collection' in a technical

sense:a collection is an homogeneousset.)

The axioms describing what constitutes a category are rather general and wildly dif-

ferent mathematical structures can be `categorisedas categories'. Only arrows need

satisfy minimal requirements: there must be an arrow composition operation that is

partial, closed,associative, and has unique neutral element|the identit y arrow, which

must exist for every object.

38
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Category Theory is constructive in the sensethat witnesses(arrows) are always con-

structed in terms of compositions of other arrows rather than have their existence

posited. Category Theory is coherent in the sensethat such arrows must satisfy uni-

versal properties (also known asnaturality properties) expressedasequationsinvolving

universally-quanti�ed arrows and their compositions. More precisely, many properties

of diagrams do not depend on the internal structure of the particular objects under

consideration and can be studied abstractly and independently of them. These uni-

versal properties are expressibleexternally, that is, purely in terms of composition of

arrows.

As a contrasting illustration, Set Theory is concernedwith the internal structure of

sets and mappings. For instance, injective functions are characterised in terms of a

property held by the elements of their domain and codomain sets:

f : A ! B a 2 A a0 2 A f (a) = f (a0) ) a = a0

f is injective

The categorial approach abstracts away from this detail and concentrates on the ex-

ternal relationships betweenarrows. Setsconsideredas objects and set-theoretic total

functions consideredas arrows make up a category where arrow composition is func-

tion composition. The equivalent concept of injective function, namely, monic arrow,

is de�ned in terms of its properties under composition:

f : A ! B g : C ! A h : C ! A f � g = f � h ) g = h

f is monic

This de�nition is a generalisation that applies in all categoriesand therefore a monic

arrow in somecategoriesmay have nothing to do with the notion of injective function

(Section 3.4).

3.2 Direction of arro ws

Arrows will be written forwards, whether in type signatures or categorial diagrams.

That is, we will write f : A ! B and not f : B  A. Good reasonshave beengiven

in favour of the latter style. In particular, the type of an applied function composition

readsswiftly from the typesof the functions involved when read from right to left| i.e.,
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in the samedirection as that of the arrows|as shown in Figure 3.1(1). This is not the

casewhen arrows and types are read from left to right, as shown in Figure 3.1(2)(3),

for composition applies its right argument �rst.

g : C  B f : B  A

g � f : C  A
(1)

g : B ! C f : A ! B

g � f : A ! C
(2)

f : A ! B g : B ! C

g � f : A ! C
(3)

f : A ! B g : B ! C

f ; g : A ! C
(4)

Figure 3.1: Arrows and composition.

Furthermore, writing the target type on the left and the source type on the right

is consistent with the normal notation for function application, where the arguments

appear to the right of the function name, i.e.: (g� f ) x = g (f x). \[In] the alternative,

so-calleddiagrammatical forms, onewrites x f for application and f ; g for composition,

where x (f ; g) = (x f ) g" [BdM97, p2]. Nonetheless,there are also good reasonsfor

writing arrows forwards:

1. It is the standard notation in mathematics and functional programming languages.

It requirespractice to get usedto the backwards notation and werisk confusingread-

ers unfamiliar with it. The choice is between
ipping somecompositions around in

order to read typesnaturally versus
ipping all arrows in order to make composition

read naturally.

2. Only aestheticsor rigidit y proscribesthe useof a diagrammatical notation for com-

position alongsidethe normal notation for function application. There is no reason

why composition cannot be used at will both in its diagrammatical or traditional

form.

3. Only in the diagrammatical form doesthe type of composition itself read naturally,

as it is only there that f is the �rst argument:

Figure 3:1(1); � : (C  A)  (B  A)  (C  B )

Figure 3:1(2)(3); � : (B ! C) ! (A ! B ) ! (A ! C)
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Figure 3:1(4); ; : (A ! B ) ! (B ! C) ! (A ! C)

Unless,of course,one de�nes g � f as the in�x way of writing � (f ; g) instead of the

expected � (g; f ).

3.3 De�nition of category

A category is identi�ed by de�ning the objects, the arrows, what is composition, what

is an identit y arrow, and checking that categorial axioms are satis�ed.

Definition 3.3.1 A category C is a collection of objects Obj (C) and a collection of

arrows Arr (C), such that:

1. For every pair of objects A and B there might be zero or more arrows from A to

B . Thesearrows can be collected into a set which we denote by Arr (A; B ). Notice

that Arr (C) denotesthe collection of all arrows of C whereasArr (A; B ) denotesthe

collection of arrows from A to B . It is common practice to write f : A ! B when

f 2Arr (A; B ). It is also common practice to call A the source of f and B the target

of f . Arrows have unique sourcesand targets. This is usually represented neatly in

a diagram:

A
f - B

2. There is an arrow-composition operation (denotedby ; or by � asshown in Figure 3.1)

with the following properties:

(a) It is partial: two arrows f and g composeif the target of f equalsthe source

of g.

(b) It is closed: the resulting arrow is in Arr (C):
f : A ! B g : B ! C

f ; g : A ! C

(c) It is associative:
f : A ! B g : B ! C h : C ! D

f ; (g; h) = (f ; g); h
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(d) It has a left and right identit y arrow for every object:

f : A ! B id A : A ! A id B : B ! B

id A ; f = f f ; id B = f

Identities are unique:

u; f = f ) u = id A

f ; u = f ) u = id B

�

Category Theory is an algebra of `typed' arrows. By composing arrows we obtain new

arrows; but arrows with the samesourceand target neednot be equal. It is only when

h = f ; g that we say the following diagram commutes :

A
f - B

@
@

@
@

@
h

R
C

g

?

Universal pr operties are equationsinvolving arrows expressiblein terms of diagrams

that commute.

3.4 Example categories

Categoriesare named after their objects. A typical category is Set , where objects are

sets,arrows are total set-theoretic functions, and composition is function composition,

which satis�es the categorial requirements for arrow composition. Another typical

category is Pre , whereobjects are the membersof a pre-orderedset (A; � ), arrows are

pairs (x; y) : x ! y such that x2A, y2A, x � y, and arrow composition is de�ned as

follows:

(x; y) : x ! y (y; z) : y ! z

(x; y) ; (y; z) : x ! z (x; y) ; (y; z) def= (x; z)
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This exampleshows that arrows neednot be functions.

A category of particular interest to us is T yp e, the category of types where objects

are monomorphic types, arrows are functional programs between these types, and ar-

row composition is function composition. In Chapter 5 we intro duce the category of

algebrasand partial algebras,where arrows are, respectively, algebra homomorphisms

and partial homomorphisms.

3.5 Dualit y

For every categorial notion involving diagrams there is always a dual one in which the

direction of the arrows is reversed. If C is a category, the dual or opposite category

Cop has the same objects and arrows as C only that the direction of the arrows is

reversed:

A 2 Obj (C)

A 2 Obj (Cop)

f 2 Arr (C) f : A ! B

f 2 Arr (Cop) f : B ! A

3.6 Initial and �nal ob jects

Definition 3.6.1 Given a category C, 02Obj (C) is an initial object i� for every

object A there is a unique arrow !A : 0 ! A. Accordingly, !0 = id0. Dually, given a

category C, 12Obj (C) is a terminal object i� for every object A there is a unique

arrow !A : A ! 1. Accordingly, !1 = id 1. �

Arrows x : 1 ! A from terminal objects are called constants of A [Pie91, p17]. The

motivation is that, for example, in the category of types,functional programs from the

terminal type 1 (called unit typ e) to any other type A can be put into one-to-one

correspondencewith the values in A. In other words, there is an injective function

i : A ! (1 ! A) such that if x is a value of type A then i (x) is a value of type 1 ! A,

i.e., a function. For instance, given the type of natural numbers:

data Nat = Zero | Succ Nat

the nullary value constructor Zero : Nat is a constant which can be lifted to a function

Zero : 1 ! Nat . We usethis device for other categoriesin Section A.3.1.
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3.7 Isomorphisms

Definition 3.7.1 Two objects A and B in a category are isomorphic when there are

arrows f : A ! B and g : B ! A whosecomposition is the identit y. In other words,

f ; g = id A and g; f = id B . �

3.8 Functors

Categoriesare themselves mathematical structures. Functors are maps between cat-

egorieswhich preserve the categorial structure.

Definition 3.8.1 A functor F : C ! D is an overloaded total map1 between cat-

egoriesC and D mapping objects to objects and arrows to arrows while preserving

composition and identities. More precisely,

F : Obj (C) ! Obj (D )

F : Arr (C) ! Arr (D )

such that:

1. 8A2Obj (C): F (A) 2 Obj (D )

2. If the functor is covariant in its arrow argument then:

f 2 Arr (C) f : A ! B

F (f ) 2 Arr (D ) F (f ) : F (A) ! F (B )

3. If the functor is contr avariant in its arrow argument then:

f 2 Arr (C) f : B ! A

F (f ) 2 Arr (D ) F (f ) : F (A) ! F (B )

However, a functor is just `contravariant' when f : A ! B but F (f ) : F (B ) ! F (A).

1Or if the reader prefers, two maps with overloaded name.
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4. Finally, and more importantly, the functor preservesthe categorial structure:

f 2 Arr (C) g 2 Arr (C)

F (f ; g) = F (f ) ; F (g)

A 2 Obj (C)

F (id A ) = id F (A)

�

Figure 3.2 characterisesa functor diagrammatically. If F is a functor and the diagram

in C commutes, the diagram in D also commutes.

A
f - B

@
@

@
@

@
f ; g

R
C

g

?

A
id A - A

F -

F (A)
F (f )- F (B )

@
@

@
@

@
F (f ; g)

R
F (C)

F (g)

?

F (A)
F (id A )- F (A)

Figure 3.2: A functor F diagrammatically.

For simplicit y, De�nition 3.8.1de�nes a unary functor. Functors of any arit y arede�ned

in terms of cartesian products of categories.

Definition 3.8.2 The pr oduct category of two categoriesC and D , denotedC � D ,

is a category where:

Obj (C � D ) def= Obj (C) � Obj (D )

Arr (C � D ) def= Arr (C) � Arr (D )

such that:

f 2 Arr (C) f : A ! C g 2 Arr (D ) g : B ! D

(f ; g) 2 Arr (C � D ) (f ; g) : (A; B ) ! (C; D )

�
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The previous de�nition can be trivially extended to n-tuples; we talk then about n-

product categories. For instance, a binary functor (or bifunctor ) is a functor from a

product categoryto another category, e.g., F : C � D ! E, and similarly for n-functors.

We will be mostly interested in endofunctors, that is, in functors from C n to C, where

Cn is the n-product of C. For the sake of clarity, let us illustrate how De�nition 3.8.1

is adapted for a binary covariant functor F : C 2 ! C:

(A; B ) 2 Obj (C 2)

F (A; B ) 2 Obj (C)

(f ; g) 2 Arr (C 2)

F (f ; g) 2 Arr (C)

(f ; g) : (A; B ) ! (C; D )

F (f ; g) : F (A; B ) ! F (C; D)

In the category of types, a functor F : T yp e ! T yp e at the object level is a type

operator that maps types to types: if F is a type operator and A is a manifest type

then F (A) is a manifest type. At the arrow level, i.e., functional programs, F must

satisfy the following:

F (f ) : F (A) ! F (B )

F (f ; g) = F (f ); F (g)

F (idA ) = idF (A)

Which meansthat at the arrow level F is the map function for the type operator. For

example, in the caseof type operator List :

map f :: List a ! List b

map (f `;` g) == map f `;` map g

map ( id :: a ! a) == ( id :: List a ! List a)

where f `;` g = g � f . We have usedexplicit type annotations to illustrate the types

of each id instance.

Sections3.9.1 and 3.10 present examplesof binary functors.

3.9 (Co)Limits

A limit is a solution to a diagram, i.e., another diagram consisting of an object and a

collection of arrows that satis�es the universalproperty that any other solution factors

uniquely, i.e., there is a unique arrow from the other solution to the object in the limit

diagram which makes the combined diagrams commute. The colimit is the solution in
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the dual diagram. Limits and colimits can be studied bottom-up from empty diagrams

by adding objects and arrows. In the next sections we only present (co)limits for

diagrams that are usedlater on.

3.9.1 (Co)Pro ducts

A (co)product is the (co)limit of a diagram involving two objects A and B and no

arrows. Following [SS03]we present both notions simultaneously. The product is an

object A � B and two arrows exl and exr. The coproduct is an object A + B and two

arrows inl and inr:

A A

�
�

�
�

�

exl

� @
@

@
@

@
inl

R
A � B A + B

@
@

@
@

@

exr

R �
�

�
�

�
inr

�

B B

such that for any other similar solution (object S with arrows f and g), there is a unique

mediating arrow from it to the product (or from the coproduct to it) that makes the

following diagrams commute:

A A

�
�

�
�

�

exl

�

� � � � � � � � � � �

f

*
@

@
@

@
@

inl
R

H H H H H H H H H H H

f

j
S ................

m
- A � B A + B ................

m0

- S
H H H H H H H H H H H

g
j

@
@

@
@

@

exr

R �
�

�
�

�
inr

�

� � � � � � � � � � �

g

*

B B
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That is:

m; exl = f ^ m; exr = g

inl; m0 = f ^ inr; m0 = g

Both m and m0 are unique for every solution diagram, i.e., they are uniquely determ-

ined from the arrows involved. Following [Fok92, MFP91] we make this functional

relationship explicit and usefunctions M and O such that:

m def= f O g

m0 def= f M g

An important consequenceof universality is that any other diagram solution is iso-

morphic. If S is another product there is a unique arrow m2 : A � B ! S. If S is

another coproduct there is a unique arrow m0
2 : S ! A + B . Becausemediating arrows

are unique and the resulting diagramscommute, the composition of mediating arrows is

the identit y and their sourceand targets are isomorphic (Section 3.7). More precisely:

A A

�
�

�
�

�

exl

�

� � � � � � � � � � �

f

*
@

@
@

@
@

inl
R

H H H H H H H H H H H

f

j
S ...........

m1
....-

� .........
m2

...... A � B A + B ......
m0

1..........-
� ....

m0
2

........... S
H H H H H H H H H H H

g
j

@
@

@
@

@

exr

R �
�

�
�

�
inr

�

� � � � � � � � � � �

g

*

B B

m1; exl = f

m2; f = exl

)

) m1; m2; f = f f ; m0
2; m0

1 = f (

(
inl; m0

1 = f

f ; m0
2 = inl

m1; exr = g

m2; g = exr

)

) m1; m2; g = g g; m0
2; m0

1 = g (

(
inr; m0

1 = g

g; m0
2 = inr

Consequently:

m1; m2 = idS ^ m2; m1 = idA� B m0
2; m0

1 = idS ^ m0
1; m0

2 = idA+ B
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3.9.2 (Co)Pro ducts and abstraction

The de�nition of product captures the general notion of an object that is uniquely

formed by combining two objects such that we can recover them via arrows exl and

exr irr espective of the internal structure of that composite object. For example, in the

category of sets, the categorial product is the cartesian product, which can be de�ned

internally in many ways:

A � B def= f ff ag; f a;bgg j a2A ^ b2B g

A � B def= f ff bg; f a;bgg j a2A ^ b2B g

A � B def= f ff a;0g; f b;1gg j a2A ^ b2B g

The product object is a generalisation,i.e., an abstract set with operations for construc-

tion and observation. In the category of types,A � B is an abstract type (a composite

of A and B with two selector operators) which abstracts from the internal structure

(representation) of the object.

A coproduct is a type into which we can inject two types using the two arrows. The

mediating arrow f M g provides lifted construction in products and f O g provides

lifted discrimination plus selection in coproducts as shown in Figure 3.3, where lifting

refers to the processof turning values into functions.

exl :: Prod a b ! a
exr :: Prod a b ! b
M :: (c ! a) ! (c ! b) ! (c ! Prod a b)

(f M g) x = prod (f x) (g x)
prod :: a ! b ! Prod a b

inl :: a ! CoProd a b
inr :: b ! CoProd a b
O :: (a ! c) ! (b ! c) ! (CoProd a b ! c)

(f O g) x = if isl x then ( f � asl ) x else (f � asr) x
asl :: CoProd a b ! a
asr :: CoProd a b ! b
isl :: CoProd a b ! Bool

Figure 3.3: Type Prod stands for a product type and CoProd for a coproduct type.

Notice that typesProd and CoProd are abstract, we have not provided their de�nition
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in terms of concrete types. In a functional language(i.e., Haskell), binary products

and coproducts are manipulated through concrete representations intro duced in type

de�nitions, i.e., cartesian products and disjoint sums(Figure 3.4).

type Prod a b = (a ,b)
data CoProd a b = Inl a | Inr b

exl = fst
exr = snd
inl = Inl
inr = Inr
isl (Inl _) = true
isl (Inr _) = false
asl (Inl x) = x
asl (Inr _) = undefined
asr (Inl _) = undefined
asr (Inr y) = y

Figure 3.4: An `implementation' of Figure 3.3 which describesthe internal structure of
the objects and arrows.

Binary (co)products are generalisedto n-ary (co)products trivially: the (co)product is

an object and n arrows [Pie91].

Interestingly, product and coproduct construction, i.e., � and +, are both endofunctors

from C2 to C. It is standard to deviate from the pre�x functor application notation

and write A � B instead of � (A; B ) and similarly for +. More precisely:

(A; B ) 2 Obj (C 2)

A � B 2 Obj (C)

(f ; g) 2 Arr (C 2)

f � g 2 Arr (C)

f : A ! C g : B ! D

f � g : A � B ! C � D

In the category of types,at the arrow level � corresponds to the function:

map_Prod :: (a ! c) ! (b ! d) ! Prod a b ! Prod c d

map_Prod f g = (f � exl) M (g � exr)

In the caseof concrete tuple types (Figure 3.4), the function can be written more

familiarly:

map� :: (a ! c) ! (b ! d) ! Prod a b ! Prod c d

map� f g (x ,y) = (f x, g y)

Similarly, for coproducts:
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map_CoProd :: ( a ! c) ! (b ! d) ! CoProd a b ! CoProd c d

map_CoProd f g = (inl � f) O (inr � g)

map+ :: (a ! c) ! (b ! d) ! CoProd a b ! CoProd c d

map+ f g (Inl x) = Inl (f x)

map+ f g (Inr y) = Inr (g y)

3.10 Arro w functor

In Section3.3 we introducedthe notation Arr (A; B ) to expressthe collection of arrows

from A to B in a given category C. Interestingly, Arr can be understood as an endo-

functor from C 2 to C. In the categoryof types,for any (A; B )2Obj (T yp e2), Arr (A; B )

is another type: the type of functions (arrows in T yp e) from A to B . This functor has

the peculiar characteristic that it is contravariant on its �rst argument. Why this is so

becomesapparent by looking at the following diagram:

A
f - C

B

h

?

g
- D

?

?

At the arrow level, we cannot de�ne Arr (f ; g) : Arr (A; B ) ! Arr (C; D ) by composing

f and g with arrows h2Arr (A; B ) to yield an arrow in Arr (C; D ). We can do it if Arr

is contravariant on its �rst argument:

A � f
C

B

h

?

g
- D

f ; h; g

?
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Definition 3.10.1 Given a category C, the arr ow functor Arr : C 2 ! C is de�ned

as follows:

(A; B ) 2 Obj (C 2)

Arr (A; B ) 2 Obj (C)

f : C ! A g : B ! D h 2 Arr (A; B )

Arr (f ; g) : Arr (A; B ) ! Arr (C; D ) (Arr (f ; g))( h) def= f ; h; g

�

In the category of types, Arr (A; B ) is the function spaceA ! B . At the arrow level,

f ! g can be written using more familiar Haskell notation:

map! :: (c ! a) ! (b ! d) ! (a ! b) ! (c ! d)

map! f g h = g � h � f

3.11 Algebra of functors

Just like there is an algebraof manifest typesand typeoperatorswhich canbecombined

to form type-terms, there is an algebra of objects and functors which can be combined

to form object expressions.The following de�nitions provide the machinery.

Iden tit y functor: The identit y functor Id : C ! C is de�ned as follows:

A 2 Obj (C)

Id (A) 2 Obj (C) Id (A) def= A

f 2 Arr (C) f : A ! B

Id (f ) 2 Arr (C) Id (f ) def= f

Constan t functor: The constant functor K B : C ! C for every object B of C is

de�ned as follows:

A 2 Obj (C)

K B (A) 2 Obj (C) K B (A) def= B

f 2 Arr (C) f : C ! D

K B (f ) 2 Arr (C) K B (f ) def= id B

Polynomial functors and poin t wise lifting: Objects described by object expres-

sions can be obtained from applications of the constant functor, the identit y functor,

and the product and coproduct functors to other objects. For example, if A, B and C
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are objects of C, so is A + (B � C). The object is not named but written in terms of

applications of functors to objects.

Functors can also be de�ned in terms of object expressions.In the previous expression

if A stands for a free variable instead of an object, the object turns into a functor

(� + (B � C)) : C ! C, where we indicate by � the place were the actual parameter

would go. More commonly, functors are named in de�nitions:

F (X ) def= X + (B � C)

(Inexplicably, Lambda Calculus notation has never caught on in Category Theory or

in maths as a whole.)

It is sometimesconvenient to de�ne F only in terms of the functors involved and not

in terms of functors and objects. To do that we de�ne a notion of pointwise lifting

for functors.

Definition 3.11.1 Let F : C 2 ! C be a functor. The lifting of F , denoted _F is

de�ned as follows:

A 2 Obj (C) G : C ! C H : C ! C

_F (G; H ) : C ! C ( _F (G; H ))( A) def= F (G(A); H (A))

�

With this de�nition at hand it is not di�cult to check that F (X ) def= X + (B � C) can

be de�ned in terms of functors and pointwise-lifted functors:

F def= Id _+( K B _� K C )

At the object level:

F (A) = (Id _+ (K B _� K C ))( A)

= Id (A) + (K B _� K C )(A)

= A + (K B (A) � K C (A))

= A + (B � C)
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At the arrow level:

F (f ) = (Id _+ (K B _� K C ))( f )

= Id (f ) + (K B _� K C )( f )

= f + (K B (f ) � K C (f ))

= f + (id B � id C )

The last expressionis more commonly written in Haskell as follows for �xed types C

and B:

map+ f ( map� ( id :: B ! B) ( id :: C ! C))

Pointwise lifting produceshigher-or der functors :

F : C2 ! C

_F : Func (C; C)2 ! Func (C; C)

where Func (C; C) is the category of functors from C to C (yep, functors make up a

category, seeSection 3.12). It is common to write Func (C; C) as C ! C, making the

`type signature' of _F more obvious to a functional programmer:

_F : (C ! C) ! (C ! C)

The �nal touch is provided by lifting objects to functors. An object A2Obj (C) is lifted

to a functor _A : 1 ! C, where1 is the initial category(the initial object in the category

of small categories,seeSection 3.12). If we drop the notational distinction between

lifted and regular functors, objects, and lifted products, we end up in a `language-game'

similar to that of values and (higher-order) functions, or manifest types and (higher-

order) type operators. This facilitates the treatment of type operators as functors.

The last ingredient in this setting is the introduction of �xed points to account for

recursive equations involving functors from C n to C. Let us state here the de�nition

for n = 1:

Definition 3.11.2 Let C be a category and F : C ! C a functor. A �xe d point of

F is a pair (A; � ) where A2Obj (C) and � : F (A) ! A is an isomorphism. �

The technical machinery neededto explain the de�nition in detail is beyond the scope
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of this presentation. Let us just mention that the �xed points of F form a category

and the least �xed point is the initial object. Such category is a subcategory of the

category of F -algebras, discussedin Chapter 5. The proof of existenceof the initial

algebra is basically a categorial generalisation of Tarski's �xed-p oint theorem [Pie91,

p61{72].

3.12 Natural transformations

Categoriesare themselves mathematical structures and can be taken to be objects of

another category where functors are the arrows. To avoid circular notions such as the

category of all categories(whoseobjects are all categories)that may lead to paradoxes

similar to Russell's in Set Theory [Ham82], categoriesare classi�ed into smal l and

lar ge, where in the former objects are not categories.

It is interesting to considerwhether arrows of a categoryare objects of another category

and what would then be the corresponding notion of arrow in this secondcategory,

called an arr ow category . Functors are maps betweencategorieswhich preserve the

categorial structure. A functor category is an exampleof an arrow category: objects

are functors betweensmall categories;arrows are called natural transformations.

Definition 3.12.1 Let C and D be categories. Let Func (C; D ) be the category of

functors from C to D and F and G two functors (objects) of this category that have

the samevariance. A natur al tr ansformation � : F _! G is an arrow in Func (C; D ).

(The notation _! is introduced for arrows between functors.) More precisely, � is a

family of D -arrows indexed by objects of C:

� = f � X 2 Arr (F (X ); G(X )) j X 2 Obj (C) g

In words, a natural transformation � : F :! G assignsto each object A2Obj (C) an

arrow � A 2Arr (F (A); G(A)). The arrows must satisfy the following coherence(or nat-

uralit y) property: depending on whether F and G are both covariant or contravariant,
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nA

nB

A

B

F(A)

F(B)

G(A)

G(B)

D

C
G

F

. nf

F(f)

G(f)

Figure 3.5: � is a natural transformation when � A ; G(f ) = F (f ); � B for every pair of
objects A and B in C.

the squareddiagrams in D commute respectively:

A F (A)
� A - G(A) F (A)

� A - G(A)

B

f

?
F (B )

F (f )

? � B - G(B )

G(f )

?
F (B )

F (f )

6

� B - G(B )

G(f )

6

C D D

�

Figure 3.5 is a more illustrativ e depiction of the de�nition when F and G are both

covariant. Given A2Obj (C), we can draw an arrow � A from F (A) to G(A), i.e.,

betweentwo objects in Obj (D ) arising from the sameobject A by two di�eren t functors.

And this can be done for any object in Obj (C). Furthermore, for any other object

B 2Obj (C), there are two ways of de�ning an arrow from F (A) to G(B ), namely,
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F (f ); � B and � A ; G(f ). Both must be equal:

F (f ) ; � B = � A ; G(f )

In the category of types, natural transformations are polymorphic functions between

type operators. For example:

flatten :: List (List a) ! List a

flatten xs = foldr ( ++ ) []

is a natural transformation:

flatten : List; List :! List

as proven by the following equation:

( map `;` map) f `;` flatten b == flatten a `;` map f

where flatten a and flatten b are instances of flatten at any two types a and b

respectively. The equation can be put in the general form as follows:

F def= List ;List , which at the arrow level is map `;` map.

G def= List , which at the arrow level is map.

� A
def= flatten a

� B
def= flatten b

Both sidesof the equation are functions of type List (List a) ! List b which are

equal. The �rst function maps f :: a ! b over the list of list of as and then 
attens

the resulting list of bs. The secondfunction 
attens the list of lists of as into a list of

as and then maps f to get a list of bs.

That functors as objects and natural transformations as arrows make up a category

is illustrated by the following diagram. The composition of natural transformations is

associative: given � : F :! G and � : G :! H , their composition � ; � : F :! H de�ned

by (� ; � )A = � A ; � A for every A2Obj (C) is natural (i.e., the diagram commutes):

F (A)
� A - G(A)

� A- H (A)

F (B )

F (f )

?

� B

- G(B )

G(f )

?

� B

- H (B )

H (f )

?
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The identit y natural transformation � : F :! F is the collection of identities of the

objects in the image of F , i.e., � A = idF (A) .



Chapter4

GenericProgramming

abstra ction principle : Each signi�can t piece of functionalit y in a

program should be implemented in just one place in the source. Where

similar functions are carried out by distinct piecesof code, it is in general

bene�cial to combine them into oneby abstracting out the varying parts.

[Pie02, p339]

The notion of `genericity' in programming arose independently from within di�eren t

paradigms that still exert an in
uence on its meaning, a meaning connoted by techno-

logical contingenciesand theoretical advances.The term `generic' is misusedas well as

overused. One is tempted to say it is overloaded,or to take the pun further, that it is

polymorphic. It is certainly not generic.

This chapter provides an introduction to Generic Programming and aims at clarifying

someof the confusion. We beginby relating `generic'to another overusedterm, namely,

`abstraction', and wind up discussingwhere the present thesis stands in the described

setting.

4.1 Genericit y and the two uses of abstraction

Abstraction is the basic mechanism for tackling complexity and excessive detail. It

is central to the top-down or bottom-up hierarchical decomposition or imposition of

structure (a model) on a highly interconnected domain that cannot be completely

understood in isolation. The focus at a particular level of description, highlighting

what is relevant and ignoring or hiding what is irrelevant at that level, is more tellingly

dubbed information hiding .

Abstraction made its early appearancein Mathematics and Engineering in the guiseof

functional abstr action where the focus is directed toward the `function', purpose,

or role of components irrespective of how they work internally. It made its debut in

programming in the form of contr ol abstr action with the advent of assembly macros

and subroutines. The �rst high-level programming languagespushed the notion fur-

59
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ther with the introduction of structured programming constructs (loops, conditionals,

etc.), procedures,and synchronisation mechanisms for dealing with concurrency. The

idea is summarisedby the (Control) Abstraction Principle quoted at the beginning of

the chapter. Implicit in it are two important notions, namely, parametrisation and

encapsulation.1

Par ametrisation is the idea of making somethinga parameter to somethingelse. For

example,an expressionwith free variables can be abstracted into a function where the

free variables are understood to be parameters. Many de�nitions of Generic Program-

ming focus on parametrisation, i.e., on making programs more 
exible, adaptable,

and general by \allo wing a wider variety of entities as parameters than is available

in more traditional programming languages" [Gib03, p1]. Parametrisation enablesa

SingleProgram on Multiple Data model of computation and is thereforecentral to code

reuse. In the last decade,code reusehasbeenmostly popularisedand achieved through

extension, inheritance being a conspicuousexample.

Enc apsulation is information hiding with respect to the behaviour of components:

their interaction is �xed but their internals may change. In programming terms, the

interaction is setdown in the speci�c ation (the what) of somecomputation or data struc-

ture and the internals are described by its implementation (the how). A consequence

of encapsulation is the interchangeability of components that satisfy the speci�cation.

Thus, if we view our abstracted function as a black box of which we only care about

its name, type, and semantics, then we have encapsulatedit. Another function of the

sametype and semantics can be consideredequal, irrespective of whether it calculates

its outputs in the samefashion.

Genericity is already present in the notion of parametrisation. Programswhosevary-

ing domain-speci�c details have beenfactored out as parameters2 could be considered

generic in that regard. Nonetheless,genericity has wider connotations than paramet-

risation. We provide a de�nition of Generic Programming in a catch-phrase:
�




�

	
Generic Programming = Parametrisation + Instantiation + Encapsulation

1The reader should not confuseparametrisation with parametricity . The latter has a speci�c mean-
ing in relation to parametric polymorphism [Rey74, Wad89].

2Pedantic remark: factoring out something that can vary justi�es the use of the term `parameter
variable' even in functional languageswhere variables are immutable. However, somepeople prefer the
more neutral `identi�er'.
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More precisely, forms of genericity can be classi�ed according to the following criteria:

1. Which entities are parameters to which other entities at a level of description, e.g.,

level of valuesand types,modules, components, agents, etc. Parameterisedentities

acquire a new status as a mapping or relation of sorts but they may live at the

samelevel asother entities, i.e., may be �rst-class and thereforeparametersto other

entities. The higher the entit y is located in the hierarchy, the more generalit is (e.g.,

compare modules to functions) and the more possibilities for parametrisation and

independenceon entities in levels below|not to mention the possibility of mutual

parametrisation when someof the levels are 
attened (e.g., dependent types).

2. How parametersare provided to and manipulated by an entit y. Parametrisation is

not necessarilya synonym of uniform behaviour (i.e., uniform semantics); the mech-

anics of instantiation are of central importance. Among other things, it plays a

role in determining whether parameterised entities are �rst-class or can be com-

piled separately from their instantiations (seeSections4.5 and 4.7.1). Furthermore,

instantiation itself needsnot be uniform: someparametersmay be instantiated dif-

ferently than others. Finally, the number of parametersmay be variable, they may

depend on each other, or be provided by default, etc.

3. Upholding encapsulation. Some researchers have characterised Generic Program-

ming as the attempt at \�nding the abstract representation of e�cien t algorithms,

data structures, and other software concepts" so as to make them generally applic-

able, interoperable and reusable[CE00, cit. p169]. Key ideasare lifting algorithms

to a general level without loosing e�ciency and expressingthem with minimal as-

sumptions about data types. In other words, lifting control abstraction to a new

level of generality, usually via parametrisation, but upholding encapsulationin data

types,known as data abstr action .

Encapsulation in control abstraction is achieved by hiding the implementation of an

algorithm behind an interface (e.g., function name, type, and semantics). Encapsula-

tion in data abstraction is also achieved by hiding data typesbehind an interface, but

unfortunately there is somedisagreement about how this should be done (Section 4.2).

At any rate, upholding data abstraction is a necessarycondition for Generic Program-

ming (Chapter 7). Sometimes,the two usesof `abstraction', control and data, do not
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comehand by hand. Naturally , the lack of su�cien t abstraction at a level of description

makesour programs dependent on speci�c detail and therefore lessgeneric.

4.2 Data abstraction

Data abstraction, i.e., functional abstraction for data, appearedlater than control ab-

straction. Originally, the introduction of basedata typesand their operations provided

machine independent representation and manipulation of data. More complex data

structures weresimulated or represented in terms of combinations of basetypes,struc-

tured typeslike arrays and records(also called type operators) and previously de�ned

types. But the impact of the languageof types in correctnesswas soon to be noticed,

and part of the outcomehasbeena split of the world of data typesinto concr ete data

typ es and abstr act data typ es (ADTs). The motivation for this split was threefold:

1. In early computer languages,programmer-de�ned types were not given the same

status as base types. For instance, a programmer-de�ned Point represented as a

pair of integerscould bemanipulated by any function on pairs of integersirrespective

of whether the function maintained the properties of Point (e.g., that its valueslie

within a certain range).

2. Many correctnessproblems, such as safety problems, arose, and still continue to

arise,becausethe languageof typesis not expressiveenoughto capture the semantics

of the programmer's intende d (or imagine d ) type. Or to replacea negative with a

positive, the representing concretetype can be too big: the `values' of the intended

type are represented by a subsetof the valuesof the representing type(s), those that

ful�l someparticular criteria.

3. Software Engineering practice, in particular maintenance and evolution, dictated

the conceptual separation between intended type (speci�cation) and representing

type (implementation). The need to minimise the repercussionsof ever changing

implementations led to a solution based on encapsulation where the representing

type was hidden behind an interface.

By the mid 1970s,the notion of an abstract data type was engraved on most program-

mers' minds, but its theoretical formalisation and its embodiment in programming lan-

guageconstructs has taken long to mature, the very idea and variations on the theme
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(e.g., objects) still a subject of current research [AC96, Cas97, DT88, GWM + 93, Mit96 ,

Mar98, Pie02].

Data abstraction has been one of the contributions of Computing Scienceto Type

Theory in what is popularly known asthe `formulas-as-types' correspondenceor Curry-

Howard isomorphism [CF68, How80] which identi�es formulas of constructive logics

with types, and proofs with functional programs. Programmers write much larger

`proofs' than mathematicians. Advances in program structuring and abstract data

typestook placein programming without a foundational theory; in fact, many advances

in programming have taken place independently or without any intervention of Type

Theory or otherwise. Other epitomising examples are object-oriented programming

and the serendipitous re-discovery by John Reynolds in programming of Jean-Yves

Girard's type-theoretical SystemF (Section 2.7.3). This cycle of invention followed by

formalisation is not uncommon and to bring it into question is to deny reality:

type checking rules or languageideasare put forth without an underlying model

[formal type theory]. Ad hoc rules are not necessarilylessdesirable for the lack

of a model; it seemsto us that if such rules lead to a consistent and useful

programming methodology, there probably is a satisfactory model. [DT88, p.61]

4.3 Generic Programming and Soft ware Engineering

According to conventional wisdom, software su�ers from an endemic crisis of unre-

liabilit y, unmanageability, and unprovabilit y. Becauseour imagination outstrips our

abilities [Bud02, p2], one way of tackling the crisis is, amongst others, to change the

way we channel our imaginations, i.e., to changethe programming model. In this set-

ting, it is natural to expect GenericProgramming to help reducesoftware development

and maintenancecosts,as fewer programsare developed, maintained and, so much the

better, they can be re-usedfor varieties of data.

However, there are hardly any standardisedor widely acceptedsoftware life cycles,or

development processes,or speci�cation and designformalisms,or program construction

methodologiescentred around Generic Programming or taking it into account. Excep-

tions are the minor notational extensionsin UML, 3 the informal ontology of concepts

and methodological aspectsbrought forth by the designof the C++ STL [MS96, MS94,
3www.uml.org
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VJ03], and the work of the squiggolcommunit y, e.g., [BJJM99, Hoo97], which includes

polytypism and theories of concrete data types.

It is hard to determine the impact that a discipline of Generic Programming will have

on software development, and whether it will dispensewith maintainabilit y. Some

authors are skeptical about the latter:

Becauseeach new problem typically requiresa slightly di�eren t set of behaviours,

it is often di�cult to designa truly useful and general-purposesoftware compon-

ent the �rst time. Rather, useful reusablesoftware components evolve slowly over

many projects until they �nally reach a stable state. [Bud02, p284]

In terms of programming languagesand implementations, there is available technology,

experimental prototypes, and idioms at the level of functions and types, with a bit

less at the level of modules and libraries. So far, the most widespreadsuccessstory

in Generic Programming is polymorphism in all its varieties, popular examplesbeing

the parametric polymorphism of functional languagesand the C++ STL. Hopefully,

the rest of the �eld will soon expand and encompassthe full extent of the software

development process.

Understandabilit y. One aspect of genericity that has an impact on development

and is usually taken for granted is understandability. The more generic a function

is, the more things it can do, supposedly the more e�ort required to construct it, to

understand what parameters are, in which mode they are instantiated, how they are

manipulated, etc.

Ideally, understandability must not compromisecontrol abstraction, e.g., require know-

ledgeof the genericfunction's implementation or of the internal mechanics of instanti-

ation, although sometimesthis is not entirely possible(Section 4.7.2).

When it comesto program proving, already in a �rst-order setting proofs require heavy

mathematical machinery and get complicated and lengthy for small programs, let alone

in a higher-order setting where there is the danger that someproperties may be unde-

cidable.

An example of the tension betweengenericity and understandability is found in func-

tional languages,where programmers can capture recursion patterns as higher-order
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functions which factor out speci�c behaviour as function parameters. However, an ex-

cessive useof the latter can make programsdi�cult to read, especially if thesefunction

parameters have to circumvent the higher-order function's behaviour for speci�c situ-

ations. More concretely, it is well-known that many programs can be expressedusing

only the higher-order function fold [Hut99, GHA01], but programmers rarely try to

write all they can in terms of it. They had better rely on generictraversalswritten in

terms of combinator libraries [LV02a] or on GenericProgramming libraries or language

extensions(Chapter 6).

A careful study on the balance between genericity and speci�cit y at various levels of

description (design,component, module, function, etc.) is yet to beproduced. Its study

in design patterns [GHJV95] could perhapsbea usefulstarting point. Designpatters

are high-level speci�cations in which there is a mixture of genericity and speci�cit y. Is-

suesof abstraction, parametrisation, and encapsulationappear at various levels. There

is already somework in this direction in the functional paradigm [OG05, LV02b]

E�ciency . There is also a tension between genericity and e�ciency . Initially , a

genericfunction would seemto be lesse�cien t than a specialisedfunction for a given set

of parameters,if only becauseof the extra cost of passingand instantiating parameters

and the risk of code bloating in generative approaches.

However, the samecanbesaidabout compiledcodebeinglesse�cien t than handwritten

machine code or about C being `faster' than Java. We don't want to write our programs

in assembly languageunlessin critical situations, nor do object-oriented programming

in C. Every time there is a leap in abstraction somedegreeof e�ciency is lost.

Indeed, programming languagesare better at their job when designedto provide good

automatic support for tasks otherwise performed by the programmer. Opposition to

this trend in defenseof technologically contingent notions of e�ciency is striking. Had

the stigma of ine�ciency not beenignored in the past we would not have procedures,

functional languages,or automatic garbagecollection today. The compromisebetween

genericity and e�ciency is, like the hoary space versus time, one of the inevitable

tradeo�s that arise in Computing Science(Box 4.1).

Standard repartees are: (1) it is the job of research in program transformation and

optimising compilers to obtain reasonablee�ciency and, (2) mechanismsfor supplying
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BOX 4.1: Genericity vs E�ciency

\Correctnessmust come�rst. Clarit y must usually comesecond,and e�ciency

third. Any sacri�ce of clarity makesthe program harder to maintain, and must

be justi�ed by a signi�cant e�ciency gain." [Pau96, p10]

\More computing sins are committed in the name of e�ciency (without ne-

cessarilyachieving it) than for any other single reason|including blind stu-

pidit y." [Wul72]

e�cien t specialisedcode for critical situations can always be provided. An exampleof

the former can be found in [AS05] where a program transformation technique (fusion)

is enhancedfor the optimisation of code generatedby the Generic Haskell compiler.

An exampleof the latter is partial template specialisation in C++ [VJ03] and polytypic

extension in Scrap your Boilerplate (Section 6.2).

Notice the useof the expression`reasonablee�ciency'. Admittedly , e�ciency improve-

ments usually entail a loss of clarity, for the improvements on an originally ine�cien t

algorithm are obtained after exploiting properties of the problem that are not imme-

diate. Syntactic and semantic program transformation techniques are theoretically

limited and cannot produce fully optimal results:

Program transformations can indeed improve e�ciency , but we should regard ex-

ecutable speci�cations with caution. . . The ideal of declar ative pr ogramming

is to freeus from writing programs|just state the requirements and the computer

will do the rest. Hoare [Hoa87] hasexplored this ideal in the caseof the Greatest

Common Divisor, demonstrating that it is still a dream. A more realistic claim

for declarative programming is to make programs easierto understand. [Pau96,

p10]

The moral of the story is that machines cannot replaceprogrammers.

4.4 Generic Programming and Generativ e Programming

GenericProgramming represents a key implementation technique for Gener ative Pr o-

gramming , a Software Engineering paradigm that aims at manufacturing software
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components in the same`automated assembly line' fashion as most goods are manu-

factured in other industries. More precisely:

Generative Programming focuseson software systemfamilies rather than one-of-

a-kind systems. Instead of building singlefamily members from scratch, they can

all be generatedbasedon a commongenerative domain model . . . that has three

components: a meansof specifying family members, the implementation compon-

ents from which each member can be assembled, and the con�gur ation knowledge

mapping betweena speci�cation of a member and a �nished member. [CE00, p5]

The implementation components must be highly orthogonal, combinable, reusable,and

non-redundant. Not surprisingly, here is where Generic Programming comesinto the

picture. However, the view of generic programs as implementation components for

Generative Programming doesnot alleviate the criticisms of Section4.3, for even if the

system family speci�cation is lifted to the generative domain model, the speci�cation

and development of genericcomponents still needsto be carried out.

In the other direction, Generative Programming techniques also provide implementa-

tion solutions to Generic Programming. Examples are program generation from gen-

eric speci�cations, generative compilation, and meta-programming techniques(we have

already touched upon this in Section 2.5). Generative Programming also includes the

possibility of generic program generation, where \the parameters to the [generic] pro-

gram generation processremove unnecessaryoptions of the general model and �ll in

someapplication-speci�c detail" [CE00, p209].

4.5 T yp es and Generic Programming

Typesare in
uen tial in programming and inexorably too in GenericProgramming. The

need to type check generic entities is part of the quest for richer type languagesand

systems.

For instance, most of the available technology in statically type-checked languagesis

basedon type parametrisation. Also, in sometyped languages,genericfunction de�ni-

tions are at most type-checked by the compiler; code is only generatedfor their applica-

tions to actual arguments. Examplesare C++ Templatesand GenericHaskell. In C++,

template functions are not type-checked, their instantiations are. In Generic Haskell,
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so-calledpolytypic functions are only type-checked by the compiler. Code is generated

for their applications. Both languageextensionssupport separatecompilation: tem-

plate instantiation is type-checked as late as link time, and applications of polytypic

functions may appear in di�eren t modules. However, the compilation of applications

requires reading the module with the de�nitions.

GenericProgramming in untyped or dynamically type-checked languagesis not entirely

a non-issue. Types are implicitly present in strongly and dynamically type-checked

languages.At run-time one gets `type' errors even if types are not explicitly included

in the language. Even in untyped languages,generalisingcertain constructions is not

trivial and typessomehow arise naturally [CW85, p3].

The de�nition and instantiation of genericentities must be well-typed and strong static

type-checking should not be sacri�ced for the sake of genericity. For example, in many

languagesarrays consistonly of pointers to a chunk of memory of a �xed size. Functions

on these arrays have to be given their size as a separateparameter|the sourceof a

correctnessproblem|but they can work on arbitrary arrays. Bundling memory and

size in an abstract data type means,for most languages,that functions can only work

on arrays of particular sizes.The solution is not to sacri�ce safety for genericity but to

designa languageof typeswhere genericity can be safely accommodated.

4.6 T yp es and program generators

Sometimesthe languageof typesis expressive enoughto allow typed genericprograms

and data to be directly or indirectly de�ned within the language itself, or via lib-

raries or re
ection. When the existing language of types is not powerful enough,

type and term languageextensionsare proposedwhich are either incorporated as part

of the language,with occasionalunexpected interactions with existing features (e.g.,

C++ Templates [Str92]), or implemented using pr ogram generators (e.g., Generic

Haskell [HJ02]):

[A generator] produces `code' in some language which is already implemented

[and is] used to extend the power of the baselanguage. . . This processshould

be compared with that of functional abstraction. The di�erence lies in [that]

manipulation is performed beforethe �nal compiling [where the semantic checks

of the whole program take place]. Macrogeneration seemsto be particularly
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valuable when a semantic extension of the language is required [and the] only

alternative to trickery with macrosis to rewrite the compiler|in e�ect, to design

a new language.. . In a more sophisticated languagethe needfor macrogenerator

diminishes. [Str00]

Another important aspect of genericentities that may causeconfusion is the relation-

ship between being �rst-class, typed, part of languageextensions,or implemented in

terms of program generators. All thesepossibilities are orthogonal:

� An entit y at a particular level (e.g., agents, modules, types, terms) is �rst-class if

it plays the role of a \v alue" at that level. Amongst other things, it can be a part

of other entities and a parameter or result of other entities. In a typed language,a

�rst-class value hasa type; but having a type doesnot grant �rst-class status. (e.g.,

functions in C). Haskell modulesare examplesof entities that are not �rst-class and

don't have types.

� Typed genericentities implemented using generatorsmay not be �rst-class because

of particular design decisionsregarding generator or compiler implementation, not

becauseof theoretical limitations. SomeDraconian restrictions on C++ Templates,

like forbidding virtual member template functions, are examplesof this. On the

contrary, genericfunctions are not �rst-class in Generic Haskell becausetheir types

areparametric on attributes of actual type-operator arguments, which arenot known

until instantiation (Section 6.1).

4.7 The Generic Programming zoo

Generic Programming is better characterisedby a classi�cation of its particular mani-

festations which account for the di�erences in the usageof the term. As discussedin

Section4.1, genericity quali�es parametrisation by describingwhat areparameters,how

and when they are instantiated, and whether abstraction is upheld. The inhabitants of

the Generic Programming zoo can be classi�ed according to this criteria.

Most general-purposetyped programming languagesusually have three explicit levels

of values, types, and modules (which may contain types and values) plus two more

possible implicit or explicit levels, namely, one of kinds (Chapter 2) and another one

for checking the correct use of abstractions when they are not checked at the type
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level (e.g., Standard ML modules). In somelanguagesabstractions are checked at the

type level (e.g., existential types, higher-order records, classes,etc). Special-purpose

languagesmay have other levels.

Most mainstream languageskeepvaluesand typesapart, i.e., valuescan only be para-

meters to valuesor functions and similarly for typesand type operators. It is natural

to explore what happenswhen an entit y in a higher level is a parameter to an entit y in

a lower level (e.g., valuesparameterisedby types)or when the levelsare interconnected

(Box 4.2). It is also natural to explore the di�eren t possibilities of instantiation.
'
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BOX 4.2: Varietiesof Parametrisation
The following table lists somepossibilities of parametrisation at value, type,

and kind level (adapted from [HJ02, p17]).

Instantiation

Entit y Parameter Basedon substitution Basedon structure

Value Value Ordinary functions

Value Type Polymorphic functions Polytypic functions

Value Kind

Type Value Dependent types

Type Type Ordinary type operators Polytypic types

Type Kind Polykinded types

Kind Value Dependent kinds

Kind Type Dependent kinds

Kind Kind Kind operators Kind-indexed kind

This table doesnot considerbinding time (Section 4.7.1). Ordinary functions

have types. Ordinary type operators have kinds. Polytypic functions have

polykinded types. Polytypic typeshave kind-indexed kinds.

4.7.1 Varieties of instan tiation

Di�eren t varieties of instantiation can be entertained depending on how and when

actual arguments are provided.

Concerning the how, the typical method of instantiation is the substitution of the ac-
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tual argument for the formal parameter. This kind of `syntactical replacement' is not

trivial to implement and is quali�ed by evaluation order; typically call-by-X , where X

is value, push-value, reference, need, name, etc. All these modesof evaluation assume

that function de�nitions are not evaluated but just optimally compiled. It is the typ-

ical method of instantiation in function and type application in classical varieties of

polymorphism and dependent types.

Instantiation could also involve somesort of examination of the argument that guides

the instantiation. This is the casein structural polymorphism, where types and func-

tions are dependent on the structure of type arguments and therefore the latter de-

termine the former's semantics. In statically-t yped languages,what is manipulated at

run-time is a value representing the type argument, if at all.

Non-uniform behaviour is possiblein all theseinstantiation schemes(seeSection 4.7.2

and Box 4.2).

Concerning the when or the binding time , instantiation can take place at compile

time (static par ametrisation ), at run time (dynamic par ametrisation ), or at

both. Static parametrisation rulesout run-time variabilit y and may complicateseparate

compilation| e.g., template instantiation in C++ is sometimesdeferreduntil link time.

At the value level, the correctnessof instantiations that take place dynamically may

usually be checked statically (e.g., type checking function applications).

The notions of open world and closed world are typically usedin relation to exten-

sion. Generic entities are open world if they can be extended incrementally without

recompiling already written code. However, the notions can also be used with re-

gards to instantiation and separatecompilation: genericentities are open world if their

de�nitions can be compiled (or at least, type-checked) without their instantiations. In

other words, separatecompilation is supported. `Openness'refershere to the fact that

de�nitions are universal and not determined by how they are used.

4.7.2 Varieties of polymorphism

C++ Templatesand the STL are consideredexamplesof Generic Programming. Ada's

instantiatable modules are actually called `generics'. Many of the current usesof gen-

ericity conform to what is technically known as polymorphism , a vocable derived
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Polymorphism

Universal

Overriding
Subtype
Subclass

Ad hoc

Inclusion

Parametric
Unbounded

Bounded

F-Bounded

Predicative
Impredicative
Type:Type

Existentials

Overloading

Dependent Types

Coercion

Dipatching:

Multiple/Single
Static/Dynamic

Figure 4.1: Classicpolymorphism with instantiation basedon substitution [CW85, p4]
[CE00, chp. 6] [Pie02, part v] [Mit96 , chp. 9].

from the Greek poly morphos, literally meaning `many forms'.4 Typically, an entit y

(usually a value or a type) is polymorphic if it has many semantic meanings. Ex-

amples of meaning are the value denoted or the type, the latter an approximation of

the semantics.

