Recursion Para
Characterisat

gf\/ ETENSKAI:&

OCH

é{:%o KONST @4"
KTH

Aims

e Describe the exten
folds, and present s

Aims

e Describe the extensio
folds, and present stat

e Explain the required lif
FM-algebras [Beck 196
Pardo 2001].

Aims

e Describe the extension of f
folds, and present state m

e Explain the required lifting
FM-algebras [Beck 1969, F
Pardo 2001].

e Conclude by (briefly) desc
research on the semantics
method update [Glimming,

Folds, Monads, and Monadic Folds

Recursion = fold

e Structural recursion is
combinator called fo
|e fOldL,’St, fOldNat,

sum [] = 0

Sum X XS X

e Let List denote lists of
[881,883,887].

Recursion = fold

e The important part
+:7 X 7 — 7 wWher

Recursion = fold

e The important part of
+:7 X 17— 7 Where

e (Nat,|0,+]) forms an
pattern functor as (Lis

Recursion = fold

e The important part of t
+:7 X717 — 7wWhere t

e (Nat, [0,+]) forms an al
pattern functor as (List

e fold,g has type T X (

Recursion = fold

e The important part of th
+:7 X717 — 7where 7 |

e (Nat,[0,4]) forms an alg
pattern functor as (List, |

e fold,g has type T X (T

o Write ([f])r for fold/catam
0, 415 x5], -

Why bother?

e Language construc
Increasing the expr

Why bother?

e Language constructs
iIncreasing the expres

e Structure programs a
functions consumes.

Why bother?

e Language constructs (c.f. Ch
iIncreasing the expressive po

e Structure programs after the
functions consumes.

e Calculation: we get nice the
and we can use these theore
programs in a style similar to
engineer works with calculus
bridge.

Why bother?

e Language constructs (c.f. Charity) —
Increasing the expressive power.

e Structure programs after the type of values
functions consumes.

o Calculation: we get nice theorems for free
and we can use these theorems to develop
programs in a style similar to the way an
engineer works with calculus when he builds a
bridge.

e Optimisation: acid rain, fusion (in compiler?)

Recipe for a monad: state

e Start with your favour
a pinch of functorialit

newtype State
State {runsSt

Contd

e Put it on an ad-hoc p

class Monad m
return :: a
(>>=) s o

instance Mona

return a = S
(a, S)

m >>= k = S
let (a, s’
in

runState (

Computational intuition

o State monad: the monad itself is a mappping
from an initial state to a value and a new state.

The two operations (unit and bind)
corresponds to:

making a value a state-based computation,
a— \s.(a,s), and

f >>= g means forming a new computation
that, given an initial state s, evaluates f in
that state, moving to a new state, in which g
is evaluated: s +— gas’ where (a,s’) = fs.

Cont’d recipe ...

e Serve hot with a fold f
it's lists):

foldrM :: (Monad
(a —> b —> m a)

foldrM _ a []

foldrM £ a (x:x8)
f a x >>=— N

e Now you've baked a st

Kleisli triples

e Let’s make sure:

Left unit:

return a >>=

Right unit:

k >>= result

Associativity of bl
(a >>= b) >>=

Kleisli triples — or triples?

e In fact, this is a Kleisli
construction) rather th
triples are in bijective c
monads (a k a triples).

Example: accumulate

We now consider a function
computations of the form m
computation that collects th
computations, from left to ri

accumulate :: Monad
accumulate = foldr (
do a
as
(a:

(return

Contd

This accumulate functi
monadic (left) fold on list

accumulate = foldlM
do a

(

(retur

From this one may (corre
can be written in terms of

Why bother?

e Structure programs after the sort of
computation of value they produce [Meljer and
Jeuring 1995].

o Examples: exceptions, layers of state-based
computation, non-determinism, partiality, ...

e For our purposes: monads gives rise o a
higher-order denotation of objects where state
IS captured by a state transforming function,
and an object becomes a functional. But Is
monadic fold general enough?

