
Techniques for Large Data Visualization

Dan R. Lipşa1, Robert S. Laramee1, R. Daniel Bergeron2, and

Ted M. Sparr2

1Visual and Interactive Computing Group, Department of

Computer Science, Swansea University, Swansea, UK
2Computer Science Department, University of New Hampshire,

Durham, NH, USA

February 18, 2011

Abstract

Often scientific datasets are several times larger than the main memory

of a computer. The size of datasets, in general, has exceeded that of main

memory for several decades and will continue to do so for the foreseeable

future. Because of large disk-drive latency, visualization algorithms de-

signed to process data from main memory can rarely be directly applied

to data stored on disk without modification. In this paper we review cur-

rent methods and techniques designed to deal with large data, often larger

than the computer’s main memory. Our goal is to provide a student or

researcher with understanding of fundamental concepts and knowledge of

the most important techniques in the current research literature for visu-

alizing large scientific data. The most important terminology related to

out-of-core visualization is identified and discussed as well as the funda-

mental challenges faced by this class of techniques. We provide a valuable

starting point for readers interested in gaining a concise introduction of

techniques for large data visualization.

Keywords: Out-of-core/external algorithms; caching and prefetching; mul-
tiresolution and adaptive resolution; chunking.

1 Introduction

A scientific dataset consists of spatial data values either collected from the real
world or produced by a computer simulation. Several different attributes (for
instance the concentration of several chemical elements) can be acquired or
produced for each point in space and these measurements can be repeated over
a period of time.

As the processing power of CPUs continues to increase and GPUs start to
provide parallel processing capabilities to applications, computer scientists have

1



made progress in dealing with the large processing requirements of scientific
applications. However, large disk-drive latency, and very large data sets continue
to be major problems in processing scientific data.

Often scientific datasets are very large, much larger than the main memory
of a computer. Because of large disk-drive latency, visualization algorithms
designed to process data from main memory can rarely be applied to data stored
on disk directly without modification. A visualization algorithm which does not
preload all the data to be visualized in main memory is called an out-of-core or
an external memory visualization algorithm. These algorithms usually require
special optimization to circumvent the ill effects of large hard-drive latency.

This paper focuses on the most important methods and techniques used in
visualizing large scientific data. It provides a tutorial for those less familiar with
the topic, as such it is not an exhaustive overview of the research area. Our
focus is on presenting the most important techniques in greater detail for readers
new to this topic, rather than exhaustive coverage of all recent techniques.

This manuscript serves as a very good starting point for those that may be
interested in the subject. A reader will gain a good understanding of the most
important techniques and not be overwhelmed by the number of techniques
presented. References to further literature, including surveys are given for the
interested reader in studying the topic in more breath.

The rest of this manuscript is organized as follows: algorithms often used as
a basis for more complex external memory techniques are presented in Section 2.
Section 3 reviews the most important prefetching and caching techniques. Sec-
tion 4 reviews multiresolution and adaptive resolution techniques and Section 5
reviews other ways of preprocessing data which can speed up visualization of
scientific data.

2 External memory algorithms

External memory (out-of-core) algorithms process data that cannot fit into the
main memory of the computer. This data is stored on an external memory
device, commonly a disk drive, and pieces are brought to memory as they need
to be processed. In contrast with the main memory, disk drives have very long
access time. To reduce the ill effects of this long access time, the operating
system reads and writes data from disk in blocks. This is important when
estimating the running time of external memory algorithms.

In this section we review important external memory algorithms [21] that
provide the basis of more complex visualizations.

To model complexity of out-of-core algorithms, Silva et al. [21] use I/O
complexity which is defined as the number of I/O operations performed. I/O
complexity is used in place of regular complexity (the number of operations
performed) because an I/O operation (typical disk seek time is 10 ms) is several
orders of magnitude slower than a memory access or a CPU operation (typical
CPU speed is 2 GHz). In expressing I/O complexity of algorithms we use the
following parameters: N is the number of items in the problem instance; M is

2



the number of items that fit into main memory; B is the number of items per
disk block.

External memory algorithms can use one of two major computational paradigms
for out-of-core processing of data [21]: batched computation, where no prepro-
cessing is done and the program streams all data through the main memory only
keeping a small portion of the data in main memory at any given time; on-line
computation for which processing is done on the result of a query operation.
In this case, data is often preprocessed such that the query operation examines
only a small portion of the data.

2.1 Algorithms for batched computations

In this section we review four external memory techniques presented by Silva et
al. [21]: external merge sort, the join operation, out-of-core pointer dereferencing
and the meta-cell technique.

Sorting is a fundamental operation used in many out-of-core algorithms.
External merge sort is a k-way merge sort, where k is chosen to be M/B, so
we can fit k blocks in main memory at a time. We start with an unsorted
list of N items. If the list fits in memory, we just load it, sort it there and
output the sorted list. If it does not fit, we split the list into k sub-lists, we
sort those sub-lists recursively and then merge the k sorted lists. To merge k
sorted lists, we read one block from each list into memory, and we do a k-way
merge. During the in-memory merge process, once a block finishes, we read in
the next block from the same list. The I/O complexity for the external merge
sort is O(N

B
logk

N

B
).

