
EG UK Computer Graphics & Visual Computing (2017)
Tao Ruan Wan and Franck Vidal (Editors)

Real-Time Rendering of Molecular Dynamics Simulation Data:
A Tutorial

N.Alharbi1 , M. Chavent2 and RS. Laramee1

1Department of computer science, Swansea University, UK
2 Institute of Pharmacology and Structural Biology (IPBS), Toulouse, France

Disk

Cache

CPU

RAM

Memory

GPU

OpenCL context

OpenGL context

Screen Disk

GPU Memory

GPU

OpenGL context

Screen

Cache

CPU

RAM

(a) (b)

OpenCL context

Figure 1: A traditional approach vs. an advanced approach. The arrows indicate the flow of the data throughout the visualization pipeline.
a) the traditional approach requires copying the data four times per computation. The first copy is from disk to the RAM, and the remaining
to exchange the data between the CPU and GPU. b) the advanced approach utilizes a mapping technique and OpenGL interoperability. The
data is copied only twice: from disk to RAM and from RAM to the GPU.

Abstract
Achieving real-time molecular dynamics rendering is a challenge, especially when the rendering requires intensive computa-
tion involving a large simulation data-set. The task becomes even more challenging when the size of the data is too large to
fit into random access memory (RAM) and the final imagery depends on the input and output (I/O) performance. The large
data size and the complex computation processing per frame pose a number of challenges. i.e. the I/O performance bottleneck,
the computational processing performance costs, and the fast rendering challenge. Handling these challenges separately con-
sumes a significant portion of the total processing time which may result in low frame rates. We address these challenges by
proposing an approach utilizing advanced memory management and bridging the Open Computing Language (OpenCL) and
Open Graphics Library (OpenGL) drivers to optimize the final rendering frame rate. We illustrate the concept of the memory
mapping technique and the hybrid OpenCL and OpenGL combination through a real molecular dynamics simulation example.
The simulation data-set specifies the evolution of 336,260 particles over 1981 time steps occupying 8 Gigabyte of memory. The
dynamics of the system including the lipid-protein interactions can be rendered at up to 40 FPS.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—...

1. Introduction and Motivation

In computational biology, Molecular Dynamics Simulation (MDS)
is used to simulate the dynamics of lipids and proteins. MDS is
capable of producing a high volume of MDS data resulting from
simulating the motion and interaction of billions or even trillions of
particles. The MDS data can be investigated utilizing various visu-
alization techniques. The ever-increasing size of MDS output poses
a number of challenges and requires data visualization scientists

employing new technologies and techniques to address these chal-
lenges. For a recent MDS visualization literature review we refer
to Alharbi et al. [AAM∗17]. Thankfully, advances in commodity
Computer Graphics hardware including Graphics Processing Unit
(GPU) technology result in a significant acceleration of graphics
applications including scientific visualization. Commodity graph-
ics hardware is capable of processing millions of textured triangles
per second [THO02]. However, even though the new hardware is

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

designed to ensure high rendering quality and performance, the size
and nature of the data, the required processing per frame, and the
rendering approaches affect the final rendering frame rate and pose
three main challenges, the I/O, the computation, and the rendering
challenge respectively.

In terms of the size of data, which forms the basis of the first
challenge, we consider the data to be big data when it does not fit
into the RAM. Data not held in RAM means it requires more fre-
quent file I/O access which is very expensive compared to RAM
access and may turn to a rendering bottleneck. The second chal-
lenge is posed by the computation requirements. Regardless of the
complexity of the computation, the computation challenge is tightly
coupled with the size of the data and the methods that are used to
handle it. The third challenge is tightly related to the (CPU ver-
sus GPU) computation location, and the data exchange approach
by which data is passed between the computational and the ren-
dering stages. In terms of location, the computation might be per-
formed on the CPU or on the GPU. In both cases, the data transfer
method plays an essential role in determining the visualization per-
formance.

A real-time visualization can be achieved by increasing the render-
ing frame rate. The higher this number, the better the user’s percep-
tion of the fluidity of the scene. An optimal frame rate is around
30 fps, as the human visual system is only perceives up to about
25 images per second (called the persistence of vision) [Gol14].
If such high frame rates are achieved, the rendering is considered
real-time [CLK∗11].

This article addresses the big data I/O challenge, computation
challenge and fast rendering by introducing a memory mapping
technique and an advanced GPU approach utilizing the OpenCL
interoperability feature. The simulation is performed previously by
GROMACS [VDSLH∗05]. We choose OpenCL because it is free,
cross-platform, well documented and fast. See figure 2. The arti-
cle is targeted at developers who would like to render MDS data
and guides the user on how to achieve a real-time rendering. Our
contributions are:

• A memory mapping technique to enhance the I/O performance.
• Illustrating the concept of Memory-Mapped Files and buffer

mapping.
• Exploiting the GPU to accelerate the big data computation.
• Integrating OpenCL and OpenGL by utilizing the OpenCL inter-

operability feature.
• A case study using a real example involving the dynamic of

lipids and proteins from a molecular dynamics simulation.
• A performance comparison of a traditional approach vs. our ap-

proach.

This article focuses on OpenGL 4.3 and OpenCL 1.1, and it does
not cover data visualization techniques such as filtering, sampling,
Level of Detail (LoD) etc, as these techniques are beyond the scope.

The rest of the paper is organized as follows: in section 2, we
provide an overview of related work. Section 3 describes the re-
quirements of our real-time molecular dynamics rendering. In sec-
tion 4 we describe the challenges and their solution, and provide a
comparison of our solution with a traditional solution followed by
the conclusion in section 5.

Disk Cache

CPU

RAM

Memory

GPU

OpenCL context

OpenGL context

Screen

I/O Challenge

sections 3.1

 and 4.1.1

Accelerating challenge sections 3.2 and 4.1.2

Figure 2: An overview of the challenges throughout the visualiza-
tion pipeline.