An early but crude classi�cation of polymorphism was proposedby Strachey [Str00]

and later improved by Cardelli and Wegner [CW85] from a typesperspective; or more

precisely, from the perspective of the typesof functions, for the type of a polymorphic

function speci�es the nature of its polymorphism. Figure 4.7.2depict and extendstheir

classi�cation. The remainder of the section elaborates on it.

The original de�nition of ad-ho c polymorphism was given by Strachey [Str00, p37]:

In ad hoc polymorphism there is no systematic way of determining the type of

the result from the type of the arguments. There may be several rules of limited

extent which reduce the number of cases,but theseare themselves ad hoc both

4Morphos is a Greek god who can take any form he wishes, even that of a giant carrot.
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in scope and content.

Coercion is an example of ad hoc polymorphism. Coercion is automatic or implicit

conversion . A conversion is a transformation of a value from one type to another

type. In the caseof coercion, on the surface the value seemingly retains its identit y

and is seenas having many types. Behind the surfacethe compiler inserts calls to con-

versionsfunctions and createsnew temporary values. Coercionsnot involving changes

of representation are called castings .

Overlo ading is the foremostand most powerful instanceof ad hoc polymorphism. It is

basically a mechanism for symbol reuse. A function name,literal value,etc, is usedwith

di�eren t meanings(e.g., types) but what is actually being de�ned is typically a �xed

set of monomorphic valuesor functions that are only nominally related.5 The functions

work on di�eren t types with unrelated structure and thus have unrelated semantics.

Their usein the program is determinedby a processof `best-match' resolution, typically

performed at compile-time, basedon the context of instantiation, which in the caseof

functions is determined by the typesof the actual arguments and the lexical scope.

Overloading is a very powerful feature, especially if combined with other features like

inheritance, rede�nition, polyadicity, etc; but it lacks a generality that is often com-

plemented by extension or generative approaches. C++ Templates are an example

(Boxes 4.3 and 4.4).

Whether languagesare explicitly or implicitly typed (i.e., require type annotations)

hasan impact on the overloading scheme. In explicitly typed object-oriented languages

like Java or C++, overloadedmethods may have di�eren t type signaturesand di�eren t

semantics| e.g. myStack .push () , myDoor.push () , etc. In implicitly typed functional

languagesof the ML family, overloading is either forbidden or has to be achieved via

typ e classes [Blo91, WB89, Jon92]. Type classescapture a more uniform form of

overloading that relates typesby making them belongto the sametype class(Box 4.5).

However, in Haskell the aforementioned push methods cannot be de�ned asoverloaded

functions within the samescope becausethe type of stacks and the type of doors do

not fall naturally under the sametype class. The functions can be overloadedin terms

of scope if the typesare de�ned in di�eren t modulesand the function namesare always

5We are talking about stand-alone overloading. Matters change when overloading is combined with
other forms of polymorphism.
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BOX 4.3: C++ Templates(Description)

C++ Templates are a languageextension for static parametrisation. More

precisely, templates endow C++ with a restricted form of polymorphism in

its dependent, unbounded parametric, bounded parametric, and F -bounded

parametric variants.

The static parametrisation, the mechanics of instantiation, and the fact that

templates were designedto be backward-compatible with C++'s legacy type

system is what make templates peculiar and restricted. More precisely, tem-

plated functions and classesare compile-time macros for what after instan-

tiation are a set of overloaded functions and classes,with `late' overloading

resolution performed at link time if necessary[VJ03]. This ad hoc modus op-

erandi requiresclever compilation tricks and imposesrestrictions on what can

be programmed. Also, features that could be present in a uniform treatment

have to be added a posteriori | e.g., member template functions and typedef

templates. Box 4.4 continueswith examples.

quali�ed by module name. In Standard ML overloading is rather Spartan becausetype

reconstruction cannot disambiguate the context if type annotations are missing.6

Universal polymorphism contrasts with ad hoc polymorphism in the uniformity of

type structure and \b ehaviour". Universally polymorphic entities have many types/se-

mantics, even potentially in�nite ones,but can be characterised uniformly by a �xed

set of rules, and the range of variabilit y can be expressedsyntactically using the 8

quanti�er, whencethe `universality'.

Par ametric polymorphism is the kind of universalpolymorphism that is often iden-

ti�ed with Generic Programming becauseit relies on generic par ameters to achieve

uniformit y. Generic parametersare type or value parametersto other types. They are

instantiated using substitution and are re
ected at the type level by the introduction

of type variables. Entities that \have many types" in reality have one unique, univer-

sally quanti�ed type (e.g., Section 2.7.3). More power is added when type operators

6For many, type reconstruction is more a hurdle than an aid: it is rather strange to let compilers
infer speci�cations from implementations.
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BOX 4.4: C++ Templates(Example)

The following is a template function that swaps the valuesof two variables of

the sametype:

template <typename T>

void swap(T& a, T& b) { T temp = a; a = b; b = temp ; }

The template keyword instructs the compiler to treat the entit y that follows

as a parameterised entit y. Within the angle brackets the programmer spe-

ci�es the kind of parametrisation. In this example, the parameter is a type

variable T, so t̀emplate <typename T>' is similar to �̀� : � : ' in System F

(Section 2.7.3). A type name is either a basetype or a class. Unfortunately,

there is no type annotation specifying which methods are to be implemented

by T. One hasto look at the code to �nd out possibleconstraints or rely on the

compiler, which might issuethe error messagesat link time. In our example,

T must provide a copy constructor and operator =. There follows an example

of usage:

int x=1, y=2;

Car car1 ("Ford Fiesta " );

Car car2 ("Nissan Micra ");

swap(x ,y);

swap(car1 ,car2 );

Behind the scenes,the compiler generatestwo overloaded instancesof swap

for the types to which the function is implicitly applied:y

void swap ( int a, int b) { int temp = a; : : : }

void swap (Car & a, Car & b) { Car temp = a; : : : }

At each function call, the compiler �gures out the implicit type parameter

by a processof type reconstruction basedon the types of actual value argu-

ments. In addition to type parametrisation, template functions and classes

can be parametric on values and parameterised classes(so-called template-

templates) [VJ03].

yGenerating code for each type producescode bloating .
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BOX 4.5: Type Classes

Type classeswere introduced in Haskell to support overloading while pre-

serving type reconstruction. With type annotations, given the application

foo 4.5 , a compiler can tell which version of foo to use:

foo :: Int ! Int foo :: Float ! Int

foo x = x foo x = intPart x

Without type annotations, it cannot. Type classesare a way to circumvent

this. Programmers can specify classesof types a for which foo :: a ! Int

is de�ned:

class Foo a where foo :: a ! Int

Given this classdeclaration, the compiler infers that all occurrencesof foo in

the program have type Foo a ) a ! Int . In order to type-check applications

involving foo , programmersmust provide witnesses:

instance Foo Int where foo x = x

instance Foo Float where foo x = intPart x

The application foo 4.5 type-checks because4.5 has type Float and the

Float type is an instance of (is in the class) Foo. Code generation is also

e�cien t: a type classintroducesa type of record dictionary and foo is de�ned

to take an extra dictionary parameter:

data FooDict a = FD (a ! Int ) -- dictionary type

getf ( FD f) = f

foo :: FooDict a ! a ! Int

foo d x = (getf d) x

dInt :: FooDict Int -- dictionary values

dInt = FD ( � x ! x)

dFloat :: FooDict Float

dFloat = FD ( � x ! intPart x)

With help from the type checker, the application foo 4.5 is replacedby the

application foo dFloat 4.5 .
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are included as primitiv esor via type de�nitions, with type-level execution (reduction)

taking place during type checking in the form of type application (e.g., Section 2.7.4).

One common feature of parametric polymorphism is that type information plays no

computational role,i.e., no computational decision is made in terms of typesand they

can be erasedby the compiler after type checking. This is something to expect: mono-

morphic instances of polymorphic programs di�er only in type annotations; recall

System F (Section 2.7.3). Consequently, unlike overloading, one de�nition su�ces.

Moreover, parametrically polymorphic functions are insensitive to type arguments.

They are either too general,e.g.:

8 a. a ! a

or constant, e.g.:

8 a. a ! Int

or combinators, e.g.:

8 ab. (a ! b) ! a ! b

or involve type operators, e.g.:

8 a. List a ! b

Theselast functions are insensitive to the paylo ad type of the type operator, or to the

shape type if the type operator is higher order (Section 6.1.1).

Types with value parameters are called dependent typ es. In languagessupporting

dependent types, type-level reduction includes a restricted (i.e., terminating) form of

value-level reduction if type-checking is to terminate.

Di�eren t manifestationsof parametric polymorphism are obtained by twiddling various

knobslike the rangeof the 8, the instantiation mode,or the interplay with other features

like, say, dispatching. The range of the 8 can be de�ned in terms of typ e universes .

The possibilitiesare rightly exempli�ed by the families of typed lambda calculi classi�ed

under the namesof predicative, impredicative, and Type:Type. By permitting values

to be types in each family we obtain new families of predicative, impredicative, or

Type:Type dependently-typed polymorphism. Most of the interesting combinations

are depicted in the so-calledLambda Cube [Pie02].
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In pr edicative polymorphism, universally quanti�ed types\liv e" in a separateuniverse

from other types,a distinction captured syntactically by a separationof typesinto typ e

schemes and type-terms, the former including type-terms and universally quanti�ed

type-terms. The foremostexampleof predicative polymorphism is the Hindley-Damas-

Milner or ML-style of polymorphism (also called let-p olymorphism ) of functional lan-

guageswheretype inferenceis e�cien tly decidedby Milner and Damas'W algorithm|a

straightforward exposition of W can be found in [FH88] and [PVV93].

In impr edicative polymorphism, there is no distinction betweentype-terms and type

schemes,and parameters themselves may have universally quanti�ed types. The fore-

most example is SystemF (Section 2.7.3).

In Type:Type polymorphism, the universe of types is also a type, hence the colon

notation. Type checking may not be decidableand typescannot be understood naively

assetsof values(a set of all setsleadsto Russell'sparadox [Ham82]). The formalisation

of Type:Type polymorphism requiresthe machinery of dependent types[Car86]. It has

applications in the implementation of typed module systems,for modulescontain values

but also types.

In bounde d par ametric polymorphism the range of the 8 can be restricted to sub-

universeswithin the universeof types[CW85]. It subsumesparametric polymorphism

in the sensethat 8a:� is 8a2Type:� , where Type is the whole universeof types. The

subtype relation is an exampleof bound:

registrationNumber :: 8 a� Vehicle . a ! Int

Type classesare a form of boundedparametric polymorphism wherethe bound is given

by a class-membership predicate instead of a subtype predicate, i.e.:

sort :: 8 a. Ord a ) [a] ! [a]

is identical to:

sort :: 8 a2Ord . [ a] ! [a]

F-bounde d polymorphism is a form of boundedpolymorphism in which sub-universes

are parametric and, possibly, recursively de�ned [Mit96 ].

In inclusion polymorphism , there is an inclusion relation betweensub-universes.It

is especially usedin combination with boundedpolymorphism. A well-known inclusion
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relation is subtyping , where the members of a type (values) are also members of a

supertype. Type classesprovide a di�eren t kind of inclusion: members of a type class

(types) are also members of its superclass.

Object-oriented languageso�er di�eren t combinations of polymorphism. Inheritance

(subclassing) is wrongly identi�ed with subtyping [AC96, CW85, Cas97]. The former

is about reusing implementations whereas the latter is about reusing speci�cations.

Replacement, re�nement, dynamic dispatching, and overriding are powerful but ortho-

gonal features [Bud02].

Universalpolymorphism is `too generic': functions are insensitive to the possiblevalues

of universally-quanti�ed type variables. Structur al polymorphism or polytypism

is a form of polymorphism in which the de�nitional structure of a type is a parameter

to the function, which thereby does not have unique semantics. Instantiation is not

based on substitution. Polytypic functions can be typed, but their types are para-

metric on attributes of type-operator arguments. Polytypic functions are really meta-

functions that producecode from actual type arguments. Consequently, the mechanics

of instantiation must be known in order to understand how polytypic functions work.

Polytypism captures and generalisesoverloading and parametric polymorphism.

Polytypism is a form of compile-time re
ection. At run time the type of an object can

be inspected using some library extension. At compile time that functionalit y must

be provided by the types themselves and, therefore, a languageextension is needed.

We examine two popular polytypic language extensions to the Haskell language in

Chapter 6

4.8 Where does this work fall?

With structural polymorphism, functions are parametric on the de�nitional structure

of types. When types are abstract, the de�nitional structure is hidden. Structural

polymorphism is thus at odds with data abstraction. But in the classic varieties of

polymorphism data abstraction is an orthogonal feature. The present work investigates

what is neededto restore the order.



Chapter5

DataAbstraction

[The] key problem in the design and implementation of large software

systems is reducing the amount of complexity or detail that must be

consideredat any one time. One way to do this is via the processof

abstraction. [Gut77, p397]

The history of programming languagesis a history towards higher control abstraction

and higher data abstraction. Data abstraction appearedlate in Mathematics and Com-

puting (around the 1970s). Key ideas in control abstraction were already present in

the seminal papers on the theory of computable functions (1930s). The tardiness can

be explained by the fact that aspects which are in theory irrelevant can be in practice

of the utmost importance: real programs reach a sizeof millions of lines and each may

bring about a failure of the whole program.

When applied to data, `abstraction' corresponds with the principle of representation-

independence.Abstract typesare de�ned by a speci�cation, not by an implementation.

Abstract typesare represented or simulated in terms of concrete typesusing the data

de�nition mechanismsof programming languages.Abstract typesde�ne setsof values

but the interest shifts towards operators that `hide' them; that is, abstract values

are manipulated only through operators. Constant or literal values are understood

as nullary operators. Thus, the separation between abstract types and built-in types

is arti�cial: the latter are abstract with respect to their machine representation; the

former are as real as a built-in type.

In the early 1970s,the notions of program module and information hiding garneredfrom

Software Engineering practice converged with the formalisation and understanding of

abstract typesin terms of Universal Algebra and its categorial rendition. Examples of

pioneering work are [LG86, Gut77, Mor73, BG82, GTW79].

The speci�cation of an abstract type consistsof two parts: (1) A syntactic part that

de�nes the type's name and operator symbols. The latter implicitly de�ne the set

of well-formed terms that can be constructed with them. (2) A semantic part or just

80
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`semantics', which inexorably hasto beexpressedsyntactically, that prescribesoperator

usageand, consequently, the observable behaviour of the values of the type. Notions

of visibility , scope, and module follow as implementation mechanisms.

5.1 Bene�ts of data abstraction

Abstract data types(ADTs) enforcerepresentation independencewhich facilitates soft-

ware evolution and maintainabilit y. Changesto an ADT's implementation do not a�ect

client code as long as the speci�cation and the semantics of the operators remain un-

changed. The ADT's speci�cation is a contract or interfac e between the designer,

client, and implementor of the ADT. The separation of interface and implementation

allows ADTs to be provided as reusable,portable, and pre-compiled (binary) compon-

ents.

ADTs are ideal for modular design and division of work. They be�t the requirements

of high cohesion,low coupling, and reasonablesize. ADT interfacesgather collections

of operators and typesand provide the only interconnection with client code. For lack

of standardised terminology, let us call the coupling between an ADT's interface and

its client code interfac e coupling .

ADTs harmonisewith the designmethodology of stepwisere�nement of programsand

the data they manipulate. Program actions are decomposedinto smaller, yet unspe-

ci�ed actions, and the existenceof ADTs is postulated. Decisionsabout representation,

set of operators and their implementation are postponed. Details are discovered as the

requirements and the designare re�ned.

ADTs have proven their worth in software development. Extensions to the idea (e.g.,

objects) are deemedsine qua non in modern programming. Object-oriented program-

ming itself is about programming with �rst-class, extensible abstract types where the

notion of operator is replacedby the notion of message.Features like overriding, late

dispatching, etc, are orthogonal.

5.2 Pitfalls of data abstraction

ADTs are less 
exible and make programs more verbose. For instance, C/C ++ pro-

grammersrevel in their cryptic pointer �ddlings and the confusionbetweenstrings and

null-terminated arrays of characters. With Java's String , only string operators are
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applicable to string values;programmershave to useconversion operators and be more

explicit about what they want. Someconsider this to be a pitfall; we do not.

Usually, the choice of ADT is driven by a set of desired e�cien t operators. However,

there is often an e�ciency trade-o� amongthem causedby the choiceof representation.

A simple example is the ADT of complex numbers. There are two typical represent-

ations: cartesian and polar. Addition in the cartesian representation is more e�cien t

than in the polar representation whereasfor multiplication it is the opposite case.Un-

fortunately, both representations cannot be used at once without losing e�ciency in

the translation.

The separation between interface and implementation improves but does not resolve

completely in practice the coupling betweenclient code and ADT implementations. An

implementation changemay entail an interface changethat in turn may a�ect already

written client code.

A typical example occurs during maintenance when operators are added, deleted, or

modi�ed. In many casesthis situation can be anticipated and cared for during the

designstage;but often it cannot, especially if the changesare elicited during the usage

of the abstract type in a live software system. This problem is intrinsic to the nature

of software: it evolves.

A thornier example of implementation decisionsa�ecting interfacesoccurs in the case

of parameterised ADTs when an implementation decisionmay a�ect the parametricity,

i.e., may imposeor modify parameter constraints which in turn a�ect client code. As

a realistic scenario,take the caseof a data-analysisapplication for managingnumerical

data and producing statistical reports, in particular frequency analysis [Mar98, p163-

164]. A natural choice of abstract type would be a table that provides an abstract

view of the data base. Among the operators, there is an insertion operator that adds

elements to the table (increasing their frequency) and selectoroperators for returning

the i th element on the table or its frequency (elements can be sorted by frequency).

The e�cien t implementation of insertion compromisesthat of selection: hashtables are

more adequatefor quickly storing and retrieving large volumesof data by key whereas

ordered structures such as heapsor balancedsearch trees are more suitable for storing

and retrieving ordereddata. The constraints expressingwhether the data parameter is

`hashable'or ordered di�er but anyhow have to be stated in the type's interface. The
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choiceof implementation could conceivably changeasthe circumstancesof the software

system's usagechange. Going for both constraints from the start may be limiting or

impossible.

There is research on automatic selectionof e�cien t representations basedon compile-

time analysis of operator usageguided by programmer annotations (see,[CH96] for a

probabilistic approach to the problem). To the author's knowledge,there is no univer-

sally acceptedway of dealing with the problem, and most speci�cation or programming

languageseither ignore it or o�er their own custom-madesolutions. We comeback to

this problem in Section5.6, which illustrates it with an algebraicspeci�cation example,

and in Sections5.8.1and 5.8.2,which discussit in the context of the Haskell language.

In Section 6.1.11we make Generic Haskell cope with constraints.

5.3 Algebraic speci�cation of data t yp es

A lgebraic speci�c ations are axiomatic formal systemsfor specifying ADTs precisely,

unambiguously, and independently of their implementation. They have several advant-

agesbeyond the mere speci�cation of a formal object; in particular, they provide an

interface for client code, they can be used in the formal construction and veri�cation

of client code, there is a formal relation betweenthe speci�cation and the implementa-

tion [Mar98, p221-224],and prototype implementations can be obtained automatically

(e.g., [GWM + 93]).

Algebraic speci�cations are subject to all the issuesthat arise in the description of

any axiomatic system: the distinction betweensyntax, semantics, and pragmatics; the

notions of syntactic as well as semantic consistency, soundness,and completeness,etc.

Becausewe cannot communicate ethereal ideas in our headswithout syntax, and cer-

tainly do not want to talk about meaningstoo informally, endowing an axiomatic sys-

tem with meaning amounts to providing a translation or interpretation of that formal

system in terms of another formal system that is `hopefully' better understood| i.e.,

squigglesto familiar squiggles. One should not get the mistaken impression that se-

mantic universesare already there, waiting to be matched syntactically. As speci�c-

ations get more and more sophisticated, so are semantic universesdiscovered (or one

should say, contriv ed) in order to endow the former with meaning. The reason for

bothering with a translation is non-injectivit y: di�eren t syntactic entities may have
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the samesemantic meaning.

The meaning of algebraic speci�cations is provided by the formal system of Universal

Algebra. This is why algebraic speci�cations are `algebraic'. Concretely, in this thesis

the meaning of an algebraic speci�cation is a partial many-sorte d algebr a , in par-

ticular, the least or initial one. The reasonsfor choosing this semantic formalism are

fourfold:

1. Algebraic speci�cations are collections of texts whosemeaning is consideredsimul-

taneously: the meaning of a speci�cation depends on the meaning of the speci�c-

ations it imports and is therefore convenient to consider all speci�cations at once.

Many-sorted algebrasare algebraswith many carriers, i.e., setsof values. (They are

more preciselycalled many-valued but the terminology has not caught on.)

2. Partial algebrasallow us to deal with partial operators in a natural way. Partial

operators are operators that may produce stuck terms, i.e., run-time errors. They

are common in strongly-typed languagesthat separatevalues from types. For ex-

ample, the function that returns the head of a list is a partial operator which fails

when the list is empty.

3. Classicalgebraic speci�cation formalisms have limitations on expressibility. Firstly ,

the behaviour of each type is described by meansof equational axioms to besatis�ed

by any meaning-providing algebra. Equations form a simple speci�cation language

but many properties cannot be expressedwith equations alone. For example, the

axiom of functional extensionality requires a conditional equation:

f x = g x ) f = g

Secondly, operators are �rst-or der functions.1 Equations involving higher-order op-

erators are di�cult to wield; in particular higher-order uni�cation is in general

undecidable (not surprising, for function equality is undecidable). However, there

is no reason to worry. On the one hand, Parameterised Programming makes the

casefor lifting higher-order programming from operators to speci�cations [Gog88].

On the other hand, there are algebraic speci�cations with higher-order partial op-

erators and conditional equations that are complete with respect to the classof all

extensionalmodels [Mei95].
1For someauthors, this is what `algebraic' means, e.g. [Mit96 , p145].
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Our speci�cation formalism will permit conditional equations , which are essential

in speci�cations involving partial operators. As to the order of operators, we remain

in a �rst-or der world. Firstly , our aim is to explore GenericProgramming on classic

abstract typeswhich can be described perfectly well in a �rst-order setting. Higher-

order functions such as maps or folds will be written as generic programs outside

the type using the latter's �rst-order operators. Secondly, conditional equationsare

important to us for purposesof speci�cation, not deduction.

4. We want our speci�cations to have a unique meaning(up to isomorphism). Initialit y

captures the idea of the least algebra that satis�es the speci�cation, i.e., it doesnot

satisfy equationsthat arenot syntactically provablefrom the axioms,and the carriers

contain values that are symbolised by at least one term (i.e., expressioninvolving

operators). There is also another model, the �nal algebr a , which is unique up to

isomorphism. The central notion here is bisimulation, the dual notion of congruence

in initial algebras. A bisimulation establishesan equivalencerelation betweenterms

whoseexternal observablebehaviour is equivalent. Such information-hiding overtone

might render the impressionof being a better notion of meaning for abstract types,

for the programmer is free to implement a simulation of the type so long as the

terms' observable behaviour is the same. However, one thing is the semantics of a

speci�cation and another its implementation, of which we care less in this thesis.

Finally, initial algebrashave been studied in depth and endow speci�cations with

an interesting form of induction.

The following sectionsdescribe our algebraic speci�cation formalism. For readability,

the technical details about its semantics and set-theoretic formalisation are given in

Appendix A. The formalism is presented in two stages. A basic formalism is presen-

ted �rst, namely, signatures, theories with equations, and initial algebra semantics.

Section 5.4 presents its syntax and semantics discursively through a few examples.

Section A.1 details its set-theoretic formalisation and algebraic semantics. Section 5.5

describes the extension of the basic formalism with partial operators and conditional

equations. Section A.2 details the semantics of the extended formalism. Section A.3

glides over the categorial rendition of algebra; in particular, Section A.3.1 intro duces

the notion of F -Algebra which is essential for a full understanding of Chapter 9.

Partial algebras were �rst studied in [BW82] and the existence of initial models in
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[AC89]. Ordered-sorted algebras are a generalisationthat includesa notion of inclusion

(subtyping) among speci�cations [GM89]. The books [LEW96, Mar98] are excellent

introductions to algebraic speci�cations.

5.4 The basic speci�cation formalism, by example

Our algebraicspeci�cation formalism hasa syntactic part or signatur e and a semantic

part or theory . The syntactic part declaresthe nameof the speci�cation and the name

of the typesde�ned, calledsorts in the jargon. A sort is a pieceof uninterpreted syntax,

a name, but it is meant to stand for something, i.e., a set of values. A signature also

lists the set of operator namesand their sort-signatur es which specify the arit y and

sort of operator arguments and return values. Nullary operators are called constants.

Figure 5.1 shows a simple example.

signature NAT
sorts Nat
ops

zero : ! Nat
succ : Nat ! Nat

end

Figure 5.1: Signature NAT.

Functional programmers express the same idea with di�eren t notation, where only

sorts, called `type names' in this case,and operator names,called `value constructors',

are de�ned explicitly:

data Nat = Zero | Succ Nat

As shown above, a signature starts with the keyword signature followed by the sig-

nature's name (in uppercase),the keyword sorts followed by the list of (capitalised)

sort-names,and the keyword ops with the list of (lowercase)operator namesand their

sort-signatures. We assumeoperators are all pre�x and written in functional style.

An optional use clause can be included to import other speci�cations as shown in

Figure 5.2.

Whitespace in sort-signatures separatesargument sorts. This notation is consistent

with most algebraic speci�cation languagesand has the advantage that it can be in-

terpreted either as cartesian product or as function space(currying). This last inter-
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signature STRING signature CHAR
sorts String sorts Char
use CHAR ops
ops ch0 : ! Char

empty : ! String : : :
pre : Char String ! String ch255 : ! Char

end end

Figure 5.2: SignaturesSTRING and CHAR.

pretation con
icts with our previous assertionthat operators are �rst-order. We make

an exception for operators that only return functions becausethere is an isomorphism

betweenthe typesA � B ! C and A ! B ! C. In somefunctional languagescurry-

ing seemsthe preferenceand we want to keep in mind the possibility of working with

algebraic speci�cations in such languages,even if not currently supported.

There is clearly a shift of emphasisfrom valuesto operators: programmersspecify the

permitted operators, and terms can be formed out of repeated applications of proper

operators to constants. These terms must satisfy the well-sortednessproperty that

every proper operator is applied to arguments of the sortsspeci�ed by its sort-signature.

The functional style is important as it conveys the notion of referential transparency:

terms are meant to stand for valuesof the type, and oneterm represents a unique value.

For example, signature NAT de�nes the sort Nat , which is meant to stand for the

set of natural numbers. The set of operators generatesterms that can be put in

correspondencewith natural numbers: zero for 0, succ zero for 1, etc. A natural

number is represented by only one NAT term.

In general speci�cations may contain laws , that is, relations between terms| e.g.,

equations or conditional equations|that specify the behaviour of operators. More

precisely, relations are semantic constraints: an algebra must satisfy them in order to

be a model. Figure 5.3 shows an exampleof an algebraic speci�cation with laws.

The signature name has changed becausewe have added one operator. The semantic

part or theory embedsa signaturepart by precedingit with the keyword theory and the

nameof the theory (in uppercase).A theory adds(1) a list of free-variable declarations

for variables appearing in the laws which are assumeduniversally quanti�ed, and (2) a

list of laws (equations) which, in this example, specify the behaviour of plus .
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theory NAT2

signature NAT2

sorts Nat
ops

zero : ! Nat
succ : Nat ! Nat
plus : Nat Nat ! Nat

vars
x,y : Nat

laws
plus x zero = x
plus x (succ y) = succ (plus x y)

end

Figure 5.3: Theory NAT2.

Equality is an equivalence relation and therefore equations intro duce equivalences

among terms. Consequently, countably in�nite terms may denote the same value;

for instance:

succ zero

plus zero (succ zero )

plus (succ zero ) zero

plus (plus zero zero ) (succ zero )

: : :

all represent the natural number 1.

The meaning of an algebraicspeci�cation is a many-sorte d algebr a : broadly, setsof

values, called carriers , and functions on those values, called algebr aic operators ,

that satisfy the laws. Many di�eren t algebras can be models of the speci�cation,

i.e., we can make a correspondencebetweenterms and values,and algebraic operators

satisfy all the axiomatic equations and those derivable (syntactically provable) from

them. The initial algebr a approach provides a de�nition of the most natural model.

The carriers of an initial algebra contain values that are represented by at least one

term, i.e., there are no junk values in the algebra. And the algebraic operators only

satisfy the equations of the speci�cation, i.e., there is no confusion betweenvalues;

in other words, the model doesnot satisfy extra equationsbetweenvaluesthat are not

re
ected asequational axioms betweenterms, or asequationsthat can be derived from

the latter.
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TakesignatureNAT, for example. Weassumethat it speci�es the setof natural numbers.

However, we can also make a correspondencebetween the set of terms and the set of

integers. In this case,negative integersare not represented by any term (junk). We can

alsomake a correspondencewith the set f 0; 1; 2g, wheresucc is interpreted as`addition

modulo 3', that is, 2 + 1 = 0, but there are no laws in the speci�cation re
ecting this

property (confusion).

The following EBNF grammar describes the syntax of the speci�cation formalism.

Non-terminals Uname, Cname, and Lname stand for upper-caseidenti�er, capitalised

identi�er, and lowercaseidenti�er respectively:

Theory ::= theory Uname Signature Vars? Laws

Signature ::= signature Uname UseList? Param? Body

UseList ::= use Uname+

Body ::= sorts Cname+ ( ops OpList )?

OpList ::= ( Lname : SortSig) +

SortSig ::= Cname� ! Cname

Vars ::= vars ( Lname : Cname) +

Laws ::= ( Term = Term) +

Param ::= param Cname ( OpList Vars? Laws) �

We will often drop the vars clause, for free variables are those symbols that are not

declaredby other clausesand their sorts can be inferred from the context of usewithout

e�ort.

As indicated by non-terminal Param, an algebraicspeci�cation canbeparametric on an-

other algebraicspeci�cation. A formal parameter is declaredusing the keyword param

followed by the list of capitalised sort names and the set of constraints (laws) that

must be satis�ed by the parameter speci�cation. Without constraints, the paramet-

erised speci�cation is (unbounded-)parametrically polymorphic, and with constraints,

bounded-parametrically polymorphic (Chapter 4).

Parameterisedspeci�cations are functions on speci�cations and they could be higher

order, i.e., parametric speci�cations could take parametric speci�cations asparameters.

The meaning of parametric speci�cations can be studied directly in terms of signature

and theory morphisms [BG82, LEW96], which also describe other composition mech-

anisms such as inclusion, derivation, etc. Another possibility is to study the meaning

of actual instantiations, that is, of the speci�cations resulting from the instantiation of
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the parameters to non-parametric (or manifest, if you will) speci�cations. This is the

approach we follow in Appendix A, for it is the simplest.

5.5 Partial speci�cations with conditional equations.

In strongly and statically type-checked languagesthat separatetypesfrom values,ADT

operatorsmay bepartial. Partial operatorsproducestuck or non-reducibleterms (when

equationsare directed and turned into reduction rules). Examplesof partial operators

are tos and pop , which return or remove respectively the top of a stack. The following

are stuck terms:

tos emptyStack

pop emptyStack

Many people think of stuck terms as being unde�ned. Speci�cation languagesof yore

ignored them for that reason. However, the term `unde�ned' is also a synonym of non-

termination , this meaning stemming from Partial Recursion Theory. A stuck term is

not the sameas a non-terminating term. We can always test whether the argument

of a partial function meets a condition (i.e., whether the stack is empty) at run-time

whereastesting for non-termination is in generalundecidableeven at run-time. 2

Partial functions introduce countably in�nite stuck terms if the grammar of terms is

recursive. For example:

empty ? (pop emptyStack )

push 1 (pop emptyStack )

push 2 (pop emptyStack )

: : :

Stuck terms do not stand for valuesin any carrier. Also, they cannot beproven equal to

any other term. They constitute junk and algebraic speci�cations must somehow deal

with them. A possiblesolution is to introducethe notion of err or terms and axiomsfor

them which are reminiscent of the useof ? in Complete Partial Orders [Sto77, Ten76].

More precisely, we add to every speci�cation:

1. One constant operator error_ s of sort s, for every s.

2This fact is what supports the idea of replacing run-time tests by static onesin richer type systems;
we would not expect richer type systems to decide the halting problem.
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2. An error-testing operator error_ s? of sort s ! Bool , for every sort s.

3. Equations for the above.

4. BOOLis imported and it has an if-then -else conditional operator.

For example,Figure 5.4 shows part of a speci�cation of stacks.

theory STACK
signature STACK
sorts Stack
param Elem
use BOOL
ops

emptyStack : Stack
push : Elem Stack ! Stack
pop : Stack ! Stack
tos : Stack ! Elem
empty ? : Stack ! Bool
error_Elem : Elem
error_Stack : Stack
error_Elem ? : Elem ! Bool
error_Stack ? : Stack ! Bool

laws
tos error_Stack = error_Elem
tos emptyStack = error_Elem
tos (push x s) = if error_Elem ? x then error_Elem

else if error_Stack ? s then error_Elem
else x

pop empty_Stack = error_Stack
: : :

Figure 5.4: STACKwith error terms.

Conditionals are used for testing at the object level whether variables stand for error

terms. Speci�cations of this kind can be proven consistent, where each carrier of the

initial algebra has one error value [Mit96 , p200]. However, they are low level and

di�cult to read and write.

Partial speci�cations with conditional equations provide a higher-level approach that

makes speci�cations more readable. Partial operators are pre�xed by the keyword

partial . An object-level de�nednesspredicate DEF is introduced such that DEF (t)

abbreviatesDEF (t) = true and assertsthat t is de�ned, i.e., it is sugar for t = t.
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Laws now contain conditional equationsof the form:

t1 = t0
1 ^ : : : ^ tn = t0

n ) E

where n � 0 and E is either an equation t = t0 or a partial equation t ' t0 which

is syntactic sugar for DEF (t) ^ DEF (t0) ) t = t0. Premisesin conditional equations

represent preconditions; de�nedness is only an example. An empty premise (n = 0)

gives rise to an equation E. Figure 5.5 shows the partial speci�cation of stacks.

theory STACK
signature STACK
sorts Stack
param Elem
use BOOL
ops

partial tos : Stack ! Elem
partial pop : Stack ! Stack
emptyS : Stack
push : Elem Stack ! Stack
empty? : Stack ! Bool

laws
DEF( tos (push x s) )
DEF( pop (push x s) )
tos (push x s) = x
pop (push x s) = s
empty? emptyS = true
empty? (push x s) = false

Figure 5.5: Partial speci�cation of stacks.

We will use syntactic sugar for boolean terms and write t instead of t=true and : t

instead of t=false only in the premises of conditional equations. This sugar is used

in Figure 5.6 which shows the speci�cation of FIFO queues.

5.6 Constrain ts on parametricit y, reloaded

ADT implementations are driven by pragmatic concerns. In the caseof parameterised

ADTs, someimplementations imposeconstraints on payload types. We have already

touched upon this in Section5.2. This section illustrates the problem with an algebraic

speci�cation example.

Considerthe parametric ADT of setsshown in Figure 5.7. Setsareunorderedcollections

without repeated elements. Typical expected operators are construction, membership
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theory FIFO
signature FIFO
sorts Fifo
param Elem
use BOOL
ops

emptyQ : Fifo
enq : Elem Fifo ! Fifo
emptyQ? : Fifo ! Bool
partial front : Fifo ! Elem
partial deq : Fifo ! Fifo

laws
DEF( front (enq x q) )
DEF( deq (enq x q) )
emptyQ? emptyQ = true
emptyQ? (enq x q) = false

(emptyQ ? q) ) front (enq x q) = x
: (emptyQ ? q) ) front (enq x q) = front q

(emptyQ ? q) ) deq (enq x q) = x
: (emptyQ ? q) ) deq (enq x q) = enq x ( deq q)

end

Figure 5.6: Speci�cation of FIFO queues.

test, and cardinality. Other possibleoperators not included in the �gure are union,

intersection, complement, etc.

Unconstrained sets are rather Spartan: payload elements can be put in the set and

the cardinality can be calculated. Set membership, and operators derived from it

such as union and intersection, imposesan equality constraint on payload types. The

implementation of set complement may add another constraint.

Sets can be implemented in various ways. For example, as lists without repeated

elements where insert leavesonly onecopy of each element in the list and card returns

the length of the list. Sets can also be implemented as lists with repeated elements

where insert inserts unrestrictedly and card skips repeated elements from the total

count. Another possibleimplementation is in terms of hashtables whereeither insert

or card skip repeated elements when dealing with collision lists. This implementation

forcesa `hashable'constraint on the payload type. Setscan be implemented in terms of

boolean dynamic vectors. In this casepayload elements must be indexable, i.e., there

must exist an injective function indexOf : Elem ! Nat . The application insert x

sets the position indexOf x in the vector to True .
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theory SET
signature SET
sorts Set
param Elem

use BOOL
ops

equal : Elem Elem ! Bool
laws

equal x x = true
equal x y = true ) equal y x = true
equal x y = true ^ equal y z = true ) equal x z = true

use BOOL NAT
ops

emptySet : Set
emptySet ? : Set ! Bool
insert : Elem Set ! Set
member? : Elem Set ! Bool
card : Set ! Nat

laws
emptySet ? emptySet = true
emptySet ? (insert x s) = False
insert x ( insert x s) = insert x s
insert x ( insert y s) = insert y (insert x s)
member? x emptySet = False
member? x (insert y s) = equal x y or member? x s
card emptySet = Zero
card (insert x s)

= plus ( card s) (if member? x s then Zero else Succ Zero )

Figure 5.7: A possiblespeci�cation of Sets.

5.7 Concrete t yp es are bigger

Concrete types are bigger than abstract types. The reasonfor this lies partly in the

context-free nature of the languageof concrete types. Context-dependent properties

such as repetition or equality of payload elements are not captured by type de�nitions.

ADTs imposecontext-dependent constraints on concrete types indirectly by meansof

equational laws and payload constraints.

Let's look at the problem from another angle. Consider the concretetype:

data Ord a ) Tree a = Empty | Node a (Tree a) ( Tree a)

This type can be usedin the implementation of di�eren t abstract types: binary search

trees, priorit y queues, ordered sets, ordered bags, etc. In each case, the operators
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available and their laws are di�eren t: the maximum element in the left subtree of

a non-empty binary search tree is at most the root, whereasin a priorit y queue the

ordering in the tree could be di�eren t, with smaller values to the right of the root.

Binary search trees, priorit y queuesand bags may contain repeated elements; that

is not the casefor ordered sets. In a priorit y queue there is the choice of inserting

elements with samepriorit y in FIFO fashion or via somecollision-resolution function,

etc. Elements are removed from a �xed position (e.g. the front) in a priorit y queue. For

sets,bags,and binary search trees, the element to remove must be indicated explicitly ,

e.g.:

remove : Elem ! Set ! Set

It is a mistake to think that Tree is the `natural' representation type of any ADT. We

have already touched upon this in Chapter 1. This is the reasonwhy ADTs are encap-

sulated behind an interface of operators that maintain the implementation invariants

of the representation type.

5.8 Em bodimen ts in functional languages

Mainstream functional languages,notably Haskell and SML, are not concernedwith

algebraicspeci�cations of data typesin any fashion. The following two sectionsdescribe

the mechanismsavailable in Haskell and SML for de�ning ADTs.

5.8.1 ADTs in Hask ell

Haskell supports ADTs poorly, relying on a module concept not dissimilar to C++'s

name-spaces[Str92]. A module is a logical entit y that doesnot necessarilycorrespond

to a program �le, but this is usually the case. Modules are linguistic constructs for

controlling namescope and visibilit y. They are not �rst-class entities. ADTs are imple-

mented using modulesby meansof exporting (making public) type and operator names

while hiding value constructors and operator implementations. There are mechanisms

for controlling the way data and operators are imported such as local or quali�ed im-

ports and transitivit y| e.g., if M imports M' and M' imports type A, M cannot seeA

unlessexplicitly imported.

The Set ADT shown in Figure 5.7 can be conveyed to Haskell as shown below. In this

example there is no separation between speci�cation (only syntax) and implementa-
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tion:

module Set ( Set,emptySet ,insert ,member ,card) where

data Eq a ) Set a = MkSet [a]

emptySet :: Eq a ) Set a

emptySet = MkSet []

insert :: Eq a ) a ! Set a ! Set a

insert x ( s@(MkSet l )) = if elem x l then s else MkSet (x: l)

: : :

The module name Set is followed by a parenthesisedlist in the headingwhich declares

the exported names. The type name Set is exported but not its value constructor

MkSet . (The overloading of module and type-operator name is legal.) The constraint

on the payload type is not shown in the export clausebut must be �gured out by looking

at the type de�nition. It must be included also in the type signatures of operators.

(Changing the implementation to boolean vectors would imposea di�eren t type-class

constraint which would a�ect client code|Section 5.8.2).

Type classescan be employed to separatespeci�cation from implementation as shown

in Figure 5.8.

module Set (Set (..)) where
class Set s where

emptySet :: Eq a ) s a
insert :: Eq a ) a ! s a ! s a
: : :

module Set ' (Set ') where
import Set
data Eq a ) Set ' a = MkSet [a]

instance Set Set ' where
emptySet = MkSet []
insert x (s@( MkSet l)) = if elem x l then s else MkSet ( x:l)
: : :

Figure 5.8: ADTs in Haskell using type classes.

In the �rst module, the namesSet and Set' areoverloaded: Set namesa type classand

the module where it is de�ned. A type s is a member of type classSet if it implements

the required set operators. The type-classconstraint Eq a has to be written in the type

signature of every operator. In the secondmodule, Set' is also overloaded: it namesa
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type operator and the module where it is de�ned. The Set' type is made an instance

of Set by providing an implementation for every operator. The module exports only

the type, not the value constructor MkSet .

We concludewith an example of usage. Function addList adds the elements of a list

into a set:

addList :: ( Eq a, Set s) ) [a] ! s a ! s a

addList [] s = s

addList (x :xs) s = insert x (insert xs s)

Notice the Set constraint in the type signature: s must satisfy the Set interface.

5.8.2 On constrained algebraic t yp es

In Haskell, it seemsnatural to implement constrained ADTs in terms of constrained

type operators. A �rst-order constrained type operator is type-classconstrained on

someor all of its payload.

However, constrainedtype operators are contentious. ParaphrasingSection4.2.1of the

online Haskell Report, 3 a declaration such as:

data Eq a ) Set a = MkSet [a]

is equivalent to the following:

data Set a where

MkSet :: Eq a ) [a ] ! Set a

That is, constrained type operators do not carry constraints, their value constructors

do. Hence,construction or pattern-matching with MkSet givesrise to an Eq constraint.

`[T]the context in the data declaration has no other e�ect whatsoever'. The last sen-

tence from the Haskell report is proven by the following snippet:

foo :: Set a ! Int

foo _ = 3

foo ( undefined :: Set ( Int ! Int ))

> 3

3http://www.haskell.org/onlinereport/d ecls. html#s ect4.2 .1
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The code type-checks and runs despite that integer functions are not instancesof class

Eq. This is becauseMkSet is not involved. On the other hand, function bar below has

a constraint in its type signature becauseit pattern-matchesagainst MkSet :

bar :: Eq a ) Set a ! a

bar (MkSet xs) = : : :

The legality of a type such as Set ( Int ! Int ) can be explained more accurately

using SystemF! notation (Section 2.7.4). The constrainedde�nition of Set would give

the impressionthat at the type level the type application of Set to an argument is legal

only when the latter is in classEq. However, as already explained in Section 2.7.4, the

kind system accounts for arit y and order, not for classmembership. Supposewe can

annotate kinds with classessuch that, for instance, � Eq is the collection of typesof kind

� in classEq. The de�nition of the Set type and its value constructor MkSet would be

expressedin this setting thus:

Set : � Eq ! �

Set def= �� : � Eq : [� ]

MkSet : 8� : � Eq : [� ] ! Set �

MkSet def= � � : � Eq : �x : [� ] : x

In Haskell, however, type classesare orthogonal to the kind system. Set retains its

� ! � kind and MkSet carries the constraint. If constraints were associated with type

operators they would provide more security: writing expressionswith illegal typessuch

as Set ( Int ! Int ) would be impossible.

Many Haskell programmers avoid constrained type operators and prefer to constrain

functions. This is practical from the point of view of type-operator reusability. For

example, there is only one type of lists. Lists with constrainedpayload are not de�ned

by a new type, but manipulated by constrainedfunctions such assort . In other words,

there is no such thing as a constrained list type in the program.

However, there are reasonswhy constrained types are useful. For once, becausethey

are constrained, the idea is that they are to be used for speci�c applications. More

importantly, constraints are useful for documentation purposes. Logically, it makes

more senseto specify constraints in a single place (a type de�nition) instead of in all

placeswherethe type is used(functions). The fact that constraints in typesignaturesof

functions can be inferred makes this point stronger. However, explicit type signatures
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should be written down for documentation purposes(they are part of a function's

speci�cation) and with higher-rank polymorphism they are unavoidable (Chapter 4).

This brings us to the point about the impact of constraints in maintainabilit y.

When it comesto ADTs, constraints are formally associated with the type operator: in

the caseof sets,for example,membership test imposesan Eq constraint on the payload

type. We can also argue that ADT valuesare manipulated via exported operators and

that it is perfectly possibleto remove constraints from implementation type operators

as long asexported operators carry them. For example, in the module-basedde�nition

of setsin Section5.8.1,MkSet is not exported and we could remove the constraint from

Set 's data declaration. Similarly for the class-basedde�nition.

But putting constraints on operators hinders maintenance [Hug99]. We have touched

upon this in Sections5.2 and 5.6: payload constraints are fragile with respect to im-

plementation changes.They can be a�ected by, and therefore disclose,implementation

decisions.

For instance, changing the Set implementation from lists to dynamic boolean vectors

entails changing Eq to Ix (indexable) in the type signatures of set operators. (The

constraint is changed,not added,becauseIx is a sub-type-classof Eq.) Client functions

using set operators are a�ected by constraint propagation if their type signatures are

given explicitly and contain an Eq constraint on set payload. Grappling with this

problem leads to solutions based on constraint or class parametrisation (Section 6.2

and Section 6.1.10).

5.8.3 The SML mo dule system

ADTs are also implemented in Standard ML with the help of modules. SML has a

more sophisticated module system with a sound theoretical basis (which employs the

machinery of dependent types) [Tof96, Pau96, DT88]. An SML module is an abstract

concept in terms of which SML programs can be structured. This section overviews

the linguistic constructs whosemanipulation and combination make up the notion of

SML module.

An SML signatur e bundles a set of type names, type signatures, exceptions, and

SML structure namesunder the samescope. Signaturesplay the role of speci�cations

or interfaces, i.e., a signature is the module-level equivalent of the `type' of an SML
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structure.

An SML structur e bundlesa set of type and value de�nitions under the samescope.

In short, a signature declaresa module's interface whereasthe structure declaresits

implementation. This model is similar to Ada's and Modula/2's.

Figure 5.9 shows the signature Stack and a possiblestructure S1 implementing Stack .

In SML, whether a function raisesan exception is not re
ected on its type signature,

hencethe comments.

signature Stack = sig
type � t
exception Empty
val empty : � t
val push : � * � t ! � t
val tos : � t ! � (* raises Empty *)
val pop : � t ! � t (* raises Empty *)

end

structure S1 :> Stack = struct
type � t = � list
exception Empty
val empty = []
fun push (x,s ) = x::s
fun tos [] = raise Empty

| tos (x::xs ) = x
fun pop [] = raise Empty

| pop (x::xs ) = xs
end

Figure 5.9: Signature Stack and structure S1 implementing Stack .

Signatures and structures lack laws. A structure conforms to a signature when it

provides de�nitions for all the signature's types, values,and structure names. SML is

an implicitly typed languageand the compiler is expected to infer the signature of a

structure. By default, the inferred signature contains the typesof all declareditems in

the structure. Programmersmay imposestructure-to-signature conformanceexplicitly .

This is what :> denotesin Figure 5.9.

Structures do not hide information: `declaringa structure hardly di�ers from declaring

its items separately, exceptthat a structure declaration is taken asa unit and intro duces

compound names' [Pau96]. Information hiding is achieved by omitting private items

from the signature; hence, a structure may contain more items than speci�ed by a
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signature.

Signaturesare not type-terms and structures are not values: in SML, type-terms and

terms areseparated;therefore,an entit y that encompassesboth kinds of terms livesat a

di�eren t linguistic level. Structure valuesare createdand manipulated at compile/link

time, where `type-level computation' amounts to enforcing scope and visibilit y plus

type checking of constituent items and signature conformance.

Signatures can be combined in various ways to form new signatures and similarly for

structures. SML's module systemgoesa bit further and permits the de�nition of para-

meterisedmodules, surprisingly called `functors'. An SML functor takesa structure

that conformsto a signature and createsanother structure as a result, which conforms

to another signature. Functors can be type-checked and compiled to machine code

before applied to their arguments. Figure 5.10 shows a functor example. The SET

signature declaresthe interface of a set. The EQ signature declaresthe interface of a

type with equality. Functor LIST_SET takesa structure conforming to EQand returns

a structure conforming to SET where setsare implemented as lists.

5.9 Classi�cation of operators

Section5.7 hasalready introducedsomeoperator terminology, and we have beenusing

someof it when calling an operator a `constructor' or a `selector'. We now provide a

more detailed classi�cation according to the role operators play in speci�cations. This

classi�cation is usedby subsequent chapters.

There are two major operator groups [Mar98, p189-190]: constructors and observ-

ers . Constructors generatevaluesof the type. They can be free or non-free(i.e., there

are or there are not equations among them). We have already seensomeexamplesto

which we add somemore:

emptyS : ! Stack

enq : Elem ! Fifo ! Fifo

insert : Elem ! Set ! Set

mkTreeNode : Elem ! Tree ! Tree ! Tree

There can be multiple constructors . A typical example is the type of double-ended

queueswhere we can queuevaluesat the front and at the rear of the queue. Lists can

be constructed using nil and cons , nil and snoc , nil and singleton and concat ,
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signature EQ = sig
type t
val eq : t * t ! bool

end

signature SET = sig
type Set
type Elem
val empty : Set
val isEmpty : Set ! bool
val insert : Elem * Set ! Set
val member : Elem * Set ! bool
val card : Set ! int

end

functor LIST_SET ( Element : EQ) : SET = struct
type Elem = Element .t
datatype ListSet = Nil | Cons of Elem * ListSet
type Set = ListSet
val empty = Nil
fun isEmpty Nil = true

| isEmpty _ = false
: : :

end

Figure 5.10: SML Functor example.

etc.

