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Abstract— Existing topology-based vector field analysis tech-
niques rely on the ability to extract the individual trajectories
such as fixed points, periodic orbits and separatrices which
are sensitive to noise and errors introduced by simulation and
interpolation. This can make such vector field analysis unsuitable
for rigorous interpretations. We advocate the use of Morse
decompositions, which are robust with respect to perturbations,
to encode the topological structures of a vector field in the form
of a directed graph, called a Morse connection graph (MCG).

While an MCG exists for every vector field, it need not be
unique. Previous techniques for computing MCGs, while fast,
are overly conservative and usually result in MCGs that are too
coarse to be useful for the applications. To address this issue, we
present a new technique for performing Morse decomposition
based on the concept of τ-maps, which typically provides finer
MCGs than existing techniques. Furthermore, the choice of τ
provides a natural tradeoff between the fineness of the MCGs
and the computational costs.

We provide efficient implementations of Morse decomposition
based on τ-maps, which include the use of forward and backward
mapping techniques and an adaptive approach in constructing
better approximations of the images of the triangles in the
meshes used for simulation. Furthermore, we propose the use of
spatial τ-maps in addition to the original temporal τ-maps. These
techniques provide additional tradeoffs between the quality of
the MCGs and the speed of computation. We demonstrate the
utility of our technique with various examples in the plane and
on surfaces including engine simulation datasets.

Index Terms— Vector field topology, uncertainty, Morse de-
composition, τ-maps, Morse connection graph, flow combinato-
rialization.

I. INTRODUCTION

Extracting and visualizing vector field topology has impor-
tant applications in Computational Fluid Dynamics (CFD) [15],
weather prediction, tsunami and hurricane modeling, and airplane
design and control. For instance, the existence of recirculation
zones (periodic orbits) can indicate stagnant flow which may
be undesirable in engine design, because stagnant flows indicate
trapped heat in the engine [16].

Past work defines the topology of two-dimensional vector fields
as fixed points and periodic orbits as well as the separatrices that
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connect them [10], [4]. This leads to a graph representation of the
vector field which is referred to as Entity Connection Graph, or
ECG. However, analysis and visualization of vector field topology
based on individual trajectories can raise questions with respect
to interpretation as the discrete nature of fluid flow data poses
several challenges. First, data samples are only given at discrete
locations, such as cell vertices or cell centers. Interpolation
schemes are then used to reconstruct the vector field between
the given samples. Second, the given data samples themselves
are numerical approximations, e.g., approximate solutions to a
set of partial differential equations. Third, the given flow data are
often only a linear approximation of the underlying dynamics.
Finally, the visualization algorithms themselves, e.g., streamline
integrators, have a certain amount of inherent error associated
with them. In short, how can we be sure that what we see is
authentic when extracting and visualizing the topological skeleton
of the flow field? Could the error inherent to multiple numerical
approximations produce misleading information? Figure 1 pro-
vides examples in which proper interpretation can be difficult
when performing analysis based on individual trajectories.

Figure 1(a) shows an analytical vector field which contains
pitchfork bifurcation [9]. The results shown in the two columns
of (a) are obtained by computing sample vector values using two
different meshes: (left) a regular triangulated mesh with 6144
triangles, and (right) a triangulated mesh with 1000 triangles.
Notice that using different meshes leads to different ECGs (third
row of Figure 1(a)). Figure 1(b) demonstrates a saddle-saddle
connection bifurcation [9]. The images to the left of Figure 1(b)
show the original flow, while the images to the right show the
flow that was obtained from the original one after introducing
a small amount of perturbation (we have randomly perturbed
the vector direction at each vertex by an angle between 0◦ and
1◦.)Notice that ECGs (third row of Figure 1(b)) are sensitive to
noise. Figure 1(c) provides a case of Hopf-bifurcation [15]. The
image to the left of Figure 1(c) (second row) shows the resulting
topology using an adaptive fourth-order Runge-Kutta integration,
while the image to the right illustrates the topology of the same
vector field using a second-order Runge-Kutta integration [2] [23].
This clearly demonstrates that the ECGs rely on the employed
numerical scheme. (The ECGs in all the example flows are
computed using the algorithms proposed by Chen et al. [4].) These
observations motivate the study of a more reliable way of defining
and extracting vector field topology than the existing techniques.
We point out that addressing such uncertainty in visualization
was identified as one of the most important future challenges by
Johnson [12].

In order to address this important challenge we present a
rather different approach to the representation, extraction and
visualization of flow topology. The representation of the global
dynamics is done in terms of an acyclic directed graph called the
Morse connection graph (MCG). The nodes in this graph, which
we refer to as Morse sets, correspond to polygonal regions in the
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Fig. 1. Examples of the instability of individual trajectory-based vector field topology analysis (i.e. ECGs) due to the choice of discretization scheme (a),
noise (b), and the error from numerical integration scheme (c). (a) shows a vector field containing pitchfork bifurcation (k = 0.05). It illustrates the deviated
ECGs obtained under two different discretization schemes. The vector field shown in (b) is an example flow having saddle-saddle connection. The two ECGs
are computed based on the original result flow and its perturbation version. It illustrates the possible influence of the unexpected noise in the data. (c) uses
a vector field with Hopf-bifurcation (k = 0.0025) to illustrate that ECGs can be different using different numerical schemes. The image to the left shows
the resulting topology using the adaptive fourth-order Runge-Kutta integration, while the image to the right shows the topology of the same flow using a
second-order Runge-Kutta integration. In the ECGs of all the example fields, green dots indicate the source or repelling periodic orbits, red dots refer to sink
or attracting periodic orbits and blue dots represent saddles. The two bottom rows provide the results of Morse decompositions and the associated MCGs of
these fields using the idea of τ-maps proposed in this paper. The τ’s for these fields are 40, 20 and 80, respectively. Note that for all the examples shown
here, the MCGs are stable. The colored regions in the flow-like images (the fourth row) are the Morse neighborhoods of the extracted Morse sets. Different
colors indicate different Morse sets. The color-dotted regions indicate the connection between Morse neighborhoods. Constrained to the underlying mesh, the
Morse neighborhoods and the regions showing the connections between Morse neighborhoods may look irregular (e.g. the Morse neighborhoods in (a) right
and (c) left, and the connection regions in (b)). In the MCGs, green dots stand for the source Morse sets, red dots for the sink Morse sets and blue dots for
the saddle Morse sets.

phase space, which we define to be Morse neighborhoods. All
the recurrent dynamics is contained in the Morse neighborhoods.
The edges in an MCG indicate how the flow moves from one
Morse neighborhood to another. In contrast to trajectory-based
topological analysis, such as vector field skeleton and ECG, an
MCG is stable with respect to perturbations, i.e. given sufficient
information on errors of the vector field it is possible to make
rigorous interpretations about the underlying dynamics [14]. In
other words, a well defined error, ε > 0, can be bounded and
included into the map of the flow domain. We demonstrate the
stability of MCGs in Figure 1 (the last two rows).