2. Related Work

GPU technology plays a significant role in enhancing the per-
formance of MDS data computation and visualization. Molecular
modeling algorithms that exploit the GPU have been largely suc-
cessfully compared to alogorithms that use CPU alone. See Stone
et al [SHUS10] for an overview. Recent developments utilizing
GPUs address performance limitations and herald the next gener-
ation of molecular visualization solutions according to Chavent et
al [CLK∗11].

In general, a number of tutorials have been published illustrating
GPU technology and how to code GPU-based programs. Stone
et al. [SGS10] provide an overview of the key architectural fea-
tures of recent microprocessor designs and describe the program-
ming model and abstractions provided by OpenCL. Shreiner et
al [SSKLK13] and Wright et al. [WJHSL10] can be considered
OpenGL specification-based references. The tutorials, of Shreiner
et al and Wright et al, are accompanied by a collection of C++
code examples. Shreiner et al. [SSKLK13] focus on the latest
methods and techniques for OpenGL 4.3 application development.
They describe every stage of the programmable rendering pipeline
and cover shading techniques found in the OpenGL Shading Lan-
guage (GLSL) including the compute shader which is introduced
in OpenGL 4.3. The compute shader runs in a separate stage of
the GPU and allows an application to make use of the power of
the GPU for general purpose work that may or may not be re-
lated to graphics. Wright et al. [WJHSL10] is designed for readers
who are learning computer graphics through OpenGL and readers
who may already be familiar with graphics but want to learn about
OpenGL, however, readers are required to understand computer
programming in C++. In addition to the essential OpenGL tutorials,
each book involves a number of various topics that cover some ad-
vanced concepts including high-performance rendering techniques
and GPU analysis and OpenGL debugging tools. These tutorials
cover the compute shader which can be used to fulfil computa-
tional requirements. There are a number of efficient frameworks
that are essentially designed to harness GPU to perform computa-
tional tasks.

Weiskopf [Wei06] consists of 5 chapters and it is designed to be a
starting point to understand the GPU-based visualization. The main
parts of the book focus on efficient GPU-based visualization tech-
niques for interactive exploration of 3D scalar and vector fields,
and for enhancing visual perception of non-photorealistic render-
ing. A number of useful topics are discussed throughout the book

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

including parallelization on clusters with several GPUs, adaptive
rendering methods and multi-resolution methods.
Gaster et al. [GHK∗12] guide readers, by example, on how to pro-
gram heterogeneous environments with OpenCL and define the
concepts that the readers need to understand before starting to pro-
gram any heterogeneous system. They concentrate on illustrating
the OpenCL framework in a disconnected context. However, Gaster
et al. [GHK∗12] briefly discuss the concept of sharing a context be-
tween OpenCL and OpenGL in some of their examples. Munshi et
al. [MGMG11] explain how OpenCL 1.1 can be used to express a
wide range of parallel algorithms. They cover the entire OpenCL
1.1 specification including advanced OpenCL features i.e. OpenCL
interoperation which enables developers to access and manipulate
OpenGL buffers from a shared context. Scarpino [Sca11] involves
16 chapters illustrating the OpenCL language by example. The first
10 chapters explore the OpenCL language following by four chap-
ters that show how OpenCL can be used to perform large-scale
tasks. The last two chapters focus on the OpenCL interoperation
and show how OpenCL can be used to accelerate OpenGL applica-
tions. We utilize the OpenCL interoperation approach in the same
manner used in [MGMG11, Sca11], however, we also integrate the
glMapBuffer() and the MMPs in the solution to enhance the final
rendering performance.

Schatz et al. [SMK∗16] present a novel method that enables users
to explore one trillion particles. Their method is based on an ad-
vanced focus and context technique and a camera space visualiza-
tion i.e. only particles that surround the camera are selected. They
utilize a dual-GPU configuration that splits the workload between
the GPUs based on the type of data. Schatz et al. decode and visu-
alize different attributes of the MDS data and allow users to explore
the data-set by moving the camera throughout the scene. However,
even though they apply their method to a dynamic data-set, the cur-
rent version of the method handles the data-set as a volume.

Hrabcak and Masserann [HM12] illustrate the concept of asyn-
chronous buffer transfers to enhance the performance of two way
data traffic i.e uploading and downloading data to and from the
graphics card. The proposed approach focuses on optimizing data
traffic per frame by utilizing two techniques: i) a map buffer, and ii)
a swapping buffer technique. This approach is useful for applica-
tions that render a static data-set, or applications that separate com-
putation from rendering by performing computations on the CPU.
We utilize the map buffer technique to stream data from the CPU
to the GPU.

Movania and Feng [MF12] describe a method for implementing
and visualizing real-time deformation. They utilize a modern GPU
transform feedback mechanism. The transform feedback mecha-
nism enables developers to feed an OpenGL buffer, the so-called
transform feedback buffer (TFBB), via either the vertex or geome-
try shader which means the calculation must be done in the vertex
(or geometry) shader. One of the most significant advantages of
the transform feedback is that the TFBB content can be rendered
directly from the buffer which eliminates unnecessary traffic be-
tween the CPU and GPU. However, this approach is not feasible
for intensive computations or computing big data and the vertex
and geometry shaders tend to be used for light computations as the

Figure 3: Structure of molecules: Protein, POPG and POPE types
(left to right). The hallow of protein particles is used to construct
the protein surface. An advance ball and stick is used to repre-
sent the POPG and POPE types. The Protein image is generated
with VMD [HDS96], and the Lipid type images are generated
with UnityMol [LTDS∗13] based on the hyperballs representation
[CLK∗11].

vertex shader and the geometry shader are limited to a single vertex
and primitive respectively.

In this article, we focus on the performance aspect of real-time
MDS rendering. We cover a number of techniques that can enhance
the performance throughout the visualization pipeline. These tech-
niques are Memory-Mapped Files (MMFs), a Mapped buffer, and
integrating OpenGL and OpenCL by allocating a shared context.

3. Real-Time Visualization Requirements

Scientific visualization research utilizes a well-defined pipeline to
create the final representation of the input data-set. For simplicity,
we use a basic definition for the visualization pipeline. We consider
the visualization pipeline consisting of three main stages (Moreland
[Mor13]): i) the data I/O stage, ii) the computation stage, and iii)
the rendering stage.

