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J. GLIMMING

Aims

• Describe the extension of folds to monadic
folds, and present state monads via example.

• Explain the required lifting from F-algebras to
FM-algebras [Beck 1969, Fokkinga 1994,
Pardo 2001].

• Conclude by (briefly) describing on-going
research on the semantics of objects with
method update [Glimming, Ghani 2003].
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J. GLIMMING

Folds, Monads, and Monadic Folds
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J. GLIMMING

Recursion = fold

• Structural recursion is captured by a
combinator called fold,
i.e. foldList , foldNat , foldTree, ...

sum [] = 0
sum x:xs = x + sum xs

• Let List denote lists of natural numbers, e.g.
[881,883,887].
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J. GLIMMING

Recursion = fold

• The important part of this schema is 0 : τ and
+ : τ × τ → τ where τ is Nat for sum.

• (Nat, [0,+]) forms an algebra of the same
pattern functor as (List, [[], :]).

• foldList has type τ × (τ × τ → τ) × List → τ .

• Write ([f ])F for fold/catamorphism. f can be
[0,+], [[x], :], ...
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J. GLIMMING

Why bother?
• Language constructs (c.f. Charity) –

increasing the expressive power.

• Structure programs after the type of values
functions consumes.

• Calculation: we get nice theorems for free
and we can use these theorems to develop
programs in a style similar to the way an
engineer works with calculus when he builds a
bridge.

• Optimisation: acid rain, fusion (in compiler?)
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J. GLIMMING

Recipe for a monad: state

• Start with your favourite type constructor and
a pinch of functoriality:

newtype State s a =
State {runState :: s -> (a,s)}
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J. GLIMMING

Cont’d
• Put it on an ad-hoc plate, use all strength:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

instance Monad (State s) where
return a = State $ \s ->
(a, s)

m >>= k = State $ \s ->
let (a, s’) = runState m s
in
runState (k a) s’
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J. GLIMMING

Computational intuition

• State monad: the monad itself is a mappping
from an initial state to a value and a new state.
The two operations (unit and bind)
corresponds to:

1 making a value a state-based computation,
a 7→ λs.(a, s), and

2 f >>= g means forming a new computation
that, given an initial state s, evaluates f in
that state, moving to a new state, in which g
is evaluated: s 7→ g a s′ where (a, s′) = f s.
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J. GLIMMING

Cont’d recipe ...

• Serve hot with a fold for the season (this year,
it’s lists):

foldrM :: (Monad m) =>
(a -> b -> m a) -> a -> [b] -> m a

foldrM _ a [] = return a
foldrM f a (x:xs) =
f a x >>= \fax -> foldM f fax xs

• Now you’ve baked a state, and you can fold it!
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J. GLIMMING

Kleisli triples

• Let’s make sure:

1 Left unit:
return a >>= k = k a

2 Right unit:
k >>= result = k

3 Associativity of bind:
(a >>= b) >>= c = a >>= (b >>= c)
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J. GLIMMING

Kleisli triples – or triples?

• In fact, this is a Kleisli triple (an object
construction) rather than a monad, but Kleisli
triples are in bijective correspondence with
monads (a k a triples).
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J. GLIMMING

Example: accumulate

We now consider a function that, given a list of
computations of the form M A, produces a
computation that collects the result of all those
computations, from left to right:

accumulate :: Monad m => [m a] -> m [a]
accumulate = foldr (\ ma mas ->

do a <- ma
as <- mas
(a:as))

(return [])
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J. GLIMMING

Cont’d
This accumulate function can be written as a
monadic (left) fold on lists:

accumulate = foldlM (\ as ma ->
do a <- ma

(as ++ [a]))
(return [])

From this one may (correctly) guess that foldlM
can be written in terms of foldl.
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J. GLIMMING

Why bother?

• Structure programs after the sort of
computation of value they produce [Meijer and
Jeuring 1995].

• Examples: exceptions, layers of state-based
computation, non-determinism, partiality, ...

• For our purposes: monads gives rise to a
higher-order denotation of objects where state
is captured by a state transforming function,
and an object becomes a functional. But is
monadic fold general enough?
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J. GLIMMING

Entering the world of semantics ...
• Types = objects in suitable category

(Set,Cpo⊥), and computations = arrows.

• Recursive datatype is represented by a
pattern functor, e.g. FX = 1 + X × X + N.
Fixpoint is the datatype (object). Initial algebra
is type constructor e.g. [Nil,Cons].

• The fixpoint can be identified with the initial
algebra over the pattern functor.