To perform Morse decomposition, i.e., compute MCGs, Chen
et al. [4] first construct another directed graph by considering the
behaviors of the vector field along edges of the triangles, which

we refer to as the geometry-based method. We refer to the process
of encoding the flow dynamics into a directed graph as flow
combinatorialization. Because the triangulation is not adapted to
the vector field, this can result in coarse Morse sets (Figure 2(b)).
In this paper we exploit a temporal discretization, which we refer
to as a τ-map, that is obtained by integrating a finite set of points
for a finite amount of time. Theoretically this method can produce
as detailed an MCG as is desired and in practice it produces a
finer MCG (Figure 2(c) (d)) than the geometry-based method. The
key challenges with the τ-map guided approach are choosing an
appropriate temporal discretization of the flow and constructing
a high-quality flow combinatorialization, which is the discrete
outer approximation of a τ-map. In our implementations, we will
compute it as a directed graph, denoted by Fτ under a time τ .
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Fig. 2. This figure shows the various analysis results of an experimental field using ECG and MCGs, respectively: (a) ECG, (b) MCG (geometry-based
method), (c) MCG (τ = 6), (d) MCG (τ = 24). The computation time for (b-d) is 0.14s, 1.78s, and 4.31s, respectively. Observe that the larger the τ used,
the better (closer to optimal) the Morse decompositions, but the time for computing the Morse decomposition increases accordingly. The coloring scheme of
the MCG is described in Figure 1. Notice that the graphs shown in (a) and (d) are essentially the same although they are labeled differently. The execution
time was measured on a 3.0 GHz PC with 1.0 GB RAM. The color-dotted regions indicate the connections between a saddle Morse set to another Morse set:
source (green), sink (red), and saddle (blue).

From it we extract the Morse sets.
The work presented here yields the following benefits and

contributions:
1) We present a theoretically sound framework based on Morse

decompositions from which more rigorous statements can
be made with respect to the extraction of flow topology than
the individual trajectory-based analysis (Figure 1).

2) We provide a means to obtain finer Morse decompositions
of a given vector field than the geometry-based method by
using the idea of τ-maps. A directed graph Fτ obtained
using flow combinatorialization based on a τ-map, is intro-
duced, which we use to perform Morse decomposition and
compute the MCG. We also explore the effect of the values
of τ on the level of details of the Morse decompositions
(Figure 2).

3) We introduce a computationally tractable implementation of
the efficient construction of the Fτ and consequently fine
Morse decompositions (Section IV-B).

4) We explore the use of spatial τs vs. temporal τ , i.e., tracing
particle for a finite distance instead of time, which provides
domain experts an alternative to the temporal τ-maps to
analyze their data (Section V).

5) We apply the proposed topological analysis technique to
both analytical data and application-oriented data sets in-
cluding engine simulation data from CFD on 3D surfaces
(Section VI).

The rest of this paper is organized as follows. Section II
provides a brief review of related work on vector field topology
analysis. Section III introduces the methodology of vector field
analysis using Morse decompositions and the concept of τ-
maps. The pipeline of Morse decomposition is also presented in
Section III. Section IV describes a number of practical algorithms
to perform flow combinatorialization. Section V proposes the
use of spatial τs in order to achieve faster construction of
flow combinatorialization. Section VI shows the utility of our
approach to the engine simulation data followed by a summary
and discussion of future work in Section VII.

II. RELATED WORK

Helman and Hesselink introduced to the visualization commu-
nity the notion of flow topology [10] [11]. Since then, much
research has been done on topological analysis of vector fields in
the past two decades. To review all of it is beyond the scope of
this paper. Here, we briefly review the most closely related work
to this paper. We refer interested readers to a number of surveys
[15], [22].

A. Vector Field Topology

Much work has been done to address the extraction of vec-
tor field topology in two-dimensional vector fields. Tricoche et
al. [30] and Polthier and Preuß [21] give efficient methods to
locate fixed points in a vector field. Scheuermann et al. use
Clifford algebra to study the non-linear fixed points of a vector
field [25] and present the approaches of visualizing higher-order
fixed points and non-linear topology of a given vector field [24],
[25]. Wischgoll and Scheuermann [34] present an algorithm for
detecting periodic orbits in planar flows. They also extend this
work to 3D vector fields [35] and time-dependent flows [36].
Theisel et al. [28] present a mesh independent approach to
compute periodic orbits.

In general, previous topology-based techniques are based on
individual trajectories. As we have seen in Figure 1, this may
lead to ambiguous interpretation of the given data. To address this
issue, we advocate the use of Morse decomposition. Compared
to the individual trajectory-based methods, Morse decomposition
takes the errors introduced during simulation and analysis into
consideration given a certain error bound, and leads to a more
rigorous interpretation of the given data.

B. Morse Decomposition and Conley Theory

Conley index theory and Morse decomposition have been
introduced to the scientific visualization community by Zhang
et al. [38] and Chen et al. [4], respectively. Morse decomposition
focuses on extraction and analysis of the invariant sets of a
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flow. Fixed points and periodic orbits are examples of invariant
sets. An index called the Conley index [4] [19], identifies the
type of the invariant set. Efficient algorithms also exist for
identifying the neighborhoods of the invariant sets [14]. Chen
et al. [4] implement a Morse decomposition algorithm using the
geometry-based method. This approach guarantees to produce
Morse decompositions but it is typically coarser than what is
required (Figure 2(b)). We address this by employing the idea of
τ-maps (Section III-D). Compared to the geometry-based method,
the τ-map guided method introduced in this paper gives rise to
a directed graph (Fτ ) which encodes the dynamics of the given
data more accurately [14]. The MCGs extracted from Fτ are finer
than those from the geometry-based method (Figure 2(d)).

III. BACKGROUND

In this section, we present a compact summary of the theories
of dynamical systems upon which our work is built. Our discus-
sion will focus on time-independent flow only in this paper.

A. Entity Connection Graphs (ECGs)

A vector field defined on a manifold M can be expressed in
terms of a differential equation ẋ = f (x). The set of solutions
to it gives rise to a flow on M; that is a continuous function
ϕ : R×M→M satisfying ϕ(0,x) = x, for all x ∈M, and

ϕ(t,ϕ(s,x)) = ϕ(t + s,x) (1)

for all x ∈M and t,s ∈ R. Given x ∈M, its trajectory is

ϕ(R,x) := ∪t∈Rϕ(t,x). (2)

S⊂M is an invariant set if ϕ(t,S) = S for all t ∈R. Observe that
for every x ∈M, its trajectory is an invariant set. A point x ∈M
is a fixed point if ϕ(t,x) = x for all t ∈ R. More generally, x is
a periodic point if there exists T > 0 such that ϕ(T,x) = x. The
trajectory of a periodic point is called a periodic orbit.

Because we are considering systems with invariant sets such
as periodic orbits, the definition of the limit of a solution with
respect to time is non-trivial. The alpha and omega limit sets of
x ∈M are

α(x) := ∩t<0cl(ϕ((−∞, t),x)), ω(x) := ∩t>0cl(ϕ((t,∞),x))

respectively (cl stands for the closure).
Given a point x0 ∈M, its trajectory is a separatrix if the pair

of limit sets (α(x0),ω(x0)) consists of a saddle fixed point and
another object that can be a source, a sink, or a periodic orbit.

The graph illustrating the connectivity between fixed points and
periodic orbits is called the entity connection graph (ECG) [4]
(Figure 1 (second row), Figure 2(a)). As Figure 1 indicates, ECGs
are sensitive to noise as well as the choices of interpolation
scheme, numerical integration technique, and sampling patterns.

