Recursion Parameterised by Monads:
 Characterisation and Examples

Johan Glimming
glimming@kth.se
Stockholm University (KTH)

Sweden
9 December 2003

Aims

- Describe the extension of folds to monadic folds, and present state monads via example.

Aims

- Describe the extension of folds to monadic folds, and present state monads via example.
- Explain the required lifting from F-algebras to F^{M}-algebras [Beck 1969, Fokkinga 1994, Pardo 2001].

Aims

- Describe the extension of folds to monadic folds, and present state monads via example.
- Explain the required lifting from F-algebras to F^{M}-algebras [Beck 1969, Fokkinga 1994, Pardo 2001].
- Conclude by (briefly) describing on-going research on the semantics of objects with method update [Glimming, Ghani 2003].

Folds, Monads, and Monadic Folds

Recursion = fold

- Structural recursion is captured by a combinator called fold, i.e. $f \circ l d_{L i s t}, f^{\circ} d_{d_{N a t}}, f^{\circ} d_{T r e e}, \ldots$

```
sum [] = 0
sum x:XS = X + sum XS
```

- Let List denote lists of natural numbers, e.g. [881, 883, 887].

Recursion = fold

- The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is Nat for sum.

Recursion = fold

- The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is Nat for sum.
- (Nat, $[0,+])$ forms an algebra of the same pattern functor as (List, [], :]).

Recursion = fold

- The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is Nat for sum.
- (Nat, $[0,+])$ forms an algebra of the same pattern functor as (List, [[], :]).
- fold List has type $\tau \times(\tau \times \tau \rightarrow \tau) \times$ List $\rightarrow \tau$.

Recursion = fold

- The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is Nat for sum.
- (Nat, $[0,+])$ forms an algebra of the same pattern functor as (List, [[], :]).
- fold List has type $\tau \times(\tau \times \tau \rightarrow \tau) \times$ List $\rightarrow \tau$.
- Write $\left([f)_{F}\right.$ for fold/catamorphism. f can be $[0,+],[[x],:], \ldots$

Why bother?

- Language constructs (c.f. Charity) increasing the expressive power.

Why bother?

- Language constructs (c.f. Charity) increasing the expressive power.
- Structure programs after the type of values functions consumes.

Why bother?

- Language constructs (c.f. Charity) increasing the expressive power.
- Structure programs after the type of values functions consumes.
- Calculation: we get nice theorems for free and we can use these theorems to develop programs in a style similar to the way an engineer works with calculus when he builds a bridge.

Why bother?

- Language constructs (c.f. Charity) increasing the expressive power.
- Structure programs after the type of values functions consumes.
- Calculation: we get nice theorems for free and we can use these theorems to develop programs in a style similar to the way an engineer works with calculus when he builds a bridge.
- Optimisation: acid rain, fusion (in compiler?)

Recipe for a monad: state

- Start with your favourite type constructor and a pinch of functoriality:

```
newtype State s a =
        State {runState :: s -> (a,s)}
```


Contd

- Put it on an ad-hoc plate, use all strength:
class Monad m where

$(\gg=) \quad:: m a \rightarrow(\mathrm{a} \rightarrow \mathrm{m} \mathrm{b}) \rightarrow \mathrm{m}]$
instance Monad (State s) where return $a=$ State $\$ \backslash s->$ (a, s)
$\mathrm{m} \gg=\mathrm{k}=$ State $\$ \backslash \mathrm{~s}->$
let $\left(a, s^{\prime}\right)=$ runstate $m s$ in
runstate (ka) s^{\prime}

Computational intuition

- State monad: the monad itself is a mappping from an initial state to a value and a new state. The two operations (unit and bind) corresponds to:

1 making a value a state-based computation, $a \mapsto \lambda s .(a, s)$, and
$2 f \gg=g$ means forming a new computation that, given an initial state s, evaluates f in that state, moving to a new state, in which g is evaluated: $s \mapsto g a s^{\prime}$ where $\left(a, s^{\prime}\right)=f s$.

