Recursion Parameterised by Monads: Characterisation and Examples

Johan Glimming

glimming@kth.se
Stockholm University (KTH)

Sweden 9 December 2003

• Describe the extension of folds to monadic folds, and present state monads via example.

Aims

- Describe the extension of folds to monadic folds, and present state monads via example.
- Explain the required lifting from F-algebras to F^M-algebras [Beck 1969, Fokkinga 1994, Pardo 2001].

Aims

- Describe the extension of folds to monadic folds, and present state monads via example.
- Explain the required lifting from F-algebras to F^M-algebras [Beck 1969, Fokkinga 1994, Pardo 2001].
- Conclude by (briefly) describing on-going research on the semantics of objects with method update [Glimming, Ghani 2003].

Folds, Monads, and Monadic Folds

Structural recursion is captured by a combinator called fold,
 i.e. fold_{List}, fold_{Nat}, fold_{Tree}, ...

sum [] = 0
sum x:xs = x + sum xs

Let List denote lists of natural numbers, e.g.
 [881, 883, 887].

• The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is *Nat* for sum.

- The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is *Nat* for sum.
- (*Nat*, [0, +]) forms an algebra of the same pattern functor as (*List*, [[], :]).

- The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is *Nat* for sum.
- (*Nat*, [0, +]) forms an algebra of the same pattern functor as (*List*, [[], :]).
- fold_{List} has type $\tau \times (\tau \times \tau \to \tau) \times List \to \tau$.

- The important part of this schema is $0: \tau$ and $+: \tau \times \tau \rightarrow \tau$ where τ is *Nat* for sum.
- (*Nat*, [0, +]) forms an algebra of the same pattern functor as (*List*, [[], :]).
- fold_{List} has type $\tau \times (\tau \times \tau \to \tau) \times List \to \tau$.
- Write ([*f*])_F for fold/catamorphism. *f* can be
 [0,+], [[*x*],:],...

 Language constructs (c.f. Charity) – increasing the expressive power.

- Language constructs (c.f. Charity) increasing the expressive power.
- Structure programs after the type of values functions consumes.

- Language constructs (c.f. Charity) increasing the expressive power.
- Structure programs after the type of values functions consumes.
- Calculation: we get nice theorems for free and we can use these theorems to develop programs in a style similar to the way an engineer works with calculus when he builds a bridge.

- Language constructs (c.f. Charity) increasing the expressive power.
- Structure programs after the type of values functions consumes.
- Calculation: we get nice theorems for free and we can use these theorems to develop programs in a style similar to the way an engineer works with calculus when he builds a bridge.
- Optimisation: acid rain, fusion (in compiler?)

Recipe for a monad: state

 Start with your favourite type constructor and a pinch of functoriality:

newtype State s a =
 State {runState :: s -> (a,s)}

Cont'd

Put it on an ad-hoc plate, use all strength:
 class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

instance Monad (State s) where
 return a = State \$ \s ->

(a, s)
m >>= k = State \$ \s ->
 let (a, s') = runState m s
 in
 runState (k a) s'

Computational intuition

- State monad: the monad itself is a mappping from an initial state to a value and a new state. The two operations (unit and bind) corresponds to:
 - making a value a state-based computation, $a \mapsto \lambda s.(a, s)$, and

2 f >>= g means forming a new computation that, given an initial state *s*, evaluates *f* in that state, moving to a new state, in which *g* is evaluated: $s \mapsto g a s'$ where (a, s') = f s.

Cont'd recipe ...

 Serve hot with a fold for the season (this year, it's lists):

foldrM :: (Monad m) =>
 (a -> b -> m a) -> a -> [b] -> m a
foldrM _ a [] = return a
foldrM f a (x:xs) =
 f a x >>= \fax -> foldM f fax xs

Now you've baked a state, and you can fold it!

Kleisli triples

Let's make sure:

 Left unit: return a >>= k = k a
 Right unit: k >>= result = k
 Associativity of bind: (a >>= b) >>= c = a >>= (b >>= c)

Kleisli triples – or triples?

 In fact, this is a *Kleisli triple* (an object construction) rather than a monad, but Kleisli triples are in bijective correspondence with monads (a k a triples).

Example: accumulate

We now consider a function that, given a list of computations of the form *M A*, produces a computation that collects the result of all those computations, from left to right:

Cont'd

This accumulate function can be written as a monadic (left) fold on lists:

From this one may (correctly) guess that foldlM can be written in terms of foldl.