B. Morse Connection Graphs (MCGs)

We are interested in describing the topological structures of the
flow generated by a vector field ẋ = f (x) defined on a triangulated
surface X ⊂M. However, the information we are given consists
of a finite set of vectors

{ fd(vi) | vi a vertex of X} (3)

obtained either by a numerical simulation or from experiment.
This means that at best we can assume that we have a uniform

bound on the errors of the observed vector field versus the true
vector field, that is for each vi,

|| f (vi)− fd(vi)|| ≤ ε. (4)

In addition, since we are only given the data (Eq. 3) we extend fd
to a vector field on X by some means of interpolation (typically
linear interpolation). Assuming that f is well approximated by fd
it is reasonable to assume that the bounds of (Eq. 4) are global,
that is || f (x)− fd(x)|| ≤ ε for all x ∈ X .

The easiest way to encode the aforementioned information is to
consider a family of vector fields F defined on the surface X and
parameterized by some abstract parameter space Λ. We assume
that for each λ ∈ Λ, the vector field ẋ = F(x,λ ) gives rise to a
flow ϕλ : R×X → X .

In this setting we assume that there exist parameter values
λ0,λ1 ∈Λ such that f (x) = F(x,λ0) and fd(x) = F(x,λ1). Bifurca-
tion theory tells us that even if λ0≈ λ1, the orbits, i.e. fixed points,
periodic orbits, separatrices, of ϕλ0 and ϕλ1 need not agree [9].
The implication is that computing such orbits for the vector field
fd does not imply that these orbits exist for the true vector field
f . This leads us to weaken the topological structures which we
use to classify the dynamics.

A Morse decomposition of X for a flow ϕλ is a finite collection
of disjoint compact invariant sets, called Morse sets [14]

M(X ,ϕ) := {Mλ (p) | p ∈ (Pλ ,�λ )} ,

where �λ is a strict partial order on the indexing set Pλ , such
that for every x ∈ X \ ∪p∈Pλ Mλ (p) there exist indices p �λ q
such that

ω(x)⊂Mλ (q) and α(x)⊂Mλ (p).

It is easy to verify that any structures associated with recurrent
dynamics of ϕλ , i.e. fixed points, periodic orbits, chaotic dynam-
ics, must lie in the Morse sets [14]. The dynamics outside the
Morse sets is gradient-like. Morse decompositions of invariant
sets always exist, though they may be trivial, i.e. consisting of a
single Morse set X .

Observe that since Pλ is a strictly partially ordered set a
Morse decomposition can be represented as an acyclic directed
graph. The nodes of the graph correspond to the Morse sets
and the edges of the graph are the minimal order relations
which through transitivity generate �λ . This graph is called the
Morse connection graph and denoted by MCGλ [4] (Figures 1,
2 bottom rows). Moreover, without worrying about the potential
noise and numerical errors, an ECG indicates the finest MCG
when the vector field has a finite number of fixed points and
periodic orbits, all of which have an isolating neighborhood
of their own [4]. Though, there may not exist a finest Morse
decomposition. Consider the flow generated by the differential
equation x′ = x2 sin(1/x). It has an infinite number of isolated
fixed points and hence there is no finest Morse decomposition
(remember that there can only be a finite number of Morse sets).
Any Morse decomposition of it can be refined further.

C. MCG Construction

We now summarize the pipeline of constructing an MCG given
the vector field V defined on a triangulated surface X .

First, we perform flow combinatorialization. That is, we encode
the flow dynamics into a directed graph, denoted by F , whose
nodes represent the elements (e.g. triangles) of the underlying
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Fig. 3. This figure illustrates the pipeline of MCG construction. We first
compute F (top) based on the underlying flow. The edges in the multi-
valued map demonstrate the mapping relations of the polygons. Based on
the F , we extract the strongly connected components, which represent either
the Morse sets (middle-top, inside colored boxes) or intermediate nodes that
describe gradient-like behaviors (middle-top, T3, T7, T8). We then collapse
each strongly connected component of the F into a single node to obtain
a quotient graph F . Note that the nodes in this graph correspond to either
Morse sets or the polygonal regions of gradient-like flow behaviors (i.e. trivial
Conley index). Finally, the MCG (the bottom graph) is obtained by collapsing
nodes with trivial Conley index and removing redundant edges.

mesh and edges indicate the flow dynamics, i.e., an edge from
triangle Ti to triangle Tj indicates that ϕ(Ti)

⋂

Tj 6= /0 (Figure 4,
left). The details of this will be described in Section III-D.

Second, we find the strongly connected components of the
directed graph F , which gives rise to the Morse neighborhoods
that are the polygonal regions constrained by the given mesh in
the phase space. They contain the Morse sets M(X ,V ) of the flow
and have a non-trivial Conley index [14] (Figure 3, middle-top).

Third, we compute a quotient graph F from F by treating
each strongly connected component of F as a node (Figure 3,
middle-bottom). The nodes in this quotient graph F include
Morse sets (non-trivial Conley index) and the intermediate nodes
corresponding to the polygonal regions with gradient-like flow
behaviors (i.e. trivial Conley index). An edge

−→
mn in F indicates

that there is at least one edge
−→
kl in F such as k = m and l = n.

Finally, we extract the MCG from F by removing intermediate
nodes from F as illustrated in Figure 3 (the bottom graph). The
algorithm for MCG construction can be found in [13].

To visualize the MCG, we classify the nodes of the MCG into
three types: Source Morse sets, Ri, are nodes absent of incoming
edges in the MCG; Sink Morse sets, Ai, are nodes without
outgoing edges in the MCG; Saddle Morse sets, Si, are neither
source Morse sets nor sink Morse sets. The Ri’s are colored green,
the Ai’s are colored red and the Si’s are colored blue. According
to the partial order determined by the edges in the MCG, we lay
out the nodes such that the source Morse sets appear at the top
of the graph, the sink Morse sets are placed at the bottom of the
graph and the saddle Morse sets are placed between the source
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Fig. 4. This figure compares two ways of performing flow combinatorializa-
tion: (left) geometry-based method, and (right) τ-maps. In the directed graphs,
each node corresponds to a triangle of the mesh. The red triangle T = T1 is
the starting triangle, the light brown curved closure is the real image of T ,
the blue dashed triangle is the approximation of the real image.

and sink Morse sets. Figures 1, 2 and 12 display the MCGs
of a number of analytical vector fields. Compared to the three-
layer structure of the ECG, an MCG has a multi-layer structure,
which provides more information than the ECG. Furthermore,
unlike ECGs, saddle-saddle connection is a generic case in MCG
(Figure 1(b), Figure 12(b)). Note that finer classification of Morse
sets, e.g., Saddle Morse sets, can be realized based on Conley
index theory [19].

We wish to emphasize that some graphics applications may
pursue the individual trajectory-based vector field topology with-
out being concerned with the fact that the obtained ECGs may
not be topologically rigorous, such as, the applications in texture
synthesis [31], [33] and fluid simulation [27]. For such applica-
tions, an ECG can still be extracted from Morse decomposition
as an additional step [4].