In this section, we briefly describe our data set, a programming en-
vironment for developing a solution, and three popular frameworks
that can be utilized through the visualization pipeline to achieve the
real-time rendering.

Data Description Our data-set represents biological dynamics of
lipids and proteins at high resolution. The system’s dimensions are
116.01860 x 116.01860 x 10.13590 nano meters (x, y, and z re-
spectively) and the individual trajectories reflect the evolution of
336,260 particles over 1,981 nanoseconds (ns). The system con-
sists of three molecule types: one protein type, and two lipid types
(POPE type and POPG type). The protein type involves 256 pro-
tein molecules while the lipid POPE and the POPG type consist
of 14,354 and 4,738 molecules respectively. The hierarchy of the
structures is described below:

• The protein structure consists of 256 proteins. Each protein has
171 residues. Each residue consists of 1 to 3 particles. A sin-
gle protein consists of 344 particles which results in (256x344)
88,064 particles in total.

• The lipid structure consists of 19,092 lipids. Each lipid con-
tains 3 groups: i) a head group (2 particles), ii) a tail group (5
particles), and iii) a second tail group (6 particles). Each lipid
molecule has 13 particles which results in (19,092x13) 248,196
lipid particles in total.

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

Figure 3 provides a depiction of the structure of a protein, POPG
type and POPE type. In terms of the size of the data, the data-set
contains more than 666 million vertices that occupy 8 Gigabytes of
memory.

Our requirement is to visualize the interaction between lipids and
proteins on-the-fly. A protein’s body is represented by a sphere
glyphs while shaded spheres are used to represent lipid particles.
The interaction between lipids and proteins is represented by color-
mapping the interacting particles (Figure 4).

Figure 4: Protein-Lipid interaction. The protein particles are rep-
resented by gold spheres and the lipid particles are represented in
green. The red spheres represent the lipid particles that interact with
the protein particles within 0.6 angstrom. The image is generated
with the tutorial accommodated example code.

Development Framework There are a number of a powerful pro-
gramming languages that can be utilized to implement the visual-
ization pipeline. In this article, the implementation of these stages
is done in C++ utilizing the Qt Framework (v. 5.7) [Qt17a]. Qt is
chosen for a number of reasons:

• Qt is cross-platform.
• Qt provides developers with a free development GUI called Qt

Creator [Qt17b].
• In addition to the QOpenGlWidget class, Qt provides developers

with a set of QOpenGL* classes that interface with most of the
OpenGL objects including the shader.

• Qt has up-to-date on-line documentation.
• Qt for application development is available under two licence

agreements: commercial and open source licenses.

The tutorial code is implemented following Laramee’s [Lar10] con-
cise coding conventions which considerably enhance the code read-
ability and result in well organized source code. The full source
code and the supplementary materials can be downloaded from the
following URL http://cs-svr1.swan.ac.uk/~csnai/
RealTimeRendering

3.1. File I/O and Memory Management

In general, a standard C or C++ library is utilized for the im-
plementation of file I/O through the FILE class and iostream li-
brary. In C++, a developer can open a file when instantiating
a stream. The stream is utilized to perform the I/O operations
and finally the file is closed automatically on destruction of the

stream [LK00]. However, the standard C++ iostream has some lim-
itations which must be taken into account. See section 4. Even
though Qt addresses this limitation with the QFileDevice class,
for learning purposes we decide to implemet the file I/O solu-
tion using the Boost library [Boo17a]. The Boost library involves
a collection of useful libraries [DD10, DD12] that can be used
as an alternative to the C++ Standard Template Library (STL).
The Boost iostream Library address the STL iostream limitation
via the Memory-Mapped Files classes: 1) mapped_file_params
2) mapped_file_source, 3) mapped_file_sink and 4) mapped_file.
They provide access to memory-mapped files on Windows and the
Portable Operating System Interface (POSIX) systems [Boo17a].
The mapped_file_params class is responsible for the parameters
used to open a memory-mapped file. The mapped_file_source,
mapped_file_sink and mapped_file classes provide read, write and
read-write access to memory-mapped files respectively. We pro-
pose these classes to enhance the file I/O performance and reduce
the memory management limitations.

3.2. GPU Accelerator

The GPU is essentially designed to accelerate the rendering pro-
cess, however, it is widely used for general purpose computa-
tion as well. There are a number of Application Programming
Interfaces (APIs), such as CUDA [CUD17], OpenCL [Gro17a],
OpenGL [Gro17b], and the promising graphics and computing API
Vulkan [Gro17c], that can be utilized to program a commodity
GPU. They enable developers to harness GPU parallelism through
straightforward C code that runs in thousands or millions of parallel
invocations. Even though all these frameworks provide the devel-
oper with an interface to communicate with graphics cards, each
one is designed for a particular goal. CUDA and OpenCL are de-
signed to accelerate the computation process. However, they can
access OpenGL buffers and manipulate buffer content before it is
rasterized. OpenGL concentrates on the graphics card rendering
pipeline. However, since OpenGL 4.3 developers are able to per-
form computation tasks utilizing the shader. Vulkan is known as the
new generation of OpenGL. It provides a comprehensive computa-
tion and rendering framework. Our solution relies on OpenGL and
the OpenCL API as they are supported by all commodity graphics
cards. The proposed solution benefits from the concept of sharing
data. See Figure 5.