The join operation takes as input two lists that contain related elements.
Elements in the two lists are related through a field key that is contained in
each element. Join produces a list that contains related elements from both
input lists, that is, elements for which the key value is the same. To perform
join in an I/O efficient way we external sort both lists on key, and then traverse
both lists in parallel and write the output list. Considering the size of both lists
to be N , the I/O complexity of this operation is O(N

B
log M

B

N

B
). This is much

smaller than (denoted with ≪) O(N) which is the I/O complexity of doing the
same operation by directly traversing one list and accessing information referred
to in the second list. To see that, notice that log M

B

N

B
≪ B which, by using

each side as an exponent to M

B
, is equivalent with N

B
≪ (M

B
)B . This inequality

is true for typical values for N , the number of elements, M the number of items
that fit into memory and B the number of items in a disk block (for instance, for
N = 109, M = 106 and B = 103 we have log M

B

N

B
= log103 106 = 2 ≪ B = 103).

Both out-of-core pointer dereferencing and the meta-cell technique, the two
algorithms we present next, use join operations.

Out-of-core pointer dereferencing. Typically, irregular scientific data in
index cell list format (ICS) stores a vertex list, with each vertex containing its
x, y, z coordinates and attribute data, and a cell list, with each cell containing
references to vertices that make up the cell. A common operation with scientific

3



datasets is to process all cells in the dataset and access the information stored
at each vertex of the cell. While this can be done very efficiently if the dataset
is loaded entirely in memory, the same operation is very inefficient if the data
resides on disk. In this case, traversing all cells in the dataset and accessing
all vertices in a cell leads to random access in the disk file that stores the
data with I/O complexity of O(N). Out-of-core pointer dereferencing is an I/O
efficient technique that stores the information associated with each vertex in
a cell together with the cell itself. So, instead of a vertex list and a cell list,
the dataset is stored as a cell list, with information about each vertex in a
cell stored together with the cell itself. This technique duplicates information
about vertices, but reduces the I/O complexity of traversing all the cells in the
dataset to O(N

B
). The transformation itself can be achieved with I/O complexity

O(N

B
log M

B

N

B
) which is much faster than O(N) the time required to traverse all

cells of the unprocessed dataset.
Let’s see how we can perform out-of-core pointer dereferencing, that is, to

obtain a cell list with each cell storing in-place information about all vertices in
that cell, in an I/O efficient way. We start off with an irregular dataset in index
cell list (ICS) format. First, we sort the cells in the cell list using as a key the
index of the first vertex in the cell. This way, we obtain at the beginning of the
cell list all cells that have vertex one as a first vertex in the cell, then we have all
cells that have vertex two as a first vertex in the cell and so on. By traversing
in parallel the vertex list and the cell list, we can fill in the information about
the first vertex for all cells in the dataset. Note that this is a join operation
between the vertex list and the cell list on the vertex index of the first vertex in
the cell. We continue by sorting the cells in the cell list on the second vertex in a
cell. We then do another traversal of both cell list and vertex list and fill in the
information about the second vertex for all cells in the dataset (join operation
on the second vertex index in a cell). We apply the same procedure for the
third and the fourth vertices in a cell. The I/O complexity for this procedure
is going to be O(N

B
log M

B

N

B
) for a sort and O(N

B
) for a traversal of the cell list

and vertex list. So the overall I/O complexity is O(N

B
log M

B

N

B
).

Meta-cell technique. The meta-cell technique [5, 21] spatially clusters
neighboring cells together to form a meta-cell. Each meta-cell contains ap-
proximately the same number of vertices and is small enough to fit into main
memory. Each meta-cell stores cells and vertices in index cell set (ICS) format.
Each meta-cell is self-contained, which means that vertices that are shared be-
tween cells in different meta-cells are duplicated in those meta-cells. A cell is
part of a unique meta-cell that is decided using a voting system based on the
number of vertices in a cell that is part of a certain meta-cell. To be useful,
meta-cell size has to be a multiple of the disk block size. This technique pro-
cesses an irregular dataset in index cell set (ICS) format and produces a list of
k3 meta-cells each containing spatially neighboring cells together, where k is an
input parameter. The technique starts with an external sort of vertices on the
x coordinate and then partitions the vertices in k chunks that contain an equal
number of vertices. Each chunk is then externally sorted on the y coordinate,

4



and partitioned into k chunks that contain the same number of vertices. Finally,
each of the k2 chunks is sorted on the z coordinate and partitioned in k chunks
that contain the same number of vertices. This process produces k3 chunks,
each containing the same number of vertices. This partition is similar to the
partition induced by a kd-tree [3, 12]. Each of these chunks corresponds to a
meta-cell. To find out the cells and the shared vertices that are part of a meta-
cell, further external sort and join operations are needed, so the I/O complexity
is O(N

B
log M

B

N

B
). Full details for the meta-cell construction are presented by

Chang et al. [5].