D. Flow Combinatorialization Based on τ-maps

We now turn to the issue of flow combinatorialization, i.e.,
the process of generating the graph F based on a vector field
V defined on a triangulated mesh X . Chen et al. [4] present a
geometry-based approach as follows: The vertices of the directed
graph F correspond to the triangles of the mesh. The edges of F

are obtained by considering the flow behavior across each edge of
each triangle. An edge Ti→ Tj in F indicates the flow can enter
from Ti to Tj, where Ti and Tj are neighboring triangles (Figure 4,
left). We refer to the resulting directed graph as Fg. An MCG
can then be obtained from Fg using the pipeline described in
Section III-C.

Since the mesh is not fitted to the flow, this approach is not
guaranteed to obtain the correct dynamics of the flow. In our
experiments, we have found that it often results in a rather coarse
outer approximation of the underlying dynamics, i.e., Morse sets
that contain multiple fixed points and periodic orbits (Figure 2(b))
or no structures at all (Figure 15 left column). This makes
subsequent analysis and physical interpretation less effective. To
obtain the Morse decomposition that are closer to optimal, we
introduce the concept of τ-maps, which allows us to move from
the continuous time of a flow to discrete time of a map. This
leads to the following definition.

Definition 3.1: Let τ : X → (0,∞) be a continuous map. A τ-
time discretization of the flow ϕ is a map fτ : X → X defined
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by
fτ(x) := ϕ(τ(x),x).

We refer to this map as a τ-map. Thus, finding Morse decomposi-
tions for the flow ϕ is equivalent to finding Morse decompositions
for fτ .

The fact that X is a triangulated surface provides us with an
appropriate discretization in space. Let X be the triangulation
of X (i.e., a set of triangles). We will approximate fτ using a
combinatorial multi-valued map F : X −→→X , that is a map such
that for each triangle T ∈X , its image is a set of triangles, i.e.
F (T )⊂X .

The correct notion of approximation is given by the following
definition. Consider fτ : X → X . The combinatorial multi-valued
map F : X −→→X is an outer approximation of fτ if

fτ(T )⊂ int(|F (T )|)

for every T ∈X where |F (T )| := ∪R∈F (T )R, int denotes the
interior. As an example, we refer readers to Figure 4 (right). In this
example, we assume that the true image of the triangle T = T1 is
IT . It is obtained by advecting T according to the underlying flow
over a time τ . According to the definition, the outer approximation
of IT is the set of triangles T4,T5,T6,T7,T8,T9,T10. Mathemati-
cally, we say that T has been mapped to multiple triangles of the
same mesh by a function (or a map) fτ that is determined by the
underlying flow under a certain time τ .

From the point of view of computation it is useful to view F

as a directed graph, which we denote as Fτ . (Figure 4, right).
Similar to Fg, the vertices, Ti, of an Fτ are the triangles of the
underlying mesh and the edges indicate the outer approximation
of the images of the triangles over time τ . For instance, an edge
Ti → Tj indicates that the image of the triangle Ti over time τ
will intersect with the triangle Tj (Figure 4, right).

Observe that the definition of an outer approximation requires
a lower bound on the set of triangles in F (T ), but not an upper
bound. In general larger images of F are easier to compute. For
example, one can obtain an outer approximation, by declaring
F (T ) = X for all T ∈X . However, the larger the image the
poorer the approximation of the dynamical system of interest, fτ .
We discuss how to compute an Fτ in Section IV.

E. The Stability of MCGs

The definition of an outer approximation and the fact that
the triangles in the strongly connected components of F form
isolating neighborhoods for the Morse sets demonstrate why the
MCG remains constant under small perturbations of the vector
field (Figure 1(b)). Since fτ is a continuous map and each triangle
T is compact, the image fτ(T ) is a compact set. If F is an
outer approximation, then by definition fτ(T ) is contained in the
interior of the set |F (T )|. Thus, this property will also hold for
any sufficiently small perturbation of fτ , which means that given a
multi-valued map for fτ we have the same Fτ for any sufficiently
small perturbation of fτ . Figure 5 provides an illustrative example
to explain this property of an outer approximation. In this figure,
A triangle T = T1 is advected according to the original flow
(represented by the black arrows). Its image IT is shown as
the closure bounded by a blue curve. It intersects with a set
of triangles (the shaded triangles) T4,T5,T6,T7,T8,T9,T10 of the
mesh, which forms the outer approximation of IT . When we
artificially introduce a random perturbation for each vector value
(shown as magenta arrows) and advect the triangle T under the
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τ map guidedgeometry-based 

Fig. 5. This figure illustrates that using outer approximation, Morse decompo-
sition is stable under certain error bound ε . The original image of triangle T is
IT (region inside the blue curve), and the outer approximation of that is the
set of shaded triangles T4,T5,T6,T7,T8,T9,T10. After a random perturbation
(shown by magenta arrows) of the original field (shown by black arrows),
we recalculate the image I ′T of triangle T , which is shown as the magenta
curved closure. Although it is different from IT , the outer approximation
consists of the same set of the triangles. Therefore, the corresponding portion
of the direction graph Fτ remains the same. Hence, we say that Morse
decomposition is stable under an error bound ε , which here is the maximal
allowed perturbation that will not change the outer approximation of the image
of each triangle.

new flow, we obtain a new image I ′
T of it (shown as magenta

dashed curved closure). If we bound the perturbation of each
vector to guarantee that the new obtained image I ′

T will intersect
the same set of the triangles as the IT obtained under the
original vector field, we will obtain the same outer approximation
of the image of T . Hence, the corresponding portion of the
directed graph Fτ will not change. The MCG is consequently
stable. In other words, the outer approximation provides more
space for error in the given data. We also point out that the
MCGs obtained using the geometry-based method are also stable.
Consider the example shown in Figure 5. Note that the flow
behavior across each edge of the mesh does not change after
a smaller perturbation, neither does the corresponding portion of
Fg. Therefore, the MCG remains the same. On the other hand, in
this setting this need not be the case for any particular trajectory
such as a periodic orbit or even a fixed point. That is, a particular
trajectory may be changed after any perturbation. Of course, we
can go one step further and insist that an ε-neighborhood of fτ(T )
be contained in |F (T )|. We will in general get a coarser Fτ , but
the resulting Morse decompositions will be valid for any vector
field whose τ-map lies within ε of fτ .

After applying the idea of τ-map based Morse decomposition
to the analytical field shown in Figure 2, we obtain a finer
Morse decomposition (Figure 2(d)). The colored regions there
indicate the isolating neighborhoods of the Morse sets. Different
color regions indicate different Morse sets. The flow-like texture
regions without color indicate the regions of gradient-like flow
(Section III-B). The color-dotted regions indicate the connections
between a saddle Morse set to another Morse set: source (green),
sink (red), and saddle (blue).

IV. OUR ALGORITHM FOR FLOW COMBINATORIALIZATION

In this section, we describe a practical algorithm for performing
flow combinatorialization based on τ-maps. First, we explain the
computational model used in this paper. The underlying domain of
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Fig. 6. This figure demonstrates a case of a distorted image of a triangle T
consisting of v1, v2 and v3 using a large τ . The red closed loop represents a
periodic orbit. The colored dash lines in the left figure show the trajectories
of the two vertices. The light brown curved closure in the right figure shows
the real image IT of the original triangle T , while the dash triangle T ′ is the
approximate image.

this model is represented by a triangulated mesh. Vector values are
defined at the vertices, and interpolation is used to obtain values
on the edges and inside the triangles. For the planar case, we use
piecewise linear interpolation. On curved surfaces, we adopt the
interpolation scheme of Zhang et al. [38] which guarantees vector
field continuity across the vertices and edges of the mesh. Vector
field continuity is required for rigorous topological analysis.