4. Rendering Big MDS Data: A Proposed Solution

As mentioned, rendering big MDS data involves three main chal-
lenges. These challenges are distributed throughout the visualiza-
tion pipeline and are tightly related to each other. Our solution uti-
lizes an advanced memory techniques that reduces the data traf-
fic during the visualization and utilizes a GPU feature that enables
OpenCL to access OpenGL buffers. See Figure 1. In this section,
we describe these challenges and illustrate how can they be ad-
dressed by our proposed solutions.
Data Size Challenge Even though the size of the data can be re-
duced before it is sent to graphics card by applying filtering and
LoD for example, the essential issue, before hand, is finding an op-
timal approach to extract the data from big files. The standard C++
library provides developers with many file I/O operations such as
open, read, seek, write etc. via the iostream class. However, con-
sider a sequential read of a file on disk using the standard system

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

http://cs-svr1.swan.ac.uk/~csnai/RealTimeRendering
http://cs-svr1.swan.ac.uk/~csnai/RealTimeRendering

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

CPU

Memory

GPU

OpenCL context

OpenGL context
*vertex buffer objects
*texture objects

*frame buffer objects

RAM

*OpenCL memory objects

CPU

Memory

GPU

RAM

OpenCL context
from OpenGL context

OpenGL context

*OpenCL memory objects

*vertex buffer objects
*texture objects

*frame buffer objects

(a) (b)

Figure 5: OpenCL and OpenGL integrating approaches. a)
OpenCL context and OpenGL context are separated. This approach
requires exchanging data between CPU and GPU. b) OpenCL cre-
ates its own context from an existing OpenGL context. This shared
context allows OpenCL to access the shared OpenGL objects in
GPU memory. The data is computed and visualized solely on the
GPU.

calls open, read, and write. Each file access requires a system call
and disk access which is considered one of the iostream limitations.
Alternatively, we can use a virtual memory techniques to treat file
I/O as a routine memory access. This approach, known as mem-
ory mapping a file, allows a part of the virtual address space to
be logically associated with the file. Memory mapping a file is ac-
complished by mapping a disk block to a page (or pages) in virtual
memory [SGGS98]. Another limitation of the iostream is that it re-
quires buffering the data from files (the buffer is allocated in RAM
then it is passed as a parameter to the read function) before it can
be used, whereas memory mapped files provide us with a pointer
to the required data in the virtual memory space (Figure 6). We de-
cide to use a Memory Mapped file as it has two advantages: first
it reduces the number of system calls, second it provides us with
a pointer to a process’s address space instead of copying all of the
data into RAM.

Frame n

Frame n

Trajectory file

Trajectory file

Fetching a frame

utlizing STL

Fetching a frame

utilizing MMF

Figure 6: Data I/O stage. The process of fetching data from hard-
disk utilizing standard C++ library, and fetching data utilizing
MMFs. The MMF communicates directly with the OS and provides
a random access. STL copies all of the data from file to RAM be-
fore it can be used. MMF maps all or part of a file to virtual address
space, that can be accessed by CPU, and provides developer with a
pointer to that space. Unnecessary data may be skipped rather than
read into RAM.

Separate Memory Challenge OpenCL and OpenGL are widely
used for heterogeneous computing and graphics development. Both
OpenCL and OpenGL require a valid context in order to perform
their functionalities. The OpenGL context is an object that stores
information (e.g. buffer binding) about an OpenGL state. An appli-
cation may have one or more OpenGL contexts [SAL14]. A con-
text can be created by invoking clCreateContext() and glCreate-
Contex() for OpenCL and OpenGL respectively which results in

two disconnected contexts. Typically the results produced by the
OpenCL computation are used as input by OpenGL to render the
data. The data computed using OpenCL is located on the GPU and
cannot be directly accessed by the OpenGL runtime as they are
created in a disconnected mode. As a result, the data has to be ex-
plicitly copied from the GPU to the CPU memory. OpenGL can
then use the data as an OpenGL buffer for rendering on the GPU.
This approach requires data to be transferred between the CPU and
GPU each time the application switches from OpenCL compute to
OpenGL rendering. Exchanging data between the CPU and GPU
adds a significant execution overhead and affects the performance
of the application [UGK14]. To handle this issue OpenCL provides
an optional extension to share memory objects between OpenCL
and OpenGL [MGMG11]. The extension enables OpenCL to cre-
ate a context from an existing OpenGL context. This approach gen-
erates a bridge between OpenCL and OpenGL where the OpenCL
can access the OpenGL objects in GPU memory. Leveraging the
OpenCL-GL shared context results in a 2.2X performance increase
[UGK14]. Figure 5 illustrates the concept of OpenCL and OpenGL
shared context.
4.1. Mapped Memory and GPU framework interoperability:

Illustration by Example
Decompressing the XTC file MDS systems produce trajectory
files that contain the atomistic behavior of molecular systems.
Each system adopts its own formats for storage of trajectory data
[LAS∗14]. GROMACS [HKVDSL08] defines different formats
such as TRR and XTC format. XTC is a lossy compression for-
mat [TGCC95] and it can be read by special libraries like xdr-
file [GRO09].

The XTC format is optimized for reducing the size of the XTC
files. However, it is not practical to read the trajectories from the
XTC file as it requires decompressing the trajectory each time we
access the file. The first step in this tutorial is to decompress the
trajectory file and save the result in a new file via xdrfile and the
Boost library. The xdrfile library consists of three classes: xdrfile,
xdrfile_xtc and xdrfile_trr. The xdrfile_xtc class encapsulates the
decompressing processes and provides a straightforward function
for reading the trajectory data frame by frame (See the supplemen-
tary materials). The output is written to a new file after calculating
the decompressed frame size by utilizing the MMF functionality.
4.1.1. Reading and Writing Data Using MMF

Logically, we should start by illustrating how to utilize the Boost
library to read files, however, reading and writing using Boost is
transferable and the concept is applicable for general reading and
writing. As mentioned MMFs maps a file, in reading and writing
mode, to the virtual memory space. The Boost Library supports the
writing mode via two classes: mapped_sink and mapped_file. The
former is designed for writing mode only whereas the latter can be
utilized to simultaneously read and write a file. If the file is entirely
opened, these classes return a pointer of const char type that points
to the first byte of the file in virtual memory. However, it is not
practical to open the entire file to access a portion of it. Instead of
reading the entire file, the required part can be mapped to a virtual
memory space, however, the developer is responsible for writing
an algorithm that calculates the right position of the required data
in the virtual memory space based on the operating system’s vir-
tual memory allocation granularity. i.e. the returned pointer always

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

1 2 3 4 984 985Block number 986...