2.2 Algorithms for on-line computations

On-line computation algorithms are designed to use search data structures to
facilitate fast queries through scientific data. A preprocessing step is necessary
to build these data structures. In this section we present the B-tree, a well
known external search data structure and a general technique designed to make
it efficient to use a binary search tree larger than can fit into the main memory
of the computer.

The best known out-of-core search data structure is the B-tree [9], which is
a balanced, multiway search tree. Each node but the root has between t and
2t keys and between t + 1 and 2t + 1 children. The root of the tree can have
between 1 and 2t keys and between 2 and 2t + 1 children. The B-tree has the
property that all the keys in the sub-tree attached between keys ki and ki+1

have values between ki and ki+1. The maximum number of keys in each node
2t is chosen such that a node has the same size as a disk block or is a multiple
of disk block size.

Although binary search trees are common search data structures for in mem-
ory algorithms, they are not very effective for external use since they tend to
be inefficient with respect to disk I/O. Silva et al. [21] present a general method
for transforming binary trees into out-of-core search data structures. The main
goal is to have a node in the tree occupy one or several disk blocks. Lets denote
with B the number of keys that can fit in a disk block. If we start with a
balanced binary tree we can transform each sub-tree of height θ(log B) into a
node on disk. This node will have θ(B) keys and children. This operation will
speed up searches through the tree by a factor of B.

3 Caching and Prefetching Techniques

Many of today’s I/O optimization techniques are not well suited for scientific
data processing. In particular, I/O system prefetching and caching algorithms
treat every data file as a one dimensional sequence of data items and the ef-
fectiveness of the algorithms is based on the assumption that the file is likely
to be read (either entirely or in large sections) in the order in which the data
items are stored in the file. This assumption is very often false when applied
to scientific data that represents data in a spatial domain. Such data is usually

5



most effectively processed by being stored in a multidimensional array, which
then must be mapped to the linear physical storage of a disk file. In this con-
text, data values that are close neighbors in the multidimensional array (and in
the visualization) can be very far apart on the disk. Consequently, interactive
out-of-core visualization requires better tools for accessing today’s I/O systems.

We review here techniques based on chunking the dataset, reordering the
chunks and choosing the chunk size and shape such that the time needed to
access data is minimized [18], choosing the right order for prefetching and dis-
carding pages by using compression techniques [11], and building an application
controlled paging system [10].

Chunking. Sarawagi and Stonebraker [18] present four techniques for im-
proving access to multidimensional arrays stored on secondary or tertiary mem-
ory. These techniques are chunking, reordering of chunks, creating redundant
copies of data with different chunk order and partitioning. The authors model
access to data by defining an access pattern as a set of block shapes together
with the probability of access for each block shape.

Basic chunking decomposes a multidimensional array into chunks of the same
dimensionality, each chunk having the same size as the unit of transfer used by
the file system. The shape of a chunk can be determined by exhaustive search
such that for a given access pattern the number of blocks read is minimized.
Chunks are laid out on disk by traversing the chunked array in axis order.

Chunking with optimal chunk order changes the axes traversal order for lay-
ing out chunks such that the number of blocks read for certain access pattern is
minimized. The authors deduce a formula to determine the axis ordering that
minimizes the time to access data for a certain access pattern.

Redundant chunking stores redundant copies of the array organized with
different axis orderings for storing chunks. When a request arrives it can be
routed to the replica with the smallest estimated access cost.

Partitioning is designed for tertiary memory devices, which consists of a large
number of storage media and a few drives. A robot arm switches the media
between the shelves and the drives in typically ten seconds. This technique
consists of chunking an array with a chunk size that is the same size as the
storage media.

Compression techniques. Curewitz et al. [11] use data compression tech-
niques for prefetching. They view the sequence of page requests as a file to
be compressed. Each page request is seen as a character from a finite alpha-
bet which corresponds to the set of all pages in the database. A compression
algorithm determines substrings that occur often in the file and encodes them
with short codes and substrings that occur rarely in the file and encodes them
with longer codes. The corresponding prefetching algorithm uses the calcu-
lated probability for page requests (characters) to prefetch the most probable
k pages. The authors use three data compression algorithms to create three
universal prefetchers, which make no assumption about the application or data
representation. They simulate the use of their prefetchers on sequences of page
accesses derived from OO1 and OO7 benchmarks and from CAD applications
and they observed significant improvement in hit rate in comparison to using

6



LRU cache.
Application controlled paging. Cox and Ellsworth [10] use visualization

of Computational Fluid Dynamics to test various ways of managing data that
is larger than physical memory. They compare and contrast three ways of
managing data that cannot fit in the available memory:

Application controlled segmentation. The application loads a small number
of segments into memory at a time and processes them before moving on to a
new set of segments. The size of each segment is application and data dependent
which means that the size of a segment may be larger than physical memory.
If that is the case, the application uses virtual memory and its performance
degrades precipitously with the increase in the segment size and the decrease in
available physical memory [10].