As we have seen in Section III, when employing the idea of
τ-maps, computing the correct flow combinatorialization Fτ is
the most crucial step in the pipeline of the Morse decomposition.
To obtain an accurate Fτ , it is essential to compute the accurate
(sufficient) outer approximation of the image of each triangle of
the given mesh and obtain the directed edges of Fτ accordingly.
In this section, we introduce several methods to compute the outer
approximation efficiently.

A. Explicit Outer Approximation Computation

1) A Rigorous Method: This method is applicable to any τ-
time discretization and produces a rigorous outer approximation
assuming that a bound ε on the errors in the underlying vector
field is known. Given a triangle T one covers it with squares of
size ε . For each square S define τ∗(S) = min{τ(x) | x ∈ S} and
τ∗(S) = max{τ(x) | x ∈ S}. Using rigorous enclosure techniques
[1], [20] one obtains an outer enclosure IS of the true image of
the square S integrated forward for all times τ∗(S) ≤ t ≤ τ∗(S).
Then IT = ∪IS, where the union is taken over all squares S, is
an outer approximation for fτ(T ).

This method is computationally costly. First, the number of
squares needed to cover the triangle T is of order ε−2, which
for small ε is large. Second, due to the Gronwall inequality [9]
the size of the image of IS grows exponentially as a function of
the integration time. Thus, to get tight outer approximations one
must choose small ε . On the other hand, variants of this method
have been used to obtain rigorous computer assisted proofs in
dynamics [1].

2) An Accurate Outer Approximation Through Outer Boundary
Tracking: Because we are working with flows, if we use a τ-
time discretization which is a constant function, then fτ is a
diffeomorphism which is homotopic to the identity map. Consider
a triangle T and its boundary ∂T . Then fτ(∂T ) is the boundary of

fτ(T ). Thus, it is sufficient to have a rigorous outer approximation
of fτ(∂T ) to obtain a rigorous outer approximation of fτ(T ).

To compute the outer approximation of fτ(∂T ), we first con-
sider using the three vertices of a triangle as the sample points.
For instance, in Figure 4 we trace the three vertices v1,v2,v3
of T with τ time and obtain v′1,v

′
2,v
′
3. They form an imaginary

triangle T ′, that intersects with a set of triangles Ti. They form
an outer approximation of the true image, IT (region inside the
light brown dashed curve of Figure 4, right), of T . Although this
method can avoid placing dense samples inside a triangle, it poses
challenges. First, the approximation may lead to a smaller image
than desired. For instance, in Figure 4 (right), IT intersects with
triangle T4,T5,T7, but T ′ does not. Second, it may fail to produce
an outer approximation when using a large τ under a highly curled
field. In Figure 6, the vertices (v1, v2 and v3) of a triangle have
been advected according to the underlying flow whose images are
v′1, v′2 and v′3, respectively. Using this method, we will obtain a
triangle T ′ (the black dash triangle) while the real image should
be the light brown curved closure IT . A more rigorous method
is needed.

A rigorous outer approximation of fτ(∂T ) can be obtained by
covering ∂T by squares of size ε and repeating the procedure
in 1. This is less costly than directly computing fτ(T ) since the
number of squares needed to cover ∂T is of order ε−1. One still
has to pay the cost of the rigorous enclosure integration methods
which is higher than standard numerical methods for integrating
a single initial point.

It should also be noted that if one uses an arbitrary τ-time
discretization then fτ may cease to be a homeomorphism. In this
case this method fails to guarantee that the resulting image is
an outer approximation. Thus, to use this method for the general
τ-time discretization and to maintain rigor one needs to monitor
that the image of ∂T remains a simple curve for all times up to
time τ .

The following variant, though not rigorous, is reasonably safe
as long as the image of ∂T remains a simple curve. It computes
the outer approximation of the image of a triangle T .

1) Start from the two ending points of each edge, and trace
them for the same small time ∇τ (∇τ � τ), respectively

2) Compute the distance between the images of the two points.
If it is larger than the threshold (e.g., half of the length of
the original edge), compute the middle point between the
two image points, then start tracing from it as well.

3) Repeat 2) until reaching the limit of time τ .
4) After completing the aforementioned steps, we obtain the

approximate image of the edge. Repeat the same procedure
to get the images of the other two edges of T . Computing
the intersection of the underlying mesh with the closure
formed by the images of the three edges gives rise to the
outer approximation of the image of T .

This method still poses several difficulties. First, it is difficult
to choose a proper ∇τ to guarantee a small amount of advection
of each sample. Second, monitoring the image of an edge incurs
a high cost that makes it computationally prohibitive for large
datasets and for datasets defined on curved surfaces that typically
lack a global parameterization. For some applications, better
performance is desired.
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Fig. 7. Some possible cases of the image of a triangle under a flow.

B. Our Method For Computing Outer Approximations

In this section, we describe a method that can obtain enough
information of the image IT through the tracing of vertices and
the heuristically chosen samples on the edges of the given mesh
without having to compute the outer approximation explicitly.
While this method is not rigorous in theory, it works for all the
applications we have applied it to in practice.

Our method is based on the following observation: the image
of a connected object under a continuous map is still connected.
More specifically, the image of a triangle under a τ-map which
is a continuous map is either a connected region, a simple curve
or a point. And, the image of a line segment (e.g. an edge of the
mesh) is a simple curve or a point. We now discuss our method
in detail as follows.

We start with the study of some possible scenarios of the
outer approximation of the image of a triangle T . Assume that
T consists of three vertices v1,v2,v3 and three edges e1,e2,e3,
where e1 = (v2,v3), e2 =(v3,v1) and e3 =(v1,v2). Considering the
definition of an outer approximation in Section III-D, we let I(T )
represent the outer approximation of T obtained using certain
numerical integration (such as, Runge-Kutta method). Similarly,
let I(vi) represent the outer approximations of the images of the
three vertices and I(ei) represent the outer approximations of the
images of the three edges of T , respectively. Typically, I(vi) is a
single triangle that contains the image of vi if the integration error
is smaller than the diameter of the triangle. To guarantee obtaining
a sufficient outer approximation, if the image of vi is located at
a vertex vp, we set I(vi) to be the one-ring neighborhood of vp
(Figure 7, cases (3) and (6)). If the image of vi is located on an
edge e j, we set I(vi) to be the two triangles that have e j as one
common edge (Figure 7, case (3)).

Cases (1), (2) and (3) of Figure 7 show the first scenario. In this
scenario, I(T ) ⊆ ∪3

i=1I(vi). That is, we only need to trace from
the three vertices of T , the union of the outer approximations of
them will give rise to the outer approximation of T .

Cases (4) and (5) of Figure 7 provide examples of Scenario 2.

T

T1
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T5

T4

T6

T3

T7

T8 T9

v1

v2

v1’

v2’
e

vm

Fig. 8. This figure provides the notion of adaptive sampling on an edge
e(v1v2) (right). T is the original triangle. The image of edge v1v2 is v′1v′2.
The dash lines show the mapping of the samples to the points on the image.
The indexing of the triangles (right) indicate the order of computation.