First frame 4035120 bytes Second frame

Virtual Memory Space

System alignment 4096 bytes each block

Second frame position = first byte of block 986 + 560 bytes

4034560 bytes

Figure 7: Calculating the position of the second frame in virtual
memory space.

points to a value that must be a multiple of the operating system’s
virtual memory allocation granularity. The developer might need
to handle this issue by adding an offset to the pointer as in Figure
7. The implementation of this functionality requires the size of the
decompressed frame and the value of the operating system align-
ment. In our case, each frame represents the position of 336,260
particles in 3D space. As all the frames hold the same amount of
data, the frame size is calculated only once. The frame size can be
obtained by multiplying the number of particles by two variables:
the number of dimensions of the domain space, and the size of the
float data type.

Frame Size = p x c x FLOAT _SIZE

Where p and c are the particle number and the number of com-
ponents to represent the particle position respectively. The third
parameter FLOAT _SIZE is the size of the float type with respect
to the specification of the operating system. Applying the above,
the decompressed frame occupies 4,035,120 bytes of memory. The
alignment value can be obtained directly from the Boost class by
which the file is opened. Our operating system (macOS Sierra)
aligns data in a blocks of 4,096 bytes.

Calculating The First Byte of a Frame (a time-step) Operating
systems do not allow random access to file data. They provide de-
velopers with a pointer that points to the first byte of the required
block or blocks. Each block must be a multiple of the operating
system’s virtual memory allocation granularity which means we
cannot ensure that the first byte of a frame will be directly returned.
In order to get the correct position of a frame in the file, for either
reading or writing, we need to calculate the position. First, we find
the index of a block that involves the first byte of a frame. Then we
calculate the correct position of the frame. We use the above values
to calculate the correct position to write the frame data to the new
file. To illustrate, in our case, the first frame occupies 985 blocks
and 560 bytes from block number 986. To write the second frame
we need to access the block number 986 at byte 560. See Figure 7.
However, the operating system can not return a pointer to a random
position. Alternatively, we open the file at the block 986 (which in-
volves 560 bytes of the first frame) then we write the next frame
starting at the returned pointer plus 560 bytes.

Paging the File to a Virtual Memory Space Paging the file
means mapping a particular part of the file to a virtual memory
space. The paging requires two parameters: the starting position
(must be a multiple of the alignment), and the size of the required
data (in bytes). The bigger the page size the smaller the number of
mapping operations. The performance can be optimized by measur-

ing the system performance against various page sizes. Our optimal
page size is 14,857,600 bytes. Each page involves three frames, the
following is the number of frames per page:

Number o f Frames Per Page = PS/FS

Where PS indicates the page size, and FS indicates the frame size.

Writing Data to File First, a file for storing the decompressed data
must be opened via either mapped_file or the mapped_file_sink
class. These classes obtain the properties of the new file from the
mapped_file_params class through its members: 1) path, 2) flags, 3)
offset, 4) length and 5) new_file_size [Boo17b]. The path holds the
file name and location on the hard-disk. The flags identify the ac-
cess mode (read, write, and read/write). The offset identifies where
the mapping begins. The length identifies the size of the mapped
data (the page size). The new_file_size identifies the size of the en-
tire file. The entire size of the file can be derived by multiplying a
frame size by the total number of frames.

If the file does not exist, a new file is created automatically and
a pointer to the first byte of the file in the virtual memory space
is returned. If the file already exists a pointer to the first byte of
the mapped part is returned. The compressed data can be copied to
virtual memory via the memcopy function or by casting the pointer
type and assigning the data to it directly.

Reading Data from File Mapping a file for reading only fol-
lows the same manner described above, however, we utilize the
mapped_file_source class which is designed to map a file for read-
ing only. The mapped_file_source returns a read only const char
pointer. Reading the pointer value does not require any memcopy
overhead, the returned pointer can be converted into any other type
including user defined types.

4.1.2. Mapping OpenGL Buffers

An OpenGL buffer is a data container that belongs to the graphics
card. A graphics card has its own memory which is used to store
all the OpenGL buffer types and the other OpenGL objects. Tradi-
tionally, after creating the OpenGL buffer the data must be trans-
ferred or uploaded from RAM to the OpenGL buffer in the GPU
memory. There are two ways to upload and download data to the
GPU memory. See Figure 8. The first way is to use the glBuffer-
Data and glBufferSubData functions [HM12]. The other way to
upload data to the GPU is to get a pointer to the internal drivers’
memory with the functions glMapBuffer and glUnmapBuffer. This
pointer can be used to fill the buffer directly which means we save
one copy per memory transfer. OpenGL 4.3 provides three func-
tions to map and unmap buffers: 1) glMapBuffer(), 2) glMapBuf-
ferRange(), and 3) glUnmapBuffer(). The glMapBuffer() function
maps the entire buffer data to a memory whereas the glMapBuf-
ferRange() maps only a subset of the buffer which means there is
no need to re-upload the buffer completely. Finally, after filling the
buffer the mapping can be released via the glUnmapBuffer(). The
glMapBuffer() and glMapBufferRange() require a valid and binded
OpenGL buffer. A valid buffer means that the buffer has a valid
name/id that is obtained via glGenBuffers(). A Binded buffer means
that the buffer is linked with the current context by calling glBind-
Buffer(). We note that the buffer size must be defined by allocating
some memory via glBufferData() before using glMapBuffer() and
glMapBufferRange(). When utilizing glMapBuffer() there may be

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

significant performance advantages if a NULL pointer is passed to
glBufferData() instead of using an initial data [SSKLK13].

RAM

GPU

Memory

Accessible space
by GPU

Disk Program space

CPU

glBuffer*()

RAM

GPU

Memory

Accessible space
by GPU

Disk Program space

CPU

glMap*()

(a) (b)

Figure 8: Data flow via glBufferData() and glMap*(). Copying is
indicated by a solid arrow and mapping is represented by a dashed
arrow. a) glBufferData() copies a data from a program space to a
buffer or a subset of it. b) glMap*() returns a pointer to a memory
space that is accessible by the GPU.