• Goal: What is the semantics of monadic
folds? Useful for recursion on objects?
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J. GLIMMING

Polynomial functors
The smallest class of functors closed under composition and containing the
following basic functors:

• n-ary constant functor An for fixed A, n:

Anf0 . . . fn−1 = idA

AnB0 . . . Bn−1 = A

• n-ary projection functors π
n
i :

π
n
i f0 . . . fn−1 = fi

π
n
i A0 . . . An−1 = Ai

• id, the identity functor

• +, the sum functor

• ×, the product functor
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J. GLIMMING

(Regular functors)

• The class of polynomial functors can be
extended to the slightly larger class of regular
functors by also considering:

• Type functors – i.e. fixpoints of
parameterised regular functors, e.g. List α
(which is in fact a bifunctor) plus operation on
arrows which is usually defined to be the map
operation.
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J. GLIMMING

F-algebras
Given:

• endofunctor F : C → C

Define: F-algebra is an arrow σ : F A → A in C

• We write (A, σ)F

• A is the carrier of the F-algebra

• F determines the signature (or operational
type)

• σ is the structure (or operation)
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J. GLIMMING

F-homomorphisms
Structure-preserving mapping from the carrier of
one F-algebra to the carrier of another F-algebra:

A homomorphism φ : X → Y from (X , σ) to (Y , τ)
is defined by the (universal) property:

φ ◦ σ = τ ◦ Fφ

F X
σ

- X

F Y

F φ
?

τ
- Y

φ
?
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J. GLIMMING

Example

• sum is a List-homomorphism: it maps
F-algebras to F-algebras for the same pattern
functor F.

Homomorphism since:

sum ◦ [Nil,Cons] = [0,+] ◦ Fsum
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J. GLIMMING

Recursion

• ([...])F is the notation for structural recursion
over a datatype (primitive if the datatype
happens to be the natural numbers).

• Category theory gives us a characterisation
as a universal property of (polynomial)
datatypes. Existence is immediate in
“rich-enough” categories e.g. Fun and Cpo.
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J. GLIMMING

Catamorphism

By definition, there is a unique homomorphism,
h : innF → f , to every F-algebra (A, f) from the
initial F-algebra innF.

This homomorphism is denoted ([f ]) and called
the catamorphism for the algebra (A, f).

For every F-algebra (A, f) we can formally define
the catamorphism with a universal property
(arrow):

h = ([f ]) ≡ h ◦ α = f ◦ F h
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J. GLIMMING

Catamorphism diagram

Let F be some endofunctor, f : F A → A some
algebra, and let (T , innF)F be the initial algebra.
([f ]) is the unique homomorphism that makes the
following diagram commute:

F T
inn

- T

F A

F ([h])

?

f
- A

([h])

?

� � � � � � � �

•

�

24



J. GLIMMING

Anamorphism

Dually, there is a unique homomorphism,
h : F → outF, to every F-coalgebra (A, f) from the
initial F-coalgebra innF.

This homomorphism is denoted ])f([ and called
the anamorphism for the algebra (A, f).

For then F-algebra (A, f) we can formally define
the anamorphism with a universal property:

h =])f([≡ h ◦ α = f ◦ F h
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J. GLIMMING

Lifting Construction
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J. GLIMMING

Milestones
• [Beck 1969]: foundational work on algebras

over monads and distributive laws.

• [Fokkinga 1994]: provided a lifing construction
valid for all regular functors, but not allowing
state monads.

• [Pardo 1998, 2001]: worked on the
characterisation of monadic lifting of algebras,
e.g. by showing that every strong
commutative functor can be lifted to a
monadic functor using the strength for
distribution over product functor.
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J. GLIMMING

From C to C
M ... and back

Barr and Wells provide us with the following
adjunction (pair of functors):

C
M

C

_M

6

a U

?
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J. GLIMMING

Adjunction
... where (remembering the monad)

_M :: C → C
M

AM = A

f M = η • f

and (forgetting it again)

U :: C
M
→ C

U A = M A

U f = µ • M f
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J. GLIMMING

Preservation of limits

Now we have the very important property:

• Left adjoints preserve colimits, e.g. initiality.

Above, _M is the left adjoint, and hence an initial
object A under _M, AM, is also initial in C

M.

• But... we want to lift objects in the category of
F-algebras to the category of F-algebras over
a monad M, with the same preservation of
initiality.

� � � � � � � �

•

�

30



J. GLIMMING

Preservation of limits

Now we have the very important property:

• Left adjoints preserve colimits, e.g. initiality.

Above, _M is the left adjoint, and hence an initial
object A under _M, AM, is also initial in C

M.

• But... we want to lift objects in the category of
F-algebras to the category of F-algebras over
a monad M, with the same preservation of
initiality.