In this scenario, I(T ) ⊆ ∪3
i=1I(ei). Therefore, the union of I(vi)

will not provide us a sufficient outer approximation (for instance,
triangles T1,T3,T5 of case (4) in Figure 7 will be missing), but the
union of I(ei) will. This requires us to keep track of the image
of an edge. Section IV-A.2 presents an accurate solution, but it is
computationally expensive. A more efficient method is desired.

Algorithm 1: Adaptive sampling on an edge
Routine: adaptive edge sampling(v1, v2, T1, original T ,
neighbor T , V , X , τ , L)
Input: v1,v2: two vertices;

T1, original T , neighbor T : triangles
V : vector field; X : surface; L: recursion level;
τ: user specified integral time

Output: the edges in the graph Fτ related to the two
triangles original T and neighbor T
Global variables: Fτ : the directed graph
Local variables: T2: a triangle; s: a vertex
Begin
L← L+1;
if (L > maximum recursion level ||

||v1− v2||2 < minimum distance)
v1← v2; T1← T2;
new edge(original T,T1,Fτ );
new edge(neighbor T,T1,Fτ );
return;

T2←trace(v2, τ);
if( T1 == T2 || share common edge(T1, T2) )

v1← v2; T1← T2;
new edge(original T,T1,Fτ );
new edge(neighbor T,T1,Fτ );
return;

else
v1← v2; s← v2;
v2← (v1 + v2)/2;
call adaptive edge sampling(v1, v2, T1, original T ,

neighbor T , V , X , τ , L);
v2← s;
call adaptive edge sampling(v1, v2, T1, original T ,

neighbor T , V , X , τ , L);
return;
End

Since we are interested in the outer approximation of an
edge instead of the exact image of it, the connected triangle
strip that contains the image of the edge is sufficient. The
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Fig. 9. A general example of the image of a triangle under a flow showing
the scenario of case (6) in Figure 7. Through this example, we introduce
the idea of backward mapping. The image in the top row illustrates the
forward mapping. The red, green and black dashed curves indicate the forward
mapping. Using adaptive edge sampling, we can find the connected triangle
strip (the shaded region) that contains the image of the boundary of the triangle
T . The bottom row image illustrates the idea of backward mapping. The
interior vertices have been traced over the same time τ based on the inversed
flow. The images of them will fall in the triangle T . The brown dashed curves
indicate the backward mapping. Thus, we can obtain the remaining edges
in the directed graph. Note that the boundary of the forward image IT of
T intersects with one vertex (highlighted by an orange circle). To obtain a
sufficient outer approximation, we add the one-ring neighborhood of the vertex
to the outer approximation.

connected triangle strip we refer to here is a triangle strip in
which a pair of neighboring triangles share a common edge due
to the aforementioned observation of the image of an edge under
a continous map (τ− map here)(for example, Figure 8). We
introduce the idea of adaptive edge sampling (Algorithm 1). The
basic idea is that we first trace from the two vertices of an edge
e(v1,v2) (Figure 8, right). If the two triangles T1 and T2 containing
the two advected vertices are the same triangle or they share a
common edge, then we do not process e further. Otherwise, more
samples are then used until we obtain a connected triangle strip
containing the image of e. To compute new samples, we make
use of a binary search along the edge e . In detail, if the two
triangles containing the images of the two vertices v1, v2 are
neither the same nor neighbors, we then trace from the middle
point vm of the line segment (v1,v2) and determine whether the
triangle T3 that contains the image of vm and the two triangles
T1 and T2 form a connected triangle strip or not. If they are not,
assume that among them T1 and T3 are not neighbors, It means
that we need more samples on the line segment (v1,vm) to obtain
the connected triangle strip between T1 and T3. Therefore, we
compute the middle point of the line segment (v1,vm) and trace
from it to obtain the triangle containing the image of it. Repeat
this process until a connected triangle strip is found. Figure 8
demonstrates the idea of this algorithm. The indexing of the
triangles indicate the order of computation. We wish to point
out that due to a discrete representation, there is no guarantee of
finding a continuous map under a highly divergent flow with a
large τ , even though we sample densely along the edges. However,
we have not experienced this problem in practice.

Using the adaptive edge sampling scheme, we successfully
compute the outer approximation of scenario 2. But we will fail

?

(1)

(1)

(2)

(3)

(4)

(6)

T

Ti

Tj

v1’

v2’

v2

v1

(5)

(7)

Fig. 10. This figure describes how the backward mapping and the adaptive
edge sampling help to find the complete edges of the directed graph under
a highly stretched flow. The edge (v1v2) has been sampled to obtain the
continuous triangle strip that contains the image of it using Algorithm 1.
The brown dashed curves illustrate the backward tracing along −V . (1)–(7)
indicate the sampling and tracing order. Note that step (2) gives rise to the
edge T → Tj that is missed in the case (7) of Figure 7.

under case (6) of Figure 7, which is an example of scenario 3.
In this scenario, I(T ) ⊃ ∪3

i=1I(ei). Therefore, keeping track of
the images of the three edges is not sufficient. More specificially,
consider the image IT of a triangle T under a flow V over time
τ (Figure 9, top). In this case, we can find all the triangles that
contain the images of the three edges of T using the adaptive
edge sampling algorithm. But we are not able to find the interior
triangles intersecting with IT . We observe that any sample inside
T will be mapped to the image IT , and any sample inside IT
should be able to be mapped back to the interior of T as well
(Figure 9, bottom row). That is, if we sample any point inside
each inner triangle, and trace the sample point with respect to the
inverse flow −V over the same time τ , the image of it should fall
in T . These observations motivate us to introduce the backward
mapping as the complement of forward mapping when computing
the outer approximation of the image of a triangle. Figure 9
(bottom row) illustrates the idea of the backward mapping. For
the updating of the graph F , if we trace backward from any
sample of a triangle Ti over time τ , and its image falls in triangle
Tj, we add an edge Tj→ Ti to F .

With the assist of backward tracing combined with the adaptive
samping scheme, we now can compute a sufficient outer approx-
imation for case (6) in Figure 7. Furthermore, more difficult case
could be handled as well. Consider case (7) in Figure 7, IT
intersects with two triangles. Therefore, the outer approximation
should include these two triangles, even though the images of
the three vertices fall in the same triangle. Using both adaptive
edge sampling and backward mapping, we can compute the outer
approximation of this case correctly as follows. We first perform
forward tracing, which will eventually generate an edge from
triangle T to Ti. When we perform backward tracing, we first
trace the two vertices of edge (v1v2) (step (1) of Figure 10) of
the edge and determine whether the two triangles containing the
images of the vertices of the edge are not neighbors. In here, they
are not. We then choose the middle point of the edge and trace
from it over time τ . It ends at triangle T . Therefore, we obtain
the edge from T to Tj, since the edge (v1,v2) is shared by both
Ti and Tj.