Cont'd recipe ...

- Serve hot with a fold for the season (this year, it's lists):
foldrM : : (Monad m) => (a -> b $->\mathrm{m}$ a) $->\mathrm{a}->[\mathrm{b}]$-> m a foldrM - a [] = return a foldrM f a (x:xs) = f a x >>= \fax $->$ foldM f fax $x s$
- Now you've baked a state, and you can fold it!

Kleisli triples

- Let's make sure:

1 Left unit:
return $\mathrm{a} \gg=\mathrm{k}=\mathrm{k}$ a
2 Right unit:

$$
\mathrm{k} \gg=\text { result }=k
$$

3 Associativity of bind:

$$
(\mathrm{a} \gg=\mathrm{b}) \quad \gg=\mathrm{c}=\mathrm{a} \gg=(\mathrm{b} \gg=\mathrm{c})
$$

Kleisli triples - or triples?

- In fact, this is a Kleisli triple (an object construction) rather than a monad, but Kleisli triples are in bijective correspondence with monads (a k a triples).

Example: accumulate

We now consider a function that, given a list of computations of the form M A, produces a computation that collects the result of all those computations, from left to right:

```
accumulate :: Monad m => [m a] -> m [a]
accumulate = foldr (\ ma mas ->
    do a <- ma
                                    as <- mas
                                    (a:as))
                                    (return [])
```


Cont'd

This accumulate function can be written as a monadic (left) fold on lists:

$$
\begin{aligned}
\text { accumulate }= & \text { foldlM }(\backslash \text { as ma }-> \\
& \text { do } a<- \text { ma } \\
& (\text { as }++[a])) \\
& (\text { return }[])
\end{aligned}
$$

From this one may (correctly) guess that foldlm can be written in terms of foldl.

Why bother?

- Structure programs after the sort of computation of value they produce [Meijer and Jeuring 1995].
- Examples: exceptions, layers of state-based computation, non-determinism, partiality, ...
- For our purposes: monads gives rise to a higher-order denotation of objects where state is captured by a state transforming function, and an object becomes a functional. But is monadic fold general enough?

Entering the world of semantics

- Types = objects in suitable category (Set, Cpo_{\perp}), and computations = arrows.

Entering the world of semantics

- Types = objects in suitable category (Set, Cpo_{\perp}), and computations = arrows.
- Recursive datatype is represented by a pattern functor, e.g. $\mathrm{FX}=1+X \times X+\mathbb{N}$. Fixpoint is the datatype (object). Initial algebra is type constructor e.g. [Nil, Cons].

Entering the world of semantics

- Types = objects in suitable category (Set, Cpo $_{\perp}$), and computations = arrows.
- Recursive datatype is represented by a pattern functor, e.g. $\mathrm{F} X=1+X \times X+\mathbb{N}$. Fixpoint is the datatype (object). Initial algebra is type constructor e.g. [Nil, Cons].
- The fixpoint can be identified with the initial algebra over the pattern functor.

Entering the world of semantics

- Types = objects in suitable category (Set, Cpo $_{\perp}$), and computations = arrows.
- Recursive datatype is represented by a pattern functor, e.g. $\mathrm{F} X=1+X \times X+\mathbb{N}$. Fixpoint is the datatype (object). Initial algebra is type constructor e.g. [Nil, Cons].
- The fixpoint can be identified with the initial algebra over the pattern functor.
- Goal: What is the semantics of monadic folds? Useful for recursion on objects?