Memory mapped file. An improvement to the use of virtual memory for large
data is the use of a memory mapped file. The improvement occurs when the
traversal is sparse [10] and it happens because only the data actually needed
is read from disk. The authors identify two problems with this method. First,
there is no control over page size. Second, if data is stored in chunks in the file,
it cannot be translated into linear storage in memory. Another drawback of this
method is not mentioned by the authors. Namely, the operating system has a
one dimensional view of n-dimensional data. This means points nearby in the
volume may be stored in different pages in memory. For sparse traversal of data
and adequate physical memory this does not slow down the application as only a
few pages are needed to store the data to be processed. For algorithms that need
to access the whole volume of data (such as volume visualization algorithms)
and data that cannot fit in physical memory, this additional drawback causes
the operating system to make poor decisions for loading and discarding pages.

Application controlled paging. In this case the paging system is managed by
the application. The page size can be varied, and the application can translate
from the storage format (compressed or chunked) in the file into linear format in
memory. For three dimensional data stored in a linear file, this method suffers
from the same problem as memory mapped files. That is, the file is split into
pages that are uni-dimensional so the three dimensional nature of the data is
ignored.

4 Multiresolution and Adaptive Resolution Tech-

niques

A common technique to deal with large scientific datasets is to use a lower res-
olution version of the dataset for query, visualization and exploration. This can
be done by using multiresolution (MR) and adaptive resolution (AR) represen-
tations of the dataset.

A multiresolution (MR) representation of the dataset consists of a hierarchy
of versions of the original dataset, each having a different resolution. Typically
a user starts by exploring the lowest resolution version, which is much smaller

7



than the original dataset. Higher resolution versions of the dataset are used
either when the user zooms in locally to view a region of interest or when the
user stops the exploration so there is more time to render a higher resolution
version of the entire dataset.

An adaptive resolution (AR) representation partitions a dataset into regions
with different resolutions. Ideally, the resolution for each region is determined
such that the error for that region is smaller than a user specified error for the
dataset. A region of similar values will have a low resolution while a region with
larger variations will have a high resolution such that the error for both regions
will be smaller than the error specified for the dataset. The error for a region at
the original resolution is zero. The error for a region at a lower resolution than
the original is calculated by comparing the region at the original resolution with
the region at the lower resolution.

The techniques we review cover both regular [4,22,23] and irregular datasets [8,
17]. All techniques use a preprocessing step to build the multiresolution hierar-
chy and use a low resolution to allow interaction with the user and use a higher
resolution when the interaction with the user stops. Reviewed techniques for reg-
ular datasets deal with main memory size limitation by using compression [23],
loading in main memory only a portion of the original volume [4] or loading
in main memory low resolution levels and only a window of higher resolution
levels [4,22]. Techniques for irregular datasets use points [17] or tetrahedrons [8]
as rendering primitives.

While certain ways of storing data such as those in [8, 17] could be used
for adaptive resolution data management, that was not investigated by the
authors. No other references to adaptive resolution were found in the literature
we reviewed.

In memory compressed data. Wetzel et al. [23] describe a system de-
signed to help train students in an anatomy laboratory. The system stores Vis-
ible Human data on a server machine and uses inexpensive computers to view
the data. The system implements a search facility that associates an anatomi-
cal feature name with a location and a bounding box, and inverse, a location in
data with the feature name and bounding box. Since most anatomical features
are not aligned with the orthogonal data axes, the system provides arbitrary
direction slicing and the ability to show a flattened image of a spline surface.

The authors determine that storing data on the hard drive using chunked
storage and 643 chunks is not fast enough to serve the desired number of users
(40 users) so they decide to store the entire data in the server’s memory. They
deal with the large amount of data in the data set in two ways: by using a
hierarchy of resolutions built using wavelet transforms and by using compression.

The coarsest level in the hierarchy of resolutions uses a voxel which corre-
sponds to a 643 chunk. A small tree is produced for each voxel that provides
fast access down to the level which corresponds to a 83 chunk. The 83 chunks
are compressed and stored as variable length, entropy encoded bit strings. The
authors use a lossless compression which achieves 3:1 compression ratio and in-
vestigate a lossy compression which has the potential to achieve a much better
compression.

8



4

16

32

64

8

1
2

Figure 1: Side view for a mipmap for a texture of size 642

Clipmaps. Tanner et al. [22] present the clipmap which is an extension
of the mipmap texture representation to support arbitrarily large texture sizes.
The mipmap [20] stores a pyramid of resolutions for a texture as shown in Fig-
ure 1. The mipmap stores at level zero the texture with the highest resolution
which has a size multiple of two along each direction. At level one the mipmap
stores a texture half the size level zero, along each direction. The process con-
tinues until only one pixel is stored at the apex of the pyramid. Each texture
level is usually a lower resolution representation of the previous level, with level
zero being the highest resolution.