The logic of the complete algorithm is shown in Algorithm 2.
We first trace each vertex v of a triangle T forward for the time
τ . If it falls in triangle Ti, we add the edges from the triangles of
the one-ring neighbors of v to Ti in Fτ . Second, we trace each
vertex v of T backward with τ and find the triangle T ′i containing
the advected vertex of v. We then add the edges from T ′i to the
one-ring neighbors of v. Note that if the image of v is located at
a vertex v′ or on an edge e, Ti (or T ′i ) becomes a set of one-ring
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triangle of v′ or the two triangles sharing the edge e. Third, we
compute the image of each edge following the original flow and
inversed flow, respectively. The adaptive edge sampling algorithm
is employed to produce an outer approximation in a practical
and effective manner. The directed edges are added accordingly
during the process. Note that the algorithm doesn’t deal with
the interior triangles of an image (Figure 9) explicitly, since the
backward tracing using the same manner of forward tracing stage
(i.e. proceed the vertices and edges, respectively) will eventually
take care of those interior triangles.

Algorithm 2: An efficient outer approximation
computation

Routine: construct multivaluemap(V , X , τ , L)
Input: V : vector field; X : surface; τ: integral time

L: maximum recursion level
Output: Fτ : the completed graph
Local variables: T : current triangle; e : current edge;

N T : the triangle sharing the edge e with T ;
v1,v2: the two vertices of e

Begin
for each vertex v of X

T ← trace forward(v, τ);
new edges(one-ring of v, T );

for each vertex v of X
T ← trace backward(v, τ);
new edges(T , one-ring of v);

for each triangle T of X
for each edge e of T

if e is visited
continue;

else
e ← visited;
v1,v2 ← two vertices of e;
N T ← the triangle sharing e with T ;
/*forward mapping*/
call adaptive edge sampling(v1, v2, T , T ,

N T , V , X , τ , L);
/*backward mapping*/
call adaptive edge sampling(v1, v2, T , T ,

N T , −V , X , τ , L);
End

C. Result and Discussion

We have applied this algorithm to a number of analytical
vector fields. Figure 2 provides the comparison of different Morse
decompositions of a designed vector field using the geometry-
based method (b) and the τ-maps with different time τ’s (c) (d).
The ECG of the vector field is shown (a). The corresponding
MCGs of the obtained Morse decompositions (Figure 2(b-d)) are
shown in the second row. From the results, we observe that the
geometry-based mapping approach is fast (0.14s), but tends to
result in a Morse decomposition that is too coarse (only four
Morse sets have been extracted), while the MCG derived from an
Fτ has finer Morse decomposition (Figure 2(d), ten Morse sets
have been found). Note that the MCG in (d) matches the ECG
(a), although they are labeled differently. We also observe that
the larger the τ , the finer the Morse decomposition is (i.e. closer
to the optimal). Larger τ can provide more detailed information

Fig. 11. This figure shows the density maps of the sample rates of the two
analytic fields using our algorithm. The color coding of the density map uses
red for the region with a larger sampling rate and blue for a lower sampling
rate.

of the flow behavior. On the other hand, larger τ requires more
computation time to construct MCGs, and larger integration errors
may be introduced as well (Figure 6).

As is indicated in Figure 4, the τ-map approach leads to a
combinatorial multi-valued map F with smaller images (than the
geometry-based method) and hence a finer Morse decomposition.
An important point that can easily be overlooked is the freedom
of choice in the construction of F . We have chosen an approach
that is a compromise between accuracy of F and speed of
computation. For problems in which computational time is not
a concern one can expand on the adaptive sampling technique
and the choice of τ to refine the images. Alternatively, if one
knows that the original vector field contains significant errors,
and since the F needs only to be an outer approximation, these
errors can be incorporated into the construction of the images of
F (Figure 5). Thus, even in the presence of considerable small
perturbation (Figure 5) one can ascertain that the resulting MCG
is valid.

An interesting observation is that to compute the sufficient
outer approximation, our algorithm tends to use more samples for
the flow regions with divergent behaviors (sources under forward
mapping and sinks under backward mapping) and stretching
behaviors (separatrices and periodic orbits). Figure 11 provides
the density maps of sample rates of the two analytic fields
using our algorithm. The color coding of the density map uses
red for the region with a larger sampling rate and blue for a
lower sampling rate. We observe that the regions having a larger
sampling rate tend to coincide with the regions with highly
stretched flow behavior. This verifies that our backward and
forward mapping framework combined with adaptive sampling
technique locates the flow regions with high distortion correctly.

V. TEMPORAL τ VS. SPATIAL τs

The τ-map introduced previously refers to a time discretization,
i.e., every particle travels for a time τ . We refer to it as a temporal
τ-map. In many scientific data sets, the vector field magnitude of
the underlying flow varies significantly. If a constant time τ is
used, the advection of some triangles corresponding to the flow
region with a slow speed may not be advected far enough in
order to construct the edges of Fτ . One solution is to choose
a τ that makes sure every triangle is advected sufficiently far.
However, this is likely to affect the overall performance and
introduce errors. Similar problems have appeared in texture- and
streamline-based flow visualization. One popular approach is to
normalize the vector field before generating the streamlines or
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Fig. 12. This figure shows various analysis results of an analytical data set: (a) ECG, (b) MCG (geometry-based method), (c) MCG (temporal τ = 12) and
(d) MCG (spatial τs = 0.049). The computational time for (b)-(d) is 0.17s, 2.42s and 1.57s, respectively. Notice how the Morse sets are refined by using the
idea of τ-maps. We also observe that using a spatial τs-map for the analysis of this field can give rise to a comparable Morse decomposition (having the same
Morse sets) to the one using a temporal τ with a faster performance. The visualization scheme of ECGs and MCGs are described in Figure 1.

advecting the textures. Under these normalized vector fields, the
vector values at the vertices are scaled to have the same magnitude
except for fixed points. Therefore, the streamline computation can
be executed efficiently. Motivated by this observation, we propose
the idea of a spatial τ-map, which we refer to τs-map.

More specifically, a τs-map is defined on a spatial discretization
τs. When computing a τs-map in the computational domain (a
triangle mesh X here), for each sample of the triangle T in X
we keep track of the integral length of the sample following
the flow until the accumulated integral length reaches the spatial
constraint τs. Since all the particles will travel the same distance
in the same speed (e.g. the maximum speed) everywhere except
for the neighborhoods of the fixed points, one can expect a
faster computation than tracing with respect to the original (non-
normalized) vector field. When considering spatial τs, we still can
reuse the framework in Algorithm 2 to compute the Fτ with only
difference being that we now accumulate integral length instead
of integral time. One important concern is how to compute the
correct trajectory when the tracing enters the neighborhoods of the
fixed points. The basic rule is that the trajectory should not cross
any fixed points. Fortunately, the flow will slow down in those
neighborhoods according to the properties of fixed points (where
vector magnitude equals zero) and the continuous approximation
of the flow guaranteed by the interpolation schemes we are using
(Section IV). Hence, we stop tracing when the vector magnitude
is below a certain threshold (for instance, 0.01 times the uniform
vector magnitude). We point out that after normalization, we have
artificially introduced deviation to the original vector field.