- Structure programs after the sort of computation of value they produce [Meijer and Jeuring 1995].
- **Examples:** exceptions, layers of state-based computation, non-determinism, partiality, ...
- For our purposes: monads gives rise to a *higher-order* denotation of objects where state is captured by a state transforming function, and an object becomes a functional. But *is monadic fold general enough?*

 Types = objects in suitable category (Set, Cpo₁), and computations = arrows.

- Types = objects in suitable category (Set, Cpo₁), and computations = arrows.
- Recursive datatype is represented by a *pattern functor*, e.g. FX = 1 + X × X + N.
 Fixpoint is the datatype (object). Initial algebra is type constructor e.g. [*Nil*, *Cons*].

- Types = objects in suitable category (Set, Cpo₁), and computations = arrows.
- Recursive datatype is represented by a *pattern functor*, e.g. FX = 1 + X × X + N.
 Fixpoint is the datatype (object). Initial algebra is type constructor e.g. [*Nil*, *Cons*].
- The fixpoint can be identified with the initial algebra over the pattern functor.

- Types = objects in suitable category (Set, Cpo₁), and computations = arrows.
- Recursive datatype is represented by a *pattern functor*, e.g. FX = 1 + X × X + ℕ.
 Fixpoint is the datatype (object). Initial algebra is type constructor e.g. [*Nil*, *Cons*].
- The fixpoint can be identified with the initial algebra over the pattern functor.
- **Goal:** What is the semantics of *monadic* folds? Useful for recursion on objects?

Polynomial functors

The smallest class of functors closed under composition and containing the following basic functors:

• *n*-ary constant functor \underline{A}^n for fixed *A*, *n*:

 $\underline{A}^n f_0 \dots f_{n-1} = i d_A$

 $\underline{A}^n B_0 \dots B_{n-1} = A$

• *n*-ary projection functors π_i^n : $\pi_i^n f_0 \dots f_{n-1} = f_i$

 $\pi_i^n A_0 \dots \underline{A_{n-1}} = \underline{A_i}$

- *id*, the identity functor
- +, the sum functor
- ×, the product functor

(Regular functors)

- The class of polynomial functors can be extended to the slightly larger class of *regular* functors by also considering:
- Type functors i.e. fixpoints of parameterised regular functors, e.g. List α (which is in fact a bifunctor) plus operation on arrows which is usually defined to be the map operation.

F-algebras

Given:

• endofunctor $F : \mathcal{C} \rightarrow \mathcal{C}$

Define: F-algebra is an arrow σ : FA \rightarrow A in \mathcal{C}

- We write $(\mathbf{A}, \sigma)_{\mathsf{F}}$
- A is the carrier of the F-algebra
- F determines the signature (or operational type)
- σ is the structure (or operation)

F-homomorphisms

Structure-preserving mapping from the carrier of one F-algebra to the carrier of another F-algebra: A homomorphism $\phi : X \to Y$ from (X, σ) to (Y, τ) is defined by the (universal) property:

$$\phi \circ \sigma = \tau \circ \mathsf{F} \phi$$

$$\begin{array}{c} \mathsf{F} X \xrightarrow{\sigma} X \\ \mathsf{F} \phi \middle| & \qquad \downarrow \phi \\ \mathsf{F} Y \xrightarrow{\tau} Y \\ \tau \end{array}$$

Example

 sum is a List-homomorphism: it maps
 F-algebras to F-algebras for the same pattern functor F.

Homomorphism since:

 $\texttt{sum} \circ [\textit{Nil},\textit{Cons}] = [0,+] \circ \texttt{Fsum}$

Recursion

- ([...])_F is the notation for structural recursion over a datatype (primitive if the datatype happens to be the natural numbers).
- Category theory gives us a characterisation as a universal property of (polynomial) datatypes. Existence is immediate in "rich-enough" categories e.g. Fun and Cpo.

Catamorphism

By definition, there is a unique homomorphism, $h: inn_{\rm F} \rightarrow f$, to every F-algebra (A, f) from the initial F-algebra $inn_{\rm F}$.

This homomorphism is denoted ([f]) and called the catamorphism for the algebra (A, f).