4.1.3. OpenGL shared context

On the GPU side, our solution relies on the concept of objects
sharing. By default the OpenGL framework and OpenCL frame-
work generate two unique contexts, the OpenGL context and the
OpenCL context. The OpenGL context is responsible for maintain-
ing the OpenGL objects state and the OpenCL context is respon-
sible for managing the OpenCL memory objects. They are iso-
lated from each other. i.e the OpenGL context is not accessible
by the OpenCL framework and the OpenCL context is invisible
to the OpenGL framework which means the computation process
and the rendered process cannot be synchronized on the GPU. See
Figure 5. An OpenCL extension addresses this limitation via the
so-called OpenCL interoperability [MGMG11] . This extension en-
ables the OpenCL framework to access the OpenGL context. At a
high level, the OpenGL interoperability can be achieved by, first,
creating an OpenGL context and initializing an OpenCL context
from it. As not all devices support this feature. A device needs to be
queried to determine whether it supports OpenGL interoperability.
The clGetDeviceInfo() function is used to obtain variety of infor-
mation about the device (a CPU, a GPU, a Digital Signal Proces-
sor (DSP)). clGetDeviceInfo() can return the supported extensions
name in a string for the CL_DEVICE_EXTENSIONS property.
The cl_APPLE_gl_sharing extension name is used for Mac OS
and the cl_khr_gl_sharing name is used for other systems [Gro10].
A proper name, cl_APPLE_gl_sharing or cl_khr_gl_sharing, must
appear in the returned string with respect to the host OS. If the OS
supports the OpenGL interoperability, then we can utilize it.

To benefit from this feature we need to create two things: 1)
create an OpenCL context from an OpenGL context, and 2)
create an OpenCL object from an existing OpenGL object.
Creating an OpenCL context from an OpenGL context requires
two steps: First, the OpenGL context must be initialized and
current before creating the OpenCL context [Sca11]. Second,
the OpenCL context must be configured in order to enable the
OpenCL framework to access the OpenGL objects. The config-
uration is achieved by setting the cl_context_properties structure
with the proper values with respect to the OS. On Mac OS,
the cl_context_properties structure requires only one property:
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE.
However, the value associated with this property must have the data
type CGLShareGroupObj, and it can be acquired via the function

CGLGetShareGroup(). This function requires a CGLContextObj
structure, which can be obtained by calling CGLGetCurrent-
Context(). The following code shows how these functions work
together:
CGLContextObj glContext = CGLGetCurrentContext();
CGLShareGroupObj shGroup = CGLGetShareGroup(glContext);
cl_context_properties prop[] = {

CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
(cl_context_properties)shGroup,
0};

After the cl_context_properties structure is set, an OpenCL
context that is capable of accessing OpenGL data can be cre-
ated via clCreateContext() (for more detail and for Linux and
Windows configuration see the supplementary material). Hence
the OpenCL context is created from an OpenGL context. The
OpenCL framework is able to access number of the OpenGL
objects and modify them. OpenCL can access and modify vertex
buffer objects (VBOs), texture data (texture objects) and pixel
data (renderbuffer objects) by creating the corresponding OpenCL
memory object via one of four functions: clCreateFromGLBuffer(),
clCreateFromGLTexture2D(), clCreateFromGLTexture3D(), or
clCreateFromGLRenderbuffer(). These functions require the
OpenGL object to be already initialized before they can create
an OpenCL object from it. Hence an OpenCL memory object is
created from an OpenGL object. Any change in its content affects
the OpenGL object content.
Synchronization Sharing data between OpenGL and OpenCL
doesn’t mean they can access the shared data at the same time.
i.e. if OpenCL is manipulating a memory object data created from
an OpenGL vertex buffer, then OpenGL can’t access the vertex
buffer. OpenCL supports synchronization through two functions:
1) clEnqueueAcquireGLObjects(), and 2) clEnqueueReleaseGLOb-
jects(). The main task for the two functions is to lock and unlock
access to the OpenCL memory objects. The first function ensures
that the OpenCL will have exclusive access to the data. The sec-
ond function releases the data and enables OpenGL and other pro-
cesses to access it. Before acquiring a lock we have to ensure that
all OpenGL routines have completed their operation by invoking
glFinish(). And after releasing the data from the lock we need to
ensure that all OpenCL commands have completed their operation
by calling clFinish().

4.2. Performance Test

Performance measurement is an important step that helps in op-
timizing code and decide between available methods. We provide
three performance tests and show how do they result in the frame
rate : i) file I/O approaches (STL vs. MMFs), ii) OpenGL interoper-
ability (OpenCL-GL separated context vs. shared context), and iii)
uploading data to OpenGL buffers (Buffer data vs. Map Buffer).
The user can choose between these approaches in order to investi-
gate how do they work under different configurations. See figure 9.
Due to the nature of the data which is dynamic data-set, and in order
to provide a smooth transition of the dynamics of the data more than
two time-steps per second must be rendered. We render ∼ 4 time-
steps per second. The process of rendering each time-step involves
the following: reading particles position from the file, computing
the interaction between the particles, updating the OpenGL buffer
based on the computation result, and finally rendering the result.

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

I/O CL-GL context GL Total
rendering rate

FPS
STL MMF Default interoperability

Buffer
Data

Map
Buffer

X X X 21 fps
X X X 24 fps
X X X 42 fps
X X X 42 fps

X X X 19 fps
X X X 21 fps
X X X 41 fps
X X X 41 fps

Table 1: An overview of the performance test result based on dif-
ferent options. Utilizing shared context results in no overhead of
uploading data to the GPU for rendering.

