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Abstract

The Parallel Coordinate Plot (PCP) is a complex visual design commonly
used for the analysis of high-dimensional data. Increasing data size and com-
plexity may make it challenging to decipher and uncover trends and outliers
in a confined space. A dense PCP image resulting from overlapping edges
may cause patterns to be covered. We develop techniques aimed at exploring
the relationship between data dimensions to uncover trends in dense PCPs.
We introduce correlation glyphs in the PCP view to reveal the strength of
the correlation between adjacent axis pairs as well as an interactive glyph
lens to uncover links between data dimensions by investigating dense areas
of edge intersections. We also present a subtraction operator to identify dif-
ferences between two similar multivariate data sets and relationship-guided
dimensionality reduction by collapsing axis pairs. We finally present a case
study of our techniques applied to ensemble data and provide feedback from
a domain expert in epidemiology.

1. Introduction and Motivation

The Parallel Coordinate Plot (PCP), introduced by Inselberg [1], is a
visual design showing multidimensional relations using parallel axes. PCPs
facilitate data exploration and understanding relationships for multivariate
data. One of the well-known challenges with PCPs is associated with over-
plotting. Rendering thousands of polylines causes overlapping edges that
may obscure the underlying patterns in the image, especially in high data
density areas [2]. We call a PCP with high-density areas resulting from many
overlapping polylines a “dense” PCP. Ellis and Dix refer to this as, “too much
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data on too small an area of the display.” [3] In these cases, interaction can
be crucial in exploring the data and minimizing ambiguity. However, pro-
cessing and analyzing overplotted data requires new approaches to support
understanding. In our previous study on PCP literacy [4], we discovered
that correlation between axes is one of the significant barriers to PCP un-
derstanding. This is one of the main inspirations behind the current work–to
make the relationship between data dimensions clearer and more explicit.
We believe the same concept could be applied to scatterplot matrices.

We propose novel visual feature and interaction methods to address chal-
lenges in PCPs that occur as a result of overlapping line segments. We
introduce interactive glyph lenses that enable users to explore an overplotted
area using a dynamic lens that hovers over the PCP based on mouse location.
This interaction summarizes edges that intersect with the lens represented
by arrow glyphs showing the average slope of a dense collection of edges.
To convey relationships between dimensions, we display arrow glyphs placed
below each adjacent pair of axes that indicate the correlation. We intro-
duce a dimension reduction technique that enables users to evaluate a PCP
by looking at the correlation value between neighboring axes and collapsing
axis pairs that do not add information to the display. We also present a user
option we call a subtraction operator, ∆, that displays the difference between
two multi-dimensional data sets for quick comparison. The ∆ operator ad-
dresses the unsolved problem of visually comparing multivariate ensemble
data. In this paper, we specifically concentrate on interaction techniques for
dense PCPs. The main contributions of this study are as follows:

• The introduction of interactive correlation glyphs for adjacent axis pairs

• Novel dynamic glyph lenses to support data analysis and comprehen-
sion

• A subtraction operator, ∆, to indicate differences between two multi-
dimensional data sets

• Relationship-guided dimensionality reduction based on collapsing of
axis pairs to reduce redundancy

We evaluate our methods with a case study based on the simulation of
Covid-19 contagion behavior together with a modelling expert in this area.
Visual comparison of ensemble data is considered an unsolved problem [5].
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The rest of the paper is organized as follows: In Section 2, we review
the previous work on reducing the impact of clutter in PCPs. In Section 3,
we demonstrate interaction design including correlation glyphs, dynamic and
static lenses, and the ∆ operator. In Section 4, we discuss the performance
of our visualizations and provide feedback from domain experts. Section 5
wraps up with conclusions and future work.

2. Related Work

Displaying a large multivariate data set in a 2D space has always been
a challenge for data exploration due to over-plotting and clutter. We start
by reviewing related surveys and focus on literature for the discovery of the
information in dense and cluttered areas in PCPs.

Surveys: Dasgupta et al. [6] investigate different types of ambiguity in
the PCP images and introduce a taxonomy for classifying them to reduce
uncertainty. By creating a taxonomy, they aim to detect distinct sources of
uncertainty in the design and link them to different impacts of uncertainty
for the user. Similarly, Heinrich and Weiskopf [7] propose a taxonomy and
assessment of strategies for modeling, visualizing, analyzing, and interacting
with PCPs, as well as a classification of common tasks for investigation.
Johansson and Forsell [8] summarize and categorize studies on evaluating
PCPs. A thorough examination of previous research presents user-centered
evaluations to report on the human-centered aspects of PCPs.