For every F-algebra (*A*, *f*) we can formally define the catamorphism with a *universal property* (arrow):

$$h = (\llbracket f \rrbracket) \equiv h \circ \alpha = f \circ \mathsf{F} h$$

Catamorphism diagram

Let F be some endofunctor, $f : FA \rightarrow A$ some algebra, and let $(T, inn_F)_F$ be the initial algebra. ([f]) is the unique homomorphism that makes the following diagram commute:

Anamorphism

Dually, there is a unique homomorphism, $h: F \rightarrow out_F$, to every F-coalgebra (A, f) from the initial F-coalgebra inn_F.

This homomorphism is denoted]f([and called the anamorphism for the algebra (A, f).

For then F-algebra (A, f) we can formally define the anamorphism with a universal property:

$$h =]f([\equiv h \circ \alpha = f \circ F h])$$

Lifting Construction

Milestones

- [Beck 1969]: foundational work on algebras over monads and distributive laws.
- [Fokkinga 1994]: provided a lifing construction valid for all regular functors, but not allowing state monads.
- [Pardo 1998, 2001]: worked on the characterisation of monadic lifting of algebras, e.g. by showing that every strong commutative functor can be lifted to a monadic functor using the strength for distribution over product functor.

From C to C^M ... and back

Barr and Wells provide us with the following adjunction (pair of functors):

Adjunction

... where (remembering the monad)

$$\begin{array}{rcl}
^{M} & :: & \mathcal{C} \to \mathcal{C}^{M} \\
A^{M} & = & A \\
f^{M} & = & \eta \bullet f
\end{array}$$

and (forgetting it again)

$$U :: \mathcal{C}^{M} \to \mathcal{C}$$
$$UA = MA$$
$$Uf = \mu \bullet Mf$$

Preservation of limits

Now we have the very important property:

• Left adjoints preserve colimits, e.g. initiality.

Above, $_^{M}$ is the left adjoint, and hence an initial object *A* under $_^{M}$, A^{M} , is also initial in C^{M} .

Preservation of limits

Now we have the very important property:

• Left adjoints preserve colimits, e.g. initiality.

Above, $_^{M}$ is the left adjoint, and hence an initial object *A* under $_^{M}$, A^{M} , is also initial in C^{M} .

• But... we want to lift objects in the category of F-algebras to the category of F-algebras over a monad *M*, with the same preservation of initiality.

Alg(F) to $Alg^M(F^M)$

• What we are looking for:

$$Alg^{M}(\mathsf{F}^{M})$$

$$\begin{bmatrix} M \\ - \end{bmatrix} \lor$$

$$Alg(\mathsf{F})$$

Interlude: F to F^M

• Lifting F-algebras require us first to be able to lift functors alone, i.e. from $F :: \mathcal{C} \to \mathcal{C}$ we want to construct $F^M :: \mathcal{C}^M \to \mathcal{C}^M$.

 $\begin{array}{rcl} F^{M} A &=& F A \\ F^{M} f & :: & F A \rightarrow M (F B) \end{array}$

Interlude: F to F^M

• Lifting F-algebras require us first to be able to lift functors alone, i.e. from $F :: \mathcal{C} \to \mathcal{C}$ we want to construct $F^M :: \mathcal{C}^M \to \mathcal{C}^M$.

 $\begin{bmatrix} F^{M} \overline{A} &= F \overline{A} \\ F^{M} f & :: F \overline{A} \to M(F B) \end{bmatrix}$

But ... setting $F^M f = Ff$ would give something of type $Ff :: FA \rightarrow FMB$ since $f : A \rightarrow MB$ are the arrows in \mathbb{C}^M . How can we get a functor that gives us M(FB) as target for such an arrow?

Distribution laws

Consider a family of natural transformations $\delta_{\mathsf{F}} : \mathsf{F} M \rightarrow M \mathsf{F}.$

- Such δ are called distribution laws because they perform a distribution of a monad over a functor.

Strength – the missing piece

Fokkinga (1994) gives an definition of a possible δ by induction over the structure of regular functors, assuming distribution over product.

The strength of a monad (M, η, μ) is given by a natural transformation $\tau_{A,B} :: A \times MB \rightarrow M(A \times B)$. State monad is strong in both Sets and Cpo₁.

• Pardo (2001) demonstrated that every strong monad *M* has a distribution law for the monad over the product functor, i.e. a natural transformation $\psi_{A,B} :: MA \times MB \rightarrow M(A \times B)$.