The secondgroup of operators is that of observers . Two important subgroups are

(boolean) discriminators , which enquire about which constructor has created the

value, and (partial) selectors which enable the selection (extraction, if you will) of

data components. Examples of discriminators are:

isEmptyS : Stack ! Bool

isEmptyQ : Fifo ! Bool

isLeaf : Tree ! Bool

Examples of selectorsare:

head : List ! Elem

tail : List ! List

tos : Stack ! Elem

pop : Stack ! Stack

leaf : Tree ! Elem
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leftTree : Tree ! Tree

lookup : Key ! Table ! Elem

Removal operators are selectors.There are two kinds of removal: implicit and expli-

cit . For example:

implicit : ADT ! (Elem , ADT)

explicit : Elem ! ADT ! ADT

Implicit removals are usually decomposedinto as many selectoroperators asnecessary.

For example, one selector returns an element and another returns a new ADT value

with that element removed. The element is not an argument in either case, for its

`location' is �xed, e.g.:

front : Fifo ! Elem

deq : Fifo ! Fifo

Explicit removal consiststypically of a single selectorthat takesthe element to remove

as an argument. For example:

remove : Elem ! Set ! Set

Selectorsare alsocalled modi�ers by someauthors. Others usethe term destructor .

We deprecatethe latter for it has deallocation connotations that are irrelevant in the

garbage-collectedfunctional world.

Interr ogators enquire about properties of the type. Examples are:

member : Elem ! Set ! Bool

cardinality : Set ! Int

Finally, enumer ators carry payload contents to a di�eren t type, usually a concrete

one. For example:

enumerate : Set ! List

5.10 Classi�cation of ADTs

This section provides a classi�cation of ADTs which is usedby subsequent chapters.

An ADT is unbounde d when the internal arrangement of payload elements is inde-

pendent of any payload property. In other words, the structure of an unboundedADT
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is described by the number and position of payload elements, where by position we

mean the location of an element in the abstract type, not its implementation type.

Examples of unbounded ADTs are stacks, FIFO queues,double-endedqueues,lists,

arrays, matrices, etc. Notice that unboundedADTs may have constrained payload. A

FIFO queuecan be constrainedto payload with equality but only to make queueequal-

it y decidable. Arrays can be constrained to indexable payload, but in a referentially-

transparent world the position of an element is given by an indexing function and is

therefore constant; new array valuesare created by providing new indexing functions.

An ADT is bounde d when the internal arrangement of payload dependson a property

of the payload. More precisely, there are context-dependent laws such asordering, lack

of ordering, repetition, etc, which a�ect the position of payload elements and whose

conformancemay imposea constraint on the payload. What is more, the position of

an element may be irrelevant.

Examples of bounded ADTs are sets, bags, ordered sets, ordered bags, binary search

trees, heaps, priorit y queues,random queues,hash tables, dictionaries, etc. Sets are

constrained on payload with equality not only to decide set equality but to be able

to de�ne the ADT: sets do not have repeated elements and set membership has to

be implemented. (Sets are typical examplesof insensitive types where the position

of elements, being irrelevant, cannot be used in their characterisation). Ordered sets

require an order relation on their payload. The payload of hash tables and dictionaries

must be, respectively, `hashable'and `keyable'.

Finally, an ADT is mixe d when it is both boundedand unbounded. Examplesof mixed

ADTs are compositesof two ADTs where one is boundedand the other is unbounded.

Such ADTs may have multiple payload types.

In practical programming, unbounded ADTs are generaland bounded ADTs are spe-

ci�c with respect to applications. A very appealing quality of bounded ADTs is that

constructors are `smart': they take care of inserting payload within the abstract struc-

ture.

There are other possibleways of classifying ADTs. For instance, basedon their im-

plementation (which is usually the standard classi�cation), on their purpose [Bud02,

p387], on the e�ciency of foremost operators (e.g., searching a list takes linear time,
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searching a random accesslist takesconstant amortised time, searching a vector takes

constant time. . . ), etc.
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Chapter6

StructuralPolymorphismin Haskell

Domain Structure Principle: The structure of a function is determined

by the structure of its domain. [Mac90, p202]

Structural polymorphism, or polytypism if you like, pays justice to the dictum \the

structure of the problem immediately suggeststhe structure of the solution and the

structure of the data type immediately suggeststhe structure of each function" [FH88,

p41]. In this chapter we examine two popular languageextensionsfor doing polytypic

programming in Haskell: Generic Haskell [Hin00, L•oh04, HJ02] and Scrap your Boil-

erplate [LP03, LP04, LP05]. The latter can be understood as a blend of polytypic and

strategic programming techniques [VS04, LVV02], which are also explained.

It is surprising that the Domain Structure Principle quoted above hasbeenaround and

uttered ad nauseam, yet nobody has tried to capture the generalpattern until recently.

6.1 Generic Hask ell

Generic Haskell is a polytypic languageextensionof Haskell. It comesin two 
a vours,

classic and dependency-style . In terms of expressibility, dependency-style super-

sedesclassic style. The latter's principles can be summarised in a few paragraphs.

Subsequent sectionsspell out what theseparagraphsmean in more detail:

A polytypic function is structurally polymorphic on one1 type operator argument

of any kind. It capturesa family of polymorphic or overloadedfunctions on that

type operator.

The type of each member of the family (or instance) dependson the kind of the

type-operator argument. All the instance's types can be captured in a single

inductiv e de�nition which provides a type for the polytypic function. This type

is a polykinde d or kind-indexe d typ e becauseit is parametric on the type

operator's kind [Hin02].

1Multiple type-operator arguments are a di�cult extension [L•oh04, p207].

107
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The body of each member of the family dependson the de�nitional structure of

the type-operator argument, i.e., its structure in terms of sums of products of

basetypes, type variables, and applications of type operators. All the instance's

bodies can be captured in a single inductiv e de�nition and, what is more, only

the basecaseof the induction has to be provided.

A polytypic function is somewhat ambiguously called a typ e-indexe d value . The

name is ambiguous becausepolymorphic functions are also type-indexed, i.e., para-

metric on a type as made explicit in System F (Section 2.7.3). Moreover, polytypic

functions are not �rst-class values in Generic Haskell (Section 6.1.9).

Dependency-style Generic Haskell has a type systemfor keepingtrack of dependencies

betweenpolytypic functions|other polytypic functions called by a polytypic function

appear on the latter's type signature (notice the potential impact on maintainabilit y).

However, polykinded types are still used internally by the compiler [L•oh04, p104].

Dependency-style alsoprovidesmore 
exible notation and supports polytypic extension,

which endows polytypic functions with non-monotonic behaviour for particular types,

and polytypic types [HJL04], i.e., typesthat are parametric on the de�nitional structure

of other types.

Generic Haskell is a languageextension with a generative implementation. More pre-

cisely, the Generic Haskell compiler is a pre-processorthat generatespolymorphic in-

stancesof polytypic functions for actual type-operator arguments. In order to generate

the instances,type-operator arguments must be known at compile time (Section 4.7.1).

6.1.1 Algebraic data t yp es in Hask ell

In most functional languages,user-de�ned data types are algebr aic . An algebraic

data type de�nition simultaneously introducesentities at the type and value level. In

Haskell this is done in a data declaration of the form:

data Q ) T a1 : : : an = C1 � 11 : : : � 1k1 j : : : j Cm � m1 : : : � mk m

where n and k may be 0, m > 0, subscripted a symbols stand for type variables, C

symbols for value constructors, T is a type name,subscripted� symbolsare type-terms,

and Q stands for a quali�cation or context, i.e., a list of type-classconstraints on some

of T 's type-variable arguments.
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At the type level, a data de�nition introducesa new type-operator nameT with global

(i.e., module) scope that becomespart of the lexicon of type-terms. Types can be

monomorphic (manifest) or parametrically polymorphic (type-level functions mapping

types to types). Type operators can be higher-order (or higher-kinded). The context

Q restricts the range of type-variable arguments to types belonging to the speci�ed

type classes.Type de�nitions can be recursive or mutually recursive. Type-terms are

kind-checked and evaluated to manifest types at compile time. Types and values are

separated.

The syntax of a data de�nition restricts types to be constructed in terms of disjoint

sums2 of cartesian products of primitiv e types like Int or Bool , type variables, and

other manifest types, i.e., monomorphic or fully applied type operators including the

prede�ned `function space' type operator !̀ '. Recordscan also be de�ned in a data

construct but, at the time of writing, Haskell lacks a universally acceptedrecordsystem.

In Haskell 98, recordsare syntactic sugar for products with labelled �elds where labels

have global scope. At any rate, records are ignored as data-de�nition mechanisms by

most polytypic languageextensionswhich assumea world of algebraicdata types(i.e.,

sumsof products).

At the value level, a data de�nition introducesa set of value constructors which are

special value-level functions that become part of the lexicon of terms. Value con-

structors are di�eren tiated from ordinary functions syntactically: they have capitalised

names. Value-constructor nameswithin the samemodule scope must di�er. A value

constructor is introduced for each of the sum's alternatives. Value constructors are

special in the sensethat they provide the meansfor both constructing and representing

valuesof the type. The application of value constructor C to arguments t 11 : : : t1k1 of

types� 11 : : : � 1k1 respectively doesnot involve a function call but at most the evaluation

of the arguments themselves. In languageswith lazy constructors such as Haskell, the

term C t11 : : : t1k1 is a value of the algebraictype; in languageswith eager constructors,

the term C v11 : : : v1k1 is a value of the algebraic type, where vij is the value of t ij .

Becauseof this representation role and becauseof the lack of relations (e.g., equations)

betweenvalueconstructors, the latter canbeusedin de�nitions of functions by pattern

matching (Chapter 8). A function de�ned by pattern matching is de�ned over the

2`Disjoint' is sometimes replaced by `discriminated' and `sum' by `union', but the concept is the
same.
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de�nitional structure of a valueof an algebraictype: valueconstructor namesact astags

that are the meansof discriminating (doing caseanalysis)| i.e., \has this algebraictype

beenconstructed using value constructor C1 or C2 or . . . ?"|and their arguments are

matched against pattern expressions that select the appropriate product components.

De�nitions by pattern matching are translated by the compiler into caseterms of the

core language(e.g. Figure 2.3). The following is an example of a function de�ned by

pattern matching:

length :: List a ! Int

length Nil = 0

length (Cons x xs) = 1 + length xs

In type-theoretic jargon, construction, representation without equations, and pattern

matching are technically called intr oduction, freeness, and elimination [Pie02, Sch94].

Nullary value constructors (with empty product) of polymorphic type operators are

polymorphic values whosetype dependson the context (term) where they occur. A

typical example is Nil which has type 8a:� .List a.

Algebraic data types take the adjective `algebraic' from the fact that they constitute

a free algebra (Chapter 5): the set of values is de�ned entirely by meansof operators

(value constructors) applied to arguments and nothing more.

Figure 6.1showsa few examplesof typede�nitions and their kinds. Weusethe notation

t:k to state that type t has kind k and retain Haskell's notation v:: t to state that

value v has type t . The type operator GTree is higher-order; it is not only parametric

on the elements it can store|its paylo ad |, but also on other type operators that

provide the shape for its recursive substructure. For instance, in a GTreeList the

children of a GNode comein a List whereasin a GTreeFork they comein a Fork . We

could have de�ned their instantiations directly:

data GTreeList a = GEmpty | GLeaf a | GNode (List (GTreeList a))

data GTreeFork a = GEmpty | GLeaf a | GNode (Fork (GTreeFork a))

The type operator GTree is a generalisation that abstracts on (i.e., is parametric on)

the type operator applied to the recursive application:

data GTree f a = GEmpty | GLeaf a | GNode (f (GTree f a))

GTree : ( � ! � ) ! � ! �
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data List a = Nil | Cons a (List a)
data BTree a b = Empty | Leaf a | Node b (BTree a b) (BTree a b)
data GTree f a = GEmpty | GLeaf a | GNode (f ( GTree f a))
data BGTree f a b = BGEmpty | BGLeaf a | BGNode b (f (BGTree f a b))
data Fork a = Fork a a
data BList a = BNil | BCons a (BList (Fork a)) -- irregular

-- Instantiations
type TreeCharInt = BTree Char Int
type ArithExp = BTree Int ( Int ! Int ! Int )
type GTreeList = GTree List
type GTreeFork = GTree Fork

t1 :: GTreeList Int -- GTree List Int
t1 = GNode [GLeaf 3, GNode [GLeaf 2, GEmpty]]
t2 :: GTreeFork Int -- GTree Tree Int
t2 = GNode (Fork (GLeaf 3) (GNode (Fork (GLeaf 2) GEmpty)))

Int : �
List : � ! �
List Int : �
List Char : �
BTree : � ! � ! �
BTree Char : � ! �
BTree Char Int : �
GTree : ( � ! � ) ! � ! �
GTree List : � ! �
GTree List Int : �
BGTree : ( � ! � ) ! � ! � ! �
BList : � ! �

Figure 6.1: Somedata typesand their kinds in Haskell.

GEmpty :: 8 f : � ! � . 8 a: � . GTree f a

GLeaf :: 8 f : � ! � . 8 a: � . a ! GTree f a

GNode :: 8 f : � ! � . 8 a: � . f (GTree f a) ! GTree f a

The typeoperator BList is an exampleof an irr egular type. A recursive typeoperator

is irregular when it is recursively applied in its de�nition to arbitrary well-kinded type-

terms, not just type variables. Someauthors call thesetypesnested [BM98] and others

non-uniform [Oka98a]. Irregular typesare arrived at by a processof data-structural

bootstrapping [Oka98a, Chp10]. They capture structural invariants within the data

type itself that otherwise would have to be maintained by external operations. These

invariants are enforced by the type system when it checks for term well-formedness.
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Also, irregular typesmay provide more e�cien t representations. For example,the type

BList is recursively applied to Fork a instead of a, which meansthat every recursive

substructure is a pair of BList , thus obtaining the type of balancedtrees as shown in

Figure 6.2.

Cons BCons
/ \ / \

1 Cons 1 Fork
/ \ / \

2 Cons BCons BCons
/ \ / \ / \

3 Nil 2 BNil 3 BNil

Figure 6.2: List vs BList .

Functions on irregular typesmust bepolymorphic al ly recursive [Myc84, Hen93], i.e.,

each recursive call may have a di�eren t type than that of the function. For instance,

the length function for BList has type BList a ! Int whereasits recursive call must

have type BList (Fork a) ! Int .

6.1.2 From parametric to structural polymorphism

A polytypic function captures a whole family of polymorphic or overloaded functions

in a single de�nition. Let us recall the function that returns the length of a list:

length :: List a ! Int

length Nil = 0

length (Cons x xs) = 1 + length xs

Wecan think of similar functions for other typeoperatorssuch asBTree and GTree . All

thesefunctions are instancesof a more general,polytypic gsize function that returns

the `size' of an arbitrary type operator. What is the type of gsize ?

gsize :: ? ! Int

One of the insights behind Generic Haskell is that the type of gsize dependson the

kind of the type operator it works on. Let us write the type signatures and bodies of

gsize instancesstarting from a kind-� type operator and moving all the way up the

kind hierarchy. For a manifest type t , gsize must be a constant function:

8 t: � . gsize_t :: t ! Int
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Possibleexamplesare:

gsize_Int :: Int ! Int

gsize_Int = const 0

gsize_Char :: Char ! Int

gsize_Char = const 0

Giving basetypes a zero size is a design decision whoserationale will be understood

shortly.

For a type operator of kind � ! � like List , instead of hardwiring the computation of

the size attributed to the payload in the function de�nition we should generaliseand

passa function to do the job. Compare length 's de�nition to gsize_List 's below.

(We depart slightly from Haskell's standard syntax and show 8 and kind annotations

in type signaturesof members of the gsize family.)

length :: List a ! Int

length Nil = 0

length (Cons x xs ) = 1 + length xs

gsize_List :: 8 a: � . ( a ! Int ) ! (List a ! Int )

gsize_List gsa Nil = gsize_Unit Nil

gsize_List gsa (Cons x xs) = gsa x + gsize_List gsa xs

gsize_Unit = const 0 -- fixed !

Notice that the size for values of Unit type is �xed, like those for kind-� types. We

can de�ne the original length function as a particular caseof gsize_List :

length = gsize_List ( const 1)

We can compute other notions of length by playing with function arguments:

ords :: List Char ! Int

ords = gsize_List ord

Let us repeat the sameprocessfor type operator BTree of kind � ! � ! � :

size_Tree :: BTree a b ! Int

size_Tree Empty = 0

size_Tree (Leaf x) = 1

size_Tree (Node x l r) = 1 + size_Tree l + size_Tree r
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gsize_Tree :: 8 a: � . (a ! Int ) !

( 8 b: � . (b ! Int ) ! ( BTree a b ! Int ))

gsize_Tree gsa gsb Empty = gsize_Unit Empty

gsize_Tree gsa gsb ( Leaf x) = gsa x

gsize_Tree gsa gsb ( Node x l r) = gsb x + gsize_Tree gsa gsb l

+ gsize_Tree gsa gsb r

Again, the gsize version takes an argument function for every type variable and the

de�nition for units is �xed. Let us now write the gsize instance for higher-order

type operator GTree . The argument function gsf associated with type variable f is a

parametrically polymorphic function whosetype is that of a gsize for a type operator

of kind � ! � :

gsize_GTree

:: 8 f: � ! � . ( 8 a: � . (a ! Int ) ! (f a ! Int )) !

( 8 a: � . (a ! Int ) ! (GTree f a ! Int ))

gsize_GTree gsf gsa GEmpty = gsize_Unit GEmpty

gsize_GTree gsf gsa (GLeaf x) = gsa x

gsize_GTree gsf gsa (GNode y) = gsf (gsize_GTree gsf gsa) y

There is an inductiv e pattern here which can be gleanedby looking carefully at the

type signatures:

8 t: � . gsize :: t ! Int

8 t: � ! � . gsize :: 8 a: � . (a ! Int ) ! (t a ! Int )

8 t: � ! � ! � .

gsize :: 8 a: � . (a ! Int ) ! ( 8 b: � . (b ! Int ) ! (t a b ! Int ))

8 t:( � ! � ) ! � ! � .

gsize :: 8 t': � ! � . ( 8 a: � . (a ! Int ) ! (t' a ! Int )) !

( 8 b: � . (b ! Int ) ! (t t ' b ! Int ))

Each version of gsize takes a function for each of the type operator's type variables.

The number of function arguments is determined by the arit y of the type operator and

the type signature of each function argument dependson the kind of the type variable.
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That is, the type of each gsize is determined by the type operator's kind inductiv ely

from the type of the kind-� case.This is captured by a so-calledpolykinded type:

type Size h� i t = t ! Int

type Size hk ! v i t = 8 a. Size hk i a ! Size hv i ( t a)

The notation Size hki t indicates that Size is a polykinded type de�ned by induction

on the kind k of type operator t . The polykinded type is specialisedfor every actual

type-operator argument to get the typesof gsize instances. Figure 6.3 illustrates this

processfor t = GTree . (We have renamedtype variables in the �gure to avoid variable

shadowing.)

Size h( � ! � ) ! � ! � i GTree
= 8 f. Size h� ! � i f ! Size h� ! � i ( GTree f)
= 8 f. ( 8 a. Size h� i a ! Size h� i ( f a)) !

( 8 a. Size h� i a ! Size h� i (( GTree f) a))
= 8 f. ( 8 a. ( a ! Int ) ! f a ! Int ) !

( 8 a. ( a ! Int ) ! GTree f a ! Int )

Figure 6.3: Specialisation of polykinded type Size hk i t where t is GTree and therefore
k is ( � !� ) !� !� .

Let us move on to the function bodies. In each case,the particular instance of gsize

is de�ned by pattern matching on the type operator's de�nitional structure in terms

of sums of products. There is one line for each sum, i.e., for each value constructor.

Nullary products are consideredequivalent to valuesof Unit type. The total sizeof a

proper product is calculated by adding the sizesof each product component: the sizeof

elements whosetype is given by a type variable is computed by the function arguments;

the sizeof recursive substructures is computed by recursive calls. Although not shown

in the examples,components of other types such as base types or user-de�ned types

would have their particular instancesof gsize applied to them.

Consequently, the body of each gsize instance is determined by the type operator's

de�nitional structure. (This motivates a pun in `poly-typical': a family of many typical

or expectedfunctions.) There remainsto collect all the bodiesinto a polytypic de�nition

of a single gsize function. This function would compute the sizeof an arbitrary type

operator argument of arbitrary kind. For a particular type operator, say List , a call

to polytypic gsize :

gsize hList i ( const 1) [1,2,4]
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where angle brackets denote polytypic applic ation , \should amount" to a call to its

particular instantiation:

gsize_List ( const 1) [1,2,4]

Another insight behind Generic Haskell is that polytypic function bodies neednot be

de�ned by a fully-
edged inductiv e de�nition; it su�ces to de�ne the basecaseof the

induction, i.e., the behaviour of the function for kind-� types,binary sums,and binary

products. The Generic Haskell compiler \automatically takescare of type abstraction,

type application, and type recursion. . . in a type-safemanner" [HJ02, p13]. We should

also add that it automatically takes care of translating n-ary sums and products into

compositions of right-associative binary ones. This translation is a designchoice that

plays an important role in understanding the instantiation processand the behaviour

of polytypic functions. Other representations are possible| e.g., left associativit y|and

have an e�ect on the semantics of the function: \most [polytypic] functions are insens-

itiv e to the translation of sums and products. Two notable exceptionsare [encoding

and decoding] for which [another representation] is preferable" [HJ02, p47].

GenericHaskell forcesprogrammersto know the mechanicsof the instantiation process,

in particular, the internal way of encoding products and sums,for that determinesthe

structure and therefore the body and semantics of the instance. At the time of writing,

there are someattempts at letting programmersspecify associativit y explicitly and to

allow typesto be treated (viewed) as other types[HJL05].

In order to de�ne polytypic function bodies,a canonical representation of a type oper-

ator's de�nitional structure is needed. It is at this point that representation typ es,

called structur e typ es in the Generic Haskell literature, are introduced. A represent-

ation type provides a canonical encoding of a type in terms of compositions of binary

sumsof binary products of basetypesand type-operator applications. Representation

typesare built on the following base representation typ es:

data Unit = Unit

data Sum a b = Inl a | Inl b

type Pro a b = (a,b)

type Fun a b = ( ! ) a b

We ignore function space(Fun) in the following examplesand defer its discussionuntil

Section 6.1.4. For readability we will write a+ b for Suma b and a� b for Pro a b. As
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previously explained, the Generic Haskell compiler follows the convention that + and

� are right associative.

Figure 6.4 shows examplesof type operators represented by structurally isomorphic

representation typeoperators. Let us ignore for the moment the fact that type-synonym

declarations (keyword type ) cannot be recursive. We will provide a better de�nition

of representation typesshortly.

data List a = Nil | Cons a (List a)
type List' a = Unit + ( a � ( List' a))

data BTree a b = Empty | Leaf a | Node b (BTree a b) (BTree a b)
type BTree ' a b = Unit + ( a + ( b � (( BTree ' a b) � (BTree ' a b))))

data GTree f a = GEmpty | GLeaf a | GNode (f ( GTree f a))
type GTree ' f a = Unit + ( a + ( f (GTree ' f a)))

data BList a = BNil | BCons a (BList (Fork a)) -- irregular
type BList ' a = Unit + ( a � ( BList ' (Fork a)))

Figure 6.4: Some type operators and their respective representation type operators.
Thesede�nitions are not legal Haskell 98: type synonyms cannot be recursive.

Value-constructor namesare dropped but the actual representation type used by the

Generic Haskell compiler includes information about value constructors (names,�xit y,

arit y, etc.), which is essential for programming polytypic serialisers such as prett y-

printers.

Polytypic functions are de�ned on basetypesand baserepresentation types as shown

in the �rst box of Figure 6.5. The interesting casesare the sum and product ones.

The size of a sum a+ b, whatever a and b, within a representation type is computed

by pattern matching on whether the value of the sum type is an Inl or Inr and then

by applying the appropriate argument function to it. The size of a binary product

a� b, whatever a and b, within a representation type is computed by pattern matching

on product components and adding their sizes,which are computed by the argument

functions. The secondbox in Figure 6.5 is syntactic sugar for the box above where the

recursion is madeexplicit: the argument functions gsa and gsb are instancesof gsize

for the typesa and b.
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gsize ht:k i :: Size hk i t
gsize hChar i = const 0
gsize hInt i = const 0
gsize hBool i = const 0
gsize hUnit i = const 0
gsize ha+b i gsa gsb ( Inl x) = gsa x
gsize ha+b i gsa gsb ( Inr y) = gsb y
gsize ha� b i gsa gsb ( x,y) = gsa x + gsb y

gsize ht:k i :: Size hk i t
gsize hChar i = const 0
gsize hInt i = const 0
gsize hBool i = const 0
gsize hUnit i = const 0
gsize ha+b i (Inl x) = gsize ha i x
gsize ha+b i (Inr y) = gsize hb i y
gsize ha� b i (x,y ) = gsize ha i x + gsize hb i y

Figure 6.5: Polytypic gsize with implicit and explicit recursion.

Figure 6.6 illustrates the instantiation process.The �rst box shows instancesof gsize

for basetypes,units, and binary products and sums. All aregenerateddirectly from the

polytypic de�nition. Their typesignaturesareobtained by instantiating the polykinded

type Size .

The remaining boxes show the instances of gsize for representation type operators

List' , BTree ' , and GTree ' . These instances follow the type-operator's de�nitional

structure to the letter: an argument function is passedfor each of the type-operator's

type variables; the occurrenceof a basetype in the representation type translates to

a call to its gsize instance in the body of the function; the occurrence of a sum

translates to a call to gsize_Sum ; the occurrenceof a product to a call to gsize_Pro ;

type-operator application translates to function application.

As an improvement, the type for kind-� type operators can be expressedby a type

synonym and the type signatures of all the instancescan be written in terms of it as

shown in Figure 6.7.

There are two problems with the schemepresented. First, gsize has beende�ned on

List' not List . The generatedinstantiation is gsize_List ' , not gsize_List . And

similarly for the other type operators. Second,the type synonyms in Figure 6.4 are

invalid.
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gsize_Char :: Char ! Int
gsize_Char = const 0

gsize_Bool :: Bool ! Int
gsize_Bool = const 0

gsize_Int :: Int ! Int
gsize_Int = const 0

gsize_Unit :: Unit ! Int
gsize_Unit = const 0

gsize_Sum :: 8 a. (a ! Int ) ! ( 8 b. (b ! Int ) ! Sum a b ! Int )
gsize_Sum gsa gsb (Inl x) = gsa x
gsize_Sum gsa gsb (Inr y) = gsb y

gsize_Pro :: 8 a. (a ! Int ) ! ( 8 b. (b ! Int ) ! Pro a b ! Int )
gsize_Pro gsa gsb (x,y ) = gsa x + gsb y

type List ' a = Unit + a � (List ' a)

gsize_List ' :: 8 a. (a ! Int ) ! List ' a ! Int

gsize_List ' gsa
= gsize_Sum gsize_Unit (gsize_Pro gsa (gsize_List ' gsa ))

type BTree ' a b = Unit + a + b � (BTree ' a b) � ( BTree' a b)

gsize_BTree '
:: 8 a. (a ! Int ) ! ( 8 b. (b ! Int ) ! BTree ' a b ! Int )

gsize_BTree ' gsa gsb =
gsize_Sum gsize_Unit

(gsize_Sum gsa (gsize_Pro gsb
(gsize_Pro (gsize_BTree ' gsa gsb ) (gsize_BTree ' gsa gsb))))

type GTree ' f a = Unit + (a + (f (GTree ' f a)))

gsize_GTree '
:: 8 f. ( 8 a. ( a ! Int ) ! (f a ! Int )) !

( 8 a. ( a ! Int ) ! (GTree f a ! Int ))

gsize_GTree ' gsf gsa
= gsize_Sum gsize_Unit

(gsize_Sum gsa (gsf (gsize_GTree ' gsf gsa)))

Figure 6.6: Instantiations of gsize .



6.1 Generic Haskell 120

type Size t = t ! Int

gsize_Int :: Size Int
gsize_Unit :: Size Unit
gsize_Sum :: 8 a. Size a ! ( 8 b. Size b ! Size ( Sum a b))
gsize_Pro :: 8 a. Size a ! ( 8 b. Size b ! Size ( Pro a b))

gsize_List ' :: 8 a. Size a ! Size (List' a)

gsize_BTree ' :: 8 a. Size a ! ( 8 b. Size b ! Size ( BTree a b))

gsize_GTree ' :: 8 f. ( 8 a. Size a ! Size (f a)) !
( 8 a. Size a ! Size (GTree ' f a))

Figure 6.7: Type signatures of the functions in Figure 6.6 written in terms of a type
synonym.

The type synonym of Figure 6.7 will prove useful in understanding how the Generic

Haskell compiler sorts out this problem. Before delving into that, let us (1) show some

examples of usage, (2) two more examplesof polytypic function de�nitions and (3)

discusssometheoretical aspects of the approach in more detail (Section 6.1.3).

Let us suppose that recursive type synonyms were legal and assumethat a call to

gsize on a type operator T is somehow translated to a call on its representation type

T0. Figure 6.8 shows examplesof usagethat illustrate the design objectives. Desired

results are shown below each application.

In the �gure, type BTree Int Char has kind � and therefore there is no argument

function passedto gsize . The type BTree Int has kind � ! � and therefore there is

an argument function passedto gsize . More precisely, the Generic Haskell compiler

replacesthe polytypic applications:

gsize hBTree Int Char i

gsize hBTree Int i

by calls to the instancesgsize_BTree_Int_Char and gsize_BTree_Int whosede�n-

ition has beengeneratedas follows:

gsize_BTree_Int_Char :: BTree Int Char ! Int

gsize_BTree_Int_Char = gsize_BTree gsize_Int gsize_Char

gsize_BTree_Int :: 8 a. (a ! Int ) ! BTree Int a ! Int

gsize_BTree_Int gsa = gsize_BTree gsize_Int gsa
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aTree :: BTree Int Char
aTree = Node ' A' (Leaf 2) (Leaf 3)

gsize hBTree Int Char i aTree
> 0

gsize hBTree Int i ( const 1) aTree
> 1

gsize hBTree i ( const 0) ( const 1) aTree
> 1

gsize hBTree i ( const 1) ( const 1) aTree
> 3

gsize hList i ( const 1) "hello world "
> 11

gsize hList i ord "hello world "
> 1116

Figure 6.8: Examples of usageof polytypic gsize .

The size computed is zero becausethat is the size given to integers and characters in

Figure 6.5, which makeup the payload of the type. Had wede�ned gsize di�eren tly for

basetypesthen the computed sizewould di�er. We comeback to this in Section6.1.12.

Other examplesin Figure 6.8 show how to obtain di�eren t sizes(e.g., counting nodes

or counting leaves in BTree s) by playing with function arguments.

Polyt ypic map and polyt ypic equalit y. Figure 6.9 shows the de�nitions of poly-

typic map and polytypic equality. The latter function shows that overloadedfunctions

(implemented using type classesin Haskell) are alsosubject to generalisationin a poly-

typic de�nition. The polykinded type of polytypic map is at �rst sight confusing.

According to what has beensaid so far it might appear to be:

type Maph� i t = t ! t

type Maphk ! v i t = 8 a. Maphk i a ! Maphv i (t a)

However, this polykinded type is not generalenoughasshown by the following counter-

example:

Maph� ! � i List = 8 a. Maph� i a ! Maph� i ( List a)

= 8 a. (a ! a) ! List a ! List a
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type Maph� i t1 t2 = t1 ! t2
type Maphk ! v i t1 t2 =

8 a1 a2. Maphk i a1 a2 ! Maphv i (t1 a1) (t2 a2)

gmapht :k i :: Maphk i t t
gmaphInt i = id
gmaphUnit i = id
gmapha+b i (Inl x) = Inl (gmap ha i x)
gmapha+b i (Inr y) = Inr (gmap hb i y)
gmapha� b i (x ,y) = (gmap ha i x, gmaphb i y)

gmaphList i chr [65, 66, 67]
> "ABC"

gmaphBTree i ord chr (Node 'A ' (Leaf 66) (Leaf 67))
> Node 65 (Leaf ' B') ( Leaf ' C')

type Eqh� i t = t ! t ! Bool
type Eqhk ! v i t = 8 a. Eqhk i a ! Eqhv i (t a)

geq ht: k i :: Eqhk i t
geq hInt i = (==)
geq hUnit i Unit Unit = True
geq ha+b i (Inl x) (Inl x') = geq ha i x x'
geq ha+b i (Inl x) (Inr y') = False
geq ha+b i (Inr y) (Inl x') = False
geq ha+b i (Inr y) (Inr y') = geq hb i y y'
geq ha� b i (x ,y) (x', y') = geq ha i x x' && geq hb i y y'

geq hList i (==) [1,2,4] [1,2,4]
> True

geq hList i (==) [1,2,4] [1,2,3]
> False

Figure 6.9: Polytypic map, polytypic equality, and examplesof usage.
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For typeoperatorsof higher kinds weneedtwo di�eren t universally-quanti�ed variables,

one for the sourcetype and another for the mapped target type:

Maph� ! � i List List = 8 a b. Maph� i a b ! Maph� i (List a) ( List b)

= 8 a b. (a ! b) ! List a ! List b

The polykinded Map type usestwo type variables from the start, but the polykinded

type of gmap is restricted to take the sametype operator.

Two remarks are in order. First, polytypic map is not de�ned for function types:

function spaceis contravariant on its �rst argument (Section3.10)and its typesignature

thereforebreaksthe pattern captured by the polykinded typeof polytypic map. Second,

as its polykinded type indicates, polytypic map is slightly more general than a map.

For example, the type signature of gmap_GTree is:

map_GTree :: 8 f g. ( 8 a b. (a ! b) ! (f a ! g b)) !

( 8 a b. (a ! b) ! GTree f a ! GTree g b)

Categorially, GTree is a functor if it is functorial in the two arguments. More precisely,

we can de�ne two functions:

hmap :: ( Functor f, Functor g) ) Nat f g ! Nat ( GTree f) (GTree g)

fmap :: Functor f ) (a ! b) ! GTree f a ! GTree f b

where Nat f g is the type of natural transformations from functor f to functor g:

type Nat f g = 8 a. f a ! g a

(The naturalit y conditions follow from parametricity, i.e., polymorphic functions are

natural transformations in T yp e.) Functions hmap and fmap must satisfy the functorial

laws:

hmap ( � � � ) == hmap � � hmap �

hmap ( id :: Nat f f) == ( id :: Nat ( GTree f) (GTree f ))

fmap (i � j) == fmap i � fmap j

fmap ( id :: a ! a) == ( id :: (GTree f) a ! ( GTree f) a)

where:

� :: Nat g h i :: b ! c

� :: Nat f g j :: a ! b
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Becauseit is possibleto manufacture a function of type f a ! g a from a function k

of type (a ! b) ! f a ! g b, namely, k � id, map_GTree must satisfy the following

equation:

map_GTree k r == hmap (k � id ) � fmap r

The body of gmap is straightforward. For basetypes(we only show integersand units)

it is the identit y. For sums and products it maps over the components. Examples of

usageare also shown in the �gure.

The polykinded type of geq is also straightforward: for kind � it is a binary predicate

on the type t . Regarding the body, equality for basetypes is standard equality; two

sumsare equal if they are both left or right components and their contents are equal;

and two products are equal if their components are equal. Examples of usageare also

shown.

Notice that we could have de�ned a more generalpolykinded type for equality following

the spirit of polykinded type Map [HJ02]:

type Eqh� i t1 t2 = t1 ! t2 ! Bool

type Eqhk ! v i t1 t2 = 8 a1 a2. Eqhk i a1 a2 ! Eqhv i (t1 a1) (t2 a2)

wherenow geq would have to have polykinded type Eqhki t t . The type of its instance

for List' would be:

geq_List ' :: 8 a b. (a ! b ! Bool ) ! List ' a ! List ' b ! Bool

Surprisingly, the body of polytypic geq need not change, so one wonders about what

is its most general polykinded type and about the expressibility of polykinded type

de�nitions. We comeback to this in Section 6.1.5.

6.1.3 Generic Hask ell and System F !

If instead of Haskell we were programming in SystemF ! (Section 2.7.4), our overview

of polytypic programming would have come to a conclusion. In System F ! there is

a structural equivalencerelation between types. A type operator and its representa-

tion type are structurally equivalent and we would program with representation types

directly. A polytypic extension of System F ! would translate polykinded types and

polytypic functions following the schemeso far, treating namedde�nitions assugar for
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gsizeUnit def= �x :Unit : 0

gsize Int def= �x : Int : 0

gsizeSum def= � � : � : � gsa : � ! Int :
� � : � : � gsb: � ! Int :
�s : � + � : case s of Inl x then gsa [� ] x ; Inr y then gsb[� ] y

gsizePro def= � � : � : � gsa : � ! Int :
� � : � : � gsb: � ! Int :
�p : � � � : plus (gsa [� ] (fst [� ] [� ] p)) (gsb[� ] (snd [� ] [� ] p))

List def= �� : � : 1 + � � (List � )

gsizeList def= � � : � : � gsa: � ! Int :
gsizeSum [Unit ] gsizeUnit

[� � (List � )] (gsizePro [� ] gsa [List � ] (gsize List [� ] gsa))

Figure 6.10: Writing and using instancesof gsize for lists in System F ! . Type-terms
in universal type applications are shown in squarebrackets.

lambda abstractions, with �xed points when there is recursion.

For example, the code in Figure 6.10 shows the instancesof gsize for units, integers,

binary sums, products, and lists. For readability, we have used meta-level recursive

namesand thus obviated the useof �xed-p oint operators. Also, to distinguish universal

type applications from term applications more easily, each type argument in a universal

application is written betweensquarebrackets.

The following code is an exampleof usagewherexs abbreviatesa value of type List Int

which corresponds to the Haskell list value [1,2] :

xs def= Inr (1; Inr (2; Inl unit ))

gsize List [Int ] (�x : Int : 1) xs

> 2

The generationof instanceslikegsizeList amounts to producing terms from type-terms,

where the latter are described by a type-level STLC (Chapter 2). The programmer

de�nes the translation for base types, units, sums, and products. The rest can be
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taken care of automatically. A polytypic System F ! compiler or interpreter assignsa

SystemF! term (an instance of a polytypic function, e.g., gsizeList ) to a STLC term

(a type-operator, e.g., List ) [HJ02, p42�].

6.1.4 Nominal t yp e equiv alence and embedding-pro jection pairs

Among other things, Haskell di�ers from SystemF ! in that typeequivalenceis nominal,

not structural. In type systems with nominal typ e equivalenc e naming is not a

derived form but an explicit and essential language construct. In such systems two

typesare equivalent if and only if they have the samename. For several reasons[Pie02,

p251{254]nominal typeequivalenceis the norm in mainstreamprogramming languages.

It facilitates the treatment of recursion and plays an important role in enforcing data

abstraction. For instance, the types:

data Debit = Debit Int

data Credit = Credit Int

are structurally equivalent but mistaking one for the other can have painful con-

sequences.In Haskell the two typesaredi�eren t, a point underlined by the two di�eren t

value constructors. In System F ! , which lacks names,we would only make use of in-

tegers.

A representation type operator is structurally equivalent to many structurally iso-

morphic type operators, but in a nominal typesystem,programming with, say, a List'

is not programming with a List .

GenericHaskell solvesthis problem by de�ning representation typesin a di�eren t fash-

ion where they only capture the top-level structure of type operators. There is one

embedding function that translates a type operator to its representation type oper-

ator and a projection function that performs the converse. Figure 6.11 shows their

de�nitions for the caseof lists and binary trees. Embedding-projection functions also

follow the structure of the data and their de�nitions are generatedautomatically by

the Generic Haskell compiler for arbitrary type operators [HJ02, p46{47].

The instancesof gsize have been de�ned for the illegal representation types of Fig-

ure 6.4. However, for kind-� typesand binary sumsand products theseinstancesneed

not change. They will work for the new representation types of Figure 6.11 in the
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data List a = Nil | Cons a (List a)
type List' a = Unit + (a � (List a))

from_List :: 8 a. List a ! List ' a
from_List Nil = Inl Unit
from_List (Cons x xs ) = Inr (x, xs)

to_List :: 8 a. List ' a ! List a
to_List (Inl Unit ) = Nil
to_List (Inr (x ,xs)) = Cons x xs

data BTree a b = Empty | Leaf a | Node b (BTree a b) (BTree a b)
type BTree ' a b = Unit + ( a + ( b � (( BTree a b) � (BTree a b))))

from_BTree :: 8 a b. Tree a b ! Tree ' a b
from_BTree Empty = Inl ( Inl Unit )
from_BTree (Leaf x) = Inr ( Inl x)
from_BTree (Node x l r) = Inr ( Inr ( x,l,r))

to_BTree :: 8 a b. Tree ' a b ! Tree a b
to_BTree ( Inl ( Inl Unit )) = Empty
to_BTree ( Inr ( Inl x)) = Leaf x
to_BTree ( Inr ( Inr ( x,l,r))) = Node x l r

Figure 6.11: Generic Haskell's representation types for lists and binary trees, together
with their embedding and projection functions.

forthcoming scheme.

The idea is to �nd out what needsto be modi�ed from the de�nition of gsize_List '

in order to de�ne gsize_List . First, a new gsize_List ' must be generatedfor the

new representation type of Figure 6.11 from the polytypic de�nition. The occurrence

of type operator List in the representation type signals the place in the body where

its gsize instance is to be called:

gsize_List ' :: 8 a. Size a ! Size (List ' a)

gsize_List ' gsa = gsize_Sum gsize_Unit

( gsize_Pro gsa (gsize_List gsa ))

Second,looking closelyat the typesof the functions:

gsize_List ' :: 8 a. Size a ! Size ( List' a)

gsize_List :: 8 a. Size a ! Size ( List a)

in order to de�ne gsize_List the remaining ingredient would be a function:
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foo :: 8 a. Size (List ' a) ! Size ( List a)

which would a�ord to tie the knot:

gsize_List gsa = foo (gsize_List ' gsa )

That is:

gsize_List gsa = foo ( gsize_Sum gsize_Unit

(gsize_Pro gsa (gsize_List gsa )))

Fortunately, the embedding-projection functions can help attain this goal:

from_List :: 8 a. List a ! List ' a

to_List :: 8 a. List ' a ! List a

It remains to de�ne lifted versionsof types:

bar :: 8 a. Size (List a) ! Size ( List' a)

foo :: 8 a. Size (List ' a) ! Size ( List a)

This lifting is performed by a special map function which must be polytypic on the

type synonym, as the processmust be repeated for other polytypic functions and type

synonyms like equality:

type Eq a = a ! a ! Bool

geq_List :: 8 a. Eq a ! Eq (List a)

bar :: 8 a. Eq (List a) ! Eq (List ' a)

foo :: 8 a. Eq (List ' a) ! Eq (List a)

The �rst box in Figure 6.12 de�nes a new data type EP and two selector functions

for manipulating embedding-projection pairs conveniently. The second box de�nes

instancesof a special map function mapEPwhich is the map for EP values: for units and

integers,embedding-projection pairs are identities; for sumsand products, embedding-

projection pairs can be obtained by mapping embedding-projection pairs associated

with their components. Notice that the arrow type operator is contravariant on its �rst

argument (Section 3.10), thus the de�nition of mapEP_Fun.

As usual, the type of the instance mapEP_Size is obtained from the polykinded type:

MapEPh� ! � i Size =

8 t t'. MapEPh� i t t' ! MapEPh� i ( Size t ) (Size t')
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data EP a b = MkEP (a ! b) (b ! a)

from :: EP a b ! (a ! b)
from ( MkEP f t) = f

to :: EP a b ! ( b ! a)
to (MkEP f t ) = t

mapEP_Int :: EP Int Int
mapEP_Int = MkEP id id

mapEP_Unit :: EP Unit Unit
mapEP_Unit = MkEP id id

mapEP_Pro :: EP a c ! EP b d ! EP (a � b) (c � d)
mapEP_Pro (MkEP f1 t1) (MkEP f2 t2 )

= MkEP ( map� f1 f2) ( map� t1 t2)

mapEP_Sum:: EP a c ! EP b d ! EP (a + b) (c + d)
mapEP_Sum ( MkEP f1 t1 ) (MkEP f2 t2)

= MkEP ( map+ f1 f2 ) ( map+ t1 t2)

mapEP_Fun :: EP a c ! EP b d ! EP (a ! b) (c ! d)
mapEP_Fun (MkEP f1 t1) (MkEP f2 t2 )

= MkEP ( map! t1 f2 ) ( map! f1 t2 )

type MapEPh� i t1 t2 = EP t1 t2
type MapEPhk ! v i t1 t2 =

8 a1 a2. MapEPhk i a1 a2 ! MapEPhv i (t1 a1) (t2 a2)
mapEPht:k i :: MapEhk i t t
mapEPhInt i = mapEP_Int
mapEPhUnit i = mapEP_Unit
mapEPha+b i = mapEP_Sum
mapEPha� b i = mapEP_Pro
mapEPha ! b i = mapEP_Fun

Figure 6.12: Embedding-projection pairs and polytypic mapEP.
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8 t t'. EP t t ' ! EP (Size t) (Size t')

Letting t =( List a) and t' =( List ' a) would sealo� the process.This is achieved by

creating an embedding-projection pair value for lists:

ep_List :: 8 a. EP (List a) (List ' a)

ep_List = MkEP from_List to_List

and by getting the body of mapEP_Size from its polytypic de�nition, which follows to

the letter the de�nitional structure of type synonym Size :

mapEP_Size :: 8 t t'. EP t t' ! EP (Size t) (Size t')

mapEP_Size mapEPa = mapEP_Fun mapEPa mapEP_Int

Function mapEP_Size applied to ep_List givesus a value of type:

8 a. EP (Size ( List a)) (Size ( List' a))

whoseto component is our sought-after foo :

foo :: 8 a. Size (List ' a) ! Size ( List a)

foo = to ( mapEP_Size ep_List )

We can now provide the de�nition of gsize_List :

gsize_List :: 8 a. Size a ! Size (List a)

gsize_List gsa = (to ( mapEP_Size ep_List )) ( gsize_List ' gsa)

6.1.5 The expressibilit y of polykinded t yp e de�nitions

The polykinded type MapEP and the polytypic function mapEP are prede�ned in the

Generic Haskell prelude. This function in part determinesthe expressibility of a poly-

kinded type, i.e., what sort of polykinded types can be written. The Generic Haskell

compiler collectsall the polykinded type de�nitions and generatesan instanceof mapEP

for the type synonyms generatedfrom their kind-� cases.As it currently stands, these

synonyms can only contain applications of typeoperators to arguments. In [HJ02, p51],

the de�nition of mapEP is extendedso that, in general,polykinded typescan have the

form:

type Th� i t1 : : : tn x : : : z = B

type Thk ! v i t1 : : : tn x : : : z =

8 a1 : : : an. Thk i a1 : : : an x : : : z ! Thv i (t1 a1) : : : (tn an) x : : : z
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where B is a polymorphic type signature where universal quanti�cation is permitted

over type variables of kind � and � ! � , and where x: : :z are auxiliary type variables

that are passeduntouched to the basecase.Thesevariables are universally quanti�ed

later when expressingthe polykinded type of particular polytypic functions such as

polytypic reduce,shown in Figure 6.13 (notice how a somewhatspurious function has

to be passedto freduce in order to get a more meaningful type.)

type Reduce h� i t x = x ! (x ! x ! x) ! t ! x
type Reduce hk ! v i t x = 8 a. Reduce hk i a x ! Reduce hv i (t a) x

reduce ht:k i :: 8 x. Reduce hk i t x
{- body of reduce not shown here

8 x. Reduce h� ! � i List x
=

8 x. 8 a. Reduce h� i a x ! Reduce h� i (List a x)
=

8 x. 8 a. (x ! ( x ! x ! x) ! a ! x) !
x ! ( x ! x ! x) ! List a ! x

-}
freduce ht: � ! � i :: 8 x. x ! (x ! x ! x) ! t x ! x
freduce ht i = reduce ht i ( � x y z ! z)

fsum ht i = freduce ht i 0 (+)
fand ht i = freduce ht i True and

Figure 6.13: Polytypic reductions.

We should also mention that Generic Haskell supports polytypic typ es, called typ e-

indexe d data typ es in the literature, i.e., typeswhosede�nitional structure depends

on the de�nitional structure of another type [HJL04]. Polytypic types may appear in

the kind-� caseof a polykinded type. Instancesof polytypic typesare generatedbefore

generating the instancesof the polykinded type and the polytypic function.

Polykinded types also allow type-classconstraints in some situations. We defer this

discussionuntil Section 6.1.10.

6.1.6 Polyt ypic abstraction

Figure 6.13 also shows two examplesof polytypic abstr action (called `generic ab-

straction' in the GenericHaskell literature) where instancesof a polytypic function are

de�ned for type operators of particular kinds only. Functions fsum and fand work on
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type operators of kind � ! � only. Another exampleof polytypic abstraction involving

gsize follows:

flength ht: � ! � i :: t a ! Int

flength ht i = gsize ht i ( const 1)

length = flength hList i

6.1.7 The expressibilit y of polyt ypic de�nitions

Generic Haskell allows us to expresscatamorphisms such as gsize (Section 6.1.13).

It even allows us to expressmore genericonessuch as freduce , or even more generally,

reduce . Notice that reduce is not quite a polytypic gfoldr . The type signature of

foldr for a given type operator takes one argument per value constructor. The base

caseof the polykinded type of a polytypic gfoldr would not only depend on a type

operator's kind but also on what is to the right of the equals in a data de�nition.

Also, representation types contain binary products, not n-ary products which are the

arguments taken by the functions that would be passedto gfoldr . For thesereasons,

gfoldr is not de�nable in Generic Haskell.

Let us illustrate the problemsin moredetail. The following code de�nes foldr in terms

of a type Alg representing an operator algebra:

data Alg a b = Alg { nil :: b, cons :: a ! b ! b }

foldr :: Alg a b ! List a ! b

foldr alg Nil = nil alg

foldr alg (Cons x xs ) = cons x ( foldr alg xs)

Particular algebrasare valuesof type Alg :

algSum = Alg { nil = 0, cons = (+) }

algLen = Alg { nil = 0, cons = � x y ! 1+y }

The following is an exampleof usage:

foldr algSum [1,2,3]

> 6

foldr algLen [1,2,3]

> 3

It is common practice to write foldr alg as LvOf Mwhere v stands for nil alg and f
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for cons alg [MFP91].

The instance of gfoldr for List should have the sametype signature as foldr . But

Alg not only depends on the kind-signature of List ; it also depends on the number

and type signature of List 's value constructors.