Entering the world of semantics ...

e Types = objects in sul
(Set, Cpo |), and comp

Entering the world of semantics ...

e Types = objects in suitable
(Set, Cpo ,), and computati

e Recursive datatype is repr
pattern functor, e.g. FX = 1
Fixpoint is the datatype (0
IS type constructor e.g. |Nil

Entering the world of semantics ...

e Types = objects in suitable ca
(Set, Cpo |), and computations

e Recursive datatype Is represe
pattern functor, e.g. FX =1 +
Fixpoint is the datatype (obje
s type constructor e.g. |Nil, Co

e The fixpoint can be identified
algebra over the pattern funct

Entering the world of semantics ...

e Types = objects in suitable category
(Set, Cpo |), and computations = arrows.

e Recursive datatype is represented by a
pattern functor, e.g. FX =1+ X x X + N.
Fixpoint is the datatype (object). Initial algebra
s type constructor e.g. [Nil, Cons].

e The fixpoint can be identified with the initial
algebra over the pattern functor.

e Goal: What is the semantics of monadic
folds”? Useful for recursion on objects?

Polynomial functors

The smallest class of functors closed
following basic functors:

e n-ary constant functor A" for fixed
A'fy ... fr_1 = idj
A'By...B,_.1 = A

e n-ary projection functors ;"
wify ... f_1 = i
Ay ... A1 = A

e id, the identity functor

e -+, the sum functor

e X, the product functor

(Regular functors)

e The class of polynomial fun
extended to the slightly larg
functors by also considerin

e Type functors — i.e. fixpoin
parameterised regular func
(which is in fact a bifunctor)
arrows which is usually defi
operation.

F-algebras

Given:
e endofunctorF: C — C
Define: F-algebra is an ar

o We write (A, 0)¢
e Ais the carrier of the F

e F determines the signa
type)
e o is the structure (or o

F-homomorphisms

Structure-preserving mappin
one F-algebra to the carrier o

A homomorphism ¢ : X — Y
Is defined by the (universal)

poog=ToF¢

O
FX —

ol

FY —
n

Example

e sum IS a List-homomo
F-algebras to F-algeb
functor F.

Homomorphism since:

sum o |Nil, Cons| = |0,

Recursion

e (....)r is the notation for stru
over a datatype (primitive If
happens to be the natural

e Category theory gives us a
as a universal property of (
datatypes. Existence is im
“rich-enough” categories e.

Catamorphism

By definition, there is a unigue homomorphism,
h: inne — f, t0 every F-algebra (A, f) from the
initial F-algebra inne.

This homomorphism is denoted (|f]) and called
the catamorphism for the algebra (A, f).

For every F-algebra (A, f) we can formally define
the catamorphism with a universal property
(arrow):

h=(f) = hoa=foFh

Catamorphism diagram

Let F be some endofuncto
algebra, and let (T, inng) b
(f) is the unique homomor
following diagram commut

inn
FT

F(h)

\ 4

FA

Anamorphism

Dually, there is a unique homomo
h: F — outs, t0 every F-coalgebra
initial F-coalgebra inne.

This homomorphism is denoted)
the anamorphism for the algebra

For then F-algebra (A, f) we can f
the anamorphism with a universal

h=)f(= hoa=foFh

Lifting Construction

Milestones

e [Beck 1969]: foundational work on algebras
over monads and distributive laws.

e [Fokkinga 1994]: provided a lifing construction
valid for all regular functors, but not allowing
state monads.

e [Pardo 1998, 2001]: worked on the
characterisation of monadic lifting of algebras,
e.g. by showing that every strong
commutative functor can be lifted to a
monadic functor using the strength for
distribution over product functor.

From C to ¢" ... and back

Barr and Wells provide
adjunction (pair of funct

Adjunction

... Where (rememberin

M
AV — A
M = nef

and (forgetting it again

U :: ==
UA = MA
Uf = pneMf

Preservation of limits

Now we have the very im

e Left adjoints preserve c

Above, M is the left adjoi
object Aunder ", AM is a

Preservation of limits

Now we have the very important
e Left adjoints preserve colimit

Above, " is the left adjoint, and
object Aunder M, AM is also ini

e But... we want to lift objects i
F-algebras to the category of
a monad M, with the same pr
initiality.

Alg(F) to Alg"(FM)

e What we are lookKi

Interlude: F to FV

e Lifting F-algebras req
lift functors alone, I.e.
to construct FM :: @V

Interlude: F to FV

e Lifting F-algebras require u
lift functors alone, 1.e. from
to construct FM :: €M — M.

But ... setting FV f = F f would
type Ff:: FA— FMBSInce f :
arrows in €. How can we get
gives us M (F B) as target for s

Distribution laws

Consider a family of natu
O : FM—MF.

e Such 4 are called distri
they perform a distribu
functor.