We apply the idea of spatial τs to a designed vector field
(Figure 12). The geometry domain of the vector field consists
of 6144 triangles. Ten Morse sets have been extracted using a
temporal τ = 12. The extraction took 2.42 seconds on a 3.0 GHz
PC with 1.0 GB RAM. With a spatial τs-map (τs = 0.049), we
extract the similar Morse sets using only 1.57 seconds. The result
of the geometry-based method is also shown (Figure 12(b)). The
corresponding MCGs and ECG of the field are also shown in the
bottom row of Figure 12. Based on the results, we observe that
using a spatial τs, we can achieve faster Morse decomposition

Fig. 13. The visualization of the integral time of different flow regions being
spent under a constant spatial τs. An rainbow coloring scheme is used, where
the red regions indicate larger tracing time is used and blue means smaller
time.

(Figure 12(d)). The use of τs also extends our understanding of
τ-maps. In the previous section, we set a constant τ for all flow
regions during the Fτ computation. It is not necessary and may
lead to distortion of the outer approximation when large τ is used.
The success of τs-maps shows that it is possible to use different
τ’s in different flow regions. This is because given a constant
distance τs and different flow speed vs, we will obtain different
tracing time t = τs/vs in different flow regions (Figure 13).
Therefore, more heuristic information from the dynamics of the
flow can be employed to guide the choice of a proper τ for a
specific flow region. This is the challenge we plan to address in
future research.

VI. APPLICATIONS

In this section, we provide the vector field analysis results using
the efficient Morse decomposition framework for two engine
simulation data sets. They are the extrapolated boundary velocity
fields that are obtained through simulation of in-cylinder flow.
Engineers are interested in knowing whether or not the flows on
the surface follow the ideal patterns [17].

Figure 14 shows the results of the gas engine simulation data.
The first column shows the results using the geometry-based
method. The second and third columns provide the results using
the temporal τ-maps with τ = 0.1 and τ = 0.3, respectively. The
corresponding MCGs are also displayed under the flow images.
We observe that a Morse set has been extracted at the back of
the chamber. It shows a recurrent pattern which indicates the flow
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TABLE I
THE COMPLEXITY AND TIMING RESULTS FOR TWO CFD DATA SIMULATING IN-CYLINDER FLOW THROUGH A COMBUSTION ENGINE (FIGURES 14

AND 15). TIMES (IN SECONDS) ARE MEASURED ON A 3.6 GHZ PC WITH 3GB RAM.

dataset # # edges # Morse time constructing time extracting time computing time
name(τ) polygons in Fτ sets Fτ Morse sets MCG total

gas engine(temporalτ = 0.1) 26,298 195,694 50 27.844 0.218 7.922 35.984
gas engine(temporalτ = 0.3) 26,298 215,774 57 75.357 0.25 1.219 76.826

diesel engine(temporal τ = 0.3) 221,574 2,035,133 200 1,101.323 7.781 37.703 1,146.807
diesel engine(spatial τs = 0.08) 221,574 2,167,914 201 689.451 8.141 43.234 740.826

(a) The MCG using the geometry-based Method (b) The MCG using a temporal τ map (τ=0.1) (c) The MCG using a temporal τ map (τ=0.3)

The ECG

Fig. 14. This figure compares the results of the Morse decompositions of the gas engine simulation data obtained using geometry-based method (a), a
temporal τ-map with τ = 0.1 (b) and a temporal τ-map with τ = 0.3 (c), respectively. Note that the color disk-like region at the back of the cylinder bounds
the area of recirculating flow corresponding to tumble motion which indicates an ideal pattern of motion with good mixing properties. Notice that using the
τ-maps can greatly improve the quality of the Morse decomposition (the zoom in images). The corresponding MCGs of different Morse decompositions and
the ECG of the data are also shown.

starting to approximate the ideal tumble motion. The Morse sets
obtained based on a τ-map capture regions that are more faithful
to important features, while the approach using the geometry-
based map could give rise to fewer Morse sets that cover large
regions, which makes the identification of important features more
difficult.

The results shown in Figure 15 are from the diesel engine
simulation. The first column shows the results using the geometry-
based method. Notice the rainbow-like regions indicate the recur-
rence behavior that does not actually exist. That is, the geometry-
based method generates a Morse decomposition with misleading
information. In the remaining columns, we provide two Morse
decomposition results of the same data using a temporal τ-map
(τ = 0.3) and a spatial τs-map (τs = 0.08), respectively. For the
temporal case, the obtained Morse decomposition contains 200
Morse sets. It took 1,146.807 seconds to obtain the result. For
the spatial case, the number of the extracted Morse sets of the
Morse decomposition is 201. The time for computing this Morse
decomposition is 740.826 seconds. Either temporal τ method or
spatial τs method provides accurate information of the recurrence
behavior of the bottom of the in-cylinder of the diesel engine, but
the spatial τs-map shows faster Fτ computation than temporal τ-

map scheme.
Table 1 provides the performance information of the two data

sets using different Fτ s.

VII. CONCLUSION

In this paper, we have demonstrated the fundamental difficulties
associated with the definition of vector field topology based on
individual trajectories. As a solution, we advocate the use of a
Morse connection graph to represent the topology of a vector
field. Moreover, we have described an efficient framework for
computing Morse decompositions of vector fields. Compared to
individual trajectory-based vector field analysis, Morse decompo-
sition and the associated MCG accounts for the numerical errors
inherent in the vector field data. This makes it more suitable for a
rigorous interpretation of vector field topology. To obtain a finer
MCG than previous method (i.e. the geometry-based method), we
employ the idea of τ-maps to perform flow combinatorialization
and encode the flow dynamics into a directed graph Fτ , upon
which we perform Morse decomposition. In order to compute Fτ
efficiently, we make use of both forward and backward tracing
and introduce an adaptive sampling algorithm along the edges
to account for the discontinuity problem while computing the
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Geometry-based
τ = 0.3

View 1

View 2

Temporal
τs = 0.08

   Spatial

Fig. 15. A comparison of various Morse decompositions of the diesel engine simulation data set. The first column shows the Morse neighborhoods obtained
using the geometry based mapping. The color rainbow-like regions indicate the possible recurrent flow behavior. The second column provides the results using
a temporal τ-map with τ = 0.3, while the third column gives the results using a spatial τs map with τs = 0.08. Note how much more refined the topological
regions become. We also observe that using a proper spatial τs, we can obtain comparable Morse decomposition with higher performance (See Table 1).

approximate image. As an alternative to the temporal τ-map, we
present the use of a spatial τs-map, which typically provides
faster computation than temporal τ-map scheme with similar
fineness in the MCGs. We show the utility of our approach
in a number of applications including analytical data and two
engine simulation data sets on surfaces. We should point out
that the limitation of our approach is that the optimal Morse
decomposition of a vector field under a given mesh is constrained
by the resolution of the mesh. This can potentially be fixed by
using other graphics techniques, such as flow-guided remeshing or
subdivision. Our framework allows engineers to choose between
individual trajectory-based topology analysis given its instability
and relatively stable analysis, or choose between higher perfor-
mance and higher quality when applying the more stable analysis.

There are a number of future directions. First, MCGs have
the potential of enabling a multi-scale representation of the flow,
which can be used to guide vector field clustering, vector field
compression and automatic simplification. Second, exploration of
τ magnitude in different regions of the domain is important. Third,
exploring a discrete integration scheme to compute the discrete
function (i.e., the multi-valued map, F ), may further improve
the performance of our method as well. Finally, there is a need
to extend the work to time-dependent vector fields.
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