Even if we could de�ne a polytypic type Alg ht i of which Alg for lists is an instance,

the representation of n-ary products into associations of binary products becomesan

issue. This is better illustrated in the caseof BTree . When it comesto dealing with

the tertiary product of a Node, reduce for BTree s takes two functions, one for each

binary product into which the tertiary product is arranged:

data Alg a b c = Alg{ empty :: c,

leaf :: a ! c,

node :: b ! c ! c ! c}

gfoldr_BTree alg Empty = empty alg

gfoldr_BTree alg (Leaf x) = leaf alg x

gfoldr_BTree alg (Node x tl tr) = node alg x (gfoldr_BTree alg tl )

(gfoldr_BTree alg t2 )

reduce v l n1 n2 (Inl Unit) = v

reduce v l n1 n2 (Inr (Inl x)) = l x

reduce v l n1 n2 (Inr (Inr ( x,(tl , tr)))) = n1 x (n2 t1 tr)

In other words, the gfoldr_BTree generatedwould not be the one shown above, but

one taking this algebra:

data Alg a b c = Alg { v :: c,

l :: a ! c,

n1 :: b ! c ! c,

n2 :: c ! c ! c}

This is what di�eren tiates a fold from a crush. In Figure 6.13, polytypic reduce is a

crush.

6.1.8 Summary of instan tiation pro cess

The Generic Haskell compiler collects all the polykinded type de�nitions Ph�i t and

generatestype synonyms P basedon that kind-� case. It also expandsmapEPhPi . For
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each type operator T of kind k passedas an argument to a polytypic function, the

compiler generatesits representation type T' and the relevant machinery for dealing

with its associated embedding-projection pairs. Finally, the compiler generatesthe

instance of the polytypic function for T. The instance's type is obtained by expanding

Phki T and the body follows to the letter the structure of T' with the exception of the

call to mapEPhPi on the embedding-projection value. The Haskell compiler does the

rest of the job: it type-checks that generatedinstance bodies have the generatedtype

signaturesand compilesand optimises the code.

6.1.9 Polyt ypic functions are not �rst-class

In Generic Haskell, polytypic functions are not �rst-class, polytypic applications (i.e.,

generatedinstances)are. To makepolytypic functions �rst class,polykinded typesmust

be incorporated into Haskell's type system. However, this would require an extension

of the type system beyond what is neededfor type-checking polytypic functions. For

instance,polykinded-typereconstruction is an openquestion: a polytypic function need

not be associated with a unique polykinded type. (Recall the discussionregarding the

polykinded typesof gmap and geq on page124 and Section 6.1.5.)

First-class status is seldomnecessary:type-terms� in polytypic applications gh� i must

be known at compile-time unlessstatic type checking is given up. Consequently, they

can be replacedby instances. Take, for example, the following function:

foo :: 8 t a. 8 p. p h� ! � i t ! (a ! c) ! t a ! c

foo g f = g ht i f

The value of type variable t must be known at compile time and its kind be � ! � .

Although universally quanti�ed, p cannot be instantiated to Maph� ! �i t 1 t 2, which

expects two type variable arguments. Finally, the usageof g in the body imposesthe

requirement that:

p h� ! � i t = (a ! c) ! t a ! c

Let us �x p and t respectively to a particular type-operator and polykinded type:

foo :: 8 t a. Size h� ! � i List ! (a ! c) ! List a ! c

foo g f x = g hList i f x

Now foo can only be passedgsize asan argument and c must be Int . There is really
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no needfor parametrisation:

foo :: (a ! Int ) ! List a ! Int

foo f x = gsize hList i f x

6.1.10 T yp e-class constrain ts and constrained algebraic t yp es

We have not de�ned polykinded typesthat involve type-classconstraints. It is possible

to include constraints in polytypic abstractions, e.g.:

gsumht: � ! � i :: Num a ) t a ! Int

It is not legal to write constraints in polykinded types. This makes sense:constraints

would appear on nested8s due to the recursive nature of the general case. Polytypic

functions would only be applicable to type operators that have those constraints in all

type-variables.

However, type-classconstraints introduced in data de�nitions are ignored by the latest

versions of the Generic Haskell compiler at the time of writing. For example, the

representation type generatedfor types:

data List a = Nil | Cons a ( List a)

data Ord a ) List a = Nil | Cons a ( List a)

is exactly the same:

type List' a = Unit + (a � (List a))

Although the embedding-projection pair ep_List for the unconstrained list has type:

8 a. EP (List a) (List ' a)

for the constrained list it must have type:

8 a. Ord a ) EP (List a) ( List' a)

The Haskell compiler complains about the generated code, issuing a type error.

Constraints must also appear in the type signaturesof generatedinstances,e.g., in the

type signature of gsize_List . The reason: ep_List appears in gsize_List 's body

and certainly if List has its type argument constrained so should gsize_List :

gsize_List :: 8 a. Ord a ) Size a ! Size (List a)
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gsize_List gsa = (to ( mapEP_Size ep_List )) ( gsize_List ' gsa)

Notice the propagation of constraints:

ep_List :: 8 a. Ord a ) EP ( List a) (List ' a)

gsa :: 8 a. Ord a ) Size a

( mapEP_Size ep_List ) ::

8 a. Ord a ) EP (Size (List a)) (Size (List ' a))

However, the type signaturesof instancesare all derived from polykinded typeswhich

cannot accommodate constraints becausethey are introduced by type-operator argu-

ments in polytypic applications. Indeed, if gsize is applied to the type:

data Eq a ) Set a = : : :

the constraint in the type signature of the instance di�ers:

gsize_Set :: 8 a. Eq a ) Size a ! Size (Set a)

The polykinded type Size hki t cannot capture all possibleconstraints that may appear

in the de�nition of an arbitrary typeoperator t . Therefore,GenericHaskell fails to work

with type-class-constrainedtype operators. It captures an `unbounded polymorphism'

kind of polytypism.

Interestingly, polytypic function bodies neednot change. The body of gsize_List for

an unconstrained List a is insensitive to the type a. The samepolymorphic function

body can compute with a constrained list as long as the constraint is accommodated in

the function's type signature. The implicit dictionary introduced by the constraint is

ignored:

gsize_List :: 8 a. Ord a ) Size a ! Size (List a)

gsize_List gsa = (to (mapEP_Size ep_List )) (gsize_List ' gsa )

If List had beenEq constrained:

data Eq a ) List a = Nil | Cons a (List a)

only the type signature would be a�ected:

gsize_List :: 8 a. Eq a ) Size a ! Size ( List a)

gsize_List gsa = (to (mapEP_Size ep_List )) (gsize_List ' gsa )
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We concludethis sectionmentioning that, in Haskell, parametrically polymorphic func-

tions are often lifted automatically to constrained ones that ignore their dictionary

arguments, e.g.:

silly :: 8 a. Num a ) ( 8 a. Num a ) a ! a) ! a ! a

silly f x = f ( x + x)

sillyid :: 8 a. Num a ) a ! a

sillyid = silly id

In this example, function silly expects a constrained function but it is passedan

unconstrained id in sillyid . Behind the scenes,what is really passedis a wrapped

identit y that discards its dictionary:

id_wrap :: NumD a ! a ! a

id_wrap dict x = x

6.1.11 Polykinded t yp es as context abstractions

There are two possible ways of coping with constrained type operators in Generic

Haskell. One way is to deal away with them, i.e., never to de�ne constrained type

operators and put constraints on the functions that compute with them. This has

advantagesand disadvantageswhich have beendiscussedin Section 5.8.2.

Another way is to extend Generic Haskell. However, the extension is surprisingly

simple; in fact, it is possibleto leave the languageunchangedand to only extend the

Generic Haskell compiler.

The idea is that the constraints for a gsize_T instance, say, are determined from

the constraints of type operator T. Therefore, the polykinded type Size hki t must

abstract over t 's context (i.e., list of constraints). In other words, polykinded types

must becontext-parametric. Fortunately, there is no needto changethe GenericHaskell

language. Context-parametric polykinded typesand their expansionrulescanbehidden

from the programmer and manipulated internally by the Generic Haskell compiler.

Constrain t expressions and lists. We introduce the syntax of constraint expres-

sionsand constraint lists in Figure 6.14.

Constraint expressionsand constraint lists are type-terms. A constr aint list can be
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Type ::= ConstraintList

ConstraintList ::= �
| Constraint # ConstraintList

Constraint ::= ;
| TypeClassName
| � TypeVar . Body

Body ::= ( TypeClassNameBasic ( , TypeClassNameBasic ) � )

Basic ::= TypeVar
| Basic Basic

Figure 6.14: Grammar of constraints and constraint lists.

empty, denoted by � , or constructed by pre�xing a constraint expression(explained

shortly) to a constraint list using the # operator. As expected, # associates to the

right and we allow the following syntactic sugar:

[c1; : : : ; cn ] def= c1# : : : # cn# �

when n > 0.

Given a data declaration of the form:

data � ) T a1 : : : an = : : :

the constraint list � T associated with a type operator T contains one constraint expres-

sion for every oneof T's type variables. The constraint expressionappearson the list in

the sameposition from left to right asthat of the variable in the data declaration. More

precisely, when n > 0, � T = [c1; : : : ; cn ] and ci is the constraint expressionassociated

with ai . When n = 0, � T = � .

A constr aint expr ession can be an empty constraint ; , a type-classname (e.g.,

Eq), or a new form of lambda-abstraction whosebody consistsof applications of type-

class names to (applications of) type variables. Lambda-abstractions collect all the

constraints associated with a type variable in a single constraint expression,e.g.:

� x. Eq x

� x. ( Eq x, Show x)

� x. Ord (a x)
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In the last example type variable a is free. We explain the role of free type variables

shortly.

Here are sometype operators and their associated constraint lists:

data Eq a ) T1 a = : : :

data ( Ix a, Eq b) ) T2 a b = : : :

data ( Eq a, Show a) ) T3 a = : : :

data ( Eq a, Show a, Num b) ) T4 a b = : : :

data ( Functor f , Eq (f a)) ) T5 f a = : : :

data Ord b ) T6 a b = : : :

� T1 = [ Eq ]

� T2 = [ Ix ; Eq ]

� T3 = [ � x.( Eq x, Show x) ]

� T4 = [ � x.( Eq x, Show x) ; Num ]

� T5 = [ Functor ; � x. Eq (a x) ]

� T6 = [ ; ; Ord ]

Notice that in � T5, typevariable a occursfree. Freevariablesarechosenin alphabetical

order accordingto positions in constraint lists. For example,in � T5, a refersto the type

variable to which the �rst constraint expressionin � T5 is to be applied. In contrast, in

a constraint expressionof the form � x .Eq (b x), free variable b would refer to the type

variable to which the second constraint expressionin the constraint list is to beapplied.

Free variables becomebound when expanding polykinded types,as shown shortly.

A constraint list � T only contains constraints associated with T's type variables, not

with the type variablesof potential type-operator arguments to T, which are unknown.

For instance, T5 List is a legal type, but � T5 doesnot mention constraints associated

with List 's type variables.

Con text-parametric polykinded t yp es. A polykinded type Ph� i t whosegeneral

form is given in the �rst box of Figure 6.15 can be translated automatically by the

Generic Haskell compiler to a context-p ar ametric polykinde d typ e P 0h� i t shown

in the secondbox. The third box explainsmeta-notation. For simplicit y, we ignoreaux-

iliary free type variables (Section 6.1.5) which are just carried around when expanding

polykinded types.
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Ph�i t = �
Ph� ! � i t = 8�: Ph� i � ! Ph� i (t � )

P0h�i t = 
 q: �
P0h� ! � i t = 
 q: (8� : q � ) P 0h� i � � ! P0h� i (t � ) q)

� def= � 1 : : : � n

t def= t1 : : : tn

(t � ) def= (t1 � 1) : : : (tn � n )

q � def= (q � 1; : : : ; q � n )
n > 0

Figure 6.15: A polykinded type and its context-parametric version.

We have introduced a new form of abstraction using the symbol 
 as binder:3 a


 -abstr action is a new type-term of the form 
 q:� where q may occur free in � .

(In the P0h�i case,however, q must be picked so as not to occur free in � .)

A 
 -applic ation is the application of a 
 -abstraction to a constraint list. This is a

type-term of the form (
 q:� ) cs, where cs is a type-term whosecompile-time value is a

constraint list. The new application is denoted by whitespacebut, as we show shortly,

its type-level reduction rules are more complicated than simple substitution. In the

secondbox of Figure 6.15, there are two 
 -applications in the P 0h� ! � i case:P 0h� i �

is 
 -applied to � and P 0h� i (t � ) is 
 -applied to q.

The context-parametric versionsof Size (Figure 6.5) and Map (Figure 6.9) are shown

in Figure 6.16.

Figure 6.17shows the type-reduction (or `expansion') rules of context-parametric poly-

kinded types(�rst box), which includesthe type-reductionrulesof 
 -application (second

box), and the mechanics of constraint-expressionapplication (third box).

Rule c-st ar t shows how the instance of a polykinded type Ph� i T on an actual

type-operator argument T is to be obtained by reducing its context-parametric ver-

sion P0h� i T � T which takesT 's list of constraints into account.

3Capital gamma is often used for denoting contexts, so lowercasegamma makes senseas a binder
for constraint lists.



6.1 Generic Haskell 141

type Size' h� i t = 
 q. t ! Int
type Size' hk ! v i t

= 
 q.( 8a. q a ) (Size ' hk i a � ) ! (Size ' hv i (t a) q ) )

type Map' h� i t 1 t 2 = 
 q. t 1 ! t 2

type Map' hk ! v i t 1 t 2

= 
 q.( 8a1 a2. (q a1, q a2) )
(Map' hk i a1 a2 � ) ! ( Map' hv i (t 1 a1) (t 2 a2) q ) )

Figure 6.16: Context-parametric polykinded typesSize ' and Map' .

Ph� i T I P0h� i T � T (c-st ar t )

(
 q: (8�: q � ) � )) � I 8�:� [q=�] (c-null )
(
 q: (8�: q � ) � )) (; # cs) I 8�:� [q=cs] (c-empty )
(
 q: (8�: q � ) � )) (c# cs) I 8�: c � ) � [q=cs] (c-push )
(
 q: � ) cs I � if q =2 FV(� ) (c-dr op)

c � def= (c � 1; : : : ; c � n )

c � i I
�

C � i if c = C
(subscripti B )[x i =� i ] if c = �x:B

Figure 6.17: Type-reduction rules for context-parametric types.
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Rule c-null shows the reduction when the constraint list is empty: the context is

removed from the type-term and � is substituted for q in � . Rule c-empty shows the

reduction of a list with an empty constraint in the head: the context is removed from

the type-term and q is replacedby the tail of the list. This way other constraints are

pushed down to its associated variables. Rule c-push shows the reduction when the

constraint list is not empty: the constraint expressionon the head is applied to the

universally-quanti�ed type variables,and the tail of the constraint list is substituted for

q in � . Rule c-dr op shows the reduction when q =2 FV(� ): the abstraction is dropped.

Someremarks are in order. In the P 0h�i case,q =2 FV(� ) and therefore type reduc-

tion will always proceedby Rule c-dr op. In the general case,q is imposedon the

universally-quanti�ed type variables and it is 
 -applied to the P 0h� i case,whereasan

empty constraint list is 
 -applied to the P 0h� i case. This is because� T only includes

constraints associated with T's type variables, as explained above. Finally, notice that

expanding a context-parametric polykinded type with [; ; : : : ; ; ] producesthe sameres-

ult as expanding it with � .

The last box in Figure 6.17 indicates how the application of a constraint expression

to a type variable works. The �rst line explains meta-notation. The secondline is a

reduction rule for the application of a constraint expressionc to a type variable � i .

The constraint expressionc cannot be ; becauseempty constraints are dealt with by


 -application (c-empty ). If c is a type-classname C, constraint application simply

juxtap osesthe constraint to the variable. If c is a lambda expression�x:B , �rst the

auxiliary function subscript i B adds subscripts to B 's free variables (including x),

performing multiple substitution where every free variable � in B is substituted by � i .

Then, x i is substituted by � i . We omit subscript's implementation details which are

inessential. Here are a few examplesthat illustrate how it works:

(
 q: (8a1: q a1 ) : : :)) [C] = 8a1: C a1 ) : : :

(
 q: (8a1: q a1 ) : : :)) [�x: (C1 x; C2 x)] = 8a1: (C1 a1; C2 a1) ) : : :

(
 q: (8a1: q a1 ) : : :)) [�x: C (z x)] = 8a1: C (z1 a1) ) : : :
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(
 q: (8a1a2: (q a1; q a2) ) : : :)) [C] = 8a1a2: (C a1; C a2) ) : : :

(
 q: (8a1a2: (q a1; q a2) ) : : :)) [�x: (C1 x; C2 x)]

= 8a1a2: ((C1 a1; C2 a1); (C1 a2; C2 a2)) ) : : :

(
 q: (8a1a2: (q a1; q a2) ) : : :)) [�x: C (z x)]

= 8a1a2:(C (z1 a1); C (z2 a2)) ) : : :

Instan tiation examples. We concludethis sectionillustrating the instantiation pro-

cessfor the example type-operators given above and for polykinded types Size and

Map. Universally-quanti�ed variablesare chosenin order soasto avoid shadowing when

expanding context-parametric polykinded types.

The �rst example involves T1 which has an Eq constraint on its type variable. For

reasonsof space,we omit the details of constraint-expression applications which take

place in rule c-push . We also obviate subscripts when polykinded typeshave only one

universally-quanti�ed type variable:

Size h�!�i T1

I f c-st ar t g

Size' h� !�i T1 [ Eq]

I f def. of Size' g

(
 q: (8a: q a ) Size' h� i a � ! Size ' h�i (T1 a) q)) [ Eq]

I f c-push g

8a: Eq a ) Size ' h�i a � ! Size ' h� i (T1 a) �

I f def. of Size' (twice) g

8a: Eq a ) (
 q: a ! Int ) � ! (
 q: (T1 a) ! Int ) �

I f c-dr op (twice) g

8a: Eq a ) (a ! Int ) ! T1 a ! Int

The secondexample involves T2 which has two type variables, each with a di�eren t

constraint:

Size h�!�!� i T2
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I f c-st ar t g

Size' h� !�!� i T2 [ Ix ; Eq]

I f def. of Size' g

(
 q: (8a: q a ) Size' h� i a � ! Size ' h�! � i (T2 a) q)) [ Ix ; Eq]

I f c-push g

8a: Ix a ) Size ' h�i a � ! Size ' h� !�i (T2 a) [ Eq]

I f def. of Size' g

8a: Ix a ) (
 q: a ! Int ) � ! Size ' h�!� i (T2 a) [ Eq]

I f c-dr op g

8a: Ix a ) (a ! Int ) ! Size ' h�!� i (T2 a) [ Eq]

I f def. of Size' g

8a: Ix a ) (a ! Int ) ! (
 q: (8b: q b ) Size ' h�i b � ! Size' h� i (T2 a b) q)) [ Eq]

I f c-push g

8a: Ix a ) (a ! Int ) ! (8b: Eq b ) Size ' h�i b � ! Size ' h� i (T2 a b) � )

I f def. of Size' g

8a: Ix a ) (a ! Int ) ! (8b: Eq b ) (
 q: b ! Int ) � ! Size ' h�i (T2 a b) � )

I f c-dr op g

8a: Ix a ) (a ! Int ) ! (8b: Eq b ) (b ! Int ) ! Size ' h�i (T2 a b) � )

I f def. of Size' g

8a: Ix a ) (a ! Int ) ! (8b: Eq b ) (b ! Int ) ! (
 q: (T2 a b) ! Int ) � )

I f c-dr op g

8a: Ix a ) (a ! Int ) ! (8b: Eq b ) (b ! Int ) ! T2 a b ! Int )

The following example involves T3 which has multiple constraints on its only type

variable:

Size h�!�i T3

I f c-st ar t g

Size' h� !�i T3 [�x .(Eq x, Show x)]

I f def. of Size' g

(
 q: (8a: q a ) Size' h� i a � ! Size ' h�i (T3 a) q)) [�x .(Eq x, Show x)]

I f c-push and constraint application g

8a: (Eq a, Show a) ) Size ' h�i a � ! Size ' h�i (T3 a) �
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I f def. of Size' (twice) and c-dr op (twice) g

8a: (Eq a, Show a) ) (a ! Int ) ! T3 a ! Int

In the following example, there are two constraints on T4's �rst type variable and one

constraint on the second:

Size h�!�!� i T4

I f c-st ar t g

Size' h� !�!� i T4 [�x .(Eq x, Show x); Num]

I f def. of Size' g

(
 q: (8a: q a ) Size' h� i a � ! Size ' h�! � i (T4 a) q)) [�x .(Eq x, Show x); Num]

I f c-push and constraint application g

8a: (Eq a, Show a) ) Size ' h�i a � ! Size ' h�!� i (T4 a) [Num]

I f : : : g

8a: (Eq a, Show a) ) (a ! Int ) ! (8b: Numb ) Size ' h�i b � ! Size ' h�i (T4 a b) � )

I f : : : g

8a: (Eq a, Show a) ) (a ! Int ) ! (8b: Numb ) (b ! Int ) ! T4 a b ! Int )

The following exampleinvolvesT5 which hasa constraint on both of its type variables,

and the �rst one has kind (� ! � ). The example illustrates the use of free type

variables: the type variables after the 8 are chosen in the same alphabetical order

so that a free variable in position i in a constraint list is bound by the ith universal

quanti�er introduced by a P 0h� i case. We could have worked up to somecontext of

free variables but we prefer to usethis convention for simplicit y:

Size h( � !� ) !� !�i T5

I f c-st ar t g

Size' h( � !� ) !�!� i T5 [Functor ;�x .Eq (a x)]

I f def. of Size' g

(
 q: (8a: q a ) Size' h� !�i a � ! Size ' h� !�i (T5 a) q)) [Functor ;�x .Eq (a x)]

I f c-push g

8a: Functor a ) Size ' h�!� i a � ! Size ' h�!� i (T5 a) [�x .Eq (a x)]

I f def. of Size' g
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8a: Functor a ) Size ' h�!� i a � ! (
 q: (8b: q b ) Size ' h�i b � . . . )) [�x .Eq (a x)]

I f c-push g

8a: Functor a ) Size ' h�!� i a � ! (8b: Eq (a b) ) Size ' h�i b � . . . )

I f : : : g

8a: Functor a ) Size ' h�!� i a � ! (8b: Eq (a b) ) (b ! Int ) ! . . . )

I f : : : g

8a: Functor a ) (8b: (b ! Int ) ! a b ! Int ) !

(8b: Eq (a b) ) (b ! Int ) ! T5 a b ! Int )

We have not shown Rule c-null at work. It hasbeenusedin the stepsfrom the penul-

timate equation to the last. For reasonsof space,let us usethe following abbreviation:

etc def= (8b: Eq (a b) ) (b ! Int ) ! T5 a b ! Int )

Theseare the details of the derivation:

8a: Functor a ) Size ' h�!� i a � ! etc

I f def. of Size' g

8a: Functor a ) (
 q: (8b: q b ) Size ' h�i b � ! Size ' h�i (a b) q)) � ! etc

I f c-null g

8a: Functor a ) (8b: Size' h�i b � ! Size ' h�i (a b) � ) ! etc

I f def. of Size' and c-dr op (twice) g

8a: Functor a ) (8b: (b ! Int ) ! a b ! Int ) ! etc

The following example involves T6 and shows Rule c-empty at work:

Size h�!�!� i T6

I f c-st ar t g

Size' h� !�!� i T6 [; ;Ord ]

I f def. of Size' g

(
 q: (8a: q a ) Size' h� i a � ! Size ' h�! � i (T6 a) q)) [; ;Ord ]

I f c-empty g

8a: Size' h�i a � ! Size ' h�!� i (T4 a) [Ord ]

I f : : : g

8a: (a ! Int ) ! (8b: Ord b ) (b ! Int ) ! T4 a b ! Int )
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Lastly, the following example shows the expansionof Map' which has two universally-

quanti�ed type variables, thus illustrating the useof subscript:

Map' h( � !� ) !� !�i T5 [Functor ; �x .Eq (a x)]

I f def. of Map g

(
 q: (8a1a2: (q a1; q a2) )

(Map' h�!� i a1 a2 � ) ! (Map' h�!� i (T5 a1) (T5 a2) q))) [Functor ; �x .Eq (a x)]

I f c-push g

8a1a2: (Functor a1, Functor a2) )

(Map' h�!� i a1 a2 � ) ! (Map' h�!� i (T5 a1) (T5 a2) [�x .Eq (a x)])

We abbreviate the result of reducing Map' h� ! �i a2 a2 � as follows:

S def= (8b1b2: (b1 ! b2) ! a1 b1 ! a2 b2)

And resume:

8a1a2: (Functor a1, Functor a2) ) S !

(Map' h�!� i (T5 a1) (T5 a2) [�x .Eq (a x)])

I f def. of Map' g

8a1a2: (Functor a1, Functor a2) ) S !

(( 
 q: (8b1b2: (q b1; q b2) )

(Map' h�i b1 b2 � ) ! (Map' h� i (T5 a1 b1) (T5 a2 b2) q)))

[�x .Eq (a x)])

I f c-push (invoking subscript) g

8a1a2: (Functor a1, Functor a2) ) S !

(8b1b2: (Eq (a1 b1), Eq (a2 b2)) )

(Map' h�i b1 b2 � ) ! (Map' h� i (T5 a1 b1) (T5 a2 b2) � ))

I f ... g

8a1a2: (Functor a1, Functor a2) ) (8b1b2: (b1 ! b2) ! a1 b1 ! a2 b2) !

(8b1b2: (Eq (a1 b1), Eq (a2 b2)) ) (b1 ! b2) ! (T5 a1 b1) ! (T5 a2 b2))

Expansion and instance generation. We concludethe sectiondiscussinghow the

expansionof context-parametric types�ts into the overall generationprocess.For each

polytypic application ghT � 1 : : : � n i where T is a type operator of kind � and � i are

well-kinded type applications of kind � i , the Generic Haskell compiler must generate
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the g T instance whose type is obtained by expanding P 0h� i T � T, where P 0 is the

context-parametric polykinded type of g. The polytypic applications gh� i i must be

compiled to instancesg � i whosetype is obtained by expanding P 0h� i i � i � , where the

constraint list is empty. Consequently, constrained type operators cannot be applied

to other constrained type operators. This restriction can be overcomeby modifying,

among other things, the de�nition of constraint lists to account for constraints in � i ,

and by 
 -applying the P 0h� i � casein a context-parametric polykinded type to the

constraint list of � i during expansion.

At any rate, we have introduced context-parametric polykinded types in this thesis to

be able to write polytypic functions on �rst-or der ADTs which may be implemented in

terms of constrained types (Chapter 9). First-order type operators cannot be applied

to proper type operators, let alone constrained ones. The solution presented here is

su�cien t for our purposes.

6.1.12 Parameterisation on base t yp es

The values for base types and units are �xed in polytypic function de�nitions. For

example, in the caseof gsize , the sizefor integersis 0 and so is the sizecomputed for

a value of List Int type. It is necessaryto abstract over a type-operator's payload to

compute the sizeproperly:

gsize hList Int i [1,2,3]

> 0

gsize hList i ( const 1) [1,2,3]

> 3

Fixing the value for base types can be limiting. For instance, the size for units is

0 and it is therefore impossible to count things such as the number of empty trees

hanging from leaves in a BTree . Serialisation functions (e.g., encoders) take into ac-

count units and basetype values; their de�nition must be changed and recompiled if

their encoding needsto be changed. Furthermore, every time a base type is added

to the system (for example by linking with a library), the polytypic de�nition has to

be modi�ed and recompiled unlessthe new caseis added by extending the polytypic

function (dependency-style supports `polytypic extension' [L•oh04]).
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type Size h� i t = Int ! Int ! t ! Int
type Size hk ! v i t = 8 a. Size hk i u ! Size hl i ( t a)

gsize ht:k i :: Size hk i t
gsize hChar i v w _ = v
gsize hInt i v w _ = v
gsize hBool i v w _ = v
gsize hUnit i v w _ = w
gsize ha+b i v w (Inl x) = gsize ha i v w x
gsize ha+b i v w (Inr y) = gsize hb i v w y
gsize ha� b i v w (x,y ) = (gsize ha i v w x) + (gsize hb i v w y)

gsize hList i ( � v w a ! 0) 0 1 [1,2,3]
> 1

Figure 6.18: Parameterising gsize on the valuesof basetypesand units.

Parametrisation allows us to usecode onceby adapting parameterswhereasextension

requires us to provide new de�nitions for speci�c types. And di�eren t (overlapping)

de�nitions for the sametype are not possible.

A somewhat ugly solution is to parameteriseevery polytypic function de�nition with

valuesfor basetypesand units. For instance, Figure 6.18 shows a rede�nition of Size

and gsize where the size for basetypes (argument v) and for units (argument w) is

passedasan argument to gsize and to its argument functions. This de�nition is coarse-

grained: basetypes are given the samesize. Making distinctions would require more

arguments, and the addition of new basetypes would require editing the polykinded

type, forcing recompilation and a�ecting client code.

6.1.13 Generic Hask ell, categorially

This section is concernedwith expressingpolytypic function de�nitions in a way that

abstracts from the concreterepresentation of binary sumsand products. Following the

categorial de�nitions and conceptsdiscussedin Section 3.9.2, in this section we read

a� b and a+ b assugar for Prod a b and CoProd a b respectively. Figure 6.19shows the

de�nitions of gsize , gmap and geq in the light of this change. Notice that gsize and

gmap both take one value argument and follow the samepattern. Figure 6.20 shows

their instantiations for a couple of functor expressions.

The generalpattern of a polytypic function de�nition that takesonevalue argument is
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gsize h1 i = const 0
gsize hInt i = const 0
gsize ha+b i = gsize ha i O gsize hb i
gsize ha� b i = plus � map� gsize ha i gsize hb i

where plus p = exl p + exr p

gmaph1 i = id
gmaphInt i = id
gmapha+b i = (asLeft � gmapha i ) O ( asRight � gmaphb i )
gmapha� b i = id � map� gmapha i gmaphb i

geq h1 i = const ( const true )
geq hInt i = (==)
geq ha+b i c1 c2 = if (isLeft c1 && isLeft c2) then

g ha i (asLeft c1) ( asLeft c2)
else if (isRight c1 && isRight c2) then

g hb i (asRight c1) (asRight c2 )
else False

geq ha� b i p1 p2 = geq ha i (exl p1) (exl p2) &&
geq hb i (exr p1) (exr p2)

Figure 6.19: Polytypic gsize , gmap, and geq in terms of products and coproducts.

F a = 1 + a � ( F a)
G f a = 1 + a � f (G f a)

gsize_F gsa = gsize_Unit O (gsa `plus ` (gsize_F gsa ))
gsize_G gsf gsa = gsize_Unit O (gsa `plus ` (gsf (gsize_G gsf gsa)))

gmap_F gma = (asLeft � gmap_Unit ) O
(asRight � (gma `prod ` (gmap_F gma)))

gmap_G gmf gma = (asLeft � gmap_Unit ) O
(asRight � (gma `prod ` gmf (gmap_F gmf gma)))

Figure 6.20: Somefunctors and their polytypic function instances. Notice that map� 's
de�nition has beenexpanded.
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gh1i = g1
ghBi = gB

ghA+ B i = (cA ghAi ) O (cB ghB i )
where cA g = cafter A � g � cbeforeA

cB g = cafter B � g � cbeforeB

ghA � B i = � � (pA ghAi ) � (pB ghB i )
where l � r = (l � exl) M (r � exr)

pA g = pafter A � g � pbeforeA
pB g = pafter B � g � pbeforeB

Figure 6.21: General pattern of a polytypic function de�nition expressedcategorially.
B rangesover basetypes.
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shown in Figure 6.21. The �rst box depicts each caseas a diagram. The programmer

de�nes cA , cB , pA , pB and � . The latter function speci�es what is to be donewith each

product member after the (possibly) recursive application of the polytypic function.

The casesfor units and basetypesare �xed.

Notice that geq takestwo value arguments and follows a di�eren t pattern. In order to

expressits de�nition in point-free fashion, like gsize , we would have to de�ne a sort

of zipping pairwise extensionof O, M, and � .

Figure 6.21 illustrates more clearly the fact that a polytypic function de�nition has

the recursive structure of a catamorphism [MFP91, BdM97]. We comeback to this

�gure in Chapter 9 when exploring its adaptabilit y in the presenceof data abstraction.

6.2 Scrap your Boilerplate

The Scrap your Boilerplate (SyB) approach to generic programming [LP03, LP04,

LP05] is a blend of polytypic and strategic programming ideas. Section 6.2.1 explains

Strategic Programming and Section 6.2.2 provides a paper-by-paper tour of SyB.

6.2.1 Strategic Programming

Data structures are heterogeneoustreesof sorts. Computing with them entails travers-

ing them (recursion scheme) and performing actions at every node in the structure.

Some actions may involve combining results of other actions into a value (so-called

typ e-unifying computations such as catamorphisms), or transforming a value (so-

called typ e-pr eserving computations such as maps).4

Given a set of data types,programming by hand functions on them by pattern match-

ing is non-generic, laborious, fragile with respect to changesin the type's de�nitions,

and rigid with respect to the recursionschemeand traversal control. Functions are not

parametric on \the abilit y to determine which parts of the representation are visited in

which order and under which conditions" [VS04, p16]. This problem becomespartic-

ularly annoying when functions only work on someparts of the structure, making the

rest of the code which traversesit (i.e., which recursesin order to get to those parts)

boilerplate code.

4The terminology has been borrowed from [LVK00 ].
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The use of higher-order functions capturing recursion schemes is of little help. Ex-

amplesof such functions are generalised folds [Hut99, GHA01, SF93, BP99, MH95]. In

particular:

� The fold function for every type hasto be programmedexplicitly and so is each par-

ticular fold algebra (operators that replacevalue constructors) with which we want

to compute. An exception is the programming languageCharit y,5 where folds are

automatically generatedby the compiler for �rst-or der type operators. Program-

mers may assumethe existenceof thesefolds when writing their programs.

� Folds are rigid with respect to traversal control: the recursion scheme is �xed and

control re�nement has to be hardwired in algebraic operators. For example, to

`stop folding' over a binary tree upon a certain condition we need to hardwire the

stop condition in algebraic operators (fold would not `stop' but simply collapsethe

pruned subtree into a default value) :

fold_until p :: (a ! Bool ) ! Alg a c ! List a ! c

fold_until p alg l = foldr alg ' l

where

alg ' = Alg { nil = nil alg,

cons = � x y ! if p x then nil alg else cons alg x y}

In [LVK00] a solution is proposed for reusing algebras by extension and overriding

which is implemented in terms of extensible records.

Strategic Programming [VS04, LVV02] is a more general, paradigm independent solu-

tion to generic traversal (computation) with heterogenousstructures. It is based on

the following key ideas: action at a node and traversal must be separated, and tra-

versals must be decomposed into one-layer traversals on the one side and recursion

schemesgiven by an explicit �xed-p oint de�nition on the other side. This separation

of concernspermits composition and parametrisation: actions can be composedand

one-layer traversalsand recursionschemescanbeprovided asaction-parametric generic

combinators.

In order for an action at a node to be generic, Strategic Programming assumesthe

possibility of type-baseddispatch, usually implemented in terms of a dynamic type-case,
5http://www.cpsc.ucalgary.ca/Research/ chari ty/hom e.html
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i.e., code that enquires about a value's type at run time (run-time type information

or RTTI) in order to perform the appropriate computation. Enquiring about type

information makes`generic' code more ine�cien t than non-generic,purpose-built code

(check out [LP03] and Section 4.3).

id , fail Primitiv e actions
seq , choice Action composition
adhoc Type-baseddispatch
all , one One-layer traversal
topdown , bottomup Recursionschemes
f � t Apply strategy f to input term t

Table 6.1: Examples of Strategic Programming combinators.

Table 6.1 lists a few paradigm-independent combinators [VS04]. The �rst row lists the

actions id and fail which are applied to an input node. The former returns the node

untouched and the latter returns a special value denoting failure or raisesan exception.

The secondrow lists someways of composing actions. Actions can be composedby

seq f g which applies �rst f and then g to the node, or by choice f g which applies

g only if f fails. The third row is the dynamic type-casecombinator adhoc f g which

applies g to the node if g's sourcetype is the sameas that of the node, or otherwise

applies f , which must have the samesourcetype asthe node's. The fourth row lists two

one-layer traversal combinators: all f which applies f to all the immediate subnodes

of its input node, and one f which applies f to the leftmost subnode only. These

combinators are not recursive. Recursion is achieved by tying the knot:

topdown f = seq f ( all (topdown f))

bottomup f = seq (all (bottomup f)) f

Notice here the pattern:

traversal scheme f = combinators traversal schemef

which is indeed a �xed-p oint de�nition of the form f x = F f x where f is a �xed

point of F .

The following example illustrates the power of Strategic Programming: given a het-

erogeneousdata structure t which contains, among other things, integer values, the

following combinator only increments the valuesof those integers,traversing the struc-

ture in top-down fashion:
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incInts t = (topdown (adhoc id (+1))) � t

Notice the separationbetweengenericity (traversalschemewith identit y) and speci�cit y

(action at speci�c nodesonly).

Combinators are composable and have nice algebraic properties. This permits the

de�nition of new combinators for particular purposes.Theoretically, it seemsthat two

combinators su�ce to expressall strategic programs [LV02c].

Strategic Programming combinators are paradigm independent. There are incarnations

with running applications for term-rewrite systems and attribute grammars [VS04],

for object-oriented systems as improvements of the Visitor pattern [Vis01] and, in

the functional paradigm, there is the Strafunski bundle which includes a functional

combinator library and tool support for doing Strategic Programming in Haskell.6

6.2.2 SyB tour

This section describesSyB paper by paper.

The �rst pap er [LP03 ] begins by presenting a dynamic nominal type-case oper-

ator. It is called type-safe cast in the paper for historical reasonsand becauseit is

implemented using a cast operator that cannot causerun-time errors.

The implementation of cast relieson clever type-classand re
ection tricks that enable

it to determine the type of a value at run time by meansof applying the instance for

that type of an overloaded function typeOf that has been�gured out at compile time

by the type-checker.

More precisely, the cast operator has type:

cast :: (Typeable a, Typeable b) ) a ! Maybe b

where the Typeable type class declares the aforementioned typeOf function. The

de�nition of typeOf is derived automatically by the compiler for a data type using

Haskell's deriving clause. The function returns a value that makesfor the represent-

ation of a manifest type.

Operationally, the application cast x within a context of manifest type Maybe T returns

6Strafunski comesfrom Strategic and Functional programming resembles the music of Igor Stravinski
(http://www.cs.vu.nl/Strafunski ).
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Just x if x has type T; otherwise returns Nothing :

(cast 1) :: Maybe Int

> Just 1

(cast 1) :: Maybe Char

> Nothing

In other words, we get a Just value when, at run-time, a= b. The name `cast' is

justi�ed in that a value of type Maybe b is obtained from a value of type a. However,

the behaviour of cast x is that of a type-casethat checks at run time whether the value

x is of type T, returning Just x of type Maybe T if the answer is positive or returning

Nothing of type Maybe T' if the answer is negative, where T' is the actual type of x .

The paper goeson to introduceseveral operators that can be seenasversionsof adhoc

implemented in terms of cast : mkT for type-preservingactions, mkMfor monadic type-

preserving actions, and mkQ for type-unifying actions. For example, given a function

f of type a ! a, mkT f x applies f to x only if x has type a, returning x otherwise.

Clearly, mkT f corresponds to adhoc id f . Function mkT (or `make transformation')

lifts a transformation (action in Strategic Programming jargon) on a value of a �xed

type into a transformation on a value of type 8a. Typeable a ) a. It is therefore

called a generic transformation by the authors.

There are three one-layer traversals called gmapT (t ype-preserving), gmapM (monadic

type-preserving)and gmapQ(t ype-unifying) de�ned in type classData :

class Typeable a ) Data a where

gmapT :: ( 8 b. Data b ) b ! b) ! a ! a

gmapM :: Monad m ) ( 8 b. Data b ) b ! m b) ! a ! m a

gmapQ :: ( 8 b. Data b ) b ! r) ! a ! [r ]

Their behaviour is sketched below for an arbitrary n-ary value constructor C. One-layer

traversalsare polytypic, i.e., de�ned on the structure of the node:

gmapT mt ( C t1 : : : tn) = C ( mt t1 ) : : : ( mt tn)

gmapM mt ( C t1 : : : tn) = do t1'  mt t1

: : :

tn'  mt tn

return C t1 ' : : : tn '
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gmapQ mt ( C t1 : : : tn) = [mt t1, : : : ,mt tn]

In words, gmapT appliesa generictransformation mt (built using mkT) to all the imme-

diate subchildren of `node' C whereasgmapMapplies a monadic generictransformation

(built using mkM). In contrast, gmapQapplies a generic query (built using mkQ, which

returns a result) to the immediate subchildren but returns a list of results. Functions

gmapX can be applied to any data type that has beenmade an instance of type class

Data . The compiler can be instructed to generate the instancesautomatically using

the deriving clause.

Rank-2 polymorphism is required for typing generic transformations and queries. It

is also required for typing traversal combinators which take generictransformations or

queriesas arguments. There are three traversalsfor the three modes: everywhere f x

applies a transformation to every node in a data structure in bottom-up fashion:

everywhere mt x = mt (gmapT (everywhere mt) x)

Similarly, there is a monadic traversal scheme everywhereM and a type-unifying tra-

versal schemeeverything , all declaredas members of type classData .

The paper shows that all one-layer traversalsare idioms of a one-layer traversal called

gfoldl :

class Typeable a ) Data a where

gfoldl :: 8 w a. ( 8 a b. Data a ) w (a ! b) ! a ! w b)

! ( 8 g. g ! w g) ! a ! w a

Its behaviour is sketched below for an arbitrary n-ary value constructor C. The function

is polytypic, i.e., de�ned on the structure of a `node':

gfoldl k z (C t1 : : : tn) = k ( : : : (k (z C) t1) : : : ) tn

An ordinary fold would replacethe value constructor by an n-ary function. In contrast,

gfoldl passesthe value constructor C to its secondargument and applies its �rst

argument, function k , to the result and the �rst sub-node. The value produced is

passedagain to k which is also passedthe secondsub-node, and so on. Like function

application, k associates to the left, hencethe name gfoldl and not gfoldr . For a

node t :
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gfoldl ( $) id t == t

where ( $) is pre�x function application.

The one-layer traversal gmapT can be de�ned in terms of gfoldl approximately as

follows:

gmapT mt = gfoldl k id

where k x y = x (mt y)

For instance, given a binary value constructor C:

gmapT mt ( C t1 t2) = gfoldl k id (C t1 t2 )

= k (k ( id C) t1 ) t2

= k (C (mt t1)) t2

= (C ( mt t1 )) (mt t2)

= C (mt t1) (mt t2)

The de�nition is an approximation becauseit doesnot type-check: the value returned

by gmapT has type a, not w a. The authors show how to �x the de�nition of gfoldl

so that w is an identit y type, i.e., w a = a.

The paper also introduces combinators for action composition and other traversal

schemes. It usesas a running example a set of heterogeneouskind-� data types but

arguesthat instancesof Data can be generatedautomatically for irregular and para-

metric type-operators. However, Haskell's type-classmechanism imposeslimits with

respect to the kind of type-operators, and the dynamic nominal type-caseis performed

on manifest types,not parametric type-operators.

A gsize function can be implemented in SyB as follows:

gsize :: Data a ) a ! Int

gsize x = 1 + sum (gmapQ gsize x)

The type-unifying one-layer traversalgmapQappliesgsize recursively to the immediate

subchildren of x , adds up the list of results, and addsone to account for the sizeof the

present node.

We have already seensomeexamplesof gsize in Generic Haskell:

gsize hList i ( const 1) (Cons 1 ( Cons 2 Nil))

> 2
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gsize hList Int i (Cons 1 (Cons 2 Nil))

> 0

In SyB, however:

xs :: List Int

xs = (Cons 1 (Cons 2 Nil))

gsize xs

> 5

First, we have to provide the type of xs explicitly in an annotation, the application:

gsize (Cons 1 ( Cons 2 Nil))

will confusethe type checker which cannot decidewhether type variable a in gsize 's

type signature is constrained by Data or Num. The culprit is Haskell's monomorph-

ism restriction. Second,gsize counts every value constructor into the �nal size, as

illustrated by the evaluation trace:

gsize (Cons 1 ( Cons 2 Nil))

= 1 + sum (gmapQ gsize (Cons 1 (Cons 2 Nil )))

= 1 + sum ([gsize 1, gsize (Cons 2 Nil )])

= 1 + sum ([1 + sum (gmapQ gsize 1), gsize (Cons 2 Nil )])

= 1 + sum ([1, 1 + sum (gmapQ gsize (Cons 2 Nil ))])

= 1 + sum ([1, 1 + sum ([gsize 2, gsize Nil ])])

= 1 + sum ([1, 1 + sum ([1,1])])

= 5

The trace also illustrates that every recursive call to gsize addsone to the sum of the

sizeof the subnodes. In contrast:

gsize x = sum ( gmapQ gsize x)

gsize xs

> 0

No size! Finally, notice that gsize is applied to a manifest type of type classData

and, so far, we cannot be parametric on the sizeof its payload.

Another important feature presented in [LP03] is polytypic function extension or

specialisation, i.e., the abilit y to override the polytypic function's behaviour for speci�c

monomorphic types. As expected, there are three extensioncombinators: extT , extM ,
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and extQ . An application ext X g f x applies the specialisedmonomorphic function f

to x if at run time x 's type matches f 's sourcetype; otherwise it applies the polytypic

function g. Certainly, these operators are another manifestation of adhoc , only that

the default behaviour is now provided by a polytypic function. An example involving

gsize :

f :: Company ! Int -- provides size for Company values

gsize = gsize_default `extQ ` f

where gsize_default x = 1 + sum (gmapQ gsize x)

The original de�nition of gsize is rewritten into a default case,gsize_default , and

a specialisedcase,f , for valuesof type Company. Notice the �xed-p oint nature of the

de�nition: gsize passesgsize_default to extQ and gsize_default calls gsize .

Notice also that the type-speci�c behaviour, f , is �xed in gsize 's de�nition. Adding

new type-speci�c behaviour entails the recompilation of gsize :

h :: Client ! Int -- provides size for Client values .

gsize = gsize_default `extQ ` f `extQ ` h

where : : :

Providing the extensionin a newfunction will not avoid recompilation: gsize_default

has to call the new function:

gsize ' = gsize `extQ ` h

gsize : : :

where gsize_default x = 1 + sum (gmapQ gsize ' x)

Finally, notice there are no checks for overlapping extensions;the following is possible:

gsize = gsize_default `extQ ` f `extQ ` f `extQ ` f

The second pap er [LP04 ] extends the original approach endowing the classes

Typeable and Data with re
ection operators that allow programmers to dynamically

enquire about a value's type, its value constructor names,their �xit y, etc. Re
ection

operators can be derived automatically by the Haskell compiler. Their implementation

follows much of the type-classtrickery usedin the implementation of cast .

The paper shows how to program serialiserssuch as prett y-prin ters and encoders, de-

serialisersthat illustrate the bene�ts of lazy evaluation, and test-data generators. It

also adds new one-layer, zip-like combinators for traversing two data structures at the
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sametime, thus enabling the de�nition of functions such as geq . Finally, new versions

of cast are provided for performing dynamic nominal type-caseon type-operators

of up to seven type arguments of kind � . Each cast lives in a separate type class

Typeable i (i : 1: : : 7) which can again be derived automatically by the compiler. The

generalisation of cast a�ords the generalisation of the extension combinators extT i ,

extQ i , and extM i , which now support polymorphic extension of polytypic functions.

For example, in extQ1 g f x , function f is polymorphic on a type-operator of kind

� ! � ; in extQ2 g f x , f is polymorphic on a type-operator of kind � ! � ! � , etc.

The implementation is carried out within Haskell, or oneshould say, within the Haskell

compiled by the Glasgow Haskell Compiler which supports the required non-standard

extensionsand the automatic derivation of classesData and Typeable .

The third pap er [LP05 ] re�nes SyB further with the possibility of extendinggeneric

functions in a modular fashion. In [LP03], polytypic extension is achieved by meansof

combinators such as extQ , but extending a polytypic function with new type-speci�c

casesentails recompilation|recall the gsize and gsize_default examples.

In contrast, Haskell's type classessupport an open-world approach to function exten-

sion: for every newly-de�ned type, the speci�c instance of an overloaded function for

that type is de�ned by declaring the type an inhabitant (instance ) of the type class

in which the overloaded function name is declared. The instance declaration provides

the body of the function for that type. For example:

class Size a where

size :: a ! Int

instance Size Int where

size x = 1

instance ( Size a, Size b) ) Size (Pro a b) where

size (x, y) = size x + size y

The problem with overloading is that it is not generic. Each version of the overloaded

function hasto beprogrammedexplicitly . Providing instancesis an incremental process

in which there is no needto edit and recompile previously written code.

Mo dular polytypic extension combines polytypism and the incremental extension
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provided by the type-classmechanism. The idea is to get at something like:

-- Pseudo - code

class Size a where

gsize :: a ! Int

instance Size a where

gsize x = 1 + sum (gmapQ gsize x)

instance Size Company where

gsize = f

A polytypic function name is now a type-classoperation. Its code and extensionsare

provided in instances. The �rst instance above speci�es gsize 's default behaviour for

all typesa. The secondspeci�es the behaviour for Company values. Unfortunately, the

code doesnot type-check: type variable a is constrainedby type classData in gsize 's

type signature, and this constraint must appear in the instance heading:

instance Data a ) Size a where

gsize x = 1 + sum (gmapQ gsize x)

Furthermore, gmapQexpects a �rst argument of type:

Data a ) a ! r

but it is passedgsize , whosetype is lessgeneral and has a di�eren t type-classcon-

straint:

Size a ) a ! Int

The authors arguethat making Size a superclassof Data would solve the problem, but

the type-classmechanism works by extending superclasseswith subclassesand not the

opposite. The authors proposeto extend the type-classmechanismwith typ e-class ab-

str action and typ e-class applic ation in type-classand instance declarations. They

show how to encode the extensiondirectly in Haskell using someof the ideasin [Hug99].

The rest of the paper is devoted to developing the necessarymachinery. The most

problematic point is the de�nition of recursive instance declarations such as:

instance Data Size t ) Size t where

gsize x = 1 + sum (gmapQfjSize ,t jg gsize x)
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There is a �xed-p oint `equation' in the instance heading which may compromise the

decidability of type inference,a problem whosefull solution is consideredfuture work

(braceswith vertical bars denote type-classapplication).

Now, the RTTI tests of ext X are avoided and which gsize function to call on a value

of a type is decidedat compile time: either there is an instance of gsize for that type

or otherwise polytypic gsize is applied. Notice that this means there is no way of

overlapping or extending a polytypic function in di�eren t ways for the samedata type

unlessthe compiler supports overlapping instance s.

Notice that by making polytypic functions members of type classes,thesetype classes

will appear in the type signaturesof client functions.7 For example [LP05, p4]:

gdensity :: (Size a, Depth a) ) a ! Int

gdensity x = gsize x / gdepth x

There is a possibleimpact on maintainabilit y: changingthe implementation of gdensity

may a�ect type-classconstraints and, hence,a�ect its client functions. In the original

scheme, the type of gdensity was the more general:

Data a ) a ! Int

A possible patch that localisesthe change would consist of hiding classesSize and

Depth behind a Density sub-classwith no operators:

class (Size a, Depth a) ) Density a

gdensity :: Density a ) a ! Int

gdensity x = gsize x / gdepth x

A change in gdensity may entail a change in Density but client functions are unaf-

fected.