The clipmap is a partial mipmap (see Figure 2), in which each level is clipped
to a specified maximum size, which is usually the screen resolution. This clipping
determines two kinds of levels: clipped levels which represent only a region of the
entire surface and levels which were not clipped which represent lower resolutions
of the entire surface. The region represented in a clipped level can be chosen to
be anywhere in the original surface and it can be moved dynamically in response
to user actions. For each clipped level, the original surface is stored on disk and
is used to update that level as a response to user actions. The clipmap level
0 position inside the surface is specified by specifying the position of its center
inside the surface. The positions of all other clipmap levels are calculated from
the center for level 0 and the depth of the level (which depends on the level
number).

To update the region stored in a clipped level, the authors use toroidal
addressing, a clever addressing method that avoids the need to move overlapping
data between the old and new regions. As the level number increases, the
textures in different non-clipped levels in a mipmap cover the same surface
at decreasing resolution whereas the textures in different clipped levels in a
clipmap cover concentric regions of increasing size and decreasing resolution.
The authors describe an SGI system with hardware support for clipmaps that
can render a 170 GB texture at 60 Hz with 16 MB clipmap cache.

Volume boundary approaches. Bhaniramka and Demange [4] present
techniques for dealing with large data used in OpenGL Volumizer, a commer-

9



center 0

level 0

level 1

levels 2,3,4,5,6

center 1
center 2

center 0

level 0

level 1

level 2

level 3
level 4

level 6
level 5

center 2

center 1

Figure 2: The top figure shows a side view of a clipmap. The thick lines show
the window from each clipped level that is stored in the main memory. Non
clipped levels (2,3,4,5,6) represent lower resolutions of the entire surface, clipped
levels (0,1) represent rings of resolution surrounding level 0 as is shown in the
bottom figure.

10



cial product created by SGI. The authors identify the following factors which
can limit processing of large data: graphics card limitations such as fill-rate
(textured pixels rendered per second) or size of texture memory, main memory
size, data transfer limitations (bandwidth and latency between main memory
and graphics card or between hard drive and main memory). Volume bricking
is used as a basis for other techniques to insure efficient communication between
disk and the main memory and between main memory and the graphics card
memory.

To address graphics card limitations, the authors propose using several
graphics cards and using either screen space decomposition (deals with the fill
rate and geometry rate limitations) or data decomposition (deals with fill and
geometry rate and texture memory limitations). The authors address main
memory size and data transfer limitations through volume roaming, multireso-
lution volume rendering and 3D clip-textures (an extension in three dimensions
of the clipmap technique of Tanner et al. [22]).

Volume roaming allows the user to explore the entire volume by interactively
moving a volumetric probe anywhere in the original volume. The probe sits in
the texture memory which allows the entire power of the GPU to be used to
render it. A larger sub-volume that includes the probe sits in the main memory.
This allows fast update of the texture memory if the user moves the probe within
that sub-volume. The original volume sits on disk. This technique overcomes
graphics card, main memory and data transfer limitations but the user can see
only a sub-volume of the original volume and the frame rate may not be constant
if the user moves the probe too fast through the volume.

Multiresolution volume rendering allows applications to interactively render
a large volume by using a low resolution when the user interacts with the volume
and using progressively higher resolution when the interaction stops. An octree
is used to maintain the resolution levels of the data. The main problem with
this technique is that the entire data has to be loaded into main memory, which
limits the size of data that can be rendered.

3-D Clip-Textures were designed to combine the advantages of volume roam-
ing and multiresolution volume rendering. This technique is an extension in
three dimensions of the clipmap technique [22] covered earlier in this section.
The library maintains a pyramid of resolution levels, but keeps in main mem-
ory only low resolution levels and a window of fixed size of the high resolution
levels. As the user navigates the volume, the window can be updated from disk,
and only new data needs to be read by using toroidal addressing. The different
resolution levels are stored on disk using bricked storage.

The authors rendered a 6.7 GB volume with 1 GB resident in main memory
and 256 MB texture memory at between 2 and 30 fps on a SGI Onyx system.

Multiresolution point rendering. Rusinkiewicz and Levoy [17] present
QSplat, a system designed for representing and displaying meshes created by
3D scanning devices. These devices usually produce large meshes (hundred of
millions of polygons) with relatively imprecise location for vertices. Other mesh
simplification algorithms, which focus on vertex and edge placement and spend
a large amount of effort per vertex, are too slow for this kind of data. QSplat

11



achieves interactive frame rates by using a multiresolution hierarchy of bounding
spheres to represent data at different levels of detail. The hierarchy is created
through a preprocessing step, and is used for visibility culling, level of detail
selection and rendering. Each node of the tree contains a sphere center position
and radius, a normal, the width of the normal cone [19] and a color. Sphere
center position and radius are quantized to 13 values and their values are relative
to the parent sphere. Normals, colors, normal cone widths are also quantized
to save space. The tree is built bottom up through a recursive process. Initially
a sphere is created for each vertex. In the recursive step the current group of
spheres is split in two along the longest diagonal of the bounding box for the
group of spheres, a tree is built recursively for each of the two groups and then
the two trees are used as children of a new node that stores the enclosing sphere
for the two trees.