The frame rate is measured per second, and it has been averaged by
total time-step. All performances are measured in millisecond (ms)

Figure 9: Task selection. Each task has two options. The user can
switch between these to see how do they affect the total rendering
rate in FPS.

except the final rendering rate which is measured in frames per sec-
ond (FPS). The performance tests are performed on MacBook Pro
Retina, 13-inch, Early 2015 with a 2.7 GHz Intel Core i5 proces-
sor and 8 GB of memory (1867 MHz DDR3). The graphics card
is Intel Iris Graphics 6100 (1.5 GB of memory). Our MDS data
sample involves a trajectory of 336260 particles over 1981 time-
steps. Each position is represented by a 3D floating point vector.
The data occupies 8 Gigabyte and it is stored in a binary file. For
each time-step the program performs three main tasks: 1) reading
the data of the current time-step (so called frame) from the file. 2)
for each protein we perform a Protein-Lipids interaction test. 3) vi-
sualizing the interaction result and the global molecular dynamics.
The performance overhead is associated with the I/O and the com-
putation tasks. The average performance of the I/O task is 17 ms
per time step. The computation consumes ∼35 ms of the total ren-
dering time per time step. The rendering frame rate is steady at ∼20
FPS by utilizing the OpenCL-GL default configuration while it al-
most doubled by utilizing the OpenCL-GL interoperability option.

STL vs. MMFs The program requires fetching the data from the
file frame by frame. The performance of fetching the frames varies
depending on the position of the frame in the file. STL shows a
stable performance (17 ms) for extracting a single frame from the
file at any position. MMF requires 5 ms to 20 ms to fetch one frame
from the file.
OpenCL-GL shared context vs. separated context The
OpenCL-GL context test includes time required to transfer data
between the CPU and GPU. The separated context approach
requires 40 ms to perform the computations and to transfer the
data between the CPU and GPU per time step. The OpenCL-GL
shared context results in slight enhancement by completing this
task in ∼30 ms. This enhancement comes from the fact that, in
the shared context approach, the data is sent from the CPU to the
GPU once where as the separated approach requires the data to be
uploaded from the CPU to the GPU twice: the first time to perform
the computation and the second time to render the data.
Buffer data vs. Map data The final performance test is associated
with the rendering. The new particles need to be rendered with re-
spect to the interaction result. Based on the selected computation
approach (Open CL-GL separated context or shared context), this
task will require uploading the data from the CPU to the GPU. The
Map buffer option requires 1 ms per time step whereas the buffer
data requires 3 ms.

5. Conclusion

Visualizing Proteins-lipid interaction of large data-sets of molec-
ular dynamics simulation is a challenge. A number of articles
have illustrated different techniques in order to enhance the per-
formance of rendering large data set. OpenCL is utilized to exploit
the GPU for the computation purposes and OpenGL is widely used
for rendering the data-set including the interaction result. Harness-
ing the interoperability feature of OpenCL and the OpenGL is a key
point in boosting the performance of rendering molecular dynam-
ics. We illustrated the concept of memory mapping by proposing
the MMF method from Boost library and the glMap*() functions
from OpenGL API. The illustration covers the usage of OpenCL
as a means to perform computation tasks in GPU and we pro-
vide and example of utilizing the OpenCL-GL interoperability to
enhance the data traffic performance between the CPU and GPU.
The OpenCL-GL interoperability and the glMap*() functions have
a great impact in the final rendering frame rate.
Future Work In this work we discuss a possible approach that
can enhance dynamic data rendering frame rate by integrating the
MMF, OpenGL-CL interoperability, and OpenGL Map buffer. The
Memory Mapped File versus standard buffered I/O and random ac-
cess I/O requires further investigating. Utilizing the 16-bit half-float
to address the data size and to see how it could affect the perfor-
mance is also future work.
Acknowledgements We would like to thank the Ministry of Ed-
ucation of Saudi Arabia and the Saudi Cultural Bureau in London
for their financial support on this project. We would also like to
thank the Department of Computer Science at Swansea University
for their support. M. C. is funded by the Wellcome Trust. ARCHER
supercomputer was used to perform part of the simulation through
a project funded by EPSRC-HECBiosim. Finally, we would like to
thank Sean Walton, Dylan Rees for proof-reading the paper.

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

N. Alharbi & RS. Laramee / EG Real-Time Rendering of Molecular Dynamics Simulation Data

References

[AAM∗17] ALHARBI N., ALHARBI M., MARTINEZ X., KRONE M.,
ROSE A., BAADEN M., LARAMEE R. S., CHAVENT M.: Molecular vi-
sualization of computational biology data: A survey of surveys. Eurovis
short papers, 2017 forthcoming. 1

[Boo17a] BOOST: Boost library, 2017. URL: http://www.boost.
org/. 4

[Boo17b] BOOST: Boost library, 2017. URL: http://www.boost.
org/doc/libs/1_50_0/libs/iostreams/doc/classes/
mapped_file.html. 6

[CLK∗11] CHAVENT M., LÉVY B., KRONE M., BIDMON K., NOM-
INÉ J.-P., ERTL T., BAADEN M.: Gpu-powered tools boost molecular
visualization. Briefings in Bioinformatics (2011), bbq089. 2, 3

[CUD17] CUDA N.: Nvidia cuda, 2017. URL: https://
developer.nvidia.com/cuda-toolkit. 4

[DD10] DEMMING R., DUFFY D. J.: Introduction to the Boost C++
Libraries; Volume I-Foundations. Datasim Education BV, 2010. 4

[DD12] DEMMING R., DUFFY D. J.: Introduction to the Boost C++ Li-
braries - Volume II - Advanced Libraries. Datasim Education BV, 2012.
4

[GHK∗12] GASTER B., HOWES L., KAELI D. R., MISTRY P., SCHAA
D.: Heterogeneous Computing with OpenCL: Revised OpenCL 1.
Newnes, 2012. 3

[Gol14] GOLDSTEIN E. B.: Cognitive Psychology: Connecting Mind,
Research and Everyday Experience. Nelson Education, 2014. 2

[GRO09] GROMACS: Xtc library, 2009. URL: http:
//www.gromacs.org/Developer_Zone/Programming_
Guide/XTC_Library. 5

[Gro10] GROUP K.: Opengl, 2010. URL: https://www.
khronos.org/registry/OpenCL/sdk/1.1/docs/man/
xhtml/EXTENSION.html. 7

[Gro17a] GROUP K.: Opencl, 2017. URL: https://www.khronos.
org/opencl/. 4

[Gro17b] GROUP K.: Opengl, 2017. URL: https://www.khronos.
org/opengl/. 4

[Gro17c] GROUP K.: Vulkan, 2017. URL: https://www.khronos.
org/vulkan/. 4

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.: VMD: visual
molecular dynamics. Journal of Molecular Graphics 14, 1 (1996), 33–
38. 3