We concludethis section with an example that illustrates the advantagesof polytypic

extension. On page 159, we showed how polytypic gsize counts value constructors

when calculating the size of a list. With polytypic extension, we can customise the

gsize for lists to count only payload elements:

7Compare with Dependency-style Generic Haskell, where the type of a polyt ypic function includes
the names of other polyt ypic functions it calls.
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instance Size a ) Size (List a) where

gsize Nil = 0

gsize (Cons x xs) = gsize x + gsize xs

Wecannot beparametric on the sizeof the payload type|whic h is computedby gsize 's

instance for the Int type|, but at least value constructors are avoided in the total

count:

xs :: List Int

xs = (Cons 1 (Cons 2 Nil))

gsize xs

> 2

6.3 Generic Hask ell vs SyB

Generic Haskell and SyB di�er in approach and style.

In Generic Haskell, polytypic functions have polykinded types. The former are de�ned

by induction on the structure of representation type operators (where only the beha-

viour for basetypesand baserepresentation types is required). The latter are de�ned

by induction on kind signatures. The Generic Haskell compiler replacespolytypic ap-

plications by calls to generatedinstances. It also generatessomeinternal machinery:

representation type operators, embedding-projection pairs, etc.

In SyB, polytypic functions are de�ned in terms of generic one-layer traversals that

can be derived automatically by the Haskell compiler for manifest types and type

operators whose kind signature is described by the grammar � ::= � j � ! � up to

seven expansions.

In SyB representation types are unnecessary:type-baseddispatch is nominal and re-

lies on typeOf . In contrast, Generic Haskell has representation types and type-based

dispatch is unnecessary.

SyB employs Strategic Programming ideasto separatespeci�cit y (nominal action at a

node) from genericity (traversal basedon structure). Generic Haskell is purely struc-

tural and speci�cit y can only be achieved via polytypic extension.

SyB is carried out within Haskell with a (supposedly) minimal extension: instructing

the compiler to generatetype classesTypeable and Data . In contrast, GenericHaskell
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is a languageextension requiring a pre-processingcompiler. But polytypic functions

are not type-checked independently of their instantiations. It is the Haskell compiler

the one that type-checks that generated instance bodies conform to generated type

signatures.

Generic Haskell and SyB di�er in the model of computation. In SyB there is a set of

one-layer traversals that are used in the de�nition of polytypic functions on manifest

types. SyB also supports monadic traversals. In contrast, polytypic functions in Gen-

eric Haskell work on unconstrained type operators of arbitrary kinds. The fact that

SyB's implementation is type-classbasedimposestechnical limits: there are only seven

Typeable i classes.

In SyB, gfoldl and one-layer traversal idioms perform computations on value con-

structors. In Generic Haskell, polytypic functions can perform computations on value

constructors but seldomdo so (contrast the gsize examplesin page159).

Despite the di�erences, we consider Generic Haskell and SyB polytypic languageex-

tensionsof Haskell. Abstractly , polytypic programming is characterised thus: in poly-

morphic languages,functions are `separated'by the types on which they work. Poly-

typic functions must work on values of di�eren t types. They are a generalisation of

families of overloaded or polymorphic functions whose types and bodies can be gen-

erated automatically in regular fashion. Polytypic functions are used as if they were

a single function. Interestingly, this `single' function can be given a type. The rest is

implementation detail.

We conclude the section with a short description of the paper [HLO06] which is, in

part, an attempt to explain the dynamic behaviour of gfoldl by meansof making the

dynamic type information explicit at compile time. More precisely, the paper de�nes

a generalise d algebr aic data typ e [PWW04] for representing type information as

values in programs:

data Type :: � ! � where

TInt :: Type Int

TChar :: Type Char

TPair :: Type a ! Type b ! Type (a,b)

TSum :: Type a ! Type b ! Type (Sum a b)

TList :: Type a ! Type (List a)
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: : :

For example, the value constructor TInt is a value representation of the type Int ;

the value constructor TChar is a value representation of the type Char ; the expression

TPair TInt TChar is a value representation of the type ( Int , Char ) .

When types are explicitly represented as values at run-time, generic functions can

simulate type-baseddispatch, for instance:

gsize :: Type a ! a ! Int

gsize TInt i = 0

gsize TChar c = 0

gsize (TPair ta tb) (x,y) = gsize ta x + gsize tb y

gsize (TSum ta tb) (Inl x) = gsize ta x

gsize (TSum ta tb) (Inr y) = gsize tb y

gsize (List ta) xs = sum ( map (gsize ta ) xs)

: : :

In the paper, a type a is said to be typed if it is represented by a Type a value:

data Typed a = HasType a ( Type a)

The authors introduceanother generalisedalgebraicdata type, called Spine that plays

the samerole as a lisp S-expression.There is a `generic' toSpine function that trans-

lates Typed valuesto (`un-Typed ') Spine values:

data Spine :: � ! � where

Constr :: a ! Spine a

( � ) :: Spine (a ! b) ! a ! Spine b

toSpine :: Type a ! a ! Spine a

In the de�nition of Spine , Constr plays the role of z and � the role of k in the de�nition

of gfoldl , which is now expressedthus:

gfoldl :: Type a ! ( 8 a b. w ( a ! b) ! Typed a ! w b)

! ( 8 a. a ! w a)

! a ! w a

gfoldl t k z = foldSpine k z � toSpine t

However, the generalisedalgebraic type Type is not extensible: the translation from
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Haskell to lisp (i.e., from Typed values to Spine values) explains gfoldl 's dynamic

behaviour statically within Haskell for one compilation. In SyB, when new types are

added the compiler generatestheir gfoldl instances. In contrast, extending Type

entails its recompilation.

6.4 Ligh tweight approac hes

There are lightweight approachesfor doing polytypic programming within Haskell. The

most notable onesare (1) [CH02] which relies either on existential types8 or on gen-

eralised algebraic data types [PWW04] to enforcethe correspondencebetween a type

and its representation type; (2) [Hin04] that extends the previous approach in order

to de�ne polytypic functions on type-operators of order 1 within Haskell 98; and (3)

[OG05] which generalisesand collects the ideas into a programmable design pattern

and considerspolytypic functions with polytypic (type-indexed) types.

8Type-terms where universal quanti�cation occurs in contravariant position; not to be confusedwith
other notions of existential types that model data abstraction [Pie02].
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PolytypismandDataAbstraction

If you make a small change to a program, it can result in an enorm-

ous change in what the program does. If nature worked that way, the

universewould crash all the time. (Jaron Lanier)

Successfulsoftware always gets changed. (Fred Brooks)

In GenericHaskell, polytypic functions are de�ned by induction on the concrete de�ni-

tional structure of a type operator, and their polykinded typesby induction on the type

operator's kind signature. In SyB, polytypic functions are de�ned in terms of one-layer

traversalswhosegeneratedinstancesare applied to the concrete structure of a `node'.

Accessto concreterepresentations con
icts with the principle of data abstraction. More

precisely, data abstraction limits polytypism's genericity.

The present chapter articulates the previous statement. Somereadersmay deem this

unnecessary. For them the step from the fact that \functions that accessADT repres-

entations can wreak havoc" to the fact that \ polytypic functions [or their instancesfor

that matter] that accessADT representations can wreak havoc" requiresno arguments

nor examples.But it is important to drive home the point for those lured by the `gen-

eric' adjective. There are also con
icts speci�c to the nature of Generic Haskell and

SyB. Calling a function structurally polymorphic highlights the fact that the function

is dependent on structure and whether structure changes.

The whole issueis bound to spur philosophical disagreement. Accessto concrete rep-

resentations is one of the dearest tools of the functional programmer|or at least of

`non-Lispers'. Think for example of functions de�ned by pattern matching. Or think

about the fact that complex data-structure de�nitions such as �rst-class, extensible

higher-order records, or �rst-class modules for that matter, are ignored by polytypic

languageswhich always assumea world of algebraicdata types(i.e., sumsof products).

In Haskell 98, the standard record and module system is even found wanting.

168
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7.1 Polyt ypism con
icts with data abstraction

First and foremost, concrete representations are logically hidden and often physically

unavailable (e.g. pre-compiled libraries). Second,if polytypic functions wereallowed to

sneakily accessan ADT's representation, or were tipp ed o� by an oracle, they would

not work satisfactorily. Data abstraction brings about a di�eren t game. More precisely:

1. A pure function must return the sameresult when applied to the sameargument.

This also applies to functions on ADT values. If the function computes its result

by accessingthe ADT's representation and the representation changes, the value

computed may alsochangedespitethat the function is applied to the same`abstract'

value. Polytypic functions are subject to this problem just like ordinary, non-generic

ones.

In particular, functions accessingrepresentations can be a�ected by implement-

ation clutter , i.e., data relevant only to the implementation of the type. More

precisely, an ADT may be implemented using various concretetypes,parts of which

may contain data usedfor e�ciency or structuring purposes.The well-known trade-

o� betweentime and spaceindicates that this is bound to happen often: extra data

will be used in order to improve operator speed. It would be rather di�cult, if

not impossible, for a function to ascertain the pertinence of data components in

implementations and to know what to do with them in a semantics-preservingway.

(Notice that clutter is not the sameas junk: clutter can be part of a non-junk value

of the concretetype that represents a value of the abstract type.)

2. A function accessingADT representations may violate the implementation in-

variants which guarantee that concretevaluesare valid representations of abstract

values. Theseinvariants are maintained by ADT operators and are the raison d'être

for hiding the representation behind an interface. A violation of the implementation

invariants most certainly entails a violation of the type's semantics, i.e., the value

computed is not a value of the ADT.

3. Polytypic functions also have problems of their own:

(a) A manifest (kind- � ) ADT hasthe samestatus asa basetype. Polytypic function

de�nitions have to provide casesfor them like they do for integersor booleans

(Section 6.1.12).
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In Generic Haskell, adding a new base type requires editing and recompiling

polytypic function de�nitions (except those de�ned by polytypic abstraction),

unlessthe new caseis added incrementally using polytypic extension. In SyB,

the ADT has to be made an instance of Typeable and Data by the ADT

implementor, who is the only one entitled to the internals of the type.

In both cases,if the ADT implementation changesthe de�nition of the poly-

typic function must be changedaccordingly. Client code may be a�ected if the

results computed by the new de�nition di�er from its previous version.

From the viewpoint of Generic Programming, it is better to rely on paramet-

risation than to rely on extension. Parametrisation allows us to write code once

by adapting parameters whereasextension requires us to provide new de�ni-

tions for speci�c types, i.e., there is no `generic' programming here other than

name reuseand, furthermore, providing di�eren t (overlapping) de�nitions for

the sametype is currently not possible.

(b) GenericHaskell doesnot support constrainedtypes(Section 6.1.10)which arise

frequently in ADT implementations: order in binary search trees, equality in

sets,etc. In contrast, SyB supports constrained typeswhen the payload is also

constrained on Data , e.g.:

instance ( Data a, Ord a) ) Data (OrdSet a) where

gfoldl k z s = k (z fromList ) (toList s)

: : :

With polytypic extension,gsize has a Size constraint instead of a Data con-

straint, soOrd must be declareda superclassof Size . The type-classparamet-

risation framework suggestedin [LP05] is undergoing research.

4. Polytypic extension is not a satisfactory solution. Let us illustrate this point using

gsize as a running example.

With polytypic extension it is possible to write a de�nition of gsize for a given

ADT such that it upholds the implementation invariants and ignoresimplementation

clutter. But there are two problems with this:

(a) Who writes the de�nition? It could be written by the polytypic programmer if

granted accessto the ADT's implementation. However, it is disturbing to de�ne

a function that accessesthe implementation outside the ADT. The de�nition
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should be provided by the ADT implementor, who can update the de�nition if

the implementation changes. However, providing gsize as an ADT operator

amounts to providing the size operator directly. The fact that gsize is an

overloadedoperator name and that there exists a polytypic version of it is an

orthogonal issue. The ADT implementor must provide a size operator and

the polytypic programmer must de�ne the polytypic extensionof gsize for the

ADT in terms of size .

Unfortunately, it is not possiblefor an ADT implementor to foreseeall possible

operators that can be employed in the polytypic extension of future polytypic

functions. Polytypic extension takes place after a polytypic function has been

de�ned.

In sum, we end up in a visibilit y problem: polytypic programmers are ADT

clients and cannot customisetheir polytypic functions for those ADTs by ac-

cessingtheir implementation.

(b) Where is the genericity? Of course, polytypic programmers can use ADT

interfaces to de�ne their extensions.However, wewould like to havea polytypic

gsize that works for all types,concreteor abstract, not one whoseversion for

every new ADT has to be explicitly programmed. What is desiredis automatic

polytypic extension.

The following sectionselaborate and illustrate thesepoints with a few examples.Please

note that this chapter is not meant to be a criticism of Generic Haskell or SyB. That

would beunfair, for copingwith ADTs is not a designgoal of theselanguageextensions.

We just aim at exposing polytypism's genericity limitations in order to argue the case

for our solution.

7.1.1 Foraging clutter

It is typical of many ADT implementations to useelaborate concretetypeswith clutter

of �xed typesor payload type.

As a typical example,considerorderedsetssupporting the following operators: empty ,

isEmpty , insert , member, and remove . An ordered set can be implemented in terms

of Red-Black Treesor in terms of Leftist Heapswhich contain, respectively, colour and

height components usedfor re-balancingthe tree during insertion and removal [Oka98a,
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p197,p203]:

data Colour = Red | Black

data RBT a = E | N Colour a ( RBT a) (RBT a)

data LHeap a = E | N Int a (LHeap a) (LHeap a)

Polytypic functions take these clutter components into account. In Generic Haskell,

their contribution to the computation dependson the de�nition for units and integers|

recall Figure 6.5 and Section 6.1.12. Polytypic gsize calculates the size correctly

becausethe size for integers and units is zero. However, serialisation functions such

as prett y-prin ters or encoders would print or encode the clutter components. In SyB,

gsize counts all the value constructors in nodes,e.g.:

t :: LHeap Int

t = N 0 5 E E

gsize t

> 5

It is more reasonableto expect the size (cardinalit y) of the set f 5g to be 1, count-

ing only the number of payload elements. ADT clients care lessabout internal value

constructors. Polytypic extensioncomesto the rescue:

instance Size a ) Size (LHeap a) where

gsize E = 0

gsize (N i x l r) = gsize x + gsize l + gsize r

but, as argued in Section 7.1, from the viewpoint of Generic Programming this is an

unsatisfactory solution.

Clutter can be of payload type. Let us present a simple example �rst. Imagine an

ordered cached container CSet a for which the membership test for the last inserted

element takesconstant time. It could be implemented in terms of orderedlists or binary

search trees, as shown in Figure 7.1. For brevity, only the implementation of insertion

is shown.

Value constructor CE represents an empty CSet and value constructor C a non-empty

CSet with a cached element and a concrete type with all the payload. In the list

implementation, a value C t Nil , where t is an arbitrary term, does not represent a

CSet value and constitutes junk (Chapter 5). Similarly, a term C t BinTree .empty in
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module CSet (CSet ,empty ,isEmpty ,insert ,member ) where
data Ord a ) CSet a = CE | C a (Payload a)

-- List implementation
type Payload a = [a]

insert :: Ord a ) a ! CSet a ! CSet a
insert x CE = C x [x ]
insert x ( C y ys ) = C x (x :ys)

-- BinTree implementation
import BinTree
type Payload a = BinTree .BinTree a

insert :: Ord a ) a ! CSet a ! CSet a
insert x CE = C x (BinTree .insert x BinTree .empty )
insert x ( C y ys ) = C x (BinTree .insert x ys)

Figure 7.1: CSet implemented in terms of ordered lists or binary search trees with
respective implementation of insertion.

the binary search tree implementation constitutes junk.

Both representations contain clutter: a unit value and a cached value of payload type.

In the list implementation, Generic Haskell's gsize counts the latter when computing

the size:

c = foldr ( � x y ! CSet .insert x y) CSet.empty [1,2]

gsize hCSet i ( const 1) c

> 3

The result should have been2. The extra unit is also counted by SyB's gsize :

c :: CSet Char

c = CSet.insert 'A' CSet.empty

gsize c

> 5

The results for the binary search tree implementation depend on the concrete type

implementing BinTree . If implemented as a Red-Black Tree then SyB's gsize will

return a di�eren t value than if implemented as an ordinary binary search tree.

FIFO-queueimplementations a�ord many examplesof clutter. The FIFO-queueinter-

faceis shown in Figure 7.2(top box). There aremany possibleimplementations [Oka98a,
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p186{189]: BatchedQueues,Physicist's Queues,Banker's Queues,Hood-Melville Queues,

etc. Their representation typesare shown in Figure 7.2 (bottom box).

module Queue(Queue (..)) where
class Queue q where

empty :: q a
isEmpty :: q a ! Bool
enq :: a ! q a ! q a
front :: q a ! a
deq :: q a ! q a

data BatchedQueue a = BQ [ a] [a ]
data BankersQueue a = BnQ Int [ a] Int [a]
data PhysicistQueue a = PQ [ a] Int [a] Int [ a]
data RotationState a = Idle

| Reversing Int [ a] [a] [a] [a]
| Appending Int [ a] [a]
| Done [a]

data HoodMelvilleQueue a = HMQInt [a] (RotationState a) Int [a]
data BootStrappedQueue a = E

| Q Int [a] ( BootStrappedQueue [a]) Int [a]

Figure 7.2: Queueinterface and somepossibleimplementations.

A Batched Queueusestwo lists where the �rst contains the front elements in correct

order and the secondthe rear elements in reverseorder. When the front list is emptied

the rear list is rotated and becomesthe front list. A Banker's Queue keepsalso the

length of both lists. Elements are moved from the rear to the front periodically when

length f == length r + 1, replacing f by f ++ reverse r , i.e., an expressionthat in

a lazy languagelike Haskell is only evaluated on demand (a suspension).

A Physicist's Queuealso tracks the lengths of the lists but it keepsanother list that is

a pre�x of the front list to avoid the constant evaluation of the suspension.

A Hood-Melville Queuetracks the lengths of the lists and usesan auxiliary data struc-

ture that captures the state of the reversal explicitly .

A BootstrappedQueueis a recursive irregular type(Section6.1.1)with oneunit element

representing empty queues.The recursivecasehastwo integers,onecounting the length

of the front list plus the length of all the suspendedlists in the recursive substructure,

and another counting the length of the rear list. Irregular typescan be converted into

regular ones\in troducing a new datatype to collapsethe di�eren t instancesinto a single
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type . . . [irregularit y] really refersmore to how we think about a datatype than to how

it is implemented" [Oka98a, p143]. Irregular types are neverthelesspreferred for the

reasonsgiven in Section 6.1.1. An irregular type can be changed into a regular one

introducing more auxiliary types, i.e., more clutter.

The reader is referred to [Oka98a] for details about the implementation of thesequeues

and other functional data structures.

All queueimplementations conform to the Queue interface. We expect functions oper-

ating on queuesnot to be a�ected by changesin their implementation. This is not the

casewhen the representation is accesseddirectly.

In SyB, gsize would produce di�eren t results becausethe number and type of node

components changesdramatically, e.g.:

gsize Queue. empty -- BatchedQueue : BQ Nil Nil

> 3

gsize Queue. empty -- BootStrappedQueue : E

> 1

In Generic Haskell, redundant elements of payload type are added by gsize into the

total count, e.g.:

q = foldl ( � x y ! Queue.enq y x) Queue.empty [7,5,9,4,6]

> PQ [7,5,9] 5 [7,5,9,4,6] 0 [] -- implemented as PhysicistQueue

gsize hQueuei ( const 1) q

> 8 -- instead of 5

7.1.2 Breaking the law

Consider the ADT of ordered sets. Among the type's laws there is one indicating that

ordered setshave no duplicates, e.g.:

insert x (insert x s) = insert x s

Supposethat lists without duplicates are usedas concreterepresentations:

module Set (Set, empty ,isEmpty ,insert , member) where

data Ord a ) Set a = MkSet [a]

empty :: Ord a ) Set a
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empty = Set []

insert :: Ord a ) a ! Set a ! Set a

insert x ( MkSet xs) = MkSet (( sort � nub ) (x:xs ))

: : :

Function nub removesduplicates from a list.

The application of gmap may introduceduplicate elements making the result a list that

is no longer a valid representation of a set. For example,mapping const 5 over the set

f 1; 2; 3g should yield f 5g. This is not the case:

s = foldr ( � x y ! Set .insert x y) Set .empty [1,2,3]

gmaphSet i ( const 5) s

> MkSet [5,5,5]

Ordered sets can also be implemented in terms of boolean vectors, where payload

elements are indices, or hash tables, where hashedpayload elements are indices (Sec-

tion 5.6). However, the map function for a vector maps the elements in the vector, not

the indices, let alone the values to which a (perhapsnon-invertible) indexing function

has beenapplied in order to obtain the indices.

Now consider the type of ordered trees of Section 5.7 which can be usedto implement

binary search trees, ordered sets, and priorit y queues. Again, the application of map

over the implementation can break the structural invariants.

(7,A) (-7, A)
/ \ ----> / \

(5, B) (9, C) (-5,B) (-9, C)

Figure 7.3: Mapping negation over a binary search tree representing a priorit y queue
yields an illegal queuevalue.

Supposean ordered tree implements a priorit y queuewhere the priorit y is given by an

integer value (Figure 7.3, left tree). If we invert priorities, mapping � (x,y) ! (-x,y ) ,

the resulting tree (Figure 7.3, right tree) is not a valid representation of a priorit y

queue. The correct representation would be the mirror tree where the element with

highest priorit y in the left subtree has at most the root's priorit y.

Consider a parameterisedMemoList ADT supporting the following operators:

nil :: ([ a] ! a) ! MemoList a
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module MemoList ( MemoList ,nil ,cons ,head ,tail ,memo) where
import Prelude hiding (head, tail, null)

data MemoList a = ML ([ a] ! a) a [a]

nil :: ([a] ! a) ! MemoList a
nil f = ML f (f $! []) []

null :: MemoList a ! Bool
null ( ML _ _ []) = True
null ( ML _ _ (x:xs )) = False

cons :: a ! MemoList a ! MemoList a
cons x (ML f y ys ) = ML f (f $! xs ) xs

where xs = x:ys

head :: MemoList a ! a
head ( ML _ _ []) = error "Empty List "
head ( ML _ _ (x:xs )) = x

tail :: MemoList a ! MemoList a
tail ( ML _ _ []) = error "Empty List "
tail ( ML f _ (x:xs )) = ML f (f $! xs) xs

memo :: MemoList a ! a
memo ( ML _ x _) = x

Figure 7.4: A MemoList implementation.

null :: MemoList a ! Bool

cons :: a ! MemoList a ! MemoList a

head :: MemoList a ! a

tail :: MemoList a ! MemoList a

memo :: MemoList a ! a

A function on ordinary lists is passedwhen creating an empty MemoList using nil .

This function remains�xed during operation. The value of this function is recalculated

in strict fashion every time an element is inserted (cons ) or removed (tail ) from the

memo list. The value of the calculation can be obtained in constant time using memo.

Operators cons and tail are ine�cien t becausethe value of f on list elements, which

could take linear time to compute, is executedevery time these operators are called.

Memo lists are meant to beusedin situations wherethere is a high degreeof persistence

and high demand for the memoisedvalue.
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Figure 7.4 shows an obvious implementation. The in�x strict application $! eagerly

evaluates its secondargument and then the application of its �rst argument to the

result. The representation value ML f m xs represents an f -memoised list with the

implementation invariant m= f xs . Ordinary list operatorscanbereadily programmed,

e.g.:

mlength :: MemoList a ! Int

mlength ml = if null ml then 0 else 1 + mlength ( tail ml)

And we expect typical list equations to hold:

mlength (mconcat xs ys) == mlength xs + mlength ys

(Unfortunately , the type-checker cannot stop mconcat from concatenating memoised

lists built using di�eren t memoisedfunctions of the sametype, for function equality is

undecidable.)

Generic Haskell's gsize counts the memoisedvalue.1 But more worryingly, the ap-

plication of gmap can easily break the implementation invariants and produceconcrete

valuesthat do not represent valuesof the ADT:

mlA = cons 1 (cons 1 (cons 1 (nil sum)))

mlB = cons 1 (cons -2 (cons 3 ( nil max)))

gsize hMemoList i ( const 1) mlA

> 4 -- should have been 3

gmaphMemoList i (+1) mlA

> ML ? 4 [2,2,2] -- sum yields 6 not 4

gmaphMemoList i negate mlB

> ML ? -3 [-1,2,-3] -- max yields 2 not -3

Broadly speaking, the instance of gmap for MemoList behavesthus:

gmaphMemoList i g (ML f m xs ) = ML f (g m) (gsize hList i g xs )

The implementation invariant breakswhen g m6= f (gmaphList i g xs ).

1 In point of fact, gsize (Figure 6.5) must provide a case for the arrow type operator or the
application would produce a run-time error: memoised lists contain functions as data.
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7.1.3 On mapping over abstract t yp es

Some readers may wonder whether `map' is justi�ed in the case of non-free types.

Categorially, a type is a functor if we can de�ne its map function that satis�es the

functorial laws:

map id = id (7.1)

map (f � g) = map f � map g (7.2)

The bits of category theory described in Chapter 3 assumedan unboundedly poly-

morphic world. It is becauseof this parametricity assumption that properties of poly-

morphic programs (natural transformations) can be obtained directly from their types

(functors) [Rey74, Wad89].

The map function for unbounded ADTs (Section 5.10) must respect the number and

position of elements. However, for bounded ADTs this does not have to be the case:

there are context-dependent properties such as ordering, lack of repetition, etc, that

must be preserved by map.

Let us concretise the point. Think of unbounded ADTs such as lists, stacks, FIFO

queues,etc. For theseADTs the following equation is upheld by map:

map f (con x y) == con (f x) ( map f y)

Here con stands for the binary constructor. Replacecon by cons in the caseof lists,

by push in the caseof stacks, and by enq in the caseof FIFO queues. The fact that

stacks and queuesare subject to more equations is an orthogonal issuethat relates to

how map is actually de�ned in terms of the available observers. In particular, FIFO

queuesdo not satisfy the product law:

con (exl q) (exr q) == q

where con is enq , exl is front , and exr is deq (Section 9.4).

The map equation may not hold for bounded ADTs, as demonstrated by all the ex-

amples in Section 7.1.2. Replace con by insert in ordered sets or enq in priorit y

queuesand the equation only holds when map preserves the order. Consequently, in

the previous examplesgmap is not the right function to apply to these ADTs, but a

law-abiding gmap that preserves the semantic properties of the ADTs.
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Is such function really a map? It is if it satis�es the functorial laws. Take ordered

sets, for instance. First, let us make Set an instance of Functor . We use a multi-

parameter type class Functor becauseSet 's implementation type is constrained by

Ord and therefore we cannot make Set an instance of the Functor classprovided by

the Haskell prelude [MJP97]:

class Functor f a b where

map :: ( a ! b) ! f a ! f b

instance ( Ord a, Ord b) ) Functor Set a b where

map f (MkSet xs) = MkSet (( sort � nub � map f ) xs)

Notice the overloading: map on the right hand side is map on lists.

Set is a functor not becauseit has beenmadean instance of Functor but becausethe

de�nition of map satis�es the functorial laws. Let us usethe following abbreviation:

� = sort � nub

Equation (7.1) is trivial to prove: if the set is empty then map returns another empty

set, and the identit y of an empty set is an empty set. If the set is not empty then the

identit y is mapped over the list which is not changed.

Equation (7.2) is also trivial to prove for the caseof empty sets. For the non-empty

case,let us �rst expand the left hand side of Equation (7.2):

map (f � g) (MkSet xs )

= f def. of map for Set g

MkSet (( � � map (f � g)) xs )

= f List is a functor g

MkSet (( � � map f � map g) xs )

Let us now expand the right hand side:

map f � map g (MkSet xs )

= f def. of map for Set g

map f (MkSet (( � � map g) xs ))

= f def. of map for Set g

MkSet ( (� � map f ) (( � � map g) xs ) )

= f composition g
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MkSet (( � � map f � � � map g) xs )

Both expansionsare equal if the following holds:

� � map f � map g = � � map f � � � map g

We can prove this is the caseusing the de�nition of � at this point.

However, let us indulge in a more general discussion: What is � ? It is a function

that is applied to a value of the implementation type in order to make it satisfy the

implementation invariants. In the caseof orderedsets, it sorts and removesrepetitions

from the list.

We can provide a better de�nition of such repairing functions in terms of the whole

implementation type. For ordered sets:

' (MkSet xs) = MkSet ( � xs)

A map on sets is obtained by mapping over the payload type (list) and then applying

' to re-establishthe implementation invariants:

map f (MkSet xs ) = ' (MkSet ( map f xs))

In balanced trees, ' performs the balancing. In binary search trees, ' turns a BTree

into a binary search BTree , etc.

Recall the implementation type of memo lists from Section 7.1.2:

data MemoList a = ML ([a] ! a) a [a ]

The map for MemoList is de�ned as follows:

instance Functor MemoList where

fmap f ( ML g x xs) = ML g (g ys) ys

where ys = map f xs

In other words:

fmap f (ML g x xs) = ' (ML g x ( map f xs ))

where ' (ML g x xs) = ML g ( � g xs) xs

� g xs = g xs

Again, the payload part of the concrete type is mapped and the implementation in-



7.2 Don't abstract, export. 182

variant is maintained by ' . Notice that g and x are implementation clutter and g is a

function component that cannot be mapped by GenericHaskell's gmap (Section 6.1.2).

However, the ADT is a functor, for we can de�ne a map that satis�es the functorial

laws.

Summarising, a map for a bounded ADT may be de�ned in terms of a function that

maps over the payload parts of the implementation type and another function ' that

re-establishesimplementation invariants. The ADT is a functor if the functorial laws

are satis�ed.

We concludethe sectiondiscussingthe impact of theseissueson GenericProgramming.

Set hasbeenmadean instanceof Functor by de�ning map in terms of the implement-

ation type. Therefore, it is assumedthat the instance declaration has been written

by the ADT implementor. However, our aim is to program a generic map outside the

ADT. If we attempt to de�ne it in terms of the implementation type then we have to

somehow �gure out ' polytypically for any given ADT. This is not only a Herculean

task; if the representation changes,it is also useless,for ' is no longer valid. However,

the reader may have noticed that ' 's job is already performed by insert ! Interface

operators seemto be part of the solution.

7.2 Don't abstract, exp ort.

Section6.1.12discussedthe drawbacks of providing �xed valuesfor units and basetypes

in polytypic function de�nitions. Programming with ADTs worsensthe situation. It

is impossibleto give a meaningful casefor all possiblenon-parametric (kind- � ) ADTs

in polytypic function de�nitions. It may not be possiblephysically or logically to turn

them into parameterisedADTs by abstracting over the payload type.

An example: an event-driv en GUI system keepsa queueof events. The type has been

de�ned in a module:

module EventQueue (EventQueue ,empty , isEmpty ,enq ,deq,front ) where

import Event

import Queue

data EventQueue = mkEQ (Queue . Queue Event .EventType )

empty = mkEQ Queue.empty

isEmpty (mkEQ q) = Queue.isEmpty q
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: : :

TypeEventQueue is an ADT whoseimplementation in terms of a Queue ADT is hidden

(the module only exports the type nameand the operators). EventQueue is de�ned as

a new type, not a type synonym, to enforceabstraction further. Programmerswriting

other parts of the GUI only know about the interface, and write their code accordingly.

EventQueue is a manifest type. It plays the samerole as a kind-� basic type. Generic

Haskell's gsize on an EventQueue value always returns 0 and gmap is the identit y.

Let us leave asidethe fact that EventQueue could have beenbundled by a third-part y

provider as part of a pre-compiled library and its representation type would therefore

be unknown (the library is closedsource)and physically inaccessible.It makesno sense

to abstract EventQueue into EventQueue a, for a is always Event .EventType ; this

is tantamount to using Queue directly. Abstraction is necessaryonly to usepolytypic

functions:

type EventQueue = Queue.Queue Event . EventType

q :: EventQueue

gsize hQueue.Queue i ( const 1) q

The type synonym is used everywhere in the program but polytypic function applic-

ations. The situation is rather strange: the programmer usesthe type synonym and

thinks in terms of EventQueue but has to use Queue.Queue when calling polytypic

functions.

Now consider this scenario: after somebeta testing, EventQueue implementors decide

to usea direct implementation in terms of their own fancy queuetype:

data EventQueue = EmptyQueue | Fancy [ Event] Int Blah Blahdiblah : : :

Polytypic applications with Queue. Queue becomea�ected by this change.

It would be preferable for polytypic functions to be able to cope with the types in a

software design than to adapt the software design to what polytypic functions can or

cannot do.

Finally, it will becommonfor manifest ADTs to be usedin the implementation of other

manifest ADTs. We are facedwith a cascadingchain of abstractions which would force

programmersto, prett y much, give up encapsulation:
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module ProcessQueue ( ProcessQueue ,empty ,isEmpty , enq,deq ,front ) where

import Process

import Queue

data ProcessQueue = PQ (Queue .Queue Process .ProcessType )

: : :

module ProcessManager (ProcessManager ,create ,run ,kill) where

import Process

import qualified ProcessQueue as ProcQ

data ProcessManager = PM {

current :: Process .ProcessType ,

sleeping :: ProcQ . ProcessQueue ,

running :: ProcQ . ProcessQueue

}

: : :

Another worrying aspect of abstracting over payload is that it might dredgeparamet-

ricit y constraints, a�ecting interfaces and client code. Using EventQueue is simple:

programmers create EventType values and store them in values of EventQueue . Us-

ing Queue requires knowledge of the type's constraints. If implemented as a binary

search tree, the constraint Ord becomesvisible or, worse,other constraints imposedby

the representation type implementing Event .EventType , someof which may be type

classesonly known by implementors.

What is neededis a di�eren t linguistic mechanism that allows manifest ADTs to in-

dicate or export payload types. It is straightforward to have EventQueue 's interface

specify that its payload is Event .EventType . It is a di�eren t thing to have to work

with Queue whosepayload we know it always to be Event .EventType . The payload

type remains the sameeven if the implementation of the container changes,or even if

the interface changes.Exporting is explored in Chapter 9.

7.3 Buc k the represen tations!

The reader only needsto glancethrough the functional data structures in [Oka98a] to

realise the gap betweenconcreterepresentation typesand abstract types. The former

are bigger. They contain implementation clutter: valuesthat capture properties of the

structure such assize,rank, depth, etc; or parts of the structure itself, or distinguished

payload elements, or even part of the data structure's state represented as data (e.g.,
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Hood-Melville queues).

The examplesin this chapter aresimple. One could provide morecomplicatedexamples

of rather obscurerepresentation typesbut wewould have to explain their purpose.Some

ADT implementations arequite a feat of engineeringand cleverness,and the systematic

study of e�cien t functional data structures is still an ongoing �eld of research.

At any rate, our examples illustrate the hoary point that accessingconcrete repres-

entations may produce unintended results and may break implementation invariants

and semantics. This is why concreterepresentations are hidden behind an interface of

operators that maintain them and enableconstruction and observation (a view) of the

relevant data.

Polytypic functions are no di�eren t from ordinary functions in this regard. Their `gen-

ericity' is due to structural parametrisation alone.

It is perfectly conceivable for future languagesto enable compilers to choose ADT

implementations at compile-time basedon operator-usageanalyses. It is also possible

for a program to manipulate simultaneously di�eren t implementations of the sameADT

as long as they are not mixed up in operations. Finally, implementations may change,

but results produced by client code should not.

There are situations in which data seldom changes. A well-designedabstract syntax

tree is rarely changedand compilersusually manipulate its concreterepresentation dir-

ectly. But more often than not, implementors have to prepare for change. Generic

Programming is about making this preparation unnecessarywith respect to code: gen-

eric functions work for all typesor, at least, for a big set of types. Polytypic function

de�nitions shouldnot changewhen the data changesand should provide accurate and

meaningful results. In short, polytypic functions must not accessthe concrete de�ni-

tional structure of ADTs. The reader may wonder how structural polymorphism may

be possibleat all. It dependson what we mean by `structure' (Chapter 9).
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PatternMatchingandDataAbstraction

Pattern matching and data abstraction are important concepts.. . but

they do not �t well together. Pattern matching depends on making

public a free data type representation, while data abstraction depends

on hiding the representation. [Wad87]

In Chapter 7, we have argued that polytypic programming con
icts with the principle

of data abstraction. Pattern matching is another languagefeature that con
icts with

data abstraction, for pattern matching is performed upon unencapsulated, concrete

data types,and therefore its applicabilit y is limited to within the modules implement-

ing ADTs. There are several proposals for reconciling pattern matching with data

abstraction and the �rst thing that comesto mind is to investigate whether they can

be of any use in reconciling polytypic programming with data abstraction|p olytypic

functions pattern-match over concretede�nitional structures.

There are two major approachesfor reconciling pattern matching and ADTs. The �rst

approach is basedon providing views of the ADT in terms of exported concrete types

together with translation functions from the ADT's internal concreterepresentation to

the exported view and vice-versa [Wad87]. The secondapproach is basedon providing

only one translation, keeping constructor operators and turning somediscrimination

and selectionoperators into pattern expressionswhich, logically, are syntactic sugar for

the former [PPN96, WC93].

In this chapter we review why the �rst approach is not satisfactory (in fact, it hasbeen

dropped entirely) and why the secondapproach is of limited help. We also describe

other less well-known, and even less suitable, approaches. We provide the chapter's

conclusions upfront in the next section and elaborate the details in the remaining

sections.

186
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8.1 Conclusions �rst

In this chapter we overview the most popular approachesfor reconcilingpattern match-

ing with data abstraction. Theseare someof the lessonsto be learned from them:

1. Pattern matching is, logically, syntactic sugar for observation.

2. Trying to evolve the value-constructor concept for observation leads to problems.

More precisely, construction and observation may not be inversesand thereforemust

be separated. The latter may be provided by somepattern-matching construct. The

former should be performed by ordinary ADT operators.

3. For pattern matching to be e�ectiv e, it must be possible for computation to take

place at matching time; i.e., e�ectiv e component selectionrequires computation.

4. Relying on canonical valuesis deprecated.

GenericHaskell and SyB are oblivious to the secondpoint in the list. We could embark

on a project to adapt them accordingly, but this is downplayed by the remaining points.

In order to program polytypic functions on ADTs it is necessaryto de�ne a uniform

notion of structure. Interfacesmay provide such structure. The intro duction of elabor-

ated pattern-matching mechanismsand their luggage(e.g., changesto the type system,

possibleundecidabilities, etc) is an extra complication, and there is the problem that

construction must take place via operators.

But polytypic functions can be de�ned in terms of ADT operators. At the end of the

day, ADT operators provide a `view' of an implementation type. In ordinary program-

ming the need for pattern matching is more pressing: there are issuesof conciseness,

readability, structural de�nitions and proofs, etc. In Generic Programming thesepres-

suresare localised in the de�nition of generic functions, which can be provided in two

parts (construction and observation) basedon the structure of interfaces(Chapter 9).

8.2 An overview of pattern matc hing

Conceptually, data types are either concrete or abstract (Section 4.2). In functional

languages,concrete typesare either primitiv e typesor algebraic types (Section 6.1.1).

At the value level, algebraic typesintroduce a free algebra (Chapter 5) generatedby a



8.2 An overview of pattern matching 188

Pattern ::= Variable
| ValueConstructor Pattern �

| ( Pattern, Pattern (, Pattern) � )

Figure 8.1: A simple languageof patterns consisting of variables, value constructors
applied to patterns, and n-ary tuples of patterns.

set of value constructors which play several roles. More concretely, given the Haskell

data type de�nition template introduced in Section 6.1.1:

data Q ) T a1 : : : an = C1 � 11 : : : � 1k1 j : : : j Cm � m1 : : : � mk m

value constructors Ci play the following roles:

1. Introduction (construction), e.g., a term C1 t11 : : : t1k1 introduces (constructs) a

value of the algebraic type, where t1j is an arbitrary term of type � 1j .

2. Representation (freeness),e.g., the term C1 t11 : : : t1k1 represents (denotes) a value.

Unlike regular functions, the value computed by an application of a value con-

structor to its arguments is denoted by the application itself. Thus, values carry

their structure explicitly . This is possiblebecausethere are no equations between

value constructors that suggestthe need of further computation in order to satisfy

them.

3. Elimination, e.g., the pattern C1 p11 : : : p1k1 , where p1j are sub-patterns, can be

usedfor discriminating amongsum valuesof an algebraic type and for selecting the

product components. Patterns are allowed in case expressionsof core languages,1

and in top-level function de�nitions, lambda abstractions, and let-expressionsof

most fully-
edged functional languages. A small languageof patterns is shown in

Figure 8.1.

Notice that patterns can be nested ; an example would be Cons x (Cons y ys ) .

Of particular interest are simple patterns of the form C x1 : : : xn where C is a

value constructor and x i are variables. If the variables are all di�eren t the pattern

is line ar . Writing the samevariable in di�eren t positions imposesan equality test:

the valuesmatched against the various occurrencesmust be the same.
1Case expressions for pattern matching are more general than those of Section 2.7.2 which only

pattern-matc h against values of a sum type.
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4. Value constructors alsoplay the lessconspicuousrole of aids to the type checker and

of enabling the de�nition of iso-recursive type operators [Pie02, p275{277,445].

The �rst three roles are illustrated by the following function de�nition:

insert :: Eq a ) a ! List a ! List a

insert x Nil = Cons x Nil

insert x (Cons y ys) = if x == y then Cons y ys

else Cons y (insert x ys)

which is sugar for a de�nition by caseexpression:

insert x l = case l of

Nil ! Cons x Nil

(Cons y ys) ! if x == y then Cons y ys

else Cons y (insert x ys )

The term Cons y ys is usedas a pattern in the left hand side of the secondarrow and

as a term on the right hand side. As a pattern it discriminates whether the second

argument to insert is constructedusingCons and binds the newvariable y to the value

of the �rst product component, and the new variable ys to the value of the second.

Finally, there is computation with selectedvaluesat each discriminated branch.

Technically, the matching processconsists of the application of a boolean predicate

(discriminator) followed by an optional processof selection,binding into locally-de�ned

variables,and computation with selectedcomponents. As rightly pointed out in [Pal95,

p4], uni�cation in logic programming languagesis a similar but more expressive con-

struct than pattern matching.

Without pattern matching, insert would be written using list operators in a style

familiar to LISP programmers:

insert x l = if null l -- discrimination

then cons x nil -- computation

else let y = head l -- selection and binding

ys = tail l

in cons y (insert x ys) -- computation

This is also the manner in which insert would be written if the list type were abstract.
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With pattern matching, discrimination and selection are expressively combined and

can be compiled e�ectiv ely. The number of discriminated alternatives (number and

name of value constructors) is �xed and known at compile time so, depending on the

languageof patterns, it is possibleto check statically whether alternatives overlap or

are exhaustive, i.e., whether patterns in caseexpressionscapture all possibleforms of

values. However, partial operators and polymorphic non-terminating terms are allowed

in functional languages,making it possibleto write caseexpressionsthat produce run-

time errors or do not terminate:2

case l of Nil ! head l : : :

But what goes on to the left of the arrow is safe, i.e., discrimination between the

alternatives of a disjoint sum can be exhaustive and selection of product components

into local variables is type-safe.

Another bene�t of pattern matching is concisenessand expressiveness.The �rst de�n-

ition of insert is easierto read and understand. It closely follows the structure of the

data it works on. Properties on well-ordered, recursive algebraic types can be proven

by structural induction [Mit96 ]. Pattern matching can also be used when de�ning

functions over co-recursive algebraic typesand in their proofs [GH05].

However, pattern matching is incompatible with data abstraction, for patterns are

meant to capture the concrete structure of a value. It has also other disadvant-

ages[Tul00, p3]:

1. Pattern matching imposesan evaluation order: patterns in case expressionsare

evaluated from left to right and from top to bottom. This has consequenceson

the semantics of functions and therefore on how they must be de�ned. A typical

example is the zip function. The reasonfor an evaluation order comesfrom how

nestedpatterns are decomposedinto nestedcaseexpressionswith simple patterns.

2. Pattern matching \b egs for extension upon extension": there are irrefutable pat-

terns, as patterns, guarded patterns, etc.

3. Patterns can be nestedand make it di�cult for the eye to determine whether they

2Unde�ned terms enable the de�nition of partial operators. The reader should bear in mind the
di�erence between unde�ned and non-terminating terms. The former are stuck terms, the latter have
no normal form.
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overlap or are exhaustive, e.g.:

foo Nil = : : :

foo (Cons 1 Nil ) = : : :

foo (Cons _ xs ) = : : :

In fact, testing for exhaustivenessmay be toggled o� or demoted into a warning:

\partial but total" auxiliary functions are not atypical. For example,although local

function bar is partial, it is always supplied a value on its domain:

foo Nil = 0

foo xs = bar xs

where bar (Cons y ys) = : : :

4. It is important to di�eren tiate betweenpatterns and terms: patterns intro ducenew

variables and have di�eren t semantics, e.g.:

� l ! let x = Nil in case l of x ! 0 : : :

Pattern matching over sumsof products demonstrateshow low-level thesedata de�n-

ition mechanisms are and the pitfalls of positional selection. Named records provide

a much better abstraction mechanism as shown below|the example is adapted from

[Pal95, p9]:

data Person = P String String Int : : :

birthday :: Person ! Person

birthday (P f s a : : : ) = (P f s ( a+1) : : : )

data Person = P{name:: String , surname :: String , age :: Int , : : : }

birthday :: Person ! Person

birthday (person@P {age = a,_ }) = person {age  a + 1}

In the last line, pattern matching only requires the value of the age �eld, which gets

`updated' by the function. Notice also the possibility of record subtyping and the

closenessto ADT programming.

8.3 Prop osals for reconciliation

The following sections outline the most important proposals for reconciling pattern

matching with data abstraction.
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8.3.1 SML's abstract value constructors

A bstr act value constructors are an implemented feature of the `Standard ML of

New Jersey' compiler [AR92]. Strictly speaking, they are not really a proposal for

reconciling pattern matching with data abstraction, but can be used for that purpose

in restricted situations.

An abstract value constructor C is de�ned as follows:

C x1 : : : xn match P

where to the left of match there is a simple linear pattern and to the right an arbitrary

SML pattern P. The compiler replacesthe left hand side by the right hand side, i.e.,

abstract value constructors are macro-substituted by `real' patterns.

Abstract value constructors can be usedin pattern matching and in construction. This

double role imposesrestrictions on the simple pattern and on P:

� When usedin pattern matching, P must be linear and must contain all the variables

of the simple pattern. For example, the following abstract value constructors are

illegal:

C x y match C' x

C x match C' x x

In the �rst line, variable y is de�ned and, therefore, possibly usedon the right hand

side of the arrow in a caseexpression,but nothing is matched against it when the

abstract value constructor is macro-expandedto C' x . In the secondline, a linear

pattern is macro-expandedinto a non-linear one.

� When usedin construction, all the variables in P must occur in the simple pattern.

Look at this illegal example:

C x match C' x y

If the left hand side is macro-expandedto the right-hand side, variable y is not

bound to any value and the term cannot construct anything.

The following is an exampleof an abstract value constructor that can beusedin pattern

matching and construction:
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data Complex = Complex Real Real

PureReal r match Complex r 0

Functions on complex numbers can be de�ned by pattern matching over PureReal .

foo (PureReal r ) = : : :

foo (Complex r i) = : : :

We can write foo 's body in the secondcaseunder the premisethat i 6= 0.

Abstract value constructors are not only limited in expressibility becauseof their use

in patterns and construction, but also becauseselectiondoesnot involve computation.

Recall the FIFO-queueADT of Chapter 7, in particular the BatchedQueue implement-

ation of Section 7.1.1. It would be very interesting to be able to de�ne two abstract

value constructors Empty and Enq for pattern matching over FIFO-queuevalues,e.g.:

Empty match BQ [] []

Enq x q match BQ ( x::xs) r

Unfortunately, Enq's de�nition is illegal and we needsomeway of specifying computa-

tion:

q = xs @ ( reverse r)

8.3.2 Miranda's lawful concrete t yp es

The functional programming languageMiranda supports so-called lawful algebr aic

typ es which are algebraic types with equations between value constructors [Tho86].

Theseequationsare actually rewrite rules for transforming valuesinto canonical ones.

Consequently, rewrite rules must be con
uent and terminating.

More precisely, a value of the concreterepresentation type may not represent a value of

the ADT (junk), and multiple valuesof the concreterepresentation type may represent

the sameADT value (confusion). One way of supporting pattern matching and equality

on concretetypesis to normaliseevery constructed value into a canonical value so that

patterns are matched against, and equality is performed on, canonical values that

uniquely represent ADT values.3

There follows an example of a lawful concrete type for sets implemented as lists or,

3Notice that canonical values may still contain implementation clutter.
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more precisely, as an algebraic type structurally isomorphic to the List type:

data Eq a ) Set a = Empty | Insert a (Set a)

Insert x ( Insert y s) == if x == y then Insert y s

else Insert y (Insert x s)

Insert 1 ( Insert 1 ( Insert 2 Empty ))

> Insert 2 (Insert 1 Empty )

Notice the equation involving abstract value constructor Insert . The equation shows

that value constructor Insert plays not only the role of a constructor but also the

role of a normalisation function. More precisely, the lawful type has the following

normalisation function:

insert :: Eq a ) a ! Set a ! Set a

insert x Empty = Insert x Empty

insert x ( Insert y s) = if x == y then Insert y s

else Insert y (insert x s)

The problems with this approach are not di�cult to see:

1. Checking that rewrite rules are con
uent and normalising requiresa lot of e�ort and

is, in the generalcase,undecidable.

2. Normalisation into canonical values is ine�cien t, forcesparticular representations,

and might not be possibleor recommended. Recall the FIFO-queue implementa-

tions of Section7.1.1 which relied on unevaluated data components to achieve their

amortised e�ciency .

3. There is not that much abstraction from the representation: functions working on

valuesof type Set a are de�ned by pattern matching on Empty and Insert but we

might want to changethe implementation. Wadler's views (Section 8.3.3) arguesfor

thesetwo value constructors to be part of a view of the Set type.

4. Selection involving computation is not possibleduring pattern matching: normal-

isation takesplace during construction, not matching.

5. There are serious problems with equational reasoning: the fact that patterns are

matched against values in canonical form is not re
ected in the values themselves.

For example,given the following de�nition:
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select ( Insert x s) = x

the following equationshold:

1

== f select 's de�nition g

select (Insert 1 (Insert 2 Empty ))

== f Insert 's de�nition g

select (Insert 2 (Insert 1 Empty ))

== f select 's de�nition g

2

In order to reasonwith valuesof the concretetype we have to reducethem to normal

form and thereforeknow the details of the implementation. In particular, the clients

of Set should not be obliged to know details of normalisation.