In this section, we focus primarily on previous work on PCPs that address
visual clutter and ambiguity. We briefly introduce solutions to analyze large
data on PCPs. In general, the methods for reducing the impact of clutter on
dense displays can be categorized as frequency-based, using interaction and
brushing, clustering, and edge-processing.

Frequency-based: Artero et al. [9] present a method for creating fre-
quency and density plots from PCPs. The new plots enable interactive data
exploration of large and high-dimensional data, enabling users to remove
noise and highlight data-rich areas. Work by Geng et al. [2] proposes angu-
lar histograms and attribute curves that enable users to investigate clustering
and linear correlations in large data sets to address over-plotting and clutter
in PCPs. The state-an-art reported by Henrick and Weiskopf [7] has a par-
ticular subsection on frequency-based techniques that address aggregating
edges together as an approach to overplotting and provides numerous meth-
ods for aggregating the data [10], [11], [12], [13] [14]. Our work incorporates a
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frequency-based approach that counts the number of edge intersections with
an interactive lens.

Interaction and Brushing: Blass et al. [15] present quantization and
compression techniques for data pre-processing, as well as joint density dis-
tributions for adjacent variables enabling efficient GPU-based rendering of
PCPs. In addition, they propose faster brushing methods for interactive
data selection in several linked views. Raidou et al. [16] introduce a novel
technique, Orientation-enhanced PCPs, to improve the view by visually en-
hancing segments of each PCP line emphasizing slope when there are several
overlapping edges or when outliers and structures are obscured by noise.
A novel effective selection method, the Orientation-enhanced Brushing (O-
Brushing) is also presented that eliminates unnecessary user interaction. An-
other brushing method to enhance dense PCPs by Roberts et al. [17] intro-
duces higher-order, smart data-driven brushing, and sketch-based brushing.
The sketch-based brush is generated by connecting mouse clicks across the
PCP on each axis at the chosen brush-axis intersection. Smart brushing as-
sists the user during interaction by revealing patterns at run time. Some
of our methods are based on interaction, however, none involve traditional
brushing on PCPs.

Clustering: Data clustering is one method for reducing clutter in a
PCP. Fua et al. [12] use hierarchical clustering to create a multiresolution
representation of the data, and a variation on the PCP to express aggre-
gated information for the clusters that facilitates navigation and filtering to
explore the patterns and trends in the data. Ellis and Dix [18] propose sev-
eral approaches for measuring occlusion by interactively adjusting the level
of sampling. They explore three algorithms (raster, line, random) to mea-
sure the degree of occlusion. When compared to other algorithms, the raster
algorithms result in higher accuracy. In addition to hierarchical cluster-
ing and calculating polyline occlusion techniques, Johansson et al. [19] use
transfer functions to display different characteristics of clusters and trans-
form each K-means-derived cluster to high-precision structural texture that,
applied to a colored polygon, creates the cluster’s final visual appearance.
Blumenschein et al. [20] propose 30 different ordering strategies. The study
introduces classification of task and pattern and investigates which PCP re-
ordering strategies aid in detecting them. Our methods do not use explicit
clustering. However, the lens we introduce summarize the edges that pass
through them depicting average slope.

Edge-Processing: McDonnell and Mueller [21] introduce a technique
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that shows each data point as a poly curve to facilitate edge bundling and
declutter the display. Palmas et al. [22] present an edge-bundling technique
that applies density-based clustering for each dimension. It represents the
clustered lines as polygons, which reduces rendering time. They also use
this strategy to enhance multidimensional clustering by developing attribute
connections. Divino et al. [23] describe an edge bundling strategy used in
PCPs to expose cluster information directly from the overview. The edge-
bundling survey by Lhuillier et al. [24] presents a data-based taxonomy
for classifying bundling methods and introduces a framework to describe
the steps of bundling algorithms. Pomerenke et al. [25] render each line
segment based on its slope between two axes in order to reduce the effect of
cluttered lines. Horizontal lines are rendered with the default line thickness
while diagonal lines are rendered thinner. The survey provides a subsection
on PCPs and describes edge bundling papers that apply edge bundling for
reducing the clutter and increasing readability [11], [21], [26], [27]. Our
dynamic lens could be considered as a kind of edge processing technique.