Multiresolution tetrahedron rendering. Cignoni et al. [8] present TAN,
a system that stores and visualizes data at multiple resolutions. They use a
model based on tetrahedral meshes, which is built off-line through data simpli-
fication techniques and is stored in a file using index cell set format (ICS) with
additional information for each cell (tetrahedron). Irregular volume data is usu-
ally stored using index cell set (ICS) as a list of vertices and a list of tetrahedral
cells. For each vertex we store the x, y, z coordinates in space of that vertex
and all data attributes. Each cell contains four indexes (references) to vertices
in the vertex list.

The authors use two measures to estimate the difference between an approx-
imated mesh and the original mesh: warping and error. Warping of the domain
of the dataset is an estimation of the difference between the volume spanned
by the original mesh and the volume spanned by the approximated mesh. The
error is defined as the difference between scalar values in vertices in the original
mesh and scalar values calculated in vertices of the original mesh by using in-
terpolation in the approximated mesh. Both warping and error are defined for
convex, non-convex curvilinear and non-convex irregular datasets. For building
an approximated model, the authors present both a refinement heuristic to be
used for convex and non-convex curvilinear datasets and a decimation heuristic
to be used for non-convex irregular datasets.

A refinement heuristic starts with a mesh that has as vertices a small sub-
set of the original set of vertices, and then the mesh is iteratively refined by
inserting vertices from the original mesh into it. The algorithm continues until
its accuracy satisfies the required threshold. The refinement procedure starts
with a Delaunay tetrahedrization of the convex hull of the original mesh. An
online algorithm for Delaunay tetrahedrization is used together with a selection
criteria for choosing the next vertex that is added for refining the mesh. The
next vertex is chosen by the selection criteria such that it has the maximum
error or warp from all vertices in the original mesh. The refinement heuristic
assumes that adding a vertex that has maximum error or warp to the approxi-
mated mesh will yield the best mesh that can be obtained by adding only one
vertex.

A decimation heuristic starts from the original mesh and iteratively removes

12



vertices until the desired accuracy is achieved. The heuristic removes the vertex
with the (estimated) minimum error or warp from all vertices. A vertex is
removed by collapsing one of its incident edges to its other endpoint.

Each of the two algorithms produce an historical sequence of meshes from
coarse to fine (increasing accuracy) for the refinement heuristic and from fine to
coarse (decreasing accuracy) for the decimation heuristic. Two accuracies are
stored for each tetrahedron: µb called the birth accuracy and µd called the death
accuracy. For the refinement heuristic, these accuracies correspond to the worst
and the best accuracies of the mesh containing the tetrahedron. To retrieve a
mesh with accuracy µ, all tetrahedrons with µb ≤ µ ≤ µd are retrieved.

5 Other Techniques Requiring a Preprocessing

Step

This section reviews other preprocessing techniques that speed up visualization
of large data. One group of techniques reviewed [1,6,17] speed-up visualization
of a large volume of data by splitting it into sub-volumes and storing summary
information together with each sub-volume. That enables the application to skip
over sub-volumes that are not used in the visualization. We review three papers
Rusinkievicz and Levoy [17] simplify processing of data by reading it along the
main axes and use compression to reduce its size and skip over unimportant
regions, Ahrens et al. [1] split the data in pieces, using a preprocessing step,
and build summary information about each piece and use that information to
cull out or to change the order of processing of individual pieces and Childs et
al. [6] allow individual processing modules to specify what optimization can be
done on data before the data reaches the processing module.

Another group [5, 7] speed-up visualization by building a fast search data
structure that is used for identifying the sub-volumes used in the visualization.

Shearwarp. Lacroute and Levoy [14] present a set of fast volume rendering
algorithms based on shear-warp factorization of the viewing transformation.
This factorization splits the viewing transformation into a shear parallel to the
data slices, a projection to form an intermediate image and a 2D warp to form
an undistorted final image (see Figure 3).

The algorithms presented are fast because of two main reasons. First, in
a shear-warp factorization rows of voxels in the volume are aligned with rows
of pixels in the intermediate image. This is used to create a scan-line based
processing of data in which traversal of volume and of intermediate image is
done in parallel. Second, spatial coherence in the data and in the intermediate
image is exploited by run-length encoding of both data and the intermediate
image. This encoding allows the algorithm to skip over transparent voxels in
the current data scan-line, and over opaque pixels in the current intermediate
image scan-line. This yields an algorithm that renders a 2563 volume data in
one second.

The algorithm presented by the authors can be used to render a perspective

13



warp

project

shear
viewing rays

volume slices

image plane image plane

Figure 3: Shear-warp factorization: shear of volume’s slices then a projection
to form an intermediate image and then a warp to form the final image

view of data, with a small penalty determined by the fact that scan-lines in
the intermediate image can cover several scan-lines in the sheared slices of data.
Both algorithms for parallel and perspective projections work on classified data,
that is, on data where the mapping between an attribute value and the opacity
of the data point was already done [15].