[HKVDSL08] HESS B., KUTZNER C., VAN DER SPOEL D., LINDAHL
E.: Gromacs 4: algorithms for highly efficient, load-balanced, and scal-
able molecular simulation. Journal of chemical theory and computation
4, 3 (2008), 435–447. 5

[HM12] HRABCAK L., MASSERANN A.: Asynchronous buffer transfers.
In OpenGL Insights. AK Peters/CRC Press, 2012, pp. 391–414. 3, 6

[Lar10] LARAMEE R. S.: Bob’s concise coding conventions (c3). Ad-
vances in Computer Science and Engineering (ACSE) 4, 1 (2010), 23–
26. 4

[LAS∗14] LUNDBORG M., APOSTOLOV R., SPÅNGBERG D., GÄR-
DENÄS A., SPOEL D., LINDAHL E.: An efficient and extensible format,
library, and api for binary trajectory data from molecular simulations.
Journal of computational chemistry 35, 3 (2014), 260–269. 5

[LK00] LANGER A., KREFT K.: Standard C++ IOStreams and locales:
advanced programmer’s guide and reference. Addison-Wesley Profes-
sional, 2000. 4

[LTDS∗13] LV Z., TEK A., DA SILVA F., EMPEREUR-MOT C.,
CHAVENT M., BAADEN M.: Game on, science-how video game tech-
nology may help biologists tackle visualization challenges. PloS one 8,
3 (2013), e57990. 3

[MF12] MOVANIA M. M., FENG L.: Real-time physically-based defor-
mation using transform feedback. In OpenGL Insights. AK Peters/CRC
Press, 2012, pp. 231–246. 3

[MGMG11] MUNSHI A., GASTER B., MATTSON T. G., GINSBURG D.:
OpenCL programming guide. Pearson Education, 2011. 3, 5, 7

[Mor13] MORELAND K.: A survey of visualization pipelines. IEEE
Transactions on Visualization and Computer Graphics 19, 3 (2013),
367–378. 3

[Qt17a] QT: Licensing, 2017. URL: https://www.qt.io/
licensing/. 4

[Qt17b] QT: Qt creator ide, 2017. URL: https://www.qt.io/
ide/. 4

[SAL14] SEGAL M., AKELY K., LEECH J.: The opengl r graphics sys-
tem: A specification. the kronos group, 2014. 5

[Sca11] SCARPINO M.: OpenCL in Action: How to Accelerate Graphics
and Computations. Manning Publications, Nov. 2011. URL: http:
//amazon.com/o/ASIN/1617290173/. 3, 7

[SGGS98] SILBERSCHATZ A., GALVIN P. B., GAGNE G., SILBER-
SCHATZ A.: Operating System Concepts, vol. 4. Addison-wesley Read-
ing, 1998. 5

[SGS10] STONE J. E., GOHARA D., SHI G.: Opencl: A parallel pro-
gramming standard for heterogeneous computing systems. Computing
in science & engineering 12, 3 (2010), 66–73. 2

[SHUS10] STONE J. E., HARDY D. J., UFIMTSEV I. S., SCHULTEN
K.: Gpu-accelerated molecular modeling coming of age. Journal of
Molecular Graphics and Modelling 29, 2 (2010), 116–125. 2

[SMK∗16] SCHATZ K., MÜLLER C., KRONE M., SCHNEIDER J.,
REINA G., ERTL T.: Interactive visual exploration of a trillion parti-
cles. In Large Data Analysis and Visualization (LDAV), 2016 IEEE 6th
Symposium on (2016), IEEE, pp. 56–64. 3

[SSKLK13] SHREINER D., SELLERS G., KESSENICH J., LICEA-KANE
B.: OpenGL programming guide: The Official guide to learning
OpenGL, version 4.3. Addison-Wesley, 2013. 2, 7

[TGCC95] THIEL W., GREEN D., CLEMENTI E., CORONGIU G.: In
methods and techniques in computational chemistry: Metecc-95. Eds. E.
Clementi, G. Corongiu, STEF, Cagliari (1995), 141. 5

[THO02] THOMPSON C. J., HAHN S., OSKIN M.: Using modern graph-
ics architectures for general-purpose computing: a framework and analy-
sis. In Microarchitecture, 2002.(MICRO-35). Proceedings. 35th Annual
IEEE/ACM International Symposium on (2002), IEEE, pp. 306–317. 1

[UGK14] UKIDAVE Y., GONG X., KAELI D.: Performance evaluation
and optimization mechanisms for inter-operable graphics and computa-
tion on gpus. In Proceedings of Workshop on General Purpose Process-
ing Using GPUs (2014), ACM, p. 37. 5

[VDSLH∗05] VAN DER SPOEL D., LINDAHL E., HESS B., GROENHOF
G., MARK A. E., BERENDSEN H. J.: Gromacs: fast, flexible, and free.
Journal of computational chemistry 26, 16 (2005), 1701–1718. 2

[Wei06] WEISKOPF D.: GPU-Based Interactive Visualization Tech-
niques (Mathematics and Visualization). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006. 2

[WJHSL10] WRIGHT JR R. S., HAEMEL N., SELLERS G. M.,
LIPCHAK B.: OpenGL SuperBible: comprehensive tutorial and refer-
ence. Pearson Education, 2010. 2

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/doc/libs/1_50_0/libs/iostreams/doc/classes/mapped_file.html
http://www.boost.org/doc/libs/1_50_0/libs/iostreams/doc/classes/mapped_file.html
http://www.boost.org/doc/libs/1_50_0/libs/iostreams/doc/classes/mapped_file.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library
https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/EXTENSION.html
https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/EXTENSION.html
https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/EXTENSION.html
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opengl/
https://www.khronos.org/opengl/
https://www.khronos.org/vulkan/
https://www.khronos.org/vulkan/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/ide/
https://www.qt.io/ide/
http://amazon.com/o/ASIN/1617290173/
http://amazon.com/o/ASIN/1617290173/