In contrast to previous work, the techniques we describe generally focus on
the space between axis pairs rather than on axes themselves. Most previous
literature focuses on either the parallel axes or the polyline edges. We focus
on supporting cognition of relationships between axis pairs in the context of
dense PCPs. We introduce novel techniques to facilitate data analysis guided
by correlation glyphs between neighboring axis pairs, showing the differences
between data sets using a subtraction operator, and enabling the user to
reduce dense areas and dimensions by collapsing axis pairs.

3. Fundamentals

In order to convey the strength of the correlation between axis pairs, cor-
relation glyphs for each adjacent pair (Section 3.2) are presented in the PCP
view. This provides users with a summary perspective of the multivariate
relationships and an improved understanding of the link between axis pairs,
which may not be visible by glancing at a dense set of edges. One of our
techniques for dense displays is based on detecting the intersection of the
edges with a glyph lens. The lens offers interactive feedback to the user as
a function of the current mouse position that specifies center of the lens in
the PCP (Section 3.3) in dense areas where the relationship between the
axes may be difficult to interpret. The ∆ operator (Section 3.4) is one of
the techniques developed in order to understand the difference between two
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comparable data sets. Also, axis pairs can be collapsed (Section 3.5) through
a selection that enables users to view a reduced set of axes, motivated by
redundant information.

Figure 1 shows an overview of the PCP tool we developed that allows
a user to view different data sets via the user interface on the right of the
screen (A). To demonstrate the relationship between each adjacent axis pair,
correlation arrow glyphs are positioned under the PCP view (B). The figure
also shows an example of a dynamic edge glyph lens (C) and some collapsed
axes with stacked labels (D). The color scale on the left (E) is initially mapped
to the edges on the first axis. This can be updated by selecting another axis.
One of the user options offered by the tool is to display data labels and points
where an edge crosses the axes by hovering the mouse over the edges and
highlighting them. In addition, features such as rendering the average edge
by taking the average of all edges and showing the zero point on the axes are
also supported. See the demo video for complete details [28].

3.1. Ensemble Data from a Covid-19 Simulation

The ensemble data we study is a major motivation for the techniques we
develop here. RAMP VIS [29] is a VIS volunteer group that responded to
a call by the Scottish COVID-19 Response Consortium (SCRC) to support
modeling scientists and epidemiologists [30]. The primary objective is to
build a stronger and improved understanding of possible strategies to deal
with the Covid-19 outbreak in the United Kingdom. We study the ensemble
data set provided by the modelers by processing the large amount of simu-
lation data given to the RAMP VIS group in our study. The data includes
hundreds of time series for different regions of Scotland and different indi-
cators (e.g., test, case, hospitalized, and fatality) and different age groups.
The ensemble data is aggregated based on eight age groups and contains 23
parameters (see Figure 1). Each age group exemplifies an age interval (e.g.
Group 1 –> [age≤20], Group 2 –> [20-29], ...,Group 7 –> [70≤age], and
Group 8 –> Healthcare Workers) (See Appendix). The data contains the
total numbers of susceptible, exposed, asymptomatic, symptomatic, hospi-
talized, recovered, deceased patients with a minimum, maximum, and mean
values. Each age group is recorded on daily basis for 198 days. Each row
in the data set represents a record of one day. See the Appendix for a more
detailed description of the ensemble data.

By investigating the ensemble data in our novel PCP software, we aim
to assist users in exploring models such that users can interactively compare
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outcomes across age groups, identify differences between simulation parame-
ters, and observe patterns as well as reveal outliers and features in the data.

3.2. Axis Correlation Glyph

The correlation coefficient is beneficial to identify relationships between
the two variates. For some PCP examples, overlapped edges may create clut-
ter and users may have difficulty viewing patterns between axes. Results of
a previous user-study on PCP understanding reveal that identifying correla-
tion can be a barrier to PCP literacy [4]. Deriving the slope of the edges and
interpreting the links between data variables by looking at the PCP image
can be challenging. Therefore, we introduce arrow glyphs for each pair of
axes to present correlation values explicitly (see Figure 1, (B)). This offers
users a convenient way to interpret the relationship between two dimensions
by glancing at the correlation glyphs. Many-to-many PCP is an alternative
design to show the axes correlation, for example, the many-to-many design
of Wu et al. [31] or Lind et al. [32]. We believe that our glyph-based tech-
nique could benefit these visual layouts as well. However, many-to-many axis
layout is difficult to scale as evidenced by the low number of dimensions.