8.3.3 W adler's views

A lawful type in Miranda is a subset of a concrete type: its canonical forms. In con-

trast, Wad ler's views [Wad87] specify an isomorphism between subsetsof concrete

types. This becomesparticularly useful when dealing with ADTs, for they can be

implemented by many concrete types. ADT designersmay chooseone of these types

as the implementation type and allow clients to work with (possibly many) view types

isomorphic to (a subset of) the implementation type. Value constructors of the view

type can be used in pattern matching and construction. Becauseof this double role,

there must be a correspondencebetweeneach view type and implementation type, and

vice versa.

An illustrativ e example is perhapsthe type of natural numbers. The Peanorepresent-

ation in terms of Zero and Succ is handy but ine�cien t. Programmers usually work

with the basetype of positive integers.4 An ADT of natural numbers can be imple-

mented in terms of positive integers but viewed in terms of its Peano representation.

A possiblesyntax for declaring this follows:

view Int = Zero | Succ Int

4Surprisingly, natural numbers are rarely o�ered as a base type by most functional programming
languages.
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where

in n

| n == 0 = Zero

| n > 0 = Succ (n-1)

| otherwise = error "Negative Integer "

out Zero = 0

out (Succ n) = n + 1

The keyword view declaresthat Int can be viewed as a recursive algebraic type with

Peanovalue constructors. Behind the scenes,the compiler translates this view into the

following non-recursive type:

data View = Zero | Succ Int

Functions in and out are translation functions from the implementation type to the

view type and vice versa:

in :: Int ! View

out :: View ! Int

Weneedtwo functions becausePeanovalueconstructorsmay occur in pattern matching

(which requires calls to in ) and construction (which requires calls to out ).

The factorial function can be de�ned on the Peanoview:

factorial :: Int ! Int

factorial Zero = Succ Zero

factorial (Succ n) = (Succ n) � factorial n

The de�nition can be translated by the compiler to a factorial on integersby inserting

calls to in and out at appropriate places:

factorial :: Int ! Int

factorial n = case ( in n) of

Zero ! out (Succ ( out Zero))

Succ n ! ( out (Succ n)) � factorial n

Functions in and out are similar in spirit to the embedding-projection pairs of Sec-

tion 6.1.4. Thesefunctions must be inversesof each other and this cannot be checked

by a compiler.

In particular, out must be total and injective or otherwise it would intro duce junk and
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confusionrespectively: there would be valuesof the view type that are not represented

in the implementation type, and there would be values of the view type that would

have the samerepresentation in the implementation type, thus introducing an implicit

equation betweenthe former values.

Also, in must be injective and its domain must be out 's image. If the domain is a

proper superset, there are implicit equationsin the implementation type. If the domain

is a proper subset, there is junk in the implementation type.

Moreover, it might not be possible for a view type and an implementation type to

satisfy them: for instance, it might be the casethat a value of the view type is al-

ways representable by multiple valuesof the implementation type. Palao [Pal95, p32]

illustrates this situation using complex numbers where the implementation type is the

cartesian representation and the view type the polar representation. Multiple repres-

entations introduce implicit equations which hinder equational reasoning. This is the

main reason why Wadler's views were not included in the Haskell de�nition. Other

problems with views are [Pal95, Chp4]:

1. The need to take into account the side conditions of functions in and out during

equational reasoning.

2. The fact that seemingly total functions are indeed partial. For example, in the

factorial example,with the Peanorepresentation the function triggers a run-time

error if fed a negative integer. Haskell's type systemcannot check statically whether

Succ is always applied to positive integersduring construction.

3. It might be the casethat valuesof the view type should be given in somecanonical

form (e.g., complex numbers in polar representation), again introducing implicit

equations.

4. There is a logical separation between pattern matching and construction. Using

value constructors for both makesno sensein many situations. Take for examplea

BatchedQueue implementation of queues(Chapter 7):

data BatchedQueue a = BQ [ a] [a]

data View a = EmptyQ | Front a ( Queue a)

Queue elements must be inserted at the rear of the queue, yet value constructor



8.3 Proposalsfor reconciliation 198

Front can be used for construction. Notice that introducing an extra value con-

structor:

data View a = EmptyQ | Front a ( Queue a) | Enq ( Queue a) a

would also introduce an implicit equation: the samequeue value can be pattern-

matched against a Front pattern and a Enq pattern. Thesetwo value constructors

are not free among themselves. In general,all possibleobservations cannot be cap-

tured by a single view.

5. However, it is illegal, for implementation reasons,to do pattern matching on di�eren t

view typessimultaneously. In the BatchedQueue example,we could have provided

the Enq pattern in a di�eren t view but we would not be able to pattern match

against Front and Enq simultaneously. This is unproblematic for simple queuesbut

not so for double-endedqueues,where insertion can take placeeither at the front or

at the rear.

6. Finally, there are many possibleways in which di�eren t ADT operations could be

expressedin terms of view types; implementing all of them could be too expensive.

Most problems with Wadler's views are due to the double role of value constructors

in view types. This is pointed out in [WC93], where view types are restricted to

pattern matching alone, with construction carried out by operators. The out function

disappearsand there is no restriction on in . However, pattern matching over di�eren t

view typesis still illegal becauseof implementation reasons:the representation type is

transformed into the view type before the matching is performed.

8.3.4 Palao's Activ e Patterns

According to Palao et al [PPN96, p112], the limitations of the previous approaches

stem from trying to \ evolve the [value] constructor concept instead of starting the

problem from scratch". For instance, Wadler's views are a way for programmers to

move acrosspossible implementation types, but observation is performed by means

of a value constructor. In non-free types, construction and observation may not be

inverses.For example, FIFO queuesare constructed by inserting elements at the rear

whereasselectionfrom non-empty FIFO queuestakesplace at the front. Construction

and observation must be separated.
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As underlined in Section8.2, observation consistsof discrimination followed optionally

by selectionand binding of selectedvalues into new local variables. Pattern matching

is just syntactic sugar for this, with addedchecks for overlapping and exhaustive cases.

Nestedpatterns only add expressibility to nestedobservation.

This is the idea behind Palao's A ctive Patterns [Pal95, PPN96], which can be

regarded as an extension of SML's abstract value constructors (Section 8.3.1) where

there can becomputation after the matching is performed(hencethe `active') and their

use in construction is banned.

The languageof Activ e Patterns is built from ordinary patterns, active destructors ,

and compositions of Activ e Patterns via the @operator, which is explained shortly:

AP ::= Variable

| ValueConstructor AP �

| Activ eDestructor AP �

| AP @ AP

The main advantagesof Activ e Patterns are their expressibility, their support for equa-

tional reasoning,and their smooth integration with algebraic speci�cations, the latter

an important aspect that is ignored by the previousapproaches. ADT operators can be

replaced, expressed,or accompaniedby active destructors whoseaxiomatic semantics

are de�ned in terms of the operators themselves.

An active destructor consists of a label together with optional positional arguments:

the label denotes an alternative and the positional arguments are expressions that

select components. The translation goes from the implementation type to the active

destructor (the `view'), which is not a concretetype, and translation takesplace after

matching.

For example,given an ADT of complex numbers:

module Complex ( Complex ,realPart ,imgPart ,modulus ,argument ) where

data Complex = Complex Real Real

: : :

any operator could be provided as an active destructor. For example:

RealPart r match Complex r _

Modulus m match Complex r i where m = sqrt (rˆ2 + iˆ2)
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The �rst active destructor, RealPart , is a projection identical to an SML abstract

value constructor. The second,Modulus , is also a projection but the projected value m

involves a computation which is performed after matching. The reader should not be

connedby the notation: if Modulus were an ordinary value constructor then m would

match Modulus 's argument. In contrast, m is an output value and, therefore, the type

of Modulus is not Real ! Complex . It is not a function and cannot be used for

construction. (Typesfor active destructors are mentioned at the end of the section.)

Informally, the operational semantics of the matching processis as follows. Suppose

function foo has one caseinvolving Modulus :

foo (Modulus m') = E

where E is an expressionwhere m' may occur free. In the application foo e, the value

of e is pattern-matched against the ordinary pattern Complex r i . If the matching

succeeds,then we have in m' the modulus of the complex number|the value of m in

the active destructor's de�nition.

Pattern matching occurs behind the scenes,respecting data abstraction: the matching

of e's value against the concrete type and the computation involved in getting the

modulus is hidden from foo 's writer, who only cares about having the value of the

modulus in m' when the matching succeeds.

In code, foo 's de�nition involving Modulus is equivalent to:

foo = � e ! case e of

Complex r i ! E where m' = sqrt (rˆ2 + i ˆ2)

Variables r and i only occur free in the de�nition of m' , and m' may occur free in E.

It becomesclear now that Modulus is just an abstract label. It doesnot play any role

in the compiled code.

We have useda local variable min the de�nition of Modulus but the selectingexpression

can be written directly in the active destructor:

Modulus ( sqrt ( rˆ2 + iˆ2)) match Complex r i

FIFO queuesillustrate the expressibility of active destructors, which can be provided

by the interface. For example, in a BatchedQueue implementation:
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EmptyQ match BQ [] []

Front x match BQ (x :_) _

Deq q match BQ [_ ] r where q = BQ ( reverse r) []

Deq q match BQ (_ :f) r where q = BQ f r

Becausematching takesplace over the ordinary patterns after the match keyword, we

can provide multiple de�nitions of the sameactive destructor, in this caseDeq. We

could have provided a single active destructor Deq' that selectsboth the front and the

remaining queue.

The following function usesthe previous active destructors:

sizeQ :: Queue a ! Int

sizeQ EmptyQ = 0

sizeQ (Deq q) = 1 + sizeQ q

To belabour the point, active destructors EmptyQ and Deq hide the representation type

BQ. A Queue value could be implemented as a physicist's queue or what have you.

Function sizeQ would not be a�ected as long as active destructors are de�ned for the

new implementation.

The following function illustrates the useof @:

showQ :: Show a ) Queue a ! String

showQ EmptyQ = ""

showQ (Front x) @(Deq q) = show x ++ showQ q

Here, the @operator matches showQ's argument against Front and Queue, obtaining

the appropriate valuesfor x and q if the matching succeeds.

We can de�ne the aforementioned Deq' active constructor in terms of Front and Deq

using @:

Deq' x q match (Front x)@(Deq q)

Indeed, the pattern on the right canbean Activ e Pattern (but active destructorscannot

be directly recursive). Now:

showQ :: Show a ) Queue a ! String

showQ EmptyQ = " "

showQ (Deq ' x q) = show x ++ showQ q
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In functional languages,@is used for `as patterns' where the ordinary pattern x@p

matches an argument against the ordinary pattern p but binds x to the argument.

Generalisingfrom the fact that variable x is itself a pattern, given two Activ e Patterns

p1 and p2, the Activ e Pattern p1@p2 is a conjunction of patterns which succeedsonly

if the argument matches both p1 and p2. For ordinary patterns this operator is less

useful: a value matchesp1@p2 when both patterns have the samevalue constructor.

Unlikeconventional valueconstructors, active destructorsneednot befreeamongthem-

selves,so Enq can be usedin conjunction with any other active destructor:

Enq x q match BQ f (x:xs ) where q = BQ f xs

extremes :: Queue a ! (a, a)

extremes ( Front x q) @(Enq y p) = (x, y)

An interesting aspect of Activ ePatterns is that whether observation is provided in terms

of operators or active destructors is not an irrevocabledecision. New active destructors

can be de�ned in terms of available ones(e.g., Deq' ) or in terms of existing operators.

In fact, active destructors could be de�ned by ADT clients, not implementors, purely

in terms of operators, e.g.:

EmptyQ match q, if isEmpty q

Front x match q, if not ( isEmpty q) where x = front q

Deq q' match q, if not ( isEmpty q) where q' = deq q

Here we have made use of guards. Matching against an active destructor succeedsif

matching against the pattern on the right succeedsand the guard is satis�ed. Here the

pattern on the right is a variable, q, and matching against it always succeeds.This

exampleclearly showsthat Active Patterns are sugar for discrimination and selection

operators.

The general form of an active destructor de�nition is:

C e11 : : : e1n match p1, if G1 where D1

: : :

C em 1 : : : emn match pm , if Gm where Dm

where C is the active destructor name, eij are expressions,pi are Activ e Patterns

(in which C cannot appear at the top level), Gi are guards, and D i are declarations
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providing bindings for variables in eij . A guard Gi may use variables in D i and pi .

Notice that in all casesthe active destructor must have the same`arity'. Unlike value

constructors, active destructors cannot be partially applied.

Activ e Patterns in function de�nitions must be linear. Nested Activ e Patterns are

possiblebecauseeij are arbitrary expressions.For example, here the queue'spayload

is a binary-tree node:

foo (Front (Node x l r))@( Deq q) = : : :

The value `returned to' Front is pattern-matched against ordinary value constructor

Node.

Activ e Patterns can be integrated into algebraic speci�cations: active destructors can

be de�ned in terms of conditional equations involving ADT operators. Recall the

FIFO-queueexampleabove. The active constructors all follow the pattern:

C v1 : : : vn match v, if G where v1 = s1 v

: : :

vn = sn v

Equational reasoningproceedsby checking guards and substituting selection expres-

sions s i , which involve ADT operators, by active destructor variables (see [PPN96,

p118] and [Pal95, Sec5.3]for examples). Using equational reasoning it is possible to

prove, for particular functions, whether Activ e Patterns are exhaustive and do not

overlap.

Two di�eren t compilation algorithms for transforming Activ e Patterns to caseexpres-

sionswith simplepatterns aregiven in [Pal95, Sec5.5].It is not clearly speci�ed whether

the algorithms check that Activ e Patterns are exhaustive and do not overlap. Activ e

Patterns are exhaustive if ordinary patterns and guardsare exhaustive. This is in gen-

eral undecidable: guards are unrestricted boolean expressions.The abilit y to compose

patterns could make checking for exhaustivenessalso di�cult to the eye, as Activ e

Destructors could be conjugated in di�eren t fashion via the @operator. If matching

failure occurs, the run-time systemcan only provide information about which active de-

structor failed and at which point; it cannot provide information involving the concrete

type without compromising abstraction.

Activ e destructors can be �rst-class citizens if the type system provides a type for
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them. A proposal is given in [Pal95, Sec5.7.1]together with type-checking rules. Type

inferencein a Hindley-Damas-Milner type system is only conjectured.

8.3.5 Other prop osals

Erwig's A ctive Patterns [Erw96] must not be confusedwith Palao's. The former

also allow computation at matching time, rearranging the concrete type to somede-

sired pattern, but can be used for construction and functions compute directly with

representations.

First-class patterns [Tul00] are an attempt at providing a combinator languagefor

patterns, which are now functions of type a ! Maybe b. Caseexpressionsare restricted

to be exhaustive and cannot contain nested patterns. Pattern combinators are built

using somebasecombinators, operators for composing patterns (e.g., or-match, then-

match, parallel-match, etc.), and an operator for lifting value constructors to pattern

combinators. Syntactic sugar is o�ered in order to make �rst-class pattern expressions

more readable.

SML views [Oka98b] carry the ideas in [Wad87] and [WC93] to Standard ML, its

module system, and its call-by-value semantics with e�ects.



Chapter9

F-viewsandPolytypicExtensionalProgramming

From the practical point of view, not only for economy of implementation

but also for conveniencein use, the logically simplest representation is

not always the best [Str00, p38]

In Chapter 6 wehaveoverviewed the two main polytypic languageextensionsof Haskell.

In Chapter 7 we have argued that the idea in which they are based,structural poly-

morphism, con
icts with data abstraction and is therefore limited in its applicabilit y

and genericity.

Structural polymorphism is founded on a regularity: the structure of a function follows

the structure of the data. Data abstraction destroys the regularity. Abstract valuesare

represented by a subsetof concretevalues,thosethat satisfy implementation invariants.

Data abstraction is upheld by client code, whether polytypic or not, when ADTs are

accessedthrough a public interface. Interfaces supply operators that satisfy imple-

mentation invariants and deal away with clutter. The question we must ask is whether

ADT interfaceso�er a su�cien tly regular description of structure that may enablethe

de�nition of polytypic functions. Before trying to answer the question, let us discuss

other alternative solutions.

9.1 An examination of possible approac hes

We considersomeways of dealing with the problems raised in Chapter 7 and contrast

their advantagesand disadvantages.

1. However tempting, canonical representations are a blind alley. We have already

touched upon their drawbacks in Section 8.3.2.

2. For many, ADTs should provide the relevant functionalit y, i.e., comeequipped with

their own map, foldr, and foldl operators which are expected to be e�cien t due to

their privileged accessto the representation. This approach has several drawbacks.

Firstly , there is no Generic Programming here. Secondly, we have already discussed

205
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fold's problemswith respect to control abstraction (Sections4.3 and 6.2.1). Thirdly ,

ADT implementors cannot anticipate all the possible functionalit y|recall the ar-

guments against polytypic extension (Section 7.1). Lastly, regarding e�ciency , the

implementation of map asan ADT operator may require reshu�ing the whole struc-

ture. Think of ordered sets implemented as ordered lists, of heapsimplemented as

binary search trees,of dictionaries ashashtables, etc. The folds follow suit, for map

can be programmed in terms of them. The e�cien t implementation of map may

require a representation tailored for that purpose.

In contrast to providing full functionalit y, ADTs can provide a minimal or narrow

interface. Control abstraction can be provided in terms of external and generally

applicable (i.e. generic) functions. We considermaps and catamorphismsexamples

of such functions. In this sense,we adhereto the philosophy of the C++ STL [MS96,

MS94], but for us genericity meanspolytypism, not just polymorphism.

3. An intermediate solution is the iter ator concept proposedby the C++ STL. An

iterator is an abstraction of a pointer which is manipulated via operators o�ered by

and implemented within the ADT. Catamorphisms can be de�ned externally using

iterators.

The iterator approach has its drawbacks. First, iterators are tailored to speci�c

ADTs and are not polytypic. Second,the pointer abstraction only enableslinear

traversals, e.g., top-down breadth-�rst, bottom-up breadth-�rst, top-down depth-

�rst, etc. Third, for type-safety reasonsone iterator is neededper payload type.

In a purely functional setting an iterator corresponds to a function that 
attens the

ADT into somelinear concretetype, for example,a list. Its inverse,a co-iter ator

builds an ADT from a list. What is desired is a polytypic iterator that extracts

payload from any ADT to particular concrete types, not just lists. Dually, what

is desired is a coiterator that can build a value of the ADT from values of those

concretetypes.

4. It might be possible for a polytypic function to discern automatically whether a

piece of data is clutter and to abstract over clutter without losing information. It

might even be possiblefor compilers to check, with the help of assertions,whether

polytypic functions break implementation invariants. But even if such a feat were

feasibleand decidablein theory, it would be uselessin practice. Making changesto
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ADT implementations forcesthe recompilation of client code for clutter and security

checks. And if the checks fail, what should we do?

5. Lastly, we could move into richer type languageswhere concrete types faithfully

encode abstract typesand capture structural properties as data. In other words, we

could move to languageswherewecanexpresswithin a concretetypewhat otherwise

has to be expressedvia operators and their semantics. This path leadsto dependent

types [Pie05, Hof97]. Unfortunately, dependent types are designedand tailored to

the structure of the problem at hand, and this hinders their reusability. We have

to rely again on someform of Generic Programming and intro duce somenotion of

data abstraction to cope with data change[AMM05]. This is a research topic of its

own. In this thesis we content ourselves with making polytypic programming cope

with ADTs in the present state of a�airs.

9.2 Extensional Programming: design goals

ADT interfacesprovide a view of payload data. A function computing with an ADT

is computing with its payload values alone. How these values are stored internally is

irrelevant and opaque to client code. For lack of better terminology, let us call this

form of programming via interfacesExtensional Pr ogramming .

Is Generic Extensional Programming possible? The answer is positive. The following

are our assumptionsand goals:

1. We assumeADTs are �rst order and speci�ed algebraically (Chapter 5). The pro-

gramming languageat hand (for us, Haskell) neednot support algebraic speci�ca-

tions, but weassumethey havebeendeveloped in the designof every ADT. Algebraic

speci�cations enable programmers to reasonabout their ADTs and are a contract

for implementors. We will show that algebraic speci�cations are also neededin the

development of polytypic functions.

2. We assumeADT interfaces are narrow and provide the minimum necessarycon-

structors and observers (discriminators and selectors). Polytypic functions will be

written outside the ADT using the �rst-order operators.

3. `Structure' must be de�ned in terms of interfaces so that polytypic functions are
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structurally polymorphic but also uphold encapsulationand respect the ADT's se-

mantics.

4. Polytypic extensionmust besupported. Programmersmust beableto usespecialised

operators when available. There is no needto generate,say, an instance of gmap for

an ADT if it comesequipped with its map operator.

5. It must be possible to de�ne extensional polytypic functions on manifest ADTs.

The map for a queueof integers, say, must not be the identit y. The solution must

not rely on abstraction over the payload type (recall Section 7.2).

The functor de�ned by an ADT's interface can be put to useas the required notion of

structure that enablesthe de�nition of polytypic functions on the ADT. The elaboration

of the details make up the bulk of the chapter. In Section 9.3 we explain someof the

ideasusing so-called`linear' ADTs as running examples.From Section9.9 onwards we

generaliseand show how to de�ne typed polytypic functions that work on arbitrary

ADTs. Section 9.12 discussespolytypic extension and Section 9.13 discussessupport

for manifest ADTs.

9.3 Preliminaries: F -algebras and linear ADTs

Recall the notion of F -Algebra from SectionA.3.1. The polynomial functor F provides

a speci�cation of `structure'. However, we have complained in Section A.3.1 that the

mediating S-function is not informativ e about operator names, and that the same

functor can capture the signature of theories with di�eren t equations.

For example, many ADTs are characterisedby the signature shown in the �rst box of

Figure 9.1. The secondbox shows its rendition as a Haskell type class.

We call an ADT line ar if there is a signature morphism (De�nition A.1.8) from it to

the LINEAR signature. Linear ADTs are described by the equation:

L (X ) = 1 + X � L (X )

and may satisfy various laws. The equation can be expressedas the �xed point of the

functor F (Y ) = 1 + X � Y :

L (X ) = F (L(X ))
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signature LINEAR
sorts Linear
use BOOL
param Elem
ops

con0 : ! Linear
con1 : Elem Linear ! Linear
dsc0 : Linear ! Bool
sel10 : Linear ! Elem
sel11 : Linear ! Linear

module Linear (Linear (..)) where
class Linear l where

con0 :: l a
con1 :: a ! l a ! l a
dsc0 :: l a ! Bool
sel10 :: l a ! a
sel11 :: l a ! l a

Figure 9.1: Signature and Haskell classde�nition of linear ADTs.
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con0- L(X ) � con1

X � L (X )
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sel11

R
X Bool

dsc0

?
L(X )

List Stack FIFO Queue

dsc0 = null dsc0 = isEmptyS dsc0 = isEmptyQ
con0 = Nil con0 = emptyStack con0 = emptyQ
con1 = Cons con1 = push con1 = enq
sel10 = head sel10 = tos sel10 = front
sel11 = tail sel11 = pop sel11 = deq

Figure 9.2: Lists, stacks, and FIFO queuesare examplesof linear ADTs.
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Figure 9.2 (�rst box) depicts the signature diagrammatically. There are two construct-

ors con0 and con1, two selectorssel10 and sel11, and one discriminator dsc0. Each

constructor takes a product argument: con0 takes a nullary product (Section A.3.1

and 3.6) and con1 takesa binary product.

L (X ) is the coproduct of the product typesof constructor arguments. The numbers in

constructor namesdenote the position of their argument's product type in L(X ) from

left to right, starting from 0. In Haskell, operator con1hasa curried type (Section 5.4).

Dually, there are observer operators: a discriminator dsc0 associated with the only

coproduct and two selectorssel10and sel11associated with the binary product. There

is nothing to select from a value constructed with con0.

The signaturesof several ADTs can be mapped by a signature morphism to the signa-

ture of the diagram. Figure 9.2 (secondbox) shows the mapping for lists, stacks, and

FIFO queues.1

Perusing [Oka98a], we also �nd that the signatures of the following ADTs can be

mapped by a signature morphism to the diagram:

� Catenablelists, which have an e�cien t concatenationoperator but its interface sup-

plies all ordinary list operators.

� Priority queues, for they o�er the sameoperators asFIFO queues,only that intern-

ally elements are stored according to priorit y (a function on elements).

� Ordered sets and ordered bags. In general, theseADTs only provide an interrogator

(membership test) and possibly a removal operator. For the mapping to work we

needoperators that may beassignedto sel10and sel11. The most natural two would

be:

choice :: Set a ! a

remove :: a ! Set a ! Set a

Function choice is a deterministic choic e operator that given two equal sets

returns the same element from the set. For ordered sets, it can just return the

minimum element. Function remove removesa given element from the set. We can

assumesimilar operators for ordered bags. With these operators at hand, ordered

1Signature morphisms are examples of adapters [GHJV95 ].
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setsand ordered bagsbecomelinear ADTs:

sel10 = choice

sel11 = � s ! remove (choice s) s

The choice operator is absent from ordinary sets and bags. These ADTs only

require equality on their payload type and choice is non-deterministic, i.e., it may

be the casethat s1 = s2 but (choice s1) 6= (choice s2).

� Sortable collections [Oka98a, p202], if a choice is implemented.

� Heaps, whoseHaskell signature follows (adapted from [Oka98a, p197]):

emptyH :: Heap a

isEmptyH :: Heap a ! Bool

insert :: a ! Heap a ! Heap a

merge :: Heap a ! Heap a ! Heap a

findMin :: Heap a ! a

deleteMin :: Heap a ! Heap a

with the following mapping of operators:

dsc0 = isEmptyH

con0 = emptyH

con1 = insert

sel10 = findMin

sel11 = deleteMin

Heapsdi�er from orderedsetsin that (1) only the minimum element can be removed

from a heapwhereasany element can be removed from an orderedset, and (2) heaps

may contain repeated elements. Heaps can be implemented functionally in many

ways [Oka98a]: leftist heaps,splay heaps,skew binomial heaps,bootstrapped heaps,

pairing heaps,etc.

� Finally, �nite maps, tables, and dictionaries can bemapped too but only if they o�er

discriminators and selectors.In [Oka98a, p204]weonly �nd the following operators:

emptyT :: Table k a

insert :: k ! a ! Table k a ! Table k a

lookup :: k ! Table k a ! Maybe a

Function lookup is an interrogator. We needthe following operators:
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isEmptyT :: Table k a ! Bool

choice :: Table k a ! ( k,a)

remove :: (k,a ) ! Table k a ! Table k a

where choice is deterministic. We can then provide the following mapping of op-

erators:

dsc0 = isEmptyT

con0 = emptyT

con1 = curry insert

sel10 = choice

sel11 = � t ! remove (choice t) t

Double-endedqueues(or `deques')areexamplesof ADTs with multiple constructors

that have the sameargument types. In particular, there arealternativeways of mapping

dequeoperators to con1, sel10,and sel11. The list of dequeoperators follows:

isEmptyD :: Deque a ! Bool

emptyD :: Deque a

enqfront :: a ! Deque a ! Deque a

enqrear :: a ! Deque a ! Deque a

deqfront :: Deque a ! Deque a

deqrear :: Deque a ! Deque a

front :: Deque a ! a

rear :: Deque a ! a

The following mappings turn dequesinto stacks:

dsc0 = isEmptyD dsc0 = isEmptyD

con0 = emptyD con0 = emptyD

con1 = enqfront con1 = enqrear

sel10 = front sel10 = rear

sel11 = deqfront sel11 = deqrear

The following mappings turn dequesinto FIFO queues:

dsc0 = isEmptyD dsc0 = isEmptyD

con0 = emptyD con0 = emptyD

con1 = enqrear con1 = enqfront

sel10 = front sel10 = rear

sel11 = deqfront sel11 = deqrear
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9.4 Construction vs Observ ation

Construction and observation in ADTs may not be inverses.Consequently, it is not pos-

sible in generalto program polytypic functions on them in a single de�nition following

the pattern given in Figure 6.21.

Let us recall the casefor products which involvesselectionand construction (coproducts

involve discrimination):

ghA � B i = � � (pA ghAi ) � (pB ghB i )

where l � r = (l � exl) M (r � exr)

pA g = pafter A � g � pbeforeA

pB g = pafter B � g � pbeforeB

In linear ADTs, arrows exl and exr correspond to sel10and sel11respectively, and con1

corresponds to prod in the de�nition of O (recall Figure 3.3). When construction and

selectionare not inversesin products, the following is the case:

sel10(con1 x y) 6= x

sel11(con1 x y) 6= y

That is:

exl (prod x y) 6= x

exr (prod x y) 6= y

However, according to the de�nitions of Figure 3.3, the equations:

exl (prod x y) = x

exr (prod x y) = y

prod (exl p) (exr p) = p

are product laws. More precisely, the �rst two equationsare equivalent to:

exl � (f M g) = f (9.1)

exr � (f M g) = g (9.2)

For instance:

exl � (f M g) = f

= f extensionality g
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exl � (f M g) x = f x

= f def. of M g

exl � prod (f x) (g x) = f x

= f generalisationand def. of composition g

exl (prod x y) = x

Consequently, when construction and selectionin products are not inversesthe product

laws are not satis�ed.

FIFO queuesare examplesof ADTs where this occurs. According to Figure 9.2, we

have the following mapping:

prod = enq

exl = front

exr = deq

However, the product law:

enq (front q) ( deq q) = q

is only satis�ed by empty queues.For non-empty queueswhat is satis�ed is the follow-

ing:

enq (front q) ( deq q) = deq (enq (front q) q)

which is derivable from the queuelaw (Figure 5.6):

: (emptyQ ? q) ) deq (enq x q) = enq x (deq q)

by working under the assumptionthat the queueis not empty, by substituting front q

for x on both sides,and by reversing the equation. The equation can be expressedin

point-free style thus:

enq � (front M deq) = deq � enq � (front M id)

Clearly, enq 6= (front M deq) � 1.

In Figure 6.21, the casefor products ghA � B i assumesthe product laws hold. Fig-

ure 6.21cannot expressthe map function for FIFO queues.Such function must satisfy:

map_Fifo f (enq x q) = enq (f x) (map_Fifo f q)

There are two natural ways of writing map_Fifo . The �rst usesqueue reversal to
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account for the fact that product laws do not hold:

map_Fifo :: (a ! b) ! Fifo a ! Fifo b

map_Fifo f = reverseQ � map_Fifo ' f

where map_Fifo ' f q = if ( isEmptyQ q) then q

else let fq = front q

dq = deq q

in enq (f fq) ( map_Fifo ' f dq)

The secondusesan accumulating parameter, performing `reversal' during construction:

map_Fifo :: (a ! b) ! Fifo a ! Fifo b

map_Fifo f q = map_Fifo ' f q emptyQ

where

map_Fifo ' f q = � ac ! if (isEmptyQ ac) then ac

else let fq = front q

dq = deq q

in map_Fifo ' f dq ( enq (f fq) ac)

In the �rst de�nition, map_Fifo ' is a catamorphism. However, map_Fifo ' is an aux-

iliary function. Function map_Fifo is not a catamorphism but the composition of

a partially applied catamorphism (reverseQ = map_Fifo ' id ) to map_Fifo ' . (We

recall that, in general,catamorphismsare not closedunder composition [GNP95].)

In the secondde�nition, map_Fifo ' is a catamorphism (we prove this at the end of

the section), but it is also an auxiliary function. The original map_Fifo is not a

catamorphism.

Consequently, polytypic gmap written accordingto Figure 6.21cannot expressmap_Fifo .

Let us illustrate the problem from another angle. Recall the notion of representation

type in Generic Haskell (Section 6.1.2). We can de�ne a representation type for linear

ADTs and concomitant embedding-projection pairs using the operators of the linear

interface:

type Linear ' a = Unit + a � (Linear a)

from_Linear :: 8 a. Linear a ! Linear ' a

from_Linear l = if dsc0 l then Inl Unit

else Inr ( sel10 l, sel11 l )
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to_Linear :: 8 a. Linear ' a ! Linear a

to_Linear (Inl u) = con0

to_Linear (Inr (l,r)) = con1 l r

Unfortunately, for somelinear ADTs, e.g. FIFO queues,the following is not the case:

to_Linear � from_Linear == id

(The equation is certainly not the casefor most bounded ADTs. Think of orderedsets,

for example. We postpone their discussionuntil Section 9.6).

We conclude the section with a proof that map_Fifo ' in the second de�nition of

map_Fifo is a catamorphism. The proof usesthe universality property of catamorph-

isms [Hut99]. In what follows, g abbreviates map_Fifo ' f :

g = LcOd M ,

isEmptyQ q ) g q = c

: isEmptyQ q ) g q = d (front q) (g (deq q))

First, the proof for empty queues:

c = g q

= f q empty g

c = g emptyQ

= f def. of g g

c = � ac ! ac

= f polymorphism g

c = id

Now the proof for non-empty queues:

d (front q) (g ( deq q)) = g q

= f q non-empty and def. of g g

d (front q) (g ( deq q)) = � ac ! g (deq q) (enq (f (front q)) ac )

= f x = front q and y = deq q g

d x ( g y) = � ac ! g y (enq (f x) ac)

= f generalisingz = g y g

d x z = � ac ! z (enq (f x) ac)
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Thus:

map_Fifo ' f = L id O ( � x z ac ! z (enq (f x) ac)) M

9.4.1 Finding dual operators in lists

In mathematics, \often dualit y is associated with somesort of generaloperation, where

�nding the `dual' of an object twice retrieves the original object". 2 Inspired by the

notion of dualit y in booleanalgebras(e.g., De Morgan principles) it is possibleto de�ne

a function dual that when applied to a list operator returns its dual operator [Tur90]:

dual head == last

dual tail == init

dual Cons == snoc

dual Nil == Nil

dual foldl == foldr � flip

dual foldr == foldl � flip

[Jon95a] shows how to de�ne function dual using type classes.ClassDual is the class

of typeswith a function that maps valuesto their duals:

class Dual a where

dual :: a ! a

with the proof obligation that:

dual � dual == id

Extending dualit y to function typesallows us to �nd duals of functions:

instance ( Dual a, Dual b) ) Dual (a ! b) where

dual f = dual � f � dual

It is easyto prove the following equations:

dual (f x) = dual f � dual x

dual (f � g) = dual f � dual g

Dualit y in lists involves list reversal:

instance Dual a ) Dual (List a) where

dual = reverse � map dual

2Source: Wikip edia.com.
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9.4.2 Finding dual operators in linear ADTs

We can try to de�ne instancesof dual for other linear ADTs. For instance, for FIFO

queuesthere are several possibilities:

prod = enq prod = dual enq

exl = dual front exl = front

exr = dual deq exr = deq

With thesemappings the product laws are satis�ed. Glossingover the representation-

type machinery (Section 6) and the fact that in Figure 6.21 function g is de�ned by

pattern matching, the following de�nitions of map_Fifo could be instancesof ghFifo i ,

where g = gmap:

map_Fifo f q = if (isEmptyQ q) then q

else let fq = (dual front ) q

dq = (dual deq) q

in enq ( f fq) (map_Fifo f dq)

map_Fifo f q = if (isEmptyQ q) then q

else let fq = front q

dq = deq q

in (dual enq) (f fq ) (map_Fifo f dq)

However, there are several problems. First, dual and map_Fifo are mutually recurs-

ive:

instance Dual a ) Dual (Fifo a) where

dual = reverseQ � map_Fifo dual

In lists, dual and list map are not mutually recursive. The above instance declaration

doesnot type check. The inferred type of map_Fifo is:

(a ! a) ! Fifo a ! Fifo a

which is not general enough. Second,dual front , dual deq , and dual enq cannot

be identi�ed with any FIFO operator. Third, if it run, map_Fifo would be extremely

ine�cien t: every call to dual reversesthe queue.
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9.5 Insertion and extraction for unbounde d linear ADTs

In order to de�ne polytypic functions on ADTs, construction and observation must be

separated. In other words, the pattern in Figure 6.21 must be `de-fused'. Observation

can be de�ned as the processof extracting payload into something and construction

as the processof inserting payload from something. There remains to �nd a something

that a�ords a uniform and generalde�nition of insertion and extraction, and to study

whether theseoperations can be de�ned polytypically. We begin the study focusing on

linear ADTs �rst.

9.5.1 Cho osing the concrete t yp e and the operators

Given an unbounded ADT whoseinterface can be mapped to LINEAR by a signature

morphism, it is possibleto write extraction and insertion functions from/to the ADT

to/from a concretetype with the sameinterface functor, such that:

1. The extraction function producesa concrete-type replica of the ADT. The value of

the concretetype constructed must mirror the logical positioning of payload in the

ADT. (Observer operators determine the way in which payload is extracted.)

2. The insertion function is the left inverse of the extraction function. However, the

extraction function is not, in general, the left inverseof the insertion function: the

linear ADT satis�es more laws.

For linear ADTs, the obvious choice of concrete type is the list type. Let us call

extraction and insertion functions extracT and inserT respectively:3

extracT :: Linear a ! Linear a

extracT t = if dsc0 t then c_con0

else c_con1 (sel10 t) (extracT (sel11 t))

inserT :: Linear a ! Linear a

inserT t = if c_dsc0 t then con0

else con1 (c_sel10 t ) (inserT ( c_sel11 t))

3We have capitalised their last letter to avoid name clashes with ordinary ADT operators. In
Section 9.6 we de�ne inserT for ordered sets which already have an insert operator.
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We have distinguished ADT operators from list operators by pre�xing the latter with

the symbol c_ , which standsfor `concrete'. For instance,c_sel10 is the sel10 operator

in the concretetype (lists, for now).

For many linear ADTs (e.g., FIFO queuesand stacks) there is only one possiblesigna-

ture morphism giving valuesto con0 , con1 , etc. For ADTs with multiple constructors

(e.g., double-endedqueues),there may be more. For concretetypes,there are alsosev-

eral possiblesignature morphisms giving valuesto c_con0 , etc. Thesemust be chosen

so that inserT and extracT satisfy the requirements stated at the beginning of the

section. In other words, the following `product laws' must be satis�ed:

(c_sel10 � extracT ) (con1 x y) = x

(c_sel11 � extracT ) (con1 x y) = y

(sel10 � inserT ) (c_con1 x y) = x

(sel11 � inserT ) (c_con1 x y) = y

The laws of the ADT must be usedfor this task, i.e., programmersmust usealgebraic

speci�cations in the de�nition of inserT and extracT .

Recall the algebraic speci�cations of FIFO queuesand stacks given in Figure 5.6 and

Figure 5.5 respectively. In FIFO queueswe disposeof enq , front and deq . We must

�nd the appropriate c_con1 , c_sel10 , and c_sel11 in the list type. Functions front ,

deq , and enq satisfy, in lists, the same laws as head , tail and snoc , respectively.

Observation and construction are not inverses; queue reversal is neededand this is

captured by dual . Thus, for extraction, the following mapping satis�es the product

laws:

c_con1 = dual snoc

sel10 = front

sel11 = deq

A list replica of the FIFO queueis constructed. For insertion, the following mapping

satis�es the product laws:

con1 = enq

c_sel10 = dual head

c_sel11 = dual tail

Insertion and extraction functions for FIFO queuesare shown below:
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extracT :: Fifo a ! List a

extracT q = if isEmptyQ q then Nil

else (dual snoc ) (front q) (extracT (deq q))

inserT :: List a ! Fifo a

inserT l = if null l then emptyQ

else enq (dual head l) (inserT (dual tail l))

Similarly, we disposeof tos , pop , and push in stacks, which satisfy, in lists, the same

laws as head , tail , and Cons respectively. Fortunately, observation and construction

are inverses.For extraction, the following mapping satis�es the product laws:

c_con1 = Cons

sel10 = tos

sel11 = pop

For insertion, the following mapping satis�es the product laws:

con1 = push

c_sel10 = head

c_sel11 = tail

Insertion and extraction functions for stacks are shown below:

extracT :: Stack a ! List a

extracT s = if isEmptyS s then Nil

else Cons (tos s) ( extracT (pop s))

inserT :: List a ! Stack a

inserT l = if null l then emptyS

else push ( head l) ( inserT ( tail l))

9.5.2 Parameterising on signature morphisms

Calls to dual are terribly ine�cien t, they involve calls to reverse and map (Sec-

tion 9.4.1). Fortunately, a concrete type is equipped with inverseobservers for every

constructor, or they can be programmed for this purpose.

Functions inserT and extracT must be parametric on two signature morphisms, one

mapping ADT operators to linear operators and another mapping concrete-type oper-
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ators to linear operators.

In this section we show a Haskell implementation and discussits limitations.

First, we de�ne LinearADT , a type class that describes the operators of the linear

interface:

class LinearADT f where

dsc0 :: f a ! Bool

con0 :: f a

con1 :: a ! f a ! f a

sel10 :: f a ! a

sel11 :: f a ! f a

We then de�ne LinearCDT , a type classthat describesthe operators of a concretetype

with a linear interface:

class LinearCDT c_f where

c_dsc0 :: c_f a ! Bool

c_con0 :: c_f a

c_con1 :: a ! c_f a ! c_f a

c_sel10 :: c_f a ! a

c_sel11 :: c_f a ! c_f a

We re-de�ne inserT and extracT in terms of thesetype classes:

extracT :: 8 a. (LinearADT f, LinearCDT c_f ) ) f a ! c_f a

extracT t = if dsc0 t then c_con0

else c_con1 (sel10 t) (extracT (sel11 t))

inserT :: 8 a. (LinearADT f, LinearCDT c_f ) ) c_f a ! f a

inserT t = if c_dsc0 t then con0

else con1 (c_sel10 t ) (inserT ( c_sel11 t))

Programmers have to provide the appropriate signature morphisms, i.e., to declare

their ADTs instancesof LinearADT , and to declare their concrete types instancesof

LinearCDT . Programmersmust useADT laws when choosing operators so as to make

inserT the left inverseof extracT :

instance LinearADT Stack where

dsc0 = isEmptyS
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con0 = emptyS

con1 = push

sel10 = tos

sel11 = pop

instance LinearCDT List where

c_dsc0 = null

c_con0 = Nil

c_con1 = Cons

c_sel10 = head

c_sel11 = tail

instance LinearADT Fifo where

dsc0 = isEmptyQ

con0 = emptyQ

con1 = enq

sel10 = front

sel11 = deq

instance LinearCDT List where

c_dsc0 = null

c_con0 = Nil

c_con1 = Cons

c_sel10 = last

c_sel11 = init

The �rst List instance is to be usedwith stacks whereasthe secondinstance is to be

usedwith FIFO queues.Unfortunately, there are two problems to tackle:

1. There are two overlapping instances of LinearCDT List . Given an application:

(extracT q) :: List Int

where q has type Fifo Int , the compiler cannot determine which instance of

LinearCDT List to use.

2. We have only dealt with unbounded ADTs with unconstrained payload.

The Haskell languagedoesnot allow us to name instance declarationsand to refer to

them by name. That would enableus to de�ne di�eren t instancesfor the sameconcrete
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type and also for the sameADT when it has multiple product constructors and there

are several ways of making it conform to the linear interface. Someexamples:

instance LinearADT MemoList where

con0 = MemoList .nil max

: : :

instance LinearADT MemoList where

con0 = MemoList .nil sum

: : :

instance LinearADT Deque where

dsc0 = isEmptyD

con0 = emptyD

con1 = enqfront

sel10 = rear

sel11 = deqrear

instance LinearADT Deque where

dsc0 = isEmptyD

con0 = emptyD

con1 = enqrear

sel10 = front

sel11 = deqfront

We tackle this problem in Section 9.10.2. First we deal with bounded linear ADTs.

9.6 Insertion and extraction for bounde d linear ADTs

Extraction in bounded ADTs behaves in the same way as in unbounded ADTs: it

extracts data in a deterministic order imposed by the choice of discriminators and

selectors. In contrast, constructors are `clever' and arrange the payload internally:

think of insert in ordered sets. Although product laws may not be satis�ed, there is

no needto �nd inverseobservers in the concretetype of `clever' ADT constructors.

Indeed, an unbounded ADT with functorial interface F can be viewed as a concrete

type with interface F where the laws restrict the way in which payload is inserted

or selectedfrom the type. In contrast, the laws of a bounded ADT imposecontext-
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dependent restrictions that rely on properties of the payload type. Such restrictions

are taken into account by `clever' constructors.

For example,extraction and insertion for ordered setscan be de�ned as follows:

extracT :: 8 a. Ord a ) Set a ! List a

extracT s = if isEmptyS s then Nil

else Cons (choice s) (extracT (remove (choice s) s))

inserT :: 8 a. Ord a ) List a ! Set a

inserT l = if null l then emptySet

else insert ( head l) (inserT ( tail l ))

It doesnot matter whether inserT is de�ned otherwise as:

inserT :: 8 a. Ord a ) List a ! Set a

inserT l = if null l then emptySet

else insert ( last l) (inserT ( init l ))

Payload elements are arranged internally by insert according to order, and only ele-

ments not already in the set make it. In both cases, inserT is the left inverse of

extracT .

There is an obstacle: the presenceof the Ord constraint. It not only appears in the

typesof extracT and inserT , but also forcesus to de�ne LinearADT and LinearCDT

as multi-parameter type classes(recall the discussion in Section 7.1.3). A possible

solution is to introduce 
 -abstraction (Section 6.1.11):

extracT :: 
 q. 8a. (q a, LinearADT f, LinearCDT c_f ) ) f a ! c_f a

inserT :: 
 q. 8a. (q a, LinearADT f, LinearCDT c_f ) ) c_f a ! f a

Fortunately, we can encode these functions in Haskell using a technique proposed

in [Hug99]. The only hurdle remaining is the lack of overlapping instances. In Sec-

tion 9.8 we present the details of the encoding and show how to de�ne generic func-

tions on linear ADTs in terms of inserT and extracT . The section usesextensional

equality as an exampleof genericfunction. We �rst explain what extensionalequality

meansin the following section.
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9.7 Extensional equalit y

Extensional equality comparesADTs by comparing their payload contents, not their

internal representation. Extensional equality on two valuesx and y of the samelinear

ADT can be de�ned as follows:

geqLinear eqa x y = qeq hList i eqa (extracT x) ( extracT y)

Function eqLinear is de�ned under the assumption that the following laws hold:

(dsc0 x) ^ (dsc0 y) ) x = y

(dsc0 x) ^ : (dsc0 y) _ : (dsc0 x) ^ ( dsc0 y) ) x 6= y

: (dsc0 x) ^ : (dsc0 y) )

x = y , (sel10 x = sel10 y ^ sel11 x = sel11 y)

For instance,orderedsetswith deterministic choice and remove satisfy the conditions.

Wecande�ne (extensional) equality for orderedsetsprovided the payload typesupports

ordinary equality:

instance Eq a ) Eq (Set a) where

(==) sx sy = let x = choice sx

y = choice sy

in x == y && (remove x sx) == (remove y sy)

It is possibleto test whether two di�eren t ADTs that conform to the linear interfaceare

extensionally equal. For example, it is possibleto test whether a stack and an ordered

set are extensionally equal by extracting their payload into two values of the same

concrete type and comparing them for ordinary equality. Unfortunately, this general

notion of extensional equality requires signature morphisms for every ADT involved,

two in this case.We comeback to this in Section 9.15.

9.8 Enco ding generic functions on linear ADTs in Hask ell

This sectionshows a Haskell implementation 4 of inserT , extracT , and of genericsize,

map, and equality functions for linear ADTs, whether bounded or unbounded.

To handle constraints we encode both bounded and unbounded ADTs as restricte d

typ es [Hug99]. The key idea is to encode constraints using explicit dictionaries in-

4We have compiled the code using the Glasgow Haskell Compiler v6.2.1, which supports multi-
parameter type classesand explicit kind annotations.
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stead of the implicit dictionaries created by the compiler, and to de�ne LinearADT

and LinearCDT as multi-parameter type classeswhere one parameter is an explicit

dictionary. ADTs and concretetypesthat are instancesof theseclassesare parametric

on constraints, and so are functions de�ned on them.

data TopD a = TopD{ my_id :: a ! a }
data EqD a = EqD{ eq :: a ! a ! Bool }
data OrdD a = OrdD{ lt :: a ! a ! Bool , eqOrd :: EqD a }

class Sat t where dict :: t

instance Sat (TopD a) where -- universal constraint
dict = TopD{ my_id = id }

instance Eq a ) Sat (EqD a) where
dict = EqD { eq = (==) }

instance Ord a ) Sat ( OrdD a) where
dict = OrdD{ lt = (<), eqOrd = dict }

Figure 9.3: Explicit dictionaries and Sat proxy.

First, we explain the encoding of explicit dictionaries. The �rst three lines in Figure 9.3

declarethe explicit dictionary typesTopD, EqD, and OrdD. The �rst is a `universal' dic-

tionary which is associated with unbounded ADTs. It has to be provided because

LinearADT and LinearCDT will expect an explicit dictionary argument. However,

unbounded ADTs do not make useof the dictionary's `dummy' operator. An EqD dic-

tionary hasan equality operator eq and an OrdD dictionary `extends'an EqD dictionary

with a comparisonoperator lt (lessthan). An Eq constraint is encoded by the explicit

dictionary EqD, and an Ord constraint by the explicit dictionary OrdD.

ClassSat is a proxy, i.e., a type classthat is usedby programmersto tell the compiler

that an explicit dictionary exists. More precisely, a type a has a dictionary D (or is

D-constrained) if D a is an instance of Sat . Figure 9.3 shows how TopD, EqD, and

OrdD are made instancesof Sat . Notice that the last two dictionaries useoperators in

implicit dictionaries.

Figure 9.4 shows type classesLinearADT and LinearCDT which now take the expli-

cit dictionary parameter cxt . The dictionary appears as a `constraint' in the type-

signaturesof operators.
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class LinearADT l cxt where
dsc0 :: Sat (cxt a) ) l cxt a ! Bool
con0 :: Sat (cxt a) ) l cxt a
con1 :: Sat (cxt a) ) a ! l cxt a ! l cxt a
sel10 :: Sat (cxt a) ) l cxt a ! a
sel11 :: Sat (cxt a) ) l cxt a ! l cxt a

class LinearCDT l cxt where
c_dsc0 :: Sat (cxt a) ) l cxt a ! Bool
c_con0 :: Sat (cxt a) ) l cxt a
c_con1 :: Sat (cxt a) ) a ! l cxt a ! l cxt a
c_sel10 :: Sat (cxt a) ) l cxt a ! a
c_sel11 :: Sat (cxt a) ) l cxt a ! l cxt a

Figure 9.4: Type classesLinearADT and LinearCDT .

Functions extracT and inserT are shown in Figure 9.5. Function extracT takes an

ADT argument that is an instance of LinearADT and whosepayload is constrained on

cxt . It returns a concretetype that is an instanceof LinearCDT whosepayload is also

constrained on cxt . Function inserT is the left-inverseoperation.

extracT :: ( LinearADT l cxt, LinearCDT l' cxt , Sat (cxt a))
) l cxt a ! l ' cxt a

extracT l = if dsc0 l then c_con0
else c_con1 (sel10 l) (extracT ( sel11 l))

inserT :: (LinearADT l cxt, LinearCDT l' cxt , Sat (cxt a))
) l' cxt a ! l cxt a

inserT l' = if c_dsc0 l' then con0
else con1 (c_sel10 l') (inserT ( c_sel11 l'))

Figure 9.5: Generic functions extracT and inserT .