Distribution law for regular F

Following Fokkinga (1994) and Pardo (2001):

$$\begin{split} \delta_{A}^{l} &= id_{M} A \\ \delta_{\overline{A}}^{\underline{C}} &= id_{C} \\ \delta_{(A_{1},...,A_{n})}^{\pi^{n_{i}}} &= id_{MA_{i}} \\ \delta_{(A,B)}^{\times} &= \psi_{(A,B)} \\ \delta_{(A,B)}^{+} &= [M \operatorname{inl}, M \operatorname{inr}] \\ \delta_{(A,B)}^{(F \circ G)} &= \delta_{(G,A)}^{F} \circ F(\delta_{A}^{G_{1}},...,\delta_{A}^{G_{n}}) \\ \delta_{A}^{D} &= (\operatorname{c.f.} \operatorname{Pardo or Fokkinga}) \end{split}$$

From distributivity to lifting

We now only need to verify that the definition of the lifting given by:

$$\begin{array}{rcl} \mathsf{F}^{M} f & :: & \mathsf{F} A \longrightarrow M \left(\mathsf{F} B\right) \\ \mathsf{F}^{M} f & = & \delta_{B}^{\mathsf{F}} \circ \mathsf{F} f \end{array}$$

Indeed, the construction has the right type. Fokkinga and Pardo proves that F^M is indeed a functor if F is regular and M is strong (as functor) in the base category.

What about the F-algebras?

We can now use Barr and Wells lifting together with Fokkinga and Pardo's lifting. We have showed *one possible* construction of:

 $\underline{\ }^{M}::Alg(\mathsf{F})\to Alg^{M}(\mathsf{F}^{M})$

Current Research

Pros with monadic folds

 Too specific to be useful ... [Meijer and Jeuring 1995]

Consider map1, a function that maps a monadic function over a list, starting from the left. The definition of this function becomes complicated when written as a monadic fold (c.f. Meijer and Jeuring).

 Pardo (2001), on the other hand, argues that (co)monadic (un)folds "capture functions commonly used in practise" ...

Cons with monadic folds

 State monads are excellent for representing objects [Nordlander 2000].

Cons with monadic folds

- State monads are excellent for representing objects [Nordlander 2000].
- State monads can be used to represent objects with method update [Glimming and Ghani].

Cons with monadic folds

- State monads are excellent for representing objects [Nordlander 2000].
- State monads can be used to represent objects with method update [Glimming and Ghani].
- Hence, perhaps monadic folds can form building blocks for future (real!) O-O programming languages which supports method update. Q: Why method update?

Generalisation of the lifting

Nested datatypes (based on e.g. [Bailey 2000]).

Generalisation of the lifting

- Nested datatypes (based on e.g. [Bailey 2000]).
- Datatypes involving function spaces (*i.e. more than regular!*)

Generalisation of the lifting

- Nested datatypes (based on e.g. [Bailey 2000]).
- Datatypes involving function spaces (*i.e. more than regular!*)
- Variations establishing a "calculus of monadic liftings" where we can choose from several alternative liftings, each with a clear computational intuition – there are many ways to construct the lifting (for every distributive law...)

• We seek a denotation of objects that will give us recursion (and corecursion) *for free*.

- We seek a denotation of objects that will give us recursion (and corecursion) *for free*.
- We deal with objects with updatable methods (c.f. Abadi and Cardelli). To our knowledge, such objects are not semantically well-understood to date (c.f. Reus/Stretcher 2001).

- We seek a denotation of objects that will give us recursion (and corecursion) for free.
- We deal with objects with updatable methods (c.f. Abadi and Cardelli). To our knowledge, such objects are not semantically well-understood to date (c.f. Reus/Stretcher 2001).
- We currently use the solution to the domain equation:
 self ≈ self → Fself which is equivalent to studying the fixpoint of
 G X = (FX)^X ... but the occurrence of X is both positive and negative and hence G is not a functor.

- We seek a denotation of objects that will give us recursion (and corecursion) for free.
- We deal with objects with updatable methods (c.f. Abadi and Cardelli). To our knowledge, such objects are not semantically well-understood to date (c.f. Reus/Stretcher 2001).
- We currently use the solution to the domain equation:
 self ≈ self → Fself which is equivalent to studying the fixpoint of
 G X = (FX)^X ... but the occurrence of X is both positive and negative and hence G is not a functor.
- Freyd provides a technique of transforming this equation into a functor rather than difunctor.