A second extension presented is a fast classification algorithm that allows
the shear warp algorithm to work directly with the unclassified volume data.
The classification algorithm is based on a min-max octree used to encode spa-
tial coherence in unclassified volumes. This data structure and the shear-warp
rendering algorithm allows the authors to classify and render a 2563 in three
seconds.

Fast search data structures. Cignoni et al. [7] present an optimal time
isosurface extraction algorithm for irregular volume data. The algorithm runs
in O(k + log h) where k is the number of active cells (cells that intersect the
isosurface) and h is the number of distinct extrema values (minimum and max-
imum) associated with cells of the dataset. If m is the number of cells in the
dataset, we have that h ≤ 2m because each cell has a maximum and a minimum,
but different cells may have the same maximum or minimum. The algorithm
is based on a data structure called an interval tree which stores intervals of
real numbers and supports efficient retrieval of intervals that contain a given
value. Each cell of the data set can be associated with an interval [min,max]
where min and max is the minimum respectively the maximum value of the
cell. Finding all cells that intersect an isosurface with value q is translated into
finding all intervals [min,max] that contain q. Tests performed by the authors
show a speedup of 5 to 10 times for finding the cells that are intersected by the
isosurface when compared with the Marching cubes [16] algorithm. Note that
Marching cubes has a running time of O(m) where m is the number of cells in
the dataset.

Chiang and Silva [5] present an I/O optimal technique for extracting an iso-
surface from irregular volume data. They combine the ideas of Cignoni et al. [7]
for building an interval tree that allows efficient search of all cells intersected

14



by the isosurface with the external-memory interval tree of Arge and Vitter [2].
The authors implement their methods as an I/O filter for VTK’s [13] isosurface
extraction routine.

Chunking with summary information. Ahrens et al. [1] describe a
modular visualization architecture designed to speedup visualization of large
datasets or enable visualization of out-of-core datasets. The main idea is to
apply a preprocessing step that breaks the dataset into smaller pieces and cal-
culates summary information about each piece. Individual pieces are streamed
through memory, they are processed through the original visualization steps and
the outputs are composed to get the final image. This approach has two main
advantages when compared with loading the entire dataset into main memory.
First, it enables out-of-core processing of data that does not fit into the main
memory. As data is processed a piece at a time, the need to load the entire
dataset into main memory is eliminated. The second advantage is that many of
the pieces may not be processed by all steps in the visualization process. This
is because many pieces may be culled out because they are out of the view-
ing frustum or they are occluded by other objects in the scene. The authors
also describe an improvement to this architecture that is obtained by adding
a priority to each individual data piece. This priority can be based on either
spatial location of the piece or on data values within the piece. By rendering
data pieces with higher priority first, early feedback can be given to the user
before the rendering of all pieces finishes.

Application controlled optimizations. Childs et al. [6] describe a tech-
nique for allowing individual processing modules in a visualization pipeline, to
specify optimizations that can be done on the data before it reaches that mod-
ule. A contract, a data structure that travels through the visualization pipeline
is used to specify what optimizations can be performed on data. This technique
was implemented in VisIt, a visualization tool built by the Department of En-
ergy. VisIt uses a data flow network design for its visualization pipeline. Data
objects traverse a network of components or processing objects. The components
can be filters, sources and sinks. A source produces a data object, a filter reads
a data object, processes it and produces a data object and sinks just read a
data object and usually renders it on the screen. Data processing starts at a
sink with an update request that propagates up the pipeline through the filters
and to a source. The source reads the data and produces a data object which
is processed through the filters and is rendered by a sink. An update request
can have an associated contract, a data structure that allows a component to
specify optimizations that can be done on the data before it reaches it.

Many optimizations depend on data being split into pieces called domains
and on meta-data for the domains, such as spatial extent and attribute bounds.
Each component in the pipeline can specify one of the following optimizations:
reading the optimal subset of data, choosing the execution model, generation
of ghost data, and sub-grid generation. The contract technique is extensible;
more optimizations could be added to those already implemented. Reading
the optimal subset of data can be specified by a component such as one that
calculates the intersection between the volume of data and a plane. Only the

15



sub-domains intersected by the plane need to be read, and those domains can be
determined by using the meta-data (which is always in memory). The execution
model specifies how the domains are distributed to processors: one approach
called streaming processes one domain at a time through the entire process-
ing pipeline; a second approach called grouping has one component process all
domains before the processing goes to the next component. Ghost data deals
with artifacts that may appear because of the splitting of the data volume in
domains: one case is when external faces to a domain are internal to the whole
volume - these faces are marked as ghost data and should not be rendered; a
second case is when interpolation is done at the boundaries of domains - ghost
data has to be generated at the boundaries using data from neighboring do-
mains for interpolation to yield correct results. Often, visualization algorithms
run faster on rectilinear grids than on unstructured grids, and with the same
data, rectilinear grids occupy less memory than unstructured grids. Using these
observations, sub-grid generation optimization identifies rectilinear grids in fil-
ters’ output and separates those grids from the rest of the output which may
be an unstructured grid.