The �rst box in Figure 9.6 shows the de�nition of type List . We cannot useordinary

Haskell lists becausean instance of LinearCDT must have the sameconstraints as the

ADT that is made an instance of LinearADT , and Haskell's built-in list type is not a

restricted type. Type List is alsoparametric on an explicit dictionary cxt , whosekind

is written explicitly becauseit cannot be properly inferred by the compiler (it infers

kind � by default). List operators alsohave to be programmedfrom scratch. For each

ordinary list operator we de�ne a List onewhosenameis pre�xed by the letter r (from

`restricted'). The secondbox in Figure 9.6 shows two examples. The third box shows
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the de�nitions of map and size for List . The de�nition of equality has beenomitted

for reasonsof space.

Figure 9.7 shows the FIFO-queue interface QueueClass and a batched implement-

ation (Chapter 7). The QueueClass interface is de�ned within a module named

QueueClassM . (ADT operators will be quali�ed by module name in later �gures.)

As with the List type, the implementation type BatchedQueue is parametric on cxt .

Figure 9.8 shows the stack interface StackClass and an implementation in terms of

Haskell's built-in list type. The StackClass interfaceis de�ned within a module named

StackClassM .

Notice that a TopD dictionary is associated with FIFO queueswhereasa TopD' dic-

tionary is associated with stacks. Two dictionaries are neededbecauseoverlapping

instancesof LinearCDT List TopD are illegal.

Figure 9.9 shows the ordered-setinterface SetClass and one possibleimplementation

in terms of ordered (Haskell) lists. The SetClass interface is de�ned within a module

named SetClassM . SetList is made an instance of SetClass with constraint OrdD.

Notice how explicit-dictionary operators are usedin the implementation of insert and

remove .

Figure 9.10 shows the encoding of signature morphisms. Ordered sets, FIFO queues,

and stacks are made instancesof the LinearADT classwith the relevant constraints.

There are several LinearCDT List instancesassociated with these linear ADTs. The

association is establishedby the sharedexplicit dictionary.

Finally, Figure 9.11de�nes map, size,and equality for linear ADTs. The concretetype

has been�xed to List , which is an instance of classLinearCDT .

It would bepreferableto usepolytypic functions on the concretetype, that is, to de�ne,

say, sizeLinear as follows:

sizeLinear sa = gsize hList i sa � extracT

Unfortunately, GenericHaskell doesnot support constrainedtypes(Section 6.1.10)and

the instance of gsize generatedwould be the instance for the restricted List type. In

our encoding, we have to usesizeLinear .

Admittedly , there is no polytypism in the code. From Section9.9 onwards we show how
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data List (cxt :: � ! � ) a = Nil | Cons a ( List cxt a)

rNull :: Sat (cxt a) ) List cxt a ! Bool
rNull Nil = True
rNull (Cons _ _) = False

rHead :: Sat (cxt a) ) List cxt a ! a
rHead Nil = error "rHead : empty list"
rHead (Cons x _) = x

mapList :: ( Sat ( cxt a), Sat (cxt b))
) (a ! b) ! List cxt a ! List cxt b

mapList f Nil = Nil
mapList f (Cons x xs) = Cons (f x) (mapList f xs)
--
sizeList :: Sat ( cxt a) ) (a ! Int ) ! List cxt a ! Int
sizeList sa Nil = 0
sizeList sa (Cons x xs ) = sa x + sizeList sa xs

Figure 9.6: List type and functions mapList and sizeList .

class QueueClass q cxt where
empty :: Sat (cxt a) ) q cxt a
isEmpty :: Sat (cxt a) ) q cxt a ! Bool
enq :: Sat (cxt a) ) a ! q cxt a ! q cxt a
front :: Sat (cxt a) ) q cxt a ! a
deq :: Sat (cxt a) ) q cxt a ! q cxt a

data BatchedQueue (cxt :: � ! � ) a = BQ [a] [a]

instance QueueClass BatchedQueue TopD where
empty = BQ [] []

isEmpty (BQ f r) = null f

enq x (BQ f r ) = check f (x:r )

front (BQ [] _) = error "Empty Queue"
front (BQ (x: f) r) = x

deq (BQ [] _ ) = error "Empty Queue"
deq (BQ (x:f) r) = check f r

Figure 9.7: FIFO-queueinterface and a possibleimplementation.
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class StackClass s cxt where
empty :: Sat (cxt a) ) s cxt a
isEmpty :: Sat (cxt a) ) s cxt a ! Bool
push :: Sat (cxt a) ) a ! s cxt a ! s cxt a
tos :: Sat (cxt a) ) s cxt a ! a
pop :: Sat (cxt a) ) s cxt a ! s cxt a

data Stack ( cxt :: � ! � ) a = ST [a]

instance StackClass Stack TopD' where
empty = ST []
isEmpty (ST xs ) = null xs
push x ( ST xs ) = ST (x: xs)
tos (ST []) = error "tos: empty stack "
tos (ST (x:xs )) = x
pop (ST []) = error "pop: empty stack "
pop (ST (x:xs )) = ST xs

Figure 9.8: Stack interface and a possibleimplementation

inserT , extracT , and functions on ADTs de�ned in terms of them canbeprogrammed

polytypically by generalisingthe solution presented in this Section.

We conclude the section with examplesof usagein Figures 9.12 and 9.13. The reader

may want to comparethe results with thoseof Chapter 7. (N.B.: prett y-prin ting show

functions were de�ned for every type.)
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class SetClass s cxt where
isEmpty :: Sat (cxt a) ) s cxt a ! Bool
empty :: Sat (cxt a) ) s cxt a
insert :: Sat (cxt a) ) a ! s cxt a ! s cxt a
choice :: Sat (cxt a) ) s cxt a ! a
remove :: Sat (cxt a) ) a ! s cxt a ! s cxt a
member :: Sat (cxt a) ) a ! s cxt a ! Bool

data SetList (cxt :: � ! � ) a = SL [a ]

instance SetClass SetList OrdD where
empty = SL []

isEmpty (SL xs) = null xs

insert x ( SL xs ) = SL (insert ' x xs)
where
insert ' x [] = [x]
insert ' x ( l@(y: ys))

| eq (eqOrd dict ) x y = l
| (lt dict ) x y = (x :y:ys)
| otherwise = y : (insert ' x ys)

remove x ( SL xs ) = SL (remove ' x xs)
where remove ' x [] = []

remove ' x (y:ys) = if eq ( eqOrd dict) x y then ys
else y : ( remove ' x ys )

member x ( SL xs ) = any (eq (eqOrd dict ) x) xs

choice (SL []) = error "choice : empty set "
choice (SL (x:xs )) = x

Figure 9.9: Ordered-set interface and a possibleimplementation.
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instance LinearADT SetList OrdD where
dsc0 = SetClassM . isEmpty
con0 = SetClassM . empty
con1 = SetClassM . insert
sel10 = SetClassM . choice
sel11 = � s ! SetClassM . remove (SetClassM .choice s) s

instance LinearCDT List OrdD where
c_dsc0 = rNull
c_con0 = Nil
c_con1 = Cons
c_sel10 = rHead
c_sel11 = rTail

instance LinearADT BatchedQueue TopD where
dsc0 = QueueClassM .isEmpty
con0 = QueueClassM .empty
con1 = QueueClassM .enq
sel10 = QueueClassM .front
sel11 = QueueClassM .deq

instance LinearCDT List TopD where
c_dsc0 = rNull
c_con0 = Nil
c_con1 = Cons
c_sel10 = rLast
c_sel11 = rInit

instance LinearADT Stack TopD' where
dsc0 = StackClassM .isEmpty
con0 = StackClassM .empty
con1 = StackClassM .push
sel10 = StackClassM .tos
sel11 = StackClassM .pop

instance LinearCDT List TopD' where
c_dsc0 = rNull
c_con0 = Nil
c_con1 = Cons
c_sel10 = rHead
c_sel11 = rTail

Figure 9.10: Ordered sets,FIFO queues,and stacks are linear ADTs.
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mapLinear :: (LinearADT l cxt , LinearCDT List cxt ,
Sat (cxt a), Sat (cxt b))

) (a ! b) ! l cxt a ! l cxt b

mapLinear f = inserT � mapList f � extracT
--
sizeLinear :: (LinearADT l cxt , LinearCDT List cxt , Sat (cxt a))

) (a ! Int ) ! l cxt a ! Int

sizeLinear sa = sizeList sa � extracT
--
eqLinear :: (LinearADT l cxt , LinearCDT List cxt, Sat ( cxt a))

) (a ! a ! Bool ) ! l cxt a ! l cxt a ! Bool

eqLinear eqa lx ly = eqList eqa ( extracT lx) (extracT ly )

Figure 9.11: Map, size,and equality as generic functions on LinearADT s.

s :: SetList OrdD Int s = foldr ( � x y ! SetClassM .insert x y)
SetClassM . empty [5,1,2,4,3,2,1] > { 1,2,3,4,5 }

s0 = mapLinear ( const 0) s
> {0}

mapLinear negate s
> f -5,-4,-3,-2,-1 g

sizeLinear ( const 1) s
> 5

sizeLinear ( const 1) s0
> 1

eqLinear (==) s s
> True

eqLinear (==) s ( remove (choice s) s)
> False

eqLinear (==) s ( insert (choice s) s)
> True

Figure 9.12: Computing with ordered sets.
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q :: BatchedQueue TopD Int
q = foldl ( � x y ! QueueClassM .enq y x) QueueClassM .empty [2,5,1,6]
> < 2,5,1,6 >

mapLinear negate q
> < -2,-5,-1,-6 >

k :: Stack TopD' Int
k = foldr ( � x y ! StackClassM .push x y) StackClassM .empty [1,2,3]
> 1,2,3|

mapLinear negate k
> -1,-2,-3|

eqLinear (==) k ( pop k)
> False

Figure 9.13: Computing with FIFO queuesand stacks.
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9.9 Extensional Programming = EC[I]

In this and the following sectionswe generaliseour solution for linear ADTs to arbitrary

ADTs that can be made to conform to somefunctorial interface. We also show that

inserT , extracT , and other functions on ADTs can be de�ned polytypically.

The previous sections have introduced the notion of Extensional Programming and

made the case for the separation of insertion and extraction when attempting the

de�nition of genericfunctions on ADT values.

Let us abbreviate and call EC[I] the model of computation with ADTs where Exten-

sionalProgramming is carried out in terms of Extraction to a concretetype,Computation

on this type, and optional Insertion. The following diagram depicts its general form:

ADT 1
extracT- CDT 1

ADT 2

g

?
� inserT

CDT 2

c g

?

The acronym CDT stands for `concretedata type'. Function g takes an ADT 1 value

and returns an ADT 2 value. It is implemented in terms of c_g , inserT , and extracT .

Function c_g takesa CDT 1 valueand returns a CDT 2 value. Function extracT returns

a CDT 1 value with ADT 1's payload, and inserT takesa CDT 2 value and producesan

ADT 2 value using CDT 2's payload.

Notice the similarit y with the principles of the C++ STL where ADTs are containers

with payload and iter ators a�ord to decouplefunctions from containers. In the EC[I]

model, iterators are replacedby concretetypes.

In type-unifying computations, there is no insertion and therefore CDT 2 is a manifest

type like Int or Bool . In type-preservingcomputations, CDT 1 and CDT 2 need not

be the sametype, but both must be parametric on the samepayload typesin order to

passpayload around.

What is desiredis a polytypic EC[I] model whereall the arrows arepolytypic functions:

g hADT 1, CDT 1, ADT 2, CDT 2 i =

inserT hADT 2, CDT 2 i � c_g hCDT 1 i � extracT hADT 1, CDT 1 i



9.9 Extensional Programming = EC[I] 237

Every function except c_g is polytypic on more than one argument. This function is

an ordinary GenericHaskell function. Extraction and insertion functions needto know

the functorial structure of their source and target types. Consequently, CDT 1 and

CDT 2 must be provided as arguments to g or otherwise their valueswould be �xed in

g's body. ADT i and CDT i must conform to the samefunctorial interface. However,

ADT 1 and ADT 2 neednot conform to the samefunctorial interface.

We will considera simpli�ed EC[I] model whereADT 1 and ADT 2 are the sameabstract

type and CDT 1 and CDT 2 are the sameconcretetype:

ADT
extracT- CDT

I@
@

@
@

@
inserT

CDT

c g

?

That is:

g hADT , CDT i = inserT hADT , CDT i � c_g hCDT i � extracT hADT , CDT i

The reasonsare simple:

1. All polytypic functions on ADTs take the samenumber and type of arguments.

2. Functions inserT and extracT are polytypic on the structure of interface functors,

and choosing a free CDT 1 with the samefunctorial interface as CDT 2 is choosing

the sameconcretetype, namesof value constructors and operators notwithstanding.

Function inserT will be a catamorphism, not an anamorphism [MFP91].

3. When CDT and ADT have the same functorial interface then structural inform-

ation cannot be lost. Structural information is lost if extracT is left without a

corresponding inserT , making type-preservingfunctions unde�nable. Furthermore,

inserT must be the left inverseof extracT :

inserT � extracT == id

In the caseof unbounded ADTs, the CDT must provide all the required operators so

that the above equation can be satis�ed. In the caseof bounded ADTs, there is no
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need to worry, for there are `clever' constructors that properly reconstruct the ADT

(Section 9.6).

Nonetheless,for sometype-unifying computations, such ascalculating the sizeor testing

for equality, loosing the information required for building back the original ADT is not

a problem (Section 9.14).

9.10 Polyt ypic extraction and insertion

Insertion and extraction functions are structurally polymorphic on the functorial struc-

ture of an interface and, consequently, their de�nition can be generatedautomatically

by a compiler. Such functorial structure is declaredby the genericprogrammer in what

we call an F -view .

9.10.1 F -views

An F -view is a languageextensionfor declaring the functorial structure of ADT inter-

faces. We introduce the syntax using someexamples. The following F -view is similar

to the type classLinearADT of Section 9.8:

fview Linear a = 1 + a � ( Linear a)

The structure of the F -view automatically determinesthe following operators:

dsc0 :: 
 q. 8a. q a ) Linear a ! Bool

con0 :: 
 q. 8a. q a ) Linear a

con1 :: 
 q. 8a. q a ) a ! Linear a ! Linear a

sel10 :: 
 q. 8a. q a ) Linear a ! a

sel11 :: 
 q. 8a. q a ) Linear a ! Linear a

The discriminator dsc0 comes from the presenceof the coproduct. There are two

products and hencetwo constructors con0 and con1 . There is no selectorfor a nullary

product and there are two selectorssel10 and sel11 for the binary product.

Every F -view F automatically determinesanother F -view c_F whereevery operator op

in F is named c_op in c_F :

fview c_Linear a = 1 + a � (c_Linear a)

c_dsc0 :: 
 q. 8a. q a ) c_Linear a ! Bool

c_con0 :: 
 q. 8a. q a ) c_Linear a
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c_con1 :: 
 q. 8a. q a ) a ! c_Linear a ! c_Linear a

c_sel10 :: 
 q. 8a. q a ) c_Linear a ! a

c_sel11 :: 
 q. 8a. q a ) c_Linear a ! c_Linear a

Other examplesof F -views are shown in Figure 9.14. Reading an F -view declaration

from left to right, every i th coproduct has an associated discriminator dsc i . Every i th

product has one constructor con i with selectorssel i 0 to sel im , where m is the arit y

of the product.

fview Bin1 a = 1 + a � (Bin1 a) � (Bin1 a)
dsc0 :: 
 q. 8a. q a ) Bin1 a ! Bool
con0 :: 
 q. 8a. q a ) Bin1 a
con1 :: 
 q. 8a. q a ) a ! Bin1 a ! Bin1 a ! Bin1 a
sel10 :: 
 q. 8a. q a ) Bin1 a ! a
sel11 :: 
 q. 8a. q a ) Bin1 a ! Bin1 a
sel12 :: 
 q. 8a. q a ) Bin1 a ! Bin1 a

fview Bin2 a b = 1 + a + b � (Bin2 a b) � (Bin2 a b)
dsc0 :: 
 q. 8a. q a ) Bin2 a b ! Bool
dsc1 :: 
 q. 8a. q a ) Bin2 a b ! Bool
con0 :: 
 q. 8a. q a ) Bin2 a b
con1 :: 
 q. 8a. q a ) a ! Bin2 a b
sel10 :: 
 q. 8a. q a ) Bin2 a b ! a
con2 :: 
 q. 8a. q a ) b ! Bin2 a b ! Bin2 a b ! Bin2 a b
sel20 :: 
 q. 8a. q a ) Bin2 a b ! b
sel21 :: 
 q. 8a. q a ) Bin2 a b ! Bin2 a b
sel22 :: 
 q. 8a. q a ) Bin2 a b ! Bin2 a b

fview Composite3 a b c = a � b � c
con0 :: 
 q. 8a. q a ) a ! b ! c ! Composite3 a b c
sel00 :: 
 q. 8a. q a ) Composite3 a b c ! a
sel01 :: 
 q. 8a. q a ) Composite3 a b c ! b
sel02 :: 
 q. 8a. q a ) Composite3 a b c ! c

Figure 9.14: Examples of F -view declarations and their implicitly-de�ned operators.

9.10.2 Named signature morphisms

ADT interfacescan be made to conform to F -views by providing name d signatur e

morphisms . We have already showed in Section 9.5.2 examplesof signature morph-

isms. In this section we explain the new syntax by example.

Set instance Linear by SetL where

dsc0 = isEmptySet
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con0 = emptySet

: : :

The syntax declaresthat there is a signature morphism SetL from the ADT Set to the

Linear F -view. A signature morphism between a concrete type and c_Linear must

be declaredin similar fashion:

List instance c_Linear by L1 where

c_dsc0 = null

c_con0 = Nil

c_con1 = Cons

c_sel10 = head

c_sel11 = tail

List instance c_Linear by L2 where

c_dsc0 = null

c_con0 = Nil

c_con1 = Cons

c_sel10 = last

c_sel11 = init

The two morphisms have di�eren t namesand therefore can cohabit in a program. In

Section 9.8, F -views were encoded as type classesand signature morphisms were en-

coded as instancedeclarations. In that setting, overlapping instanceswerenot allowed.

We show a possible implementation of F -views and named signature morphisms in

Section 9.10.3.

To the compiler, every named signature morphism has two associated meta-functions

called type and view. The �rst returns the type that is madean instanceof the F -view,

e.g.:

type SetL = Set

type L2 = List

The secondreturns a representation of the functorial structure declaredby the F -view,

e.g.:

view Linear = 1 + a � ( Linear a)

view Composite3 = a � b � c
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9.10.3 Implemen ting F -views and named signature morphisms

F -views and named signature morphisms are languageextensions. In this section we

show that they are reasonableand feasibleextensionsby indicating a possibleimple-

mentation.

An F -view declaration can be translated by the compiler to a multi-parameter type

classwhereoneparameter is an explicit dictionary parameter (Section 9.8) and another

is a name parameter, i.e., a type encoding a signature morphism name. Every function

in the classtakesan extra argument of that type.

Named signature morphismscan be translated by the compiler to instancesof the type

classthat provide actual valuesfor dictionaries and `name' types.

Figure 9.15showsthe translation for F -view c_Linear and namedsignaturemorphisms

L1 and L2 .

class C_Linear l cxt n where
c_dsc0 :: 8 a. Sat (cxt a) ) n ! l cxt a ! Bool
c_con0 :: 8 a. Sat (cxt a) ) n ! l cxt a
c_con1 :: 8 a. Sat (cxt a) ) n ! a ! l cxt a ! l cxt a
c_sel10 :: 8 a. Sat (cxt a) ) n ! l cxt a ! a
c_sel11 :: 8 a. Sat (cxt a) ) n ! l cxt a ! l cxt a

data L1 = L1
data L2 = L2

instance C_Linear List TopD L1 where
c_dsc0 = const null
c_con0 = cons Nil
c_con1 = const Cons
c_sel10 = const head
c_sel11 = const tail

instance C_Linear List TopD L2 where
c_dsc0 = const null
c_con0 = cons Nil
c_con1 = const Cons
c_sel10 = const last
c_sel11 = const init

Figure 9.15: Possibleimplementation of F -views and named signature morphisms.

The F -view is compiled to a type classC_Linear which takes an explicit dictionary
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parameter cxt and a `name' parameter n. Every operator has an extra parameter of

type n.

The signature-morphism names L1 and L2 are compiled to new types with nullary

value constructors of the samename. The signature morphisms are implemented as

instancesof C_Linear where operators discard their �rst argument.

The types L1 and L2 help the compiler resolve the overloading. More precisely, op-

erators c_op only occur in the bodies of inserT and extracT , which take signature-

morphism arguments (we discussthe details of this in the next section). When inserT

or extracT are passedsignature morphism L1 as an actual argument, the compiler

generatestheir bodies writing c_ op L1 where a call to c_ op would have been expec-

ted. The compiler can deducefrom the application that c_ op must be of type L1 ! �

for sometype � . The other possibility, L2 ! � does not type-check. Similarly, when

inserT or extracT are passedsignature morphism L2 as an actual argument, what

are generatedare calls to c_ op L2.

9.10.4 Poly aric t yp es and instance generation

We now de�ne inserT and extracT polytypically. Their typesare parametric on the

arit y of the type component of a signature morphism and their bodies are generated

following the functorial structure provided by the view component. Operator names

are also obtained from signature-morphism arguments.

More precisely, inserT and extracT are parametric on two signature morphisms that

provide all the information. One morphism mapsan ADT to an F -view F and another

maps a CDT to the related F -view c F . The bodies are structurally polymorphic

on the functor de�ned by the F -view. Like Generic Haskell, we follow a generative

approach and generateinstancesof inserT and extracT for actual signature-morphism

arguments in polytypic applications. Generic programmers do not have to specify

anything. The type-signaturesand bodies of instancesare generatedautomatically by

the compiler.

We introduce the notion of polyaric type, i.e., a type that is parametric on the arity

of an ADT, not the kind. The reasonfor this is that we deal with �rst-order ADTs
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whosekind is described by the grammar:

� ::= � j � ! �

Functions extracT and inserT possesspolyaric types,and so will polytypic functions

de�ned in terms of them.

TypesExtracT and InserT are respectively the polyaric typesof extracT and inserT :

ExtracT hni t1 t2 :: 
 q: 8 a: q a ) t1 a ! t2 a

InserT hni t1 t2 :: 
 q: 8 a: q a ) t2 a ! t1 a

extracT hf ; c f i :: ExtracT h(arity � type) f i (type f ) (type c f ) �( type f )

insertT hf ; c f i :: InserT h(arity � type) c f i (type f ) (type c f ) �( type f )

where n > 0 and a def= a1 : : : an . The casen = 0 applies to manifest ADTs and cannot

be explained until we introduce our notion of exporting in Section 9.13.

Let F and C_F be two signaturemorphisms. The polytypic application extracT hF,C_F i

in the program triggers the generation of the instance of extracT for those signature

morphisms, namely, extracT_F_C_F , whosede�nition is generatedby:

genCopro(t ; view(F))

where t is a chosenvalue-parameter name, view(F) = P0 + : : : + Pn for somen � 0

coproducts of products Pi = X i 0 � : : : � X im for some m � 0, and genCopro is a

compiler meta-function whosede�nition for extraction is shown in Figure 9.16.

genCopro(t, P0 + : : : + Pn ) =
if (dsc0 t) then genPro(t, P0)
: : :

else if (dsc (n� 1) t) then genPro(t, Pn � 1)
else genPro(t , Pn )

genPro(t, 1 i ) = c_con i
genPro(t, X i 0 � : : : � X im ) = c_con i genTerm(t , X i 0) : : : genTerm( t, X im )

genTerm(t , aij ) = sel ij t
genTerm(t , (F a) ij ) = extracT ( sel ij t)

Figure 9.16: Meta-function genCopro generatesthe body of extracT at compile-time
following the structure speci�ed by its secondargument.

An almost identical meta-function is de�ned for inserT where inserT occurs instead
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of extracT and c op operators occur instead of op operators and vice versa.

9.10.5 Generation examples

We illustrate the generation processfor ordered sets and FIFO queues. First, the

signature morphisms:

Set instance Linear by SetF where

dsc0 = isEmptyS

con0 = emptyS

con1 = insert

sel10 = choice

sel11 = � s ! remove (choice s) s

Queue instance Linear by QueueF where

dsc0 = isEmptyQ

con0 = emptyQ

con1 = enq

sel10 = front

sel11 = deq

For the concretetype,weusesignaturemorphism L2 from Section9.10.2. The polytypic

application extracT hSetF ,L2 i triggers the generationof a extracT_SetF_L2 instance

whosetype is given by expanding the polyaric type:

ExtracT h1 i Set List [ Ord ]

The resulting type-signatureis:

extracT_SetF_L2 :: 8 a. Ord a ) Set a ! List a

Similarly, the polytypic application inserT hSetF ,L2 i triggers the generation of an

inserT_SetF_L2 instance whosetype is given by expanding the polyaric type:

InserT h1 i Set List [ Ord ]

which yields the type-signature:

inserT_SetF_L2 :: 8 a. Ord a ) List a ! Set a
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The bodies of extracT_SetF_L2 and inserT_SetF_L2 are generatedby the compile-

time evaluation of:

genCopro(t ; 1 + a � (Linear a))

whereF -view operator namesare replacedby the actual onesprovided by the signature

morphisms:

extracT_SetF_L2 t =

if isEmptyS t then Nil

else Cons (choice t) (extracT (( � s ! remove (choice s) s) t)

inserT_SetF_L2 t =

if null t then emptyS

else insert ( last t) (inserT ( init t))

(If F -views and named signature morphisms are implemented as suggestedin Sec-

tion 9.10.3, list and set operators in the previous de�nitions must be applied to an L2

argument �rst.)

FIFO queueshave no payload constraints. The following polytypic applications:

extracT hQueueF, L2 i

inserT hQueueF,L2 i

trigger the generation of the following type-signatures:

extracT_QueueF_L2 :: ExtracT h1 i Queue List []

inserT_QueueF_L2 :: InserT h1 i Queue List []

and the generationof the bodiesusing the operators provided by the signature morph-

isms:

extracT_QueueF_L2 :: 8 a. Queue a ! List a

extracT_QueueF_L2 t = if isEmptyQ t then Nil

else Cons ( front t) (extracT (deq t))

inserT_QueueF_L2 :: 8 a. List a ! Queue a

inserT_QueueF_L2 t = if null t then emptyQ

else enq ( last t) (inserT ( init t))
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9.11 De�ning polyt ypic functions

Polytypic functions such as gsize , gmap, or geq can now be programmed in terms of

inserT and extracT . Polytypic functions on �rst-order ADTs possesspolyaric types.

The genericprogrammer �rst de�nes the polyaric type of the function:

Gh0i t = �

Ghni t = 8 a: Gh0i a ! Ghn � 1i (t a)

which is translated automatically by the compiler into a context-parametric version:

Gh0i t = 
 q: �

Ghni t = 
 q: 8 a: q a ) Gh0i a � ! Ghn � 1i (t a) q

A polyaric type can be converted into a polykinded type by mapping arit y arguments

to kind arguments:

kindOf (0) = �

kindOf (n) = � ! KindOf (n � 1)

A polyaric type can be expandedby �rst transforming it into a polykinded type and

then using the type rules described in Section 6.1.11.

The genericprogrammer then de�nes the body of the function:

ghf ; c f i :: Ghf i f

ghf ; c f i � g x = B ( x; inserT hf ; c f i ; ghc f i � g; extracT hf ; c f i )

Several remarks are in order:

� The polytypic function is parametric on two namedsignature morphisms, one map-

ping the ADT to an F -view and another mapping the CDT to the implicit F -view

generatedby the former. For example, in the polytypic application ghM 1; M 2i , M 1

is a signature morphism mapping the operators in type(M 1) to view(M 1) whereas

signature morphism M 2 maps the operators in type(M 2) to view(M 2), such that

view(M 1) is F , for someF -view F , and view(M 2) is c F .

� We deprecatethe transformation of n-ary (co)products in F -views to associations of

binary ones. In a generative approach, it is possibleand reasonableto de�ne poly-

typic functions and their typesastemplates that areparametric on arit y. Thus, func-

tion g takesa vector of function arguments � g = g1 : : : gn , wheren = arity (type(f )).
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The special symbol � is a languageextension. The type of each gi argument is given

by the polyaric type, that is:

gi :: 
 q: 8 a: q a ) Gh0i a q

� The body of ghf ; c f i is a function B of the argument variables x, of the inserT

and extracT for the samesignature morphisms, and also of the ordinary Generic

Haskell function ghc f i applied to the vector � g.

� The polytypic application ghF; C F i triggers the generationof the instanceg F C F

whosetype-signatureis given by expanding:

Gh(arity � type)F i (type F ) �( type F )

The generatedbody is:

B ( x; inserT F C F; ghTi g1 : : : gn ; extracT F C F )

whereT = type(C F ) and n = arity (T). For simplicit y, generatedinstancescontain

calls to polytypic functions on the concretetype. It would bepossibleto generatein-

stancesfor thosefunctions simultaneously, i.e., to generateg T whosetype-signature

is given by:

Gh(kindOf � arity � type)C F i (type C F ) �( type C F )

where G is the context-parametric polykinded type of the ordinary Generic Haskell

function.

� Polytypic function de�nitions can be type-checked. The Generic Haskell compiler

relieson the Haskell compiler to do the job, i.e., it generatesthe typesand bodiesof

instancesand lets the Haskell compiler check that they match. We also follow this

approach.

Figure 9.17 shows the de�nition of gsize , gmap, and geq .

We concludethe section with generation examplesfor ordered sets.

The polytypic application gsize hSetF ,L1 i triggers the generation of the instance:
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GSIZEh0 i t = 
 q. t ! Int
GSIZEhn i t = 
 q. 8a. q a ) GSIZEh0 i a � ! GSIZEhn-1 i (t a) q

gsize hf,c_f i :: GSIZEhf i f
gsize hf,c_f i � g t = gsize hc_f i � g � extracT hf,c_f i t

GMAPh0 i t1 t2 = 
 q. t1 ! t2
GMAPhn i t1 t2 = 
 q. 8a1 a2. q a1 a2 )

GMAPh0 i a1 a2 � ! GMAPhn-1 i ( t1 a1) (t2 a2) q

gmaphf ,c_f i :: GMAPhf i f
gmaphf ,c_f i � g t = inserT hf,c_f i � gmaphc_f i � g � extracT hf, c_f i t

GEQh0 i t = 
 q. t ! t ! Int
GEQhn i t = 
 q. 8a. q a ) GEQh0 i a � ! GEQhn-1 i (t a) q

geq hf, c_f i :: GEQhf i f
geq hf, c_f i � g t1 t2 = geq hc_f i � g (extracT hf ,c_f i t1)

(extracT hf ,c_f i t2)

Figure 9.17: Polytypic gsize , gmap, geq de�ned in terms of inserT and extracT .

gsize_SetF_L1 :: GSIZEh1 i Set [ Ord ]

that is:

gsize_SetF_L1 :: 8 a. Ord a ) (a ! Int ) ! Set a ! Int

gsize_SetF_L1 g t = gsize hList i g � extracT_SetF_L1 t

Generated instancescontain calls to polytypic functions on the concrete type. If in-

stancesfor them are generatedsimultaneously then the result is:

gsize_SetF_L1 :: 8 a. Ord a ) (a ! Int ) ! Set a ! Int

gsize_SetF_L1 g t = gsize_List g � extracT_SetF_L1 t

The polytypic application gmaphSetF ,L1 i triggers the generationof the gmap instance:

gmap_SetF_L1 :: GMAPh1 i Set [ Ord ]

that is:

gmap_SetF_L1 :: 8 a. ( Ord a, Ord b) ) (a ! b) ! Set a ! Set b

gmap_SetF_L1 g t = inserT_SetF_L1 � gmaphList i g � extracT_SetF_L1 t

Finally, the polytypic application geqhSetF, L1i triggers the generation of the geq

instance:
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geq_SetF_L1 :: GEQh1 i Set [ Ord ]

that is:

geq_SetF_L1 :: 8 a. Ord a ) (a ! a ! Bool ) ! Set a ! Set a ! Bool

geq_SetF_L1 g t1 t2 =

geq hList i g (extracT_SetF_L1 t1 ) (extracT_SetF_F1 t2 )

9.12 Polyt ypic extension

Polytypic extension can be accommodated in our system in a similar way in which

template specialisation is done in C++. Polytypic extension amounts to providing

a de�nition of speci�c instancesof polytypic functions for speci�c ADTs. Specialised

functions canbeprovided for inserT , extracT , and already de�ned polytypic functions

with polyaric types.

Suppose,for example, that ordered setscomeequipped with the following operators:

enumerate :: 8 a. Ord a ) Set a ! List a

fromList :: 8 a. Ord a ) List a ! Set a

cardinality :: 8 a. Ord a ) Set a ! Int

It makessenseto usetheseoperators in the de�nitions of inserT , extracT , and gsize

for ordered sets. This can be speci�ed by the genericprogrammer thus:

instance extracT htype =Set, type =List i = enumerate

instance inserT htype =Set, type =List i = fromList

instance gsize htype =Set, type =List i = cardinality

We reusethe keyword instance to avoid multiplication of keywords. The �rst declara-

tion instructs the compiler to useenumerate insteadof generatingan extracT instance

when the type attribute of its �rst signature-morphism argument is Set and the type

attribute of its secondsignature-morphism argument is List . The declaration only

mentions types, not F -views, becauseextracT is not generated. The compiler must

make sure that enumerate 's type-signature matches that of an instance of extracT

for setsand lists, that is, it must check that:

ExtracT h1 i Set [ Ord ]

expandsto:
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8 a. Ord a ) Set a ! List a

which is the case.

Similarly, the seconddeclaration instructs the compiler to use fromList instead of

generatingan instance of inserT . Finally, the third declaration instructs the compiler

to use cardinality instead of generating an instance of gsize when the types in

the signature morphisms are Set and List . Again, the compiler must check that

type-signaturesmatch, which is the casein theseexamples.

9.13 Exp orting

The di�erence between exporting and abstracting over payload is somewhat analog-

ous to the di�erence between lambda abstractions and let-expressions. Exporting in

F -views is basedon carrying this di�erence to the type level.

Recall the EventQueue example of Section 7.2. To make it conform to the Linear

F -view we have to specify that the payload type is �xed. The keyword export is used

for this purpose:

EventQueue instance Linear by EventQL where

export a = Event .EventType

dsc0 = EventQueue . isEmpty

con0 = EventQueue . empty

: : :

The declaration informs the compiler that type variable a in the functorial structure

of Linear will always be Event .EventType .

We can explain now how polyaric types work when the type attribute of a signature

morphism has0 arit y, a discussionthat waspostponedin Section9.10.4. Theseare the

basecasesof polyaric types InserT and ExtracT :

ExtracT h0i t1 t2 :: t1 ! t2 (payload t1)

InserT h0i t1 t2 :: t2 (payload t1) ! t1

Compile-time function payload returns the payload type speci�ed in an export declar-

ation for its type argument.

Let us show someexamplesof particular instantiations:
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extracT hEventQL ,L1 i :: ExtracT h0 i EventQueue List []

In this example:

type(EventQL ) = EventQueue

arity (EventQueue ) = 0

payload(type(EventQL )) = Event.EventType

The result of the expansionis:

extracT_EventQL_L1 :: EventQueue ! List Event .EventType

Also:

inserT hEventQL ,L1 i :: InserT h0 i EventQueue List []

after expansion:

inserT_EventQL_L1 :: List Event .EventType ! EventQueue

Let us show what should happen with polytypic functions:

gsize hEventQL ,L1 i :: export (GSIZE h1 i EventQueue [])

EventQueue [Event .EventType ]

The compile-time meta-function export expands its �rst argument, the polyaric type

GSIZE, and on the resulting type-signature replacesEventQueue a by EventQueue

and it replacesall remaining occurrencesof a by Event . EventType . The resulting

type-signatureof the gsize instance is shown below:

gsize_EventQL_L1 ::

(Event .EventType ! Int ) ! EventQueue ! Int

In general, let Phni T [ ] expand to type-signatureS. The evaluation of:

export S T [E1; : : : ; En ]

where E = payload(T), yields the type-signature:

[(T a)=T][a=E ]S

Exporting is essential in dealing with composite manifest ADTs. Take for example a

Date ADT whoseimplementation type is hidden. It comeswith the following operat-

ors:
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mkDate :: Day ! Month ! Year ! Date

getDay :: Date ! Dat

getMonth :: Date ! Month

getYear :: Date ! Year

We can compute with datesby de�ning a signature morphism using the export facilit y.

Recall the Composite3 F -view from Section 9.10.1:

Date instance Composite3 by DateC3 where

export a = Day

b = Month

c = Year

con0 = mkDate

sel00 = getDay

sel01 = getMonth

sel02 = getYear

type Tuple3 a b c = (a,b,c )

tuple3 x y z = (x,y, z)

tuple30 (x ,y,z) = x

tuple31 (x ,y,z) = y

tuple32 (x ,y,z) = z

Tuple3 instance c_Composite3 by Tuple3F where

c_con0 = tuple3

c_sel00 = tuple30

c_sel01 = tuple31

c_sel02 = tuple32

mapDate :: (Day ! Day) ! (Month ! Month ) ! (Year ! Year )

! Date ! Date

mapDate = gmaphDateC3 ,Tuple3F i

In Haskell, n-ary tuples are constructed using bracket notation and there are only

prede�ned selectors for binary tuples, namely, fst and snd . The reader will agree

that concrete types of the form Tuple n for n > 0 could be assumedby the generic

programmer and their type, constructors, and selectorsbe generatedautomatically by

the compiler.
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Tuple typesarealsoconvenient for dealingwith randomaccessstructures such asarrays

of �xed length. For example:

type Array3 a = Array Int a

Array3 instance Composite3 by ArrayComposite3 where

con0 = � x y z ! array (0,2) [(0, x),(1, y),(2, z)]

sel00 = (!0)

sel01 = (!1)

sel02 = (!2)

mapArray3 :: (a ! b) ! Array3 a ! Array3 b

mapArray3 = gmaphArray3 ,Tuple3F i

9.14 Forgetful extraction

In type-unifying computations in which there is no needfor insertion, it is possibleto

cheat and extract payload from an ADT into a concrete type with di�eren t functorial

structure; more precisely, to a concrete type with a polynomial functor of lower coef-

�cient but equal number of payload. For instance, it is possibleto extract data from

an ADT conforming to Bin1 (de�ned in Section 9.10.1) to a list. The trick is to make

List conform to c_Bin1 , which is possiblebecauselist selectorsare not used when

inserT is omitted:

List instance C_Bin1 by ListBin1 where

c_dsc0 = null

c_con0 = Nil

c_con1 = � x y z ! Cons x (y ++ z)

c_sel10 = � x ! error "attempting to select "

c_sel11 = � x ! error "attempting to select "

c_sel12 = � x ! error "attempting to select "

Combining ADTs and CDTs with di�eren t functorial interfacesentails an exponential

increasein the number of signature-morphism arguments. We comeback to this topic

in Chapter 10.
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9.15 Passing and comparing payload between ADTs

BecauseinserT and extracT are parametric on signature morphisms for abstract and

concretetypes,it is possibleto write non-genericfunctions that `copy' payload between

di�eren t ADTs as long as the functorial structure is the same and the intermediate

concrete type is the same,even if the two signature morphisms for the concrete type

di�er. A simple example:

set2queue :: Ord a ) Set a ! Queue a

set2queue = inserT hQueueF, L2 i � extracT hSetF ,L1 i

Notice that type(L1)= type(L2) and that queueselectorsin L2 are never usedand list

selectorsin L1 are never used.

It is not possiblehowever to write payload-copy functions polytypically becauseinser-

tion, extraction, and polytypic functions with polyaric types are parametric only on

one signature morphism associated with an ADT.

It is also possible to compare payload between ADTs, i.e., to program extensional

equality (Section 9.7):

let x = extracT hSetF ,L1 i

y = extracT hQueueF,L1 i

in x == y

Notice that the samesignature morphism is usedfor both extraction functions.
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FutureWork

I have no illusions about the prospects of the theory I am proposing: it

will su�er the inevitable fate of being proven wrong in many, or most,

details . . . what I am hoping for is that it will be found to contain a

shadowy pattern of truth. . . [Koe89, p18]

Programming with ADTs is programming with their data contents, not their hidden

structure. But for structural polymorphism to be possible we need some notion of

structure.

In this thesis we have shown how polytypic programming can be reconciledwith data

abstraction. More precisely, inspired by the conceptof F -Algebra and signaturemorph-

ism, we have proposeda way for genericprogrammersto de�ne `structure' in terms of

ADT interfacesand to de�ne polytypic functions that are parametric on such structure.

We list somepossibilities for future work and research:

1. The languageextensionsproposedfrom Section9.9onwards have to be implemented.

The reader should bear in mind, however, that the Generic Haskell compiler is not

an open-sourceproject and the inclusion of any extension into an o�cial release

requires the authorisation (and, for practical purposes,the collaboration) with the

designteam.

2. Our proposal has focusedon �rst-order ADTs. It would be interesting to investig-

ate ADTs that are higher-order (take parameterisedADTs as parameters) or have

higher-order operators. Polyaric typeswould have to be `upgraded' to special poly-

kinded typesthat capture not only the arit y but also the order of ADTs. Also, the

reduction rules for context-parametric polykinded typesmust take into account the

possibility that higher-order ADTs may be passedconstrainedADTs as arguments.

Another issue to addressis that, with higher-order operators, discriminators and

partial selectorsdisappear in favour of higher-ordereliminators. For instance,partial

selectorsnull , head , and tail in lists may be replacedby eliminator:

255
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caseList :: 8 a b. (Unit ! c) ! ((a,List a) ! c) ! List a ! c

caseList f g l = if null l then f unit

else g ( head l, tail l )

Functions on lists can be programmed in terms of eliminators:

length :: List a ! Int

length = caseList ( const 0) ((+1) � length � snd )

And so would polytypic functions be programmed using eliminators. F -views and

named signature morphisms would have to be adapted accordingly.

3. Objects can be seenas �rst-class ADTs with higher-order operators. We believe

the development of polytypic programming in object-oriented languageslike C++

or Java will have to follow an EC[I] model. In this thesis we have not taken into

account the possibility of subtyping. Haskell does not support subtyping but this

may change in the future. Polytypic programming in object-oriented languagesis

certainly a path worth investigating and carrying the ideasof polytypic extensional

programming to theselanguagesis an interesting starting point.

4. We would like to carry out the ideaspresented here to the SyB approach. First, in-

stancesof gfoldl could be generatedautomatically following the de�nitional struc-

ture of user-de�ned F -views. More precisely, in SyB there are instancesof gfoldl

for linear ADTs for which there exists an extraction function toList and an inser-

tion function fromList , e.g.:

instance ( Data a, Ord a) ) Data (OrdSet a) where

gfoldl k z s = k (z fromList ) (toList s)

: : :

If extraction and insertion functions are not o�ered by the interface they could be

obtained automatically using inserT and extracT :

instance ( Data a, Ord a) ) Data (OrdSet a) where

gfoldl k z s = k (z inserT hSetF ,L1 i ) (extracT hSetF, L1 i s)

: : :

Notice it would be possibleto useinsertion and extraction functions from/to other

concretetypes than lists.

Second,genericfunctions on ADTs could begeneratedautomatically by the compiler



257

aspolytypically-extended versionsof ordinary SyB genericfunctions. More precisely,

the instance:

instance Size a ) Size ( OrdSet a) where

gsize = gsize � extracT hSetF ,L1 i

could be generatedautomatically from the polytypic application:

gsize hSetF ,L1 i

provided the programmer has given the de�nition:

gsize hf, c_f i = gsize htype (c_f) i � extract hf,c_f i

which tells the compiler that gsize htype (c_f) i is to be the instance of gsize for

the concretetype in c_f .

5. The separation of insertion and extraction calls for code optimisation techniques

in the form of fusion [AS05]. In particular, it is important to investigate whether

insertion and extraction in bounded ADTs can be fused.

6. The possibility of using di�eren t F -views in polytypic de�nitions could be invest-

igated. There are someproblems to tackle. For instance, it is possible to extract

payload from a tree into a list in the order imposedby calls to discriminators and

selectors,but there are many ways of constructing a tree from a list, and perhaps

they cannot be captured uniformly.

Furthermore, sometimesit is not possibleto de�ne a suitable F -view for an ADT.

A simple examplewould be a Tree ADT with the following operators:

isEmptyT :: Tree a ! Bool

emptyT :: Tree a

insert :: a ! Tree a ! Tree a

node :: Tree a ! a

left :: Tree a ! Tree a

right :: Tree a ! Tree a

The functor describedby constructors is T a = 1+ a� (T a) whereasthe onedescribed

by discriminators and selectorsis T a = 1 + a � (T a) � (T a). We may argue that

it is possible to wrap the Tree interface behind a Heap one (Section 9.3). Or we

may argue that it is possibleto de�ne a joinT operator that mergestwo trees into

a single tree so that Tree 's interface can be mapped to the Linear F -view thus:
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Tree instance Linear by TreeL where

dsc0 = isEmptyT

con0 = emptyT

con1 = insert

sel10 = node

sel11 = � t ! joinT (left t) (right t)

We may also argue that it is possibleto rely on polytypic extension:

instance gmaphtype =Tree , type =List i g =

inserT hTreeL ,L1 i � flattenT � gmaphBTree i g

� extracT hTreeF, BinTreeF i

where:

flattenT :: BTree a ! List a

is a function that 
attens the tree into a list.

However, it seemsreasonableto investigate the possibility of de�ning polytypic F -

view transformers that would enableprogrammers to write polytypic functions on

ADTs using di�eren t F -views by meansof thesetransformers.

7. Polytypic functions are not parametric on basetypesin Generic Haskell, nor in our

scheme(Section 6.1.12).
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AppendixA

DetailsfromChapter5

A.1 Our speci�cation formalism, set-theoretically

Formal or symbolic systemsaretypically presented (not necessarilycontriv edor grasped)

in four steps:

1. De�ne the syntax of terms and the context-dependent information, e.g., sort rules

that inductiv ely de�ne the set of well-formed, well-sorted terms.

2. De�ne the semantics syntactically by means of relations between terms. An ax-

iomatic semantics de�nes equations between terms which are axioms in a proof

system of syntactic equality. An axiomatic semantics also provides a speci�cation

of what is wanted: entities conforming to the speci�cation are models . An opera-

tional semantics de�nes a reduction relation betweenterms, usually by directing

the equationswhich becomerewrite rules.

3. Investigate the denotational semantics , i.e., provide a translation to another

formal system that provides the semantics: syntactic terms are mapped to se-

mantic values and syntactic relations to semantic relations. This mapping is in-

teresting if more than one syntactic term may stand for the samesemantic value.

The translation is provided by an interpreter (poshly called `semantic function')

[Sto77, Sch94, Ten76], which is expressedin a meta-languagewith care to avoid

circularit y [Rey98]. The transformation of interpreters into operational semantics

or abstract machines has beenstudied recently, e.g. [ABDM03].

4. Make sure the translation works, i.e., that the syntactic and semantic formalisms

are the same. More precisely, prove the syntactic consistency of the proof system

(roughly, it cannot prove all possibleequationsbetweenterms), the semantic con-

sistency (roughly, there is someequation that is not satis�ed by the models), the

soundness (if two terms are related by an equation their meaningsare the same),

the semantic completeness (if two meanings are equal, the syntactic equation

260
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betweentheir symbolising terms can be proven syntactically), and syntactic com-

pleteness (the set of equations given is enough to prove all desirable equations

betweenterms).

Consistencyand soundnesscan be proven from properties of the rewrite system. For

instance, if the system of induced rewrite rules is strongly normalising (every term

has a normal form) and con
uent (the normal form is unique), then it is consistent

and we can prove an equation between terms by testing whether they have the same

normal form. Also, soundnesscan beusedto prove that an equation is not syntactically

provable by �nding a counterexample, i.e., model that satis�es the axioms but not the

equation.

In Chapter 5 we have described our formal system of algebraic speci�cations by ex-

ample. In this appendix we provide its set-theoretic formalisation. In Section A.3 we

alsodescribe its categorial rendition, which is more concisebecausethe low-level details

provided by the set-theoretic formulation are abstracted away by the conceptswielded.

Thesedetails are important for us becausewe are concernedwith the structure of the

objects involved. Moreover, explicit signaturesand laws are essential in our approach

to Generic Programming.

The set-theoretic formalisation is presented in painstaking detail for reasonsof pre-

cision which inexorably entails a bit of verbosity that might make `the obvious seem

impressive' and might look `overly abstract' [BG82]. Of particular interest is our de�n-

ition of �-Algebra and F -Algebra. We have borrowed some concepts and notation

from [BG82, Bai89, Ber01, Hei96, Mar98, Mit96 ]. Our presentation makesheavy useof

inductiv e de�nitions in natural-deduction style interspersedwith discursive expositions

of the intuitions involved.

Our basic formalism can be described informally in a few sentences: all the elements

present in all speci�cations are collected into sets: a set of all the de�ned sorts, a set

of all operator symbols, a set of all equations, a set of well-sorted closed terms that

can be formed from proper and constant operators, a set of well-formed open terms

that can be formed by allowing free variables to be terms, etc. Operators and terms

are classi�ed according to their sort-signature and sort respectively. Equations are

axioms in a proof system of syntactic equality. Issuesof consistency, soundness,and

completenessare discussedthereafter. Algebras provide meaningsto speci�cations and



A.1 Our speci�cation formalism, set-theoretically 262

are also described set-theoretically.

A.1.1 Signatures and sorts

It is convenient to use the set of sorts as an indexing device for other sets. Box A.1

(page263) provides the relevant machinery. The following de�nition allows us to index

the set of operators conveniently.

Definition A.1.1 Given a set S, we de�ne S� asthe smallest language(set of strings)

de�ned by the following inductiv e rules:

� 2 S�

s 2 S

quote(s) 2 S�

x 2 S� y 2 S�

xy 2 S�

where � is the empty string, function quote returns the symbol of its argument as a

string, and string concatenation is denoted by string juxtap osition.

We de�ne S+ as the set S� � S:

w 2 S� s 2 S

(w; s) 2 S+

�

We write ws as syntactic sugar for (w; s). In what follows w will always range over

strings of S� and s over symbols in S. Sort-signatures have the form w ! s with

the convention that w is treated as a string and the whitespaceseparating argument

sorts is ignored. For example, the plus operator in Figure 5.3 has sort-signature

NatNat ! Nat .