The appropriate design of glyphs is critical for usability and successful
visual communication. Relevant visual channels should be carefully selected
and integrated for an effective glyph design [33]. The study by Fuchs et
al. [34] methodically gathers and categorizes the literature on data glyphs,
describing their designs, questions, data, and tasks. The arrow glyph is
included in the ”One-to-One Mapping” category. Borgo et al. [35] describe
that glyph design can use a variety of visual channels, including shape, color,
texture, size, and orientation. Our glyph design reveals the relationship
between axes-pairs by presenting an arrow shape, using a peer-reviewed color
library [36] and direction of the slope for the correlation value. In addition,
the color was consistent with the polylines and the color scheme used in the
PCP has also been adapted to the correlation glyphs based on κ.

Design Justification: For dense PCPs, it may be difficult to determine
relationships between data dimensions by observing the slope of the edges.
We use an arrow glyph that conveys correlation value using slope informa-
tion. The arrow glyph reveals the trend between dimensions using both the
slope and direction. There are several other options possible here. Both bar
charts and pie charts can encode the same information such as a number
of intersecting edges and average slope. However, we wanted to map slope
of edges to a glyph with slope intuitively built in. Arrow glyphs already
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Figure 2: The figure shows the glyphs that represent the correlation coefficient value
between adjacent axis pairs displayed in the θ ∈ [-90, +90] range. The color scale can be
modified by the user.

have these characteristics naturally build in whereas other charts and glyphs
generally do not.

The correlation values, κ, are calculated using Pearson’s Correlation Co-
efficient [37] for each axis pair. The arrow glyph represents each pairwise
coefficient value. The individual distributions of the two related axis pairs
are shown in the range κ ∈ [-1, +1] and the arrow glyphs represent the
range θ ∈ [-90, +90] and correspond to the correlation values, κ, indicating
negative and positive relationships respectively (see Figure 2). In addition,
the color scheme used in the PCP has also been adapted to the correlation
glyphs based on κ.

3.3. Dynamic Edge Glyph Lens

The underlying structure in the data is not always obvious in PCPs. The
dense PCP resulting from overlapping of the edges may cause information to
be covered. This may make it difficult for the user to interpret the existing
correlation and observe patterns. Thus, we introduce a glyph lens designed to
reveal information that may be obscured by edge overplotting. Observing the
dynamic glyph by hovering the lens over the edges offers the user a summary
of the edges and of the average slope, θAVG, of the edges represented by
arrows.

Design Justification: This is a special type of lens that focuses on the
space between the axes as opposed to the axes themselves. Frequency-based
approaches previously presented in the related work focus primarily on axes
instead of relationships between axes. Our dynamic edge glyph lens solution
offers a user interaction-based feature integrated into the PCP to uncover the
trends between axes and improve the interpretation of the data (see Figure
3). We chose the same arrow glyphs as in Figure 2 because they intuitively
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encode slope and thus the correlation between axes. Other charts and glyphs
can encode this same information but not intuitively because the slope is not
the predominant characteristic of most charts and glyphs, e.g., pie charts,
bar charts, etc.

To address the overlap problem, we focused on the intersection of the
edges with the lens, starting from the left axis and ending on the right axis (in
any pair). The dynamic edge glyph shows the number of edges that intersect
with the lens and average slope, θAVG, of each intersecting edge (see Figure
1, (C)). After calculating θAVG, the edges intersecting the lens are grouped
according to whether the edge has a positive or negative slope. The two
groups are represented by two arrows placed in the lens glyph (see Figure
3a). The upward arrow in the glyph lens represents the average positive,
θAVG+, and the other represents the average negatively sloped edges, θAVG-
. The resulting arrows are designed similar to the correlation glyph arrow
(Section 3.2). They display the angle, θ ∈ [-90, +90] by calculating the
average angles of inclination θAVG+, θAVG- (see Figure 3b). The magnitude
of the arrows is also scaled by the number edges (with positive and negative
slope) that intersect with the lens. The color of the arrows is mapped to the
color legend provided. This interactive feature facilitates uncovering hidden
correlation information between data axes by hovering the lens and observing
the trends in the data (see Figure 4).