6 Conclusions

In this paper we review the most important methods and techniques designed
to deal with large scientific data. We focus on the most fundamental and per-
sistent themes designed to visualize scientific data. We also identify and define
the relevant terminology used in the research literature on this topic. We start
with external memory algorithms that can be used as a basis for more complex
out-of-core visualization applications. We cover caching and prefetching tech-
niques, multiresolution and adaptive resolution techniques and other techniques
requiring a preprocessing step.

Our goal is to provide an introduction or tutorial for those less familiar with
the subject and provide references for further study for readers interested in
pursuing this subject in more detail.

7 Acknowledgments

This research was supported in part by the Research Institute of Visual Com-
puting (rivic.org) Wales.

References

[1] J.P. Ahrens, N. Desai, P.S. McCormick, K. Martin, and J. Woodring. A
Modular Extensible Visualization System Architecture for Culled Priori-
tized Data Streaming. Visualization and Data Analysis (VDA), Proceedings
of SPIE, 6495:0I.1–12, 2007.

16



[2] L. Arge and J.S. Vitter. Optimal Dynamic Interval Management in Exter-
nal Memory. Foundations of Computer Science, 1996. Proc., 37th Annual
Symposium on, 00:560–569, 1996.

[3] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Asso-
ciative Searching. Commun. ACM, 18(9):509–517, 1975.

[4] P. Bhaniramka and Y. Demange. OpenGL Volumizer: A Toolkit for High
Quality Volume Rendering of Large Data Sets. Proc. of the IEEE Sympo-
sium on Volume Visualization and Graphics, pages 45–54, 2002.

[5] Yi-Jen Chiang, Cludio T. Silva, and William J. Schroeder. Interactive Out-
Of-Core Isosurface Extraction. In IEEE Visualization (VIS), volume 0,
pages 167–174, Los Alamitos, CA, USA, 1998. IEEE Computer Society.

[6] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whitlock, and
N. Max. A Contract Based System For Large Data Visualization. IEEE
Visualization (VIS), pages 25–25, 2005.

[7] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal Isosurface
Extraction from Irregular Volume Data. In Proc. of the IEEE Symposium
on Volume Visualization, pages 31–38, Piscataway, NJ, USA, 1996. IEEE
Press.

[8] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Multiresolution Rep-
resentation and Visualization of Volume Data. Visualization and Computer
Graphics, IEEE Transactions on, 3(4):352–369, 1997.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and Clifford Stein. Introduction
to Algorithms, chapter 18. MIT Press, 2001.

[10] Michael Cox and David Ellsworth. Application-Controlled Demand Paging
for Out-of-Core Visualization. In IEEE Visualization (VIS), pages 235–ff.,
Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.

[11] K.M. Curewitz, P. Krishnan, and J.S. Vitter. Practical Prefetching via
Data Compression. ACM SIGMOD Record, 22(2):257–266, 1993.

[12] M. de Berg. Computational Geometry: Algorithms and Applications.
Springer, 2000.

[13] Kitware Inc. The VTK User’s Guide Version 5 (Paperback). Kitware Inc.,
2006.

[14] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transform. Computer Graphics, 28(4):451–
458, 1994.

[15] M. Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics
and Applications, 8(3):29–37, 1988.

17



[16] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Reso-
lution 3D Surface Construction Algorithm. In Computer Graphics and In-
teractive Techniques (SIGGRAPH), pages 163–169, New York, NY, USA,
1987. ACM Press.

[17] Szymon Rusinkiewicz and Marc Levoy. QSplat: A Multiresolution Point
Rendering System for Large Meshes. In Computer Graphics and Interac-
tive Techniques (SIGGRAPH), pages 343–352, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[18] Sunita Sarawagi and Michael Stonebraker. Efficient Organizations of Large
Multidimensional Arrays. In Proc. of the Tenth International Conference
on Data Engineering, pages 328–336, Washington, DC, USA, 1994. IEEE
Computer Society.

[19] L.A. Shirmun and S.S. Abi-Ezzi. The Cone of Normals Technique for Fast
Processing of Curved Patches. Computer Graphics Forum, 12(3):261–272,
1993.

[20] Dave Shreiner, Mason Woo, Jachie Neider, and Tom Davis. OpenGL Pro-
gramming Guide, Fifth Edition, chapter 9. Addison Wesley, 2006.

[21] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom. Out-of-Core Algorithms
for Scientific Visualization and Computer Graphics, Course Notes for Tu-
torial 4. In IEEE Visualization (VIS), Boston, MA, USA, 2002. IEEE
Computer Society Washington, DC, USA.

[22] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The
Clipmap: A Virtual Mipmap. In Computer Graphics and Interactive Tech-
niques (SIGGRAPH), pages 151–158, New York, NY, USA, 1998. ACM.

[23] A.W. Wetzel, B. Athey, F. Bookstein, W. Green, and A. Ade. Represen-
tation and Performance Issues in Navigating Visible Human Datasets. In
Proc. Third Visible Human Project Conference, NLM/NIH, 2000.

18