Definition A.1.2 A signatur e � is a pair (S; 
) whereS is a �nite set of sorts and


 is an S+ -set of operator-symb ol sets, i.e., 
 = f 
 ws j w2S� ^ s2Sg. Operator

symbols are sorted according to their sort-signature, i.e., an operator � : w ! s is in

the set 
 ws. �

It is assumedthat operator symbols have a unique sort-signature (this holds in the

previousde�nition because
 ws is a set). For simplicit y, wealsoassumethat all operator
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BOX A.1: S-setsand their operations

A non-empty and enumerablesetof setsC canbe indexedby a non-empty and

enumerable set S if there is a total surjection i : S ! C. To abbreviate, we

say C is an S-set and for every s2S we write Cs for i (s). Thus the following

equality: C = f Cs j s 2 S g

We de�ne S-set operations as pointwise liftings of set operations. Let C; D be

S-sets:

S-nul l set : 0 def= f ; s j s 2 S g

S-inclusion : C _� D i� 8s2S: Cs � Ds

S-pr oduct C _� D def= f Cs � Ds j s 2 S g

S-union C _[ D def= f Cs [ Ds j s 2 S g

S-arr ow C _! D def= f Cs ! Ds j s 2 S g

Notice that 0 6= ; , hencethe changeof name and symbol.

An S-function f : C _! D is an S-set of functions f f s : Cs ! Ds j s2Sg

which is an injective, surjective, or bijective S-function i� every f s is an in-

jective, surjective, or bijective function respectively. Other notions such as

S-composition can be de�ned in a similar fashion.

An S-r elation R is an S-subset of an S-product: R _� C _� D , i.e., for every

s2S, Rs � Cs � Ds is a relation. R is an equivalence or an order S-relation

if every Rs is an equivalenceor an order relation respectively. R is de�ned as

an S-relation on C when R _� C _� C.

Let R be an S-equivalence relation, the S-quotient is de�ned as follows:

(C _=R)s
def= Cs=Rs where Cs=Rs denotesthe partition of the set Cs into the

equivalenceclassesgeneratedby Rs.

In the following pageswe `drop dots' and overload set operators and S-set

operators. Whether an operator is an S-set operator or a set operator will be

determined from whether its arguments are S-setsor not.
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symbols are di�eren t (not overloaded) but this is not a strict requirement, for sort-

signatures are not inferred (Section 4.7.2). Becausethe number of operators in a

speci�cation is �nite, many sets
 ws will be empty. In subsequent de�nitions predicates

of the form � 2 
 ws are placed as rule premises.

A.1.2 Terms, sort-assignmen ts and substitution

Given a signature we can de�ne the set of closedterms (with no free variables), but

becauseequationsinvolve free variables it is better to de�ne the set of open terms from

the start and de�ne the set of closedterms as a special case.Variables are also sorted.

For convenience, instead of assuming the existenceof an S-set of variables we make

useof the notion of sort-assignment, i.e., a �nite set of pairs that is the extensionof a

�nite function from variables to sorts.

Definition A.1.3 A sort-assignment � : X ! S is a �nite function from a �nite

set of variables to the �nite set of sorts. �

We use sort-assignments both intensionally (i.e., �( x) is a sort) and extensionally as

setsof pairs. Being a set, X has no repetitions.

Definition A.1.4 Given a signature � = (S; 
) and a sort-assignment � we de�ne

the S-set of open terms :

Term(� ; �) = f Term(� ; �) s j s 2 S g

for every sort s inductiv ely as follows:

�( x) = s

x 2 Term(� ; �) s

� 2 
 s

� 2 Term(� ; �) s

� 2 
 s1 :::sn s t i 2 Term(� ; �) si i 2 f 1: : : ng n > 0

� t1 : : : tn 2 Term(� ; �) s

The S-set of closedterms Term(� ; ; ) is thus de�ned as a special case. It follows from

the above de�nition that Term(� ; ; ) � Term(� ; �). �
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Becauseof the uniform treatment of constant and proper operators, the secondinduct-

ive rule in De�nition A.1.4 could be embedded in the last one by making n � 0, but

it would lose the 
a vour of a de�nition by structural induction. Notice that De�ni-

tion A.1.4 de�nes the set of terms by induction on the following recursive grammar of

terms:

t ::= x j � j � t1 : : : tn

wherex is a meta-variable standing for any object variable, � is a meta-variable standing

for any constant operator symbol in the secondalternative, and for a proper operator

of arit y n > 0 in the last alternative. In subsequent de�nitions or proofs, the phrase

`by structural induction on terms' will mean by induction on this grammar.

Figure A.1 (page 266) formally describes the signature of a speci�cation example of

strings and characters in a given sort-assignment.

The S-set of closed terms can also be de�ned in terms of a substitution of all free

variables in open terms for closedterms. Sinceterms have no bound variables, the set

of fr ee variables of a term can be de�ned easily.

Definition A.1.5 Given a term t 2 Term(� ; �) s, the set FV (t) of free variables of t

is de�ned inductiv ely on the structure of t as follows:

x 2 Term(� ; �) s

FV (x) def= f xg

� 2 Term(� ; �) s

FV(� ) def= ;

� 2 
 s1 :::sn s t i 2 Term(� ; �) si i 2 f 1: : : ng n > 0

FV (� t1 : : : tn) def= FV(t1) [ : : : [ FV (tn )

�

We �rst de�ne the substitution of free variables for open terms and then de�ne the

substitution of free variables for closed terms as a special case.

Definition A.1.6 Given term t of sort s in which variable x may occur free, and

another term t0 with the same sort as x, the substitution of t 0 for x in t produces

another term of the samesort as t. A substitution is a function from open terms to
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signature STRING signature CHAR
sorts String sorts Char
use CHAR ops
ops ch0 : ! Char

empty : ! String : : :
pre : Char String ! String ch255 : ! Char

end end

� def= (S; 
) where S def= f Char; Stringg

 = f 
 Char ; 
 String ; 
 CharStringString g


 Char
def= f ch0; : : : ; ch255g


 String
def= f emptyg


 CharStringString
def= f preg

� def= f (c;Char ); (s;String) g

Term(� ; ; )Char
def= f ch0; : : : ; ch255 g

Term(� ; �) Char = f cg [ Term(� ; ; )Char

Term(� ; �) String
def= f s; empty; pre c s; pre c empty; pre ch0 empty;

pre ch1 empty; : : : ; pre c (pre ch0 empty); : : :g

Figure A.1: Strings and characters in a given sort-assignment.
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open terms which we denote as [t0=x]t. The following de�nition provides its `type':

t 2 Term(� ; � [ f (x; s0)g)s t0 2 Term(� ; �) s0

[t0=x]t 2 Term(� ; �) s

� is enlarged to guarantee the existenceof variable x with sort s0. Notice that � is a

function so for the union to yield a valid sort-assignment there cannot be a binding for

x in �. This devicewill be used in subsequent de�nitions.

The `body' of substitution is de�ned inductiv ely as follows:

x 2 Dom(�)

[t0=x]x def= t0

y 2 Dom(�) y 6= x

[t0=x]y def= y

� 2 Term(� ; �) s

[t0=x]� def= �

� 2 
 s1 :::sn s t i 2 Term(� ; �) si i 2 f 1: : : ng n > 0

[t0=x](� t1 : : : tn ) def= � ([t0=x]t1) : : : ([t0=x]tn )

The substitution of a variable for a closed term is a special casewhere t 02Term(� ; ; )s0.

�

Substituting all remaining free variables in t again for closed terms producesa term

in Term(� ; ; )s. Recall that for each s, Term(� ; ; )s � Term(� ; �) s and therefore all

possiblesubstitutions of open-term variables for closedterms will produceclosedterms

in Term(� ; ; )s. This is consistent with our use of universally quanti�ed variables as

standing for the possiblycountably in�nite closedterms of the samesort, which enables

us to write a �nite set of equations involving variables (perhaps we should call them

equation schemas) instead of a countably in�nite number of them involving closed

terms.

A.1.3 Algebras

The semantics of a signature � (no equations) is provided by an algebra A . Free

variables for equations are added by a theory. In order to save de�nitions, let us

de�ne the meaning of a signature in the presenceof a sort-assignment (which becomes

necessarywhen equationsare added later on). The semantics is formalised by de�ning

a `symbol-mapping' S-function that maps sorts to carriers and operator symbols to
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algebraic operators, plus a semantic S-function that provides the meaning (value in a

carrier) of a term when given the value-assignment that provides the meanings(values)

of its free variables.

Definition A.1.7 A � -A lgebra A for a signature � def= (S; 
) and sort-assignment �

is a pair (jAj ; 
 A ) where:

1. jAj is an S-set of carrier sets,each providing valuesfor each sort in S.

2. 
 A is an S+ -set of algebr aic operators . It is common mathematical practice to

usecartesian products in the carrier-signatur es of algebraic operators, i.e.,

� A 2 
 A
s1 :::sn s

� A : jAj s1 � : : : � jAj sn ! jAj s

3. There is an overloadedsymbol-mapping S-function 1, I , that consistently maps

sorts to carriers and operator symbols to algebraic operators. That is, I : S ! jAj

and I : 
 ! 
 A such that:

s 2 S

I (s) def= jAj s

� 2 
 s1 :::sn s n � 0

I (� ) 2 
 A
s1 :::sn s

In other words:

� : s1 : : : sn ! s n � 0

I (� ) : I (s1) : : : I (sn ) ! I (s)

4. There is a value-assignment or �nite function � : X !
S

s
jAj s from variables to

valuesof the carriers that conforms to �, i.e.: � (x) 2 jAj �( x) .

5. There is a semantic S-function h where:

hs : Term(� ; �) s ! (X !
[

s

jAj s) ! jAj s

It has becomestandard practice in denoting semantic functions to use the symbol

of the entit y providing the semantics and a double-bracket notation for semantic
1Or if the reader prefers, two S-functions with overloaded name.
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function application in order to underline the fact that arguments are syntactic

entities that are interpreted in a particular semantic universe[Mit96 , Sto77, Ten76].

In the rest of the chapter wewrite A sJ�Kinsteadof hs and A sJtK� insteadof (hs(t))( � ),

breaking our convention of using explicit parenthesesfor application at the meta-

level only for this function (Section 2.6).

A sJ�Kis inductiv ely de�ned on the structure of terms as follows:

�( x) = s

A sJxK� def= � (x)
sem1

� 2 
 s

A sJ� K� def= I (� )
sem2

� 2 
 s1 :::sn s t i 2 Term(� ; �) si i 2 f 1: : : ng n > 0

A sJ� t1 : : : tnK� def= (I (� ))( A s1 Jt1K�; : : : ; A sn JtnK� )
sem3

�

The following property follows from the de�nition. In words, the property states that

if a term of sort s is in the set of open terms then its meaning with respect to a

value-assignment giving meaning to its free variables is in the carrier giving meaning

to s:

t 2 Term(� ; �) s

A sJtK� 2 jAj s

In some presentations the set of variables X is an S-set, and consequently � and �

are S-functions; in particular � s : X s ! jAj s. In this setting, the semantic S-function

can be seenas an extensionof value-assignments for variables to value-assignments for

terms (domain extension), and is sometimesdenoted as � # (seealso Section A.3).

Figure A.2 (page 271) shows two possible algebras giving meaning to the algebraic

speci�cation of characters and strings of Figure A.1. The �rst box de�nes the S-sets

jAj and 
 A . It also de�nes that, as required by De�nition A.1.7(3), I (s) def= jAj s for

all s2f Char; Stringg. Finally, the value-assignment � is empty becausethere are no

variablesor equationsin Figure A.1. Thesede�nitions are the samefor the two algebras

given in the secondand third boxes.
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In the secondbox the carrier for characters is the (extended) asci i table and the carrier

for strings is the set of strings that can be formed with characters from the asci i table.

The reader may want to recall De�nition A.1.1 where the star operator, � , and string

concatenation are de�ned.

Notice that the de�nition of 
 A
Char is informal. The carrier jAj Char contains constant

values, not algebraic operators. We can consider constants c2jAj Char as functions

c : jAj 1 ! jAj Char by positing the existenceof an extra sort name 1 with carrier jAj 1
which is the carrier of nullary cartesian products (seeSections3.6 and A.3.1).

There are two algebraic operators with signature jAj Char � jAj String ! jAj String called

`append' and `prepend' whosedescription follows:

c 2 asci i s 2 asci i �

append(c;s) 2 asci i � append(c;s) def= s(c�)

c 2 asci i s 2 asci i �

prepend(c;s) 2 asci i � prepend(c;s) def= cs

I maps pre to prepend, but it could have mapped it to append.

In the third box, the carrier for characters is a singleton set with element $. All ch i

operators are mapped by I to $. Therefore, if the speci�cation had the equations

ch0 = ch1 , . . . , ch254 = ch255 , this algebra would satisfy them whereasthe algebra

in the secondbox would not (Section A.1.6). Again, 
 A
Char is informally de�ned to be

jAj Char , but bear in mind that formally there is a lifting of constants to functions. The

meaning for strings is provided by stacks. The empty string is the empty stack [ ], and

pre is mapped to the push operator for stacks. Thus, jAj String contains all the stack

valuesthat can be formed by stacking $s.

A.1.4 Substitution lemma

Each S-indexed semantic function is compositional: the meaning of a term depends

on the meaning of its subterms in a value-assignment. As expected, the substitution

lemma holds: the meaning of [t0=x]t is the sameas the meaning of the term t in a

value-assignment that assignsto x the meaning of t 0. To state the substitution lemma

we need the notion of value-assignment enlargement denoted � hx 7! vi , where � is
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jAj def= f jAj Char ; jAj String g


 A def= f 
 A
Char ; 
 A

String ; 
 A
CharStringString g

I (Char) def= jAj Char

I (String) def= jAj String

� def= f g

jAj Char
def= asci i

jAj String
def= asci i �


 A
Char

def= jAj Char


 A
String

def= f � g


 A
CharStringString

def= f append; prepend g

I (ch0 ) def= nul

I (ch1 ) def= soh
...

I (ch255 ) def=

I (empty ) def= �

I (pre ) def= prepend

jAj Char
def= f $ g

jAj String
def= f [ ]; [$]; [$$]; [$$$]; : : : ; g


 A
Char

def= jAj Char


 A
String

def= f [ ] g


 A
CharStringString

def= f push g

I (ch0 ) def= $
...

I (ch255 ) def= $

I (empty ) def= [ ]

I (pre ) def= push

Figure A.2: Two possiblealgebraic semantics for the speci�cation of Figure A.1.



A.1 Our speci�cation formalism, set-theoretically 272

enlargedwith the pair (x; v) such that v2jAj �( x) . Context enlargement binds stronger

than application. An enlargement creates a new value-assignment that overlays any

previous binding for x, that is:

� hx 7! vi (y) def= if y = x then v else� (y)

Lemma A.1.1 (Substitution) Let � = � 0[ f (x; s0)g

t 2 Term(� ; �) s t0 2 Term(� ; � 0)s0 [t0=x]t 2 Term(� ; � 0)s

A sJ [t0=x]t K� = A sJtK� hx 7! A sJt0K� i

(Because� 0 has lower cardinality than �, open terms can be turned into closedterms

by repeated substitution.)

Pr oof: by straightforward induction on t (assumingthe preconditions hold):

� t is x:

A sJ [t0=x]x K�

= f Substitution g

A sJ t0 K�

= f x =2 FV(t0) g

A sJ x K� hx 7! A sJt0K� i

� t is y and y 6= x:

A sJ [t0=x]y K�

= f Substitution g

A sJ y K�

= f x =2 FV(y) g

A sJ y K� hx 7! A sJt0K� i

� t is � and � 2 
 s:

A sJ [t0=x]� K�

= f Substitution g

A sJ � K�

= f x =2 FV(� ) g

A sJ � K� hx 7! A sJt0K� i
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� t is � t1 : : : tn :

A sJ [t0=x](� t1 : : : tn ) K�

= f Substitution g

A sJ � ([t0=x]t1) : : : ([t0=x]tn ) K�

= f De�nition of A sJ�K� g

(I (� ))( A sJ[t0=x]t1K�; : : : ; A sJ[t0=x]tnK�

= f Induction hypothesisg

(I (� ))( A sJt1K� hx 7! A sJt0K� i ; : : : ; A sJtnK� hx 7! A sJt0K� i )

= f De�nition of A sJ�K� g

A sJ � t1 : : : tn K� hx 7! A sJt0K� i

�

A.1.5 Signature morphisms

Before discussingtheories and homomorphismswe introduce the notion of signature

morphism. A signature morphism is similar to a symbol-mapping S-function (De�ni-

tion A.1.7), but sorts and operators in onesignature are mapped to sorts and operators

in another signature instead of to carriers and algebraic operators.

Definition A.1.8 A signatur e morphism M : � ! � 0 between two signatures

� def= (S; 
) and � 0 def= (S0; 
 0) is an overloadedS-function that consistently maps sorts

to sorts and operator symbols to operator symbols:

s 2 S

M (s) 2 S0

� 2 
 s1 :::sn s n � 0

M (� ) 2 
 0
M (s1 ):::M (sn )M (s)

that is :
� : s1 : : : sn ! s n � 0

M (� ) : M (s1) : : : M (sn ) ! M (s)

�

The set of open terms Term(� 0; �) can be de�ned from Term(� ; �) using a signature

morphism M by a sort of `syntactic S-function' similar in spirit to AJ�Konly that it

maps every term in Term(� ; �) s to a term in Term(� 0; �) M (s) , for every sort s2S. In
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order to be preciseabout the fact that every variable in Dom(�) is mapped to itself,

and to be able to de�ne also the set of open terms Term(� 0; � 0) where � 0 6= �, we need

another device,a variable-assignment � : Dom(�) ! Dom(� 0) such that if �( x) = s

then � 0(� (x)) = M (s). We do not use variable-assignments again and only mention

them for the sake of precision.

A.1.6 Theories and homomorphisms

Variables have beentaken into account in the previous de�nitions which assumedthe

existenceof a sort-assignment �. A basic theory adds equations to a signature. Since

we consider conditional equations in Section 5.5, we generalisein advance and speak

about laws instead of equations. Equations are between terms of the samesort and

therefore the laws form an S-set. Equations t 1 = t2 are formalised by triples of the

form ht1; t2; � i . Mentioning the sort-assignment explicitly is more preciseand will be

necessaryin order to specify the proof system of which the equations are axioms, in

particular Leibniz's rule (i.e., substitution of equalsfor equals)where equality is made

compatible with substitution.

Definition A.1.9 A basic � -The ory (or just theory) T is a pair (� ; L ) where � is

a signature and L is an S-set of laws (equations) where:

L s � f ht1; t2; � i j t12Term(� ; �) s ^ t22Term(� ; �) s g

In what follows we shall usesyntactic sugarand write ht 1 = t2; � i instead of ht1; t2; � i .

�

The following is an exampleequation:

h pop (push x s) = s ; f (x; Nat ); (s;Stack)g i

Equations introduce equivalence relations among terms and constitute axioms in a

proof system of syntactic equality which we now de�ne precisely. (We follow standard

notation and write ` � if the formula � can be proven in the proof system from the

axioms by application of rules of inference.)
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First, equality is an equivalencerelation so we can write down the following rules of

inference:

` ht = t; � i
ref

` ht1 = t2; � i

` ht2 = t1; � i
sym

` ht1 = t2; � i ` ht2 = t3; � i

` ht1 = t3; � i
trs

Second,equality must be compatible with operator symbols:

` ht1 = t0
1; � i � � � ` htn = t0

n ; � i � 2 
 s1 :::sn s n � 0

` h� t1 : : : tn = � t0
1 : : : t0

n ; � i
ops

When n = 0, the equation h� = � ; � i is trivially true.

Third, equality must be compatible with substitution, which provides Leibniz's rule of

inference:

` ht1 = t2; � [ f (x; s0)gi ` ht0
1 = t0

2; � i t0
1; t0

2 2 Term(� ; �) s0

` h[t0
1=x]t1 = [t0

2=x]t2; � i
sub

The sort-assignment is enlarged in the premise to guarantee that there is a sort for

variable x. Notice the rule is more general than the typical one where the sameterm

is replacedon both sidesin the consequent.

Sort-assignments can be extendedin premisesor conclusionsby adding extra variables:

` ht1 = t2; � i

` ht1 = t2; � [ f (x; s)gi
enl1

` ht1 = t2; � [ f (x; s)gi

` ht1 = t2; � i
enl2

We have not provided a proof system at the semantic level for it would only contain

Rule ref : more than oneterm may stand for the samevalue but valuesare all distinct.

The following three de�nitions make precisethe meaning of a theory.

Definition A.1.10 An algebraA satis�es an equation in the value-assignment� when

the semantic S-function assignsthe samemeaning to both terms. That is, for any t 1
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and t2 in Term(� ; �) s:

A sJt1K� = A sJt2K�

A j= � ht1 = t2; � i

An algebra satis�es the laws in a value-assignmentwhen it satis�es all the laws in L .

The algebra is a model if it satis�es all equations in all possiblevalue-assignments. �

Notice that the notion of validity (an equation that is satis�ed by all algebras)is in our

caseuninteresting aswe are only concernedwith equationsthat are satis�ed by speci�c

classesof algebras.

We are now in a position to discussconsistency, soundness,and completeness.At the

semantic level there is no notion of proof but of semantic implic ation : an S-set of

equationsL semantically implies another equation (not in L ) if that equation is satis�ed

by the models that satisfy L . The S-set of equationsL must be closedunder semantic

implication (semantic completeness)and syntactic provabilit y (syntactic completeness).

It must also be semantically consistent (i.e., there is someequation not semantically

implied by L) and syntactically consistent (i.e., there is someunprovable equation).

A proof systemwhere all equationsare provable would prove contradictions. A model

where all equations are semantically implied would be a model of contradictions.

Completeness,consistency, and soundnessare proven with respect to the given equa-

tional axioms of a speci�cation. It is the task of the speci�cation designer to prove

these properties formally, certainly a non-trivial task. Soundnessis the easiest: the

equational proof systemis soundwhen syntactically provable equationsare satis�ed by

all models. A proof of soundnessfor the equational system can be found in [Mit96 ,

p165]. Brie
y , axioms and rules of inference are proven sound (if the antecedent is

sound so must be the consequent) so that syntactic proofs can only produce sound

equations. Consequently, given a speci�cation, designersonly needto prove the sound-

nessof axioms.

Proving completenessand consistencycan get intricate in the caseof complex speci�c-

ations. There is however a systematic method for writing a set of equations that will

most probably axiomatise the imagined type [Mar98, p189-190].This method hasbeen

usedin the production of all speci�cation examplesdiscussedin this work. Brie
y , the
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method consistsin (1) identifying the set of constructor operators that generateall the

terms representing values of the type, (2) writing equations between constructors to

make equal valuescongruent, and (3) writing equations that specify the behaviour of

the remaining operators on constructor terms.

Completenessis essential to guarantee that we have speci�ed the intendedmodel. How-

ever, we want our speci�cation to be satis�ed by a unique model (up to isomorphism).

We are interested in a least-model completeness,namely, that equations satis�ed by

the least model are syntactically provable. This form of completenessfails for algebras

with empty carriers2 (which we bar by �at), or laws with disjunctions (which is not our

case)[Mit96 , p157-179]. The least model is unique (up to isomorphism) and in order

to de�ne it we need the notion of homomorphism (literally , `same-form-ism')between

algebras.

In the absenceof equations, the S-sets Term(� ; ; ) and Term(� ; �) are themselves

algebraswhere the symbol-mapping and semantic S-functions are identities and where

the carrier for sort s is Term(� ; ; )s. This construction receives the name of fr ee

algebr a from the fact that an algebra is obtained for free only from terms, where

syntactically di�eren t terms are taken as semantically di�eren t values. This algebra

constitutes a least model.

In the presenceof equationsand sort-assignment �, terms are classi�ed into equivalence

classes.It is common practice to denote by [t] the equivalenc e class of term t which

contains all those terms equal to t as establishedby the equations in L or those that

can be proven syntactically from them. Let us denote by � L the equivalencerelation

on terms generatedby the proof system, that is:

t � L t0 , ` ht = t0; � i

Inferencerule ops states that syntactic equality is compatible with the operators of the

algebra,making � L a congruenc e relation on terms. In this case,the S-set of closed

terms partitioned by equivalence classesconstitutes the least model. The following

de�nitions elaborate the technical sca�olding.

Definition A.1.11 A � -homomorphism betweentwo algebrasA and B is an over-

2The set of sorts is not empty so if carriers are empty there cannot exist a value-assignment con-
forming to any sort-assignment.
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loaded total map H : A ! B consistently mapping valuesand operators in A to values

and operators in B. More precisely, H stands for an S-function H : jAj ! jBj and an

S+ -function H : 
 A ! 
 B such that:

v 2 jAj s

H s(v) 2 jBjs

� A : jAj s1 � : : : � jAj sn ! jAj s n � 0

H s1 :::sn s(� A ) : H s1 (jAj s1 ) � : : : � H sn (jAj sn ) ! H s(jAj s)

SinceH 's sort index is equal to the sort/sort-index of its argument, let us drop it and

rewrite the rule as follows:

v 2 jAj s

H (v) 2 jBjs

� A : jAj s1 � : : : � jAj sn ! jAj s n � 0

H (� A ) : H (jAj s1 ) � : : : � H (jAj sn ) ! H (jAj s)

H must preserve the algebraicstructure, i.e., the equationssatis�ed by � A are satis�ed

by H (� A ) in B. This is captured by the following rule:

v1 2 jAj s1 � � � vn 2 jAj sn � A 2 
 A
s1 :::sn s n � 0

H (� A (v1; : : : ; vn )) = (H (� A ))( H (v1); : : : ; H (vn ))
hom

�

There can be �-homomorphisms from algebrasthat satisfy fewer equationsto algebras

that satisfy more equations but not the opposite; otherwise, di�eren t values in jBj s

would be imagesof the samevalue in jAj s, for somes, and therefore H : jAj ! jBj

would not be an S-function. We are interested in models that only satisfy equations

syntactically provable from axioms (no confusion) and whereevery value is symbolised

by at least one term (no junk).

Algebraic models can be ordered by a `less junk and less confusion than' pre-order

relation which, like any pre-order, has a unique least (or initial) element and there is a

unique �-homomorphism from it to any other model [LEW96].

With non-empty carriers, the initial model always exists. It is trivial to check (and

we do so in a moment) that in the absenceof variables and equations, Term(� ; ; )

consideredasan algebrais by construction the initial model, wherethe S-set of carriers

is Term(� ; ; ) itself and the S-set of algebraic operators is just 
. In the presence
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of variables and equations, � is not empty and we assumethe existenceof a value-

assignment � that conforms to �. However, recall from De�nition A.1.6 that under

repeatedsubstitution Term(� ; �) becomesTerm(� ; ; ). Sincesubstitution is compatible

with syntactic equality, the proof system induces a least congruenceS-relation � L

between closed terms that partitions the set of closed terms into equivalenceclasses

yielding the S-quotient Term(� ; ; )=� L , which is the initial model.

A.1.7 Initial mo dels

In order to keepthe distinction betweensyntax and semantics, and for consistencywith

the use of cartesian products in carrier-signatures, we de�ne the notion of open term

algebra as di�eren t from the set of open terms.

Definition A.1.12 The open term algebr a is T��
def= (jT�� j; 
 T�� ) where jT�� j is

an S-set of carriers and 
 T�� is an S+ -set of algebraic operators such that the carrier

jT�� js of open term values of sort s is de�ned inductiv ely as follows:

�( x) = s

x 2 jT�� js

� 2 
 s

� 2 jT�� js

� 2 
 s1 :::sn s t i 2 jT�� jsi i 2 f 1: : : ng n > 0

� (t1; : : : ; tn ) 2 jT�� js

�

The changeof notation from Term(� ; �) to T�� and from 
 to 
 T�� is similar to a type

cast where the sameentit y is consideredashaving a di�eren t meaning. Notationally, 


is the set of syntactic symbolswhereas
 T�� hasthe sameelements as
 now considered

as algebraic operators:

� : s1 : : : sn ! s � 2 
 s1 :::sn s n � 0

� : jT�� js1 � : : : � jT�� jsn ! jT�� js � 2 
 T��
s1:::sn s

Sort-signatureshave changedto carrier-signatureswith cartesianproducts. The gram-

mar of open terms is now:

t ::= x j � j � (t1; : : : ; tn )

With closedterms, � = ; and there is no needfor value assignments: the closed term

algebr a is T�
def= T� ; .
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Now, it is not di�cult to glean from De�nition A.1.7 that the symbol-mapping and

the semantic S-functions both make up a �-homomorphism. The overloaded symbol-

mapping S-function has typesI : S ! jT� j and I : 
 ! 
 T� such that:

s 2 S

I (s) def= jT� js

� : s1 : : : sn ! s n � 0

I (� ) : jT� js1 � : : : � jT� jsn ! jT� js

The rightmost consequent follows from the fact that:

� 2 
 s

I (� ) def= �
inj

where I is an injection, not an identit y. In De�nition A.1.7, there is already a rule for

I in similar format as that of De�nition A.1.11:

� : s1 : : : sn ! s n � 0

I (� ) : I (s1) � : : : � I (sn ) ! I (s)

Let us overload I even more and use it to name the semantic S-function in De�ni-

tion A.1.7, that is, for all s let us write I for A sJ�K. In De�nition A.1.7, Rule sem1 has

to be removed becausethere are no variables. Rule sem2holds by Rule inj . Rule sem3

can be rewritten as:

v1 2 jT� js1 � � � vn 2 jT� jsn � 2 
 T�
s1 :::sn s n � 0

I (� (v1; : : : ; vn )) def= (I (� ))( I (v1); : : : ; I (vn ))

Finally, a de�nition induces an equality (Chapter 2), making the previous rule an

instance of Rule hom in De�nition A.1.11.

In the presenceof equationsthe proof systeminducesa least congruenceS-relation � L

between closed terms that partitions the set of closed terms into equivalenceclasses

yielding the S-quotient Q def= T� =� L which is de�ned inductiv ely as follows.

Let [t] denote the equivalenceclassof term t:

� 2 jT� js

[� ] 2 Qs

� 2 
 T�
s1 :::sn s t i 2 Qsi i 2f 1: : : ng n > 0

[� (t1; : : : ; tn )] 2 Qs
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Because� L is a congruence,[� (t1 : : : tn )] = � ([t1]; : : : ; [tn ]). Furthermore, becausethe

substitution lemma holds, the meaning of an open term of T�� =� L can be determined

from the meaning of its free variables, which is given by the equivalenceclassof value-

assignments [� ], where [� ](x) def= [� (x)].

By construction, Q is an initial model: all the valuesof the carrier are represented by at

least one term and Q satis�es all the equationsof L closedunder syntactic provabilit y.

T� constitutes a free algebra that is an initial model of the theory with no equations.

A.2 Our partial formalism, set-theoretically

We now provide a set-theoretical formalisation of partial speci�cations and their se-

mantics. Only the theory part must change; the de�nitions of �, Term(� ; �), T� and

T�� remain. The di�erence now is that unde�ned terms are junk and do not symbolise

any algebraic value.

Definition A.2.1 A Partial � -A lgebra A is a pair (jAj ; 
 A ) where for � 2 
 ws:

� I (� ) def= � A may be unde�ned when w = � , that is, � A =2 jAj s.

� I (� ) def= � A may be partial when w = s1 : : : sn , that is, for n > 0 and i2f 1: : : ng, it

may be the casethat vi 2jAj si and � A 2
 A
s1 :::sn s but � A (v1; : : : ; vn ) =2 jAj s.

�

A �-homomorphism between partial algebrasis a total S-function and can only map

de�ned values in carriers to de�ned values.

Definition A.2.2 A �-homomorphism H : A ! B between two partial algebrasA

and B is a total S-function that satis�es the following:

� A 2 
 A
s1 :::sn s � A (v1; : : : ; vn ) 2 jAj s n � 0

(H (� A ))( H (v1); : : : ; H (vn )) 2 jBjs

� A 2 
 A
s1 :::sn s � A (v1; : : : ; vn ) 2 jAj s n � 0

H (� A (v1; : : : ; vn )) = (H (� A ))( H (v1); : : : ; H (vn ))

�



A.2 Our partial formalism, set-theoretically 282

The fact that the symbol-mapping S-function I may be unde�ned for certain constants

meansthe semantic S-function may also be unde�ned for someterms. It can also be

unde�ned for terms involving proper partial operators. Consequently, I and AJ�Kno

longer make up a �-homomorphism, which must be a total S-function (Section A.1.7).

T� is no longer an initial algebra, for it contains junk.

By de�nition, given a �-homomorphism H : A ! B between two partial algebras,

jBj may have more de�ned terms than jAj but not the opposite; otherwise, di�eren t

values in jBjs would be images of the same value in jAj s, for some s, and therefore

H : jAj ! jBj would not be an S-function.

There is a `lesspartial than' relation between partial algebras. The initial partial

algebr a has a unique �-homomorphism from it to any other partial algebra. For a

closedterm algebra to be an initial model it must have least junk (contain only those

terms that are de�ned in all models), least confusion (two de�ned terms have the

samevalueonly if they do in all models), and there is at leasta de�ned term symbolising

every intended value.

We �rst reviseour de�nition of theory to account for conditional equations.

Definition A.2.3 A partial theory is a pair (� ; L ) where� is a signature and L is a

setof laws involving terms of Term(� ; �) in a context �. More precisely, equationsin L s

have the form hP ) E; � i where P is a possibly empty conjunction of preconditions

and E is an equation t = t0 or a partial equation t ' t0. Preconditions consist of

equations. A conditional equation P ) t ' t0 is syntactic sugar for:

P ^ DEF (t) ^ DEF (t0) ) t = t0

and predicate DEF (t ) is syntactic sugar for t = t. �

The proof systemdoesnot have to be enlargedwith introduction and elimination rules

for conditional equations. Conditional equationscan be consideredobject-level repres-

entations of meta-level inference rules. Every conditional equation hE 1 ^ : : : ^ En )

E ; � i where n > 0 introducesan inferencerule:

` hE1; � i � � � ` hEn ; � i

` hE ; � i
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An equation between two terms must be satis�ed in all models (their interpretation

must produce the samevalue). For partial equations, if both terms have values (are

de�ned in the model) then their interpretation must be the same. If oneor both terms

are unde�ned the equation is vacuously satisifed. Consequently, we only have to add

de�nednesspremisesin the de�nition of model.

Definition A.2.4 An algebra A satis�es an equation E def= ht1 = t2; � i or a partial

equation E def= ht1 ' t2; � i in the value-assignment � when:

A sJt1K� 2 jAj s A sJt2K� 2 jAj s A sJt1K� = A sJt2K�

A j= � E

An algebra A satis�es a conditional equation hP ) E; � i in the value assignment �

when:

P def= E1 ^ : : : ^ En A j= � E1 � � � A j= � En n � 0

A j= � E

An algebra satis�es the laws in a value-assignmentwhen it satis�es all the laws in L .

The algebra is a model if it satis�es all equations in all possiblevalue-assignments. �

A partial theory has an initial model that is the least de�ned: it has least junk (a term

is de�ned if and only if it is de�ned in all models), it has least confusion (two terms

have the samemeaningonly if they do in all models), and every value is symbolisedby

at least one term. Such a model is de�ned in terms of the subset of T� that contains

all de�ned terms, which we denoteby DomL , and a congruencerelation betweenthose

terms induced by the proof system of conditional equations,which we denote by � L .

In order to characterise the initial algebra precisely we need to de�ne the notion of

immediate subterm of a term.

Definition A.2.5 The set of imme diate subterms Sub(t ) of a term t is inductiv ely

de�ned as follows:

� 2 


Sub(� ) def= ;

� 2 
 s1 :::sn s t i 2 Term(� ; �) si i 2 f 1: : : ng n > 0

Sub(� t1 : : : tn ) def= f t1; : : : ; tng
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With this set in hand we can de�ne an immediate subterm relation 2 betweenterms:

t0 2 t , t02Sub(t). �

Definition A.2.6 Given a theory (� ; L ), let the set DomL � T� , and the congruence

� L � DomL � DomL be the smallest set and congruencethat satisfy the following

properties:

1. For every equation ht1 = t2; � i , every immediate closedterm t0 of sort s in Sub(t1)

and Sub(t2) is de�ned, that is, A sJt0K� 2 jDomL js.

2. DomL is closedwith respect to the immediate subterm relation:

A sJtK� 2 jDomL js t0 2 Term(� ; �) s0 t0 2 t

A s0Jt0K� 2 jDomL js0

3. The congruenceis re
exiv e, symmetric and transitiv e:

t 2 jDomL js

t � L t

t1 � L t2

t2 � L t1

t1 � L t2 t2 � L t3

t1 � L t3

Notice that re
exivit y is conditional on de�nedness.

4. The congruenceis compatible with substitution of variables for values: for every

conditional equation hE1 : : : En ) E ; � i in L such that E i
def= t i = t0

i and E def= t = t0:

t i ; t0
i 2 Term(� ; �) si A si Jt i K� � L A si Jt

0
i K� i 2 f 1: : : ng n � 0

A sJtK� 2 jDomL js A sJt0K� 2 jDomL js A sJtK� � L A sJt0K�

In particular, if n = 0 the consequent becomesan axiom.

5. The congruenceis compatible with operators: either applications of operators to

de�ned and congruent term arguments are de�ned and congruent, or are unde�ned.

More precisely, either:

� 2 
 s1 :::sn s t i ; t0
i 2 jDomL jsi t i � L t0

i i 2 f 1: : : ng n > 0

(I (� ))( t1; : : : tn ) 2 jDomL js

(I (� ))( t0
1; : : : t0

n ) 2 jDomL js

(I (� ))( t1; : : : tn ) � L (I (� ))( t0
1; : : : t0

n )
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or:

� 2 
 s1 :::sn s t i ; t0
i 2 jDomL jsi t i � L t0

i i 2 f 1: : : ng n > 0

(I (� ))( t1; : : : tn ) =2 jDomL js (I (� ))( t0
1; : : : t0

n ) =2 jDomL js

�

Theorem A.2.1 The initial algebra of a theory (� ; L ) with partial conditional equa-

tions is the quotient DomL =� L . The set of carriers is jDomL j=� L . Let us denote by

[t] the equivalenceclassof the term t of sort s in jDomL js. For every operator symbol

� 2 
 s1 :::sn s where n � 0:

(I (� ))([ t1]; : : : ; [tn ]) def=

(
[(I (� ))( t1; : : : ; tn )] ; if (I (� ))( t1; : : : ; tn )2j DomL js

unde�ned ; otherwise

�

A.3 Our formalism, categorially

In the set-theoretical formulation, the sameconceptsappear again and again, namely,

the existenceof objects and structure-preserving arrows betweenthem. The categorial

study of speci�cations can focuson the syntax or the semantics aslong asthe categorial

axiomsaresatis�ed by the particular objects and arrows at hand. Furthermore, in some

categoriesthere are distinguished initial objects (e.g., least model, least de�ned model).

For example,we have the categoryof sorts, whereobjects are sorts, arrows are operator

symbols, and signature morphisms are functors (recall De�nition A.1.8). We also have

the categoryof algebras,whereobjects are carriers, arrows are algebraicoperators, and

every H s is a functor (recall De�nition A.1.11).

�-Algebras and partial �-Algebras with their respective �-homomorphisms both con-

stitute categories. In both cases,the identit y arrow is the identit y �-homomorphism

and composition is S-composition of �-homomorphisms. The reader can check that

the categorial axioms are satis�ed. In both cases,the object of interest is the initial

object of the category.

Recall from SectionA.1 that the unique-arrow property of the initial object is satis�ed.
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In the category of algebrasthis property can be depicted as a diagram:

T�
!A - A

@
@

@
@

@

!B

R
B

H

?

A similar diagram can be written for T�� . Let us denote the initial object as 0. The

following diagram depicts the relationship in any category of algebras:

0
!A - A

@
@

@
@

@

!B

R
B

H

?

Recall from page269that the semantic S-function can be seenasan extensionof value-

assignments consideredas S-functions � : X ! jAj . Let us write T� (X ) instead of T��

to underline the role of the, now, S-set of variables X . T� (X ) is the initial model and

there is a unique �-homomorphism from it to any other algebra. At the carrier level

(category Set whereobjects are carrier setsand arrows are total functions on sets), it is

witnessedby the existenceof � # which makesthe following diagram commute [BG82]:

jT� (X )j
� #

- jAj

�
�

�
�

�

�

�

X

� X

6

That is, � # � � X = � . Function � X maps variables to themselvesas values(again think

of a cast). The notation gives away the fact that � X is a natural transformation and

that T� (�) is a functor; more precisely, � : Id :! T� , where Id is the identit y functor.
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A.3.1 F -Algebras

There is a categorial construction which provides an elegant de�nition of algebras in

terms of functors. Let us �rst illustrate the idea by example. Take speci�cations NAT

and STRING from Figures 5.1 and 5.2. Let us assumethe existenceof an implicitly

de�ned extra sort 1 with only a constant operator unit . Recalling Section 3.6, we

can view all other constant operators � :! s as proper operators � : unit ! s, such

that where before � was a valid term in Term(� ; ; ) now it is written � unit , and

consequently � (unit ) 2 T� .

SupposeA is a model of NAT. The set jAj 1 is now the carrier of nullary products.

De�nitions involving sort- and carrier-signatureshave to be adapted to account for the

existenceof this carrier:

w = �

jAj w
def= jAj 1

w = s1 : : : sn n > 0

jAj w
def= jAj s1 � : : : � jAj sn

� A 2 
 A
s

� A : jAj 1 ! jAj s

� A 2 
 A
s1 :::sn s n > 0

� A : jAj s1 � : : : � jAj sn ! jAj s

NAT's algebraic operators are described by a diagram with objects and arrows in the

category Set . More precisely, let

I (zero) def= zeroA

I (succ) def= succA

The diagram in Figure A.3(left) characterisesoperator names,their sources,and their

targets. The diagram has a limit as shown in Figure A.3(right), i.e., a coproduct with

arrows inl and inr. By universality there is a unique mediating arrow denotedby � Nat .

In Set, coproducts are disjoint sumswhoseinternal structure is described in terms of

labelled pairs. Let us useoperator symbols as labels:

jAj 1 + jAj Nat
def= f (zero; v) j v 2 jAj 1 g [ f (succ; v) j v 2 jAj Nat g

By universality � Nat is unique: � Nat = (zeroA O succA )

Recall that coproducts are also functors. Let us denote the coproduct functor by F .
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jAj 1
@

@
@

@
@

zeroA

R
jAj Nat

�
�

�
�

�

succA

�

jAj Nat

jAj 1

	�
�

�
�

�
inl

@
@

@
@

@

zeroA

R
jAj 1 + jAj Nat .................................

� Nat
- jAj Nat

I@
@

@
@

@
inr

�
�

�
�

�

succA

�

jAj Nat

Figure A.3: Diagram describing operator names,sources,and targets. The coproduct
is the limit.

At the object level it is de�ned as follows:

F (X ) def=
X

� 2 
 w s

X w

For example, in the algebra of natural numbers we have operators:

zeroA : jAj 1 ! jAj Nat

succA : jAj Nat ! jAj Nat

therefore:

F (X ) = X 1 + X Nat

The type of � Nat is:

� Nat : jAj 1 + jAj Nat ! jAj Nat

which can be described more succinctly using F :

� Nat : F (jAj Nat ) ! jAj Nat
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At the arrow level F is de�ned as follows:

h : jAj ! jBj

F (h) : F (jAj ) ! F (jBj)

hs : jAj s ! jBjs s 2 f 1; Natg

Fs(hs) : Fs(jAj s) ! Fs(jBjs)

v 2 jAj 1

(F1(h1))(zero; v) def= (zero; h1(v))

v 2 jAj Nat

(FNat (hNat ))(succ; v) def= (succ; hNat (v))

If we carry out the sameconstruction for STRING, assumingA is now its model, we

obtain two functions, one for each sort:

� Char : jAj 1 + : : : + jAj 1 ! jAj Char

� Char = (ch0A O: : : O ch255A )

� String : jAj 1 + jAj CharString ! jAj String

� String = (emptyA O preA )

Clearly, � : F (jAj ) ! jAj is an S-function. In generala �-Algebra A can be character-

ised in terms of the S-set carrier jAj and the S-function � . This construction receives

the name of F -Algebra. F is the S-functor f Fs : Set ! Set j s 2 Sg where objects

in Set are the carriers jAj s.

We provide a de�nition of F -Algebras for algebraswith one carrier. For many-sorted

algebras,the de�nition below canbeadaptedby replacingSet with S-Set (the category

of S-Sets). In that setting, jAj is an S-Set, � is an S-function, and F is an S-functor.

Definition A.3.1 An F -A lgebra in Set is a pair (A ; � ) where jAj is an object in

Set , � : F (jAj ) ! jAj is an arrow in Set , and F : Set ! Set is a functor. An

F -homomorphism h : (jAj ; � ) ! (jBj; � ) is an arrow that makes the following dia-

gram commute:

F (jAj )
F (h)- F (jBj)

jAj

�

? h - jBj

�

?

�
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The reader may have realised that � and � are particular instances of the natural

transformation � : F :! Id (Section 3.12).

The simplicit y and concisenessof this de�nition is due to what it doesnot say. It only

involves carriers, and the mapping from operators in A to operators in B that is part

of a �-homomorphism is not mentioned. Such mapping maps operators to operators

respecting carrier-signaturesand constitutes another functor. Finally, mediating arrows

� are not informativ e about the name of operators nor their carrier-signatures if the

diagram of which the coproduct is a limit is not shown. Providing the diagram amounts

to providing the carrier-signaturesof algebraic operators explicitly .

One of the goodies of category theory is that, as expected, the de�nition of F -Algebra

can be generalisedto any category C:

Definition A.3.2 Let C be a category and F : C ! C a functor. An F -Algebra is a

pair (X ; � ) where X is an object and � : F (X ) ! X an arrow. An F -homomorphism

h : (X ; � ) ! (Y; � ) is an arrow that makesthe following diagram commute:

F (X )
F (h)- F (Y)

X

�

? h - Y

�

?

�

It is important to notice that di�eren t algebrasmay be described by the sameF , e.g.,

� : F (jAj ) ! jAj and � : F (jBj) ! jBj where � 6= � . In particular, A could be the

algebragiving meaningto an algebraicspeci�cation without equationsand B the algebra

giving meaning to an algebraic speci�cation with equations. Informally speaking, the

same F may capture the signature of theories with wildly dissimilar equations. We

comeback to this point when introducing F -views (Chapter 9).
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dispatching, 77

dredge,184, 291

dualit y

categorial, 43

DeMorgan, 217

EC[I], 236

polytypic, 236

encapsulation,10, see abstraction

equality

extensional,225, 226

equation, 282

conditional, 85

partial, 92, 282

equivalenceclass,277

error term, 90

exporting, 9, 14, 243

exporting payload, 184

Extensional Programming, 9, 207

F-bounded, 78

�xed-p oint operators, 35

�xit y, 25

fold, 65, 132, 153

function, 3

nullary, 25

proper, 25

functor

arrow, 52

Generative Programming, 10, 66

generator, 68

Generic Haskell, 107

classic,12, 107

dependency-style, 12, 107

genericity, 60

implementation invariant, 169

information hiding, see abstraction

instantiation, 10, 61

binding time, 71

substitution, 70

interface, 81

coupling, 81

interpreter, 126, 260

iterator, 206, 236

junk, 169, 172, 193, 196

least, 282

no junk, 88, 278

kind, 30, 32, 69

signature, 32

kind-indexed type, 107

lambda abstraction, 23

type level, 32

Lambda Calculus, 22, 53, 77

Lambda Cube, 77

laws, 87, 274

Leibniz's rule, 274, see Rule sub

Lisp, 20
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meta-language,16

method, 25

module

Haskell, 95

normal form

and value, 26

object language,16

open world, 71, 161

operand, 25

operation, 25

operator, 25

algebraic, 88, 268

classi�cation, 101

constructor, 101, 277

multiple, 101, 212, 220, 224

destructor, 103

discriminator, 102

enumerators, 103

interrogator, 103

modi�er, 103

observer, 101, 102

partial, 11, 84

removal

explicit, 103

implicit, 103

selector,102

symbol, 261, 262

order, 24

parameter

actual, 25

formal, 25

generic,74

usage,25

ParameterisedProgramming, 84

parametricity, 60, 179

parametrisation, 10,60, see instantiation

dynamic, 71

static, 71

pattern, 188

�rst-class, 204

linear, 188

nested,188

simple, 188

pattern matching, 109

payload, 21, 77, 92, 110

persistence,26

persistent identit y, 26

polyaric, 242

polymorphic recursion, 112

polymorphism, 71

ad hoc, 72

ad-hoc

coercion, 73

overloading, 73

impredicative, 78

inclusion, 78

ML-style, 78

parametric, 74

bounded, 78

predicative, 78

structural, 79

Type:Type, 78

universal, 74

polytypic extension, 8, 148, 159, 170,

206, 249

modular, 161
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polytypism, 79

program, see term, value-level

referential transparency, 3, 87

representation type, 116, 215

Rice's Theorem, 21

RTTI, 154, 163

Rule

� , 23, 26, 27

c-dr op, 141

c-empty , 141

c-null , 141

c-push , 141

enl1 , 275

enl2 , 275

hom, 278, 280

inj , 280

li1 , 23, 26, 27

li2 , 23, 26

ops, 275, 277

ref , 23, 26, 275

sem1, 269, 280

sem2, 269, 280

sem3, 269, 280

sub, 275

sym, 275

trs , 23, 26, 27, 275

semantic S-function, 268

semantic implication, 276

semantics

axiomatic, 260

denotational, 260

model, 260

operational, 260

shape, 77, 110

signature, 86, 262

morphism, 9, 208, 210, 229, 273,

285

named, 239

type attribute, 240

view attribute, 240

SML functor, 101

SML signature, 99

SML structure, 100

sort, 86, 262

sort-assignment, 264

sort-signature, 86

soundness,260, 276

Strategic Programming, 152

structure type, see representation type

structured type, see type operator

substitution lemma, 270

subtyping, 79, 256

SyB, 152

symbol-mapping S-function, 268, 273

SystemF, 28, 63

term, 80, 85

closed,18

closedset, 264

English, 17

FV function, 265

immediate subterm, 283

open set, 264

stuck, 27

substitution, 265

type-level, see type term

value-level, 17
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well-behaved, 19

well-typed, 19

theory, 86

basic, 274

partial, 282

type, 17, 25

abstract, 62, 187

linear, 208

algebraic, 108

generalised,165, 167

lawful, 193

assignment, 18

checker, 18

checking

dynamic, 20

static, 20

strong, 20

weak, 20

class,21, 73

multi-parameter, 180, 225{227

concrete,62, 187

constructor, see operator

data type, 25

dependent, 21, 61, 77, 207

equivalence

nominal, 126

structural, 34

error, 18

imagined, 62, 276

inferencerule, 18

intended, see imagined

irregular, 111

iso-recursive, 189

judgement, 18

manifest, 32

nested,see irregular

non-uniform, see irregular

operator, 30, 62

constrained, 97, 135

nullary, 32

proper, 32

restricted, 226

polykinded, 107, 115

context-parametric, 139

polytypic, 131, 133

scheme,78

signature, 24

soundness,19

system, 18

term, 17

type-indexed,see type, polytypic

universe,77

variable, 32, 74

type-assignment, 26

type-indexedvalue, 108

type-preserving,152, 236

type-unifying, 152, 236

types

unit, 43

value, 26

canonical, 193, 205

constructor, 30, 86

manifest, 24, 25

polymorphic, 110

value constructor

abstract, 192

value-assignment, 268
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enlargement, 270

variable-assignment, 274

view

SML, 204
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