Polynomial functors

The smallest class of functors closed under composition and containing the following basic functors:

- n-ary constant functor \underline{A}^{n} for fixed A, n :

$$
\begin{aligned}
& \underline{A}^{n} f_{0} \ldots f_{n-1}=i d_{A} \\
& \underline{A}^{n} B_{0} \ldots B_{n-1}=A
\end{aligned}
$$

- n-ary projection functors π_{i}^{n} :

$$
\begin{aligned}
& \pi_{i}^{n} f_{0} \ldots f_{n-1}=f_{i} \\
& \pi_{i}^{n} A_{0} \ldots A_{n-1}=A_{i}
\end{aligned}
$$

- id, the identity functor
- + , the sum functor
- \times, the product functor

(Regular functors)

- The class of polynomial functors can be extended to the slightly larger class of regular functors by also considering:
- Type functors - i.e. fixpoints of parameterised regular functors, e.g. List α (which is in fact a bifunctor) plus operation on arrows which is usually defined to be the map operation.

F-algebras

Given:

- endofunctor $F: \mathcal{C} \rightarrow \mathcal{C}$

Define: F-algebra is an arrow $\sigma: \mathrm{FA} \rightarrow \mathrm{A}$ in C

- We write $(A, \sigma)_{F}$
- A is the carrier of the F-algebra
- F determines the signature (or operational type)
- σ is the structure (or operation)

F-homomorphisms

Structure-preserving mapping from the carrier of one F-algebra to the carrier of another F-algebra:
A homomorphism $\phi: X \rightarrow Y$ from (X, σ) to (Y, τ) is defined by the (universal) property:

$$
\phi \circ \sigma=\tau \circ \mathrm{F} \phi
$$

Example

- sum is a List-homomorphism: it maps F-algebras to F-algebras for the same pattern functor F.

Homomorphism since:

$$
\text { sum } \circ[\text { Nil, Cons }]=[0,+] \circ \mathrm{F} \text { sum }
$$

Recursion

- (...$)_{F}$ is the notation for structural recursion over a datatype (primitive if the datatype happens to be the natural numbers).
- Category theory gives us a characterisation as a universal property of (polynomial) datatypes. Existence is immediate in "rich-enough" categories e.g. Fun and Cpo.

Catamorphism

By definition, there is a unique homomorphism, h : inn $F_{F} \rightarrow f$, to every F-algebra (A, f) from the initial F-algebra inn ${ }_{F}$.
This homomorphism is denoted $([f])$ and called the catamorphism for the algebra (A, f).
For every F-algebra (A, f) we can formally define the catamorphism with a universal property (arrow):

$$
h=([f) \equiv h \circ \alpha=f \circ F h
$$

Catamorphism diagram

Let F be some endofunctor, $f: \mathrm{FA} \rightarrow \mathrm{A}$ some algebra, and let $\left(T, i n n_{F}\right)_{F}$ be the initial algebra. $(f f)$ is the unique homomorphism that makes the following diagram commute:

Anamorphism

Dually, there is a unique homomorphism, $h: F \rightarrow$ outF, to every F-coalgebra (A, f) from the initial F-coalgebra inn F_{F}.
This homomorphism is denoted $) f([$ and called the anamorphism for the algebra (A, f).
For then F-algebra (A, f) we can formally define the anamorphism with a universal property:

$$
h=\rceil f([\equiv h \circ \alpha=f \circ \mathrm{~F},
$$

Lifting Construction

Milestones

- [Beck 1969]: foundational work on algebras over monads and distributive laws.
- [Fokkinga 1994]: provided a lifing construction valid for all regular functors, but not allowing state monads.
- [Pardo 1998, 2001]: worked on the characterisation of monadic lifting of algebras, e.g. by showing that every strong commutative functor can be lifted to a monadic functor using the strength for distribution over product functor.

From \mathcal{C} to \mathcal{C}^{M}... and back

Barr and Wells provide us with the following adjunction (pair of functors):

Adjunction

... where (remembering the monad)

$$
\begin{aligned}
{ }^{M} & :: \mathcal{C} \rightarrow \mathcal{C}^{M} \\
A^{M} & =A \\
f^{M} & =\eta \bullet f
\end{aligned}
$$

and (forgetting it again)

$$
\begin{aligned}
\mathrm{U} & : \mathcal{C}^{M} \rightarrow \mathcal{C} \\
\cup A & =M A \\
\cup f & =\mu \bullet M f
\end{aligned}
$$

Preservation of limits

Now we have the very important property:

- Left adjoints preserve colimits, e.g. initiality.