� � � � � � � �

•

�

30



J. GLIMMING

Alg(F) to AlgM(FM)

• What we are looking for:

AlgM(FM)

Alg(F)

_M

6

a V

?
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J. GLIMMING

Interlude: F to FM

• Lifting F-algebras require us first to be able to
lift functors alone, i.e. from F :: C → C we want
to construct FM :: C

M
→ CM.

F M A = F A

F M f :: F A → M (F B)

But ... setting FM f = F f would give something of
type F f :: F A → F M B since f : A → M B are the
arrows in C

M. How can we get a functor that
gives us M (F B) as target for such an arrow?
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J. GLIMMING

Distribution laws

Consider a family of natural transformations
δF : F M→̇M F.

• Such δ are called distribution laws because
they perform a distribution of a monad over a
functor.
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J. GLIMMING

Strength – the missing piece
• Fokkinga (1994) gives an definition of a

possible δ by induction over the structure of
regular functors, assuming distribution over
product.

The strength of a monad (M, η, µ) is given by a
natural transformation τA,B :: A × M B → M (A × B).
State monad is strong in both Sets and Cpo⊥.

• Pardo (2001) demonstrated that every strong
monad M has a distribution law for the monad
over the product functor, i.e. a natural
transformation ψA,B :: M A × M B → M (A × B).
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J. GLIMMING

Distribution law for regular F

Following Fokkinga (1994) and Pardo (2001):

δI
A = idM A

δ
C
A = idC

δπ
ni

(A1,...,An)
= idMAi

δ×(A,B) = ψ(A,B)

δ+
(A,B) = [M inl,M inr]

δ(F◦G) = δF
(Gi A) ◦ F(δG1

A , ..., δ
Gn
A )

δD
A = (c.f. Pardo or Fokkinga)
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J. GLIMMING

From distributivity to lifting

We now only need to verify that the definition of
the lifting given by:

FM f :: F A → M (F B)

FM f = δF
B ◦ F f

Indeed, the construction has the right type.
Fokkinga and Pardo proves that FM is indeed a
functor if F is regular and M is strong (as functor)
in the base category.
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J. GLIMMING

What about the F-algebras?

We can now use Barr and Wells lifting together
with Fokkinga and Pardo’s lifting. We have
showed one possible construction of:

_M :: Alg(F) → AlgM(FM)
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Current Research
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J. GLIMMING

Pros with monadic folds
• Too specific to be useful ... [Meijer and

Jeuring 1995]

Consider mapl, a function that maps a monadic
function over a list, starting from the left. The
definition of this function becomes complicated
when written as a monadic fold (c.f. Meijer and
Jeuring).

• Pardo (2001), on the other hand, argues that
(co)monadic (un)folds “capture functions
commonly used in practise” ...
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J. GLIMMING

Cons with monadic folds

• State monads are excellent for representing
objects [Nordlander 2000].

• State monads can be used to represent
objects with method update [Glimming and
Ghani].

• Hence, perhaps monadic folds can form
building blocks for future (real!) O-O
programming languages which supports
method update. Q: Why method update?
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J. GLIMMING

Generalisation of the lifting

• Nested datatypes (based on e.g. [Bailey
2000]).

• Datatypes involving function spaces (i.e. more
than regular!)

• Variations – establishing a “calculus of
monadic liftings” where we can choose from
several alternative liftings, each with a clear
computational intuition – there are many ways
to construct the lifting (for every distributive
law...)
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J. GLIMMING

Current work - method update

• We seek a denotation of objects that will give us recursion (and
corecursion) for free.

• We deal with objects with updatable methods (c.f. Abadi and Cardelli). To
our knowledge, such objects are not semantically well-understood to date
(c.f. Reus/Stretcher 2001).

• We currently use the solution to the domain equation:
self ∼= self → Fself which is equivalent to studying the fixpoint of
G X = (F X)X ... but the occurrence of X is both positive and negative and
hence G is not a functor.

• Freyd provides a technique of transforming this equation into a functor
rather than difunctor.
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• Freyd provides a technique of transforming this equation into a functor
rather than difunctor.
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corecursion) for free.

• We deal with objects with updatable methods (c.f. Abadi and Cardelli). To
our knowledge, such objects are not semantically well-understood to date
(c.f. Reus/Stretcher 2001).

• We currently use the solution to the domain equation:
self ∼= self → Fself which is equivalent to studying the fixpoint of
G X = (F X)X ... but the occurrence of X is both positive and negative and
hence G is not a functor.

• Freyd provides a technique of transforming this equation into a functor
rather than difunctor.
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