Strength — the missing piece

e Fokkinga (1994) gives an definition of a
possible ¢ by induction over the structure of
regular functors, assuming distribution over
product.

The strength of a monad (M, n,) Is given by a
natural transformation 7,5 :: AX MB — M (A X B).
State monad is strong in both Sets and Cpo | .

e Pardo (2001) demonstrated that every strong
monad M has a distribution law for the monad
over the product functor, I.e. a natural
transformation 1,5 :: MAX MB — M (A X B).

Distribution law for regular F

Following Fokkinga (199

8, = idyA
0f = idg
Ola,a) = idua

5(>/<4,B) B w(A,B)

0 o = [Minl,Min

5(FOG) - 52:6“4) o F(
05 = (c.f. Pardo

From distributivity to lifting

We now only need to verify th
the lifting given by:

Ff . FA— M(FB)
FVf = S oFf

Indeed, the construction has t
Fokkinga and Pardo proves th
functor if F is regular and M Is
In the base category.

What about the F-algebras?

We can now use Barr and
with Fokkinga and Pardo’
showed one possible con

M Alg(F) — AlgM (FY

Current Research

Pros with monadic folds

e Too specific to be useful ... [Meijer and
Jeuring 1995]

Consider mapl, a function that maps a monadic
function over a list, starting from the left. The
definition of this function becomes complicated
when written as a monadic fold (c.f. Meijer and

Jeuring).

e Pardo (2001), on the other hand, argues that
(co)monadic (un)folds “capture functions
commonly used in practise” ...

Cons with monadic folds

e State monads are e
objects [Nordlander

Cons with monadic folds

e State monads are exc
objects [Nordlander 20

e State monads can be
objects with method u
Ghani].

Cons with monadic folds

e State monads are excellent fo
objects [Nordlander 2000].

e State monads can be used to
objects with method update |
Ghanil.

e Hence, perhaps monadic fold
building blocks for future (real!
programming languages whic
method update. Q: Why meth

Generalisation of the lifting

e Nested datatypes (b
2{0[0]0]) 2

Generalisation of the lifting

o Nested datatypes (bas
2{0[0]0]) 2

e Datatypes involving fu
than regular!)

Generalisation of the lifting

o Nested datatypes (based on e.g. [Bailey
2000]).

e Datatypes involving function spaces (..e. more
than regular!)

e Variations — establishing a “calculus of
monadic liftings” where we can choose from
several alternative liftings, each with a clear
computational intuition — there are many ways
to construct the lifting (for every distributive

law...)

Current work - method update

e We seek a denotation of object
corecursion) for free.

Current work - method update

e We seek a denotation of objects th
corecursion) for free.

e We deal with objects with updatabl
our knowledge, such objects are n
(c.f. Reus/Stretcher 2001).

Current work - method update

e We seek a denotation of objects that w
corecursion) for free.

e We deal with objects with updatable m
our knowledge, such objects are not s
(c.f. Reus/Stretcher 2001).

e We currently use the solution to the do
self = self — Fself which is equivalent t
G X = (FX)* ... but the occurrence of X
hence G is not a functor.

Current work - method update

e We seek a denotation of objects that will
corecursion) for free.

o We deal with objects with updatable meth
our knowledge, such objects are not sem
(c.f. Reus/Stretcher 2001).

e We currently use the solution to the doma
self = self — Fself which is equivalent to s
GXx = (FX)* ... but the occurrence of X is
hence G is not a functor.

e Freyd provides a technique of transformin
rather than difunctor.

	Aims
	
	Recursion = fold
	Recursion = fold
	Why bother?
	Recipe for a monad: state
	Cont'd
	Computational intuition
	Cont'd recipe ...
	Kleisli triples
	Kleisli triples --- or triples?
	Example: accumulate
	Cont'd
	Why bother?
	Entering the world of semantics ...
	Polynomial functors
	(Regular functors)
	F -algebras
	F -homomorphisms
	Example
	Recursion
	Catamorphism
	Catamorphism diagram
	Anamorphism
	
	Milestones
	From $C $ to $C ^M$... and back
	Adjunction
	Preservation of limits
	$Alg(F)$
to $Alg^M(F ^M)$
	Interlude: $F $ to $F ^M$
	Distribution laws
	Strength --- the missing piece
	Distribution law for regular F
	From distributivity to lifting
	What about the F -algebras?
	
	Pros with monadic folds
	Cons with monadic folds
	Generalisation of the lifting
	Current work - method update