Above, ${ }_{-}{ }^{M}$ is the left adjoint, and hence an initial object \bar{A} under ${ }^{M}, A^{M}$, is also initial in C^{M}.

Preservation of limits

Now we have the very important property:

- Left adjoints preserve colimits, e.g. initiality.

Above, ${ }_{-}{ }^{M}$ is the left adjoint, and hence an initial object A under ${ }^{M}, A^{M}$, is also initial in C^{M}.

- But... we want to lift objects in the category of F-algebras to the category of F-algebras over a monad M, with the same preservation of initiality.

$\operatorname{Alg}(F)$ to $\operatorname{Alg}^{M}\left(\mathrm{~F}^{M}\right)$

- What we are looking for:

$$
\operatorname{Alg}^{M}\left(F^{M}\right)
$$

Interlude: F to F^{M}

- Lifting F-algebras require us first to be able to lift functors alone, i.e. from $F:: \mathcal{C} \rightarrow \mathcal{C}$ we want to construct $F^{M}:: \mathcal{C}^{M} \rightarrow C^{M}$.

$$
\begin{aligned}
& F^{M} A=F A \\
& F^{M} f:: F A \rightarrow M(F B)
\end{aligned}
$$

Interlude: F to F^{M}

- Lifting F-algebras require us first to be able to lift functors alone, i.e. from $F:: \mathcal{C} \rightarrow \mathcal{C}$ we want to construct $\mathrm{F}^{M}:: \mathcal{C}^{M} \rightarrow C^{M}$.

$$
\begin{aligned}
& F^{M} A=F A \\
& F^{M} f:: F A \rightarrow M(F B)
\end{aligned}
$$

But ... setting $\mathrm{F}^{M} f=\mathrm{F} f$ would give something of type F $f:: \mathrm{FA} \rightarrow \mathrm{FM}$ B since $f: A \rightarrow M B$ are the arrows in \mathcal{C}^{M}. How can we get a functor that gives us $M(F B)$ as target for such an arrow?

Distribution laws

Consider a family of natural transformations $\delta_{\mathrm{F}}: \mathrm{FM} \dot{\rightarrow} \mathrm{MF}$.

- Such δ are called distribution laws because they perform a distribution of a monad over a functor.

Strength - the missing piece

- Fokkinga (1994) gives an definition of a possible δ by induction over the structure of regular functors, assuming distribution over product.
The strength of a monad (M, η, μ) is given by a natural transformation $\tau_{A, B}:: A \times M B \rightarrow M(A \times B)$. State monad is strong in both Sets and Cpo_{\perp}.
- Pardo (2001) demonstrated that every strong monad M has a distribution law for the monad over the product functor, i.e. a natural transformation $\psi_{A, B}:: M A \times M B \rightarrow M(A \times B)$.

Distribution law for regular F

Following Fokkinga (1994) and Pardo (2001):

$$
\begin{aligned}
\delta_{A}^{\prime} & =i d_{M} A \\
\delta_{A}^{C} & =i d_{C} \\
\delta_{\left(A_{1}, \ldots, A_{n}\right)}^{\pi_{n}} & =i d_{M A_{i}} \\
\delta_{(A, B)}^{\times} & =\psi_{(A, B)} \\
\delta_{(A, B)}^{+} & =[M \mathrm{inl}, M \mathrm{inr}] \\
\delta^{(F \circ G)} & =\delta_{\left(G_{i}, A\right)}^{F} \circ F\left(\delta_{A}^{G_{1}}, \ldots, \delta_{A}^{G_{n}}\right) \\
\delta_{A}^{D} & =(\text { c.f. Pardo or Fokkinga })
\end{aligned}
$$

From distributivity to lifting

We now only need to verify that the definition of the lifting given by:

$$
\begin{aligned}
& \mathrm{F}^{M}:: \mathrm{FA} \rightarrow M(\mathrm{FB}) \\
& \mathrm{F}^{M} f=\delta_{B}^{F} \circ \mathrm{Ff}
\end{aligned}
$$

Indeed, the construction has the right type. Fokkinga and Pardo proves that F^{M} is indeed a functor if F is regular and M is strong (as functor) in the base category.

What about the F-algebras?

We can now use Barr and Wells lifting together with Fokkinga and Pardo's lifting. We have showed one possible construction of:

$$
-^{M}:: \operatorname{Alg}(\mathrm{F}) \rightarrow \operatorname{Alg}^{M}\left(\mathrm{~F}^{M}\right)
$$

Current Research

Pros with monadic folds

- Too specific to be useful ... [Meijer and Jeuring 1995]

Consider mapl, a function that maps a monadic function over a list, starting from the left. The definition of this function becomes complicated when written as a monadic fold (c.f. Meijer and Jeuring).

- Pardo (2001), on the other hand, argues that (co)monadic (un)folds "capture functions commonly used in practise" ...

Cons with monadic folds

- State monads are excellent for representing objects [Nordlander 2000].

Cons with monadic folds

- State monads are excellent for representing objects [Nordlander 2000].
- State monads can be used to represent objects with method update [Glimming and Ghani].

Cons with monadic folds

- State monads are excellent for representing objects [Nordlander 2000].
- State monads can be used to represent objects with method update [Glimming and Ghani].
- Hence, perhaps monadic folds can form building blocks for future (real!) O-O programming languages which supports method update. Q: Why method update?

Generalisation of the lifting

- Nested datatypes (based on e.g. [Bailey 2000]).

Generalisation of the lifting

- Nested datatypes (based on e.g. [Bailey 2000]).
- Datatypes involving function spaces (i.e. more than regular!)

Generalisation of the lifting

- Nested datatypes (based on e.g. [Bailey 2000]).
- Datatypes involving function spaces (i.e. more than regular!)
- Variations - establishing a "calculus of monadic liftings" where we can choose from several alternative liftings, each with a clear computational intuition - there are many ways to construct the lifting (for every distributive law...)

Current work - method update

- We seek a denotation of objects that will give us recursion (and corecursion) for free.

Current work - method update

- We seek a denotation of objects that will give us recursion (and corecursion) for free.
- We deal with objects with updatable methods (c.f. Abadi and Cardelli). To our knowledge, such objects are not semantically well-understood to date (c.f. Reus/Stretcher 2001).

Current work - method update

- We seek a denotation of objects that will give us recursion (and corecursion) for free.
- We deal with objects with updatable methods (c.f. Abadi and Cardelli). To our knowledge, such objects are not semantically well-understood to date (c.f. Reus/Stretcher 2001).
- We currently use the solution to the domain equation: self \cong self \rightarrow Fself which is equivalent to studying the fixpoint of $\mathrm{G} X=(\mathrm{F} X)^{X} \ldots$ but the occurrence of X is both positive and negative and hence G is not a functor.

Current work - method update

- We seek a denotation of objects that will give us recursion (and corecursion) for free.
- We deal with objects with updatable methods (c.f. Abadi and Cardelli). To our knowledge, such objects are not semantically well-understood to date (c.f. Reus/Stretcher 2001).
- We currently use the solution to the domain equation: self \cong self \rightarrow Fself which is equivalent to studying the fixpoint of $\mathrm{G} X=(\mathrm{F} X)^{X} \ldots$ but the occurrence of X is both positive and negative and hence G is not a functor.
- Freyd provides a technique of transforming this equation into a functor rather than difunctor.