3.4. Multivariate Subtraction Operator, ∆

Plotting two data sets on the same PCP or two adjacent PCPs is a com-
mon approach for comparison. However, both of these can lead to challenges
with large data sets as both may be dense to start with. We introduce a mul-
tivariate subtraction operator, ∆, that we can apply to compare two similar
data sets on the same PCP.

Design Justification: In our case, we have ensemble data from a Covid-
19 simulation, thus, the simulation configurations are directly comparable.
The Covid-19 simulation data is major inspiration for our features because
the modelers are very interested in comparing different simulation configura-
tions. The ∆ operator reveals the differences between similar data sets e.g.,
the case of ensemble data. The variation between data attributes such as
hospitalization or recovery numbers can be interpreted quickly. Plotting the
difference S∆ between two simulations, S1 and S2, in the same space as S1

and S2 themselves is simple, fast, and intuitive.
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Figure 3: An overview of (a) the glyph lens, (b) edge intersection summary with the
dynamic edge glyph lens. This figure shows two attributes in the PCP and three line
edges that connect A and B. After the detection of the intersecting edges for both, arrows
are shown as in the lens (a) representing the edges. Since there are two positively sloped
and one negatively sloped edges showing the relationship between A and B, the arrow
representing the positive slope is longer than the other as it indicates two edges.

In order to perform the multivariate subtraction, the attributes of the
data sets are the same and in the same order, such as the Covid-19 simulation
[30] we use. The edges of the difference obtained after the subtraction can
also be rendered and shown in the PCP (see Figure 5). As a result of plotting
the difference data, S∆, labels for minimum, d(min), and maximum, d(max),
values are updated.

The subtraction operator, ∆, is implemented to highlight changes in sim-
ulation output parameters for different input configurations that may or
may not be similar. We perform subtraction on two configurations selected
through the user interface (see Figure 1 (A)). The second selected, S2, is
subtracted from the first, S1. This operation is applied by subtracting the
corresponding values in the same dimensions. Given a simulation, S, with
dimensions S(d0, d1, ..., dn) the subtraction operator computes the difference,
∆x, between data values, x, that correspond to one another e.g.,

S∆ = S1(dn(xm))− S2(dn(xm))
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Figure 4: An overview of (a) a color legend, (b) a dense area in the PCP, and (c) summary
of edges in the same area with dynamic edge glyph lens (see section 3.3). The numbers
indicate the number of edge intersections with the lens.

Where dn is a given dimension and m is a given data index. With the
selection of S1 and S2, the maximum value of the axis, d(max), is derived as
the maximum value, d(min), of both S1(dn) and S2(dn), and the minimum
value is set as −1 × d(max). The S∆ obtained as a result of subtraction is
plotted on the PCP. Positive or negative differences can be seen within the
updated d(min) and d(max).

Figure 5 displays the output of the subtraction operator, ∆, applied to
Group 1 ([ ≤20]) and Group 7 ([70≤ dage]) provided in the Covid-19 simula-
tion [30]. The calculation is performed by subtracting Group 7 from Group
1 plotted with polylines in yellow and green respectively. We can see an
example of this by looking at the age group dimension. By subtracting the
values of dage, the result is -6 (1-7 = -6). The edges representing the differ-
ence between two data sets are plotted within age groups ∈ [-8, +8], shown
in red. Green points on each axis indicate zero values for each dimension
and enable viewing the negative differences. The result is shown in Figure 5.
The number of hospitalizations, h, and deaths, d, in patients over 70 years
of age is much greater than in patients under 20 years of age.

3.5. Dimensionality Reduction by Collapsing Axis Pairs

The purpose of using parallel coordinates is to expose particular features
in the multivariate data. However, the essential information sometimes may
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Figure 5: Multivariate subtraction performed on the Group 1 ([dage ≤20]) and Group 7
([70≤ dage]) in yellow and red respectively. The difference, ∆, is shown in the PCP with
blue polylines. Using ∆, multivariate differences between age groups become obvious with
respect to hospitalizations, h, and mortality, d. Green points on each axis address zero
values on the axis.

not be obvious due to overlapping edges and a high number of dimensions
plotted in the PCP. The images vary depending on the order of axes. In
order to display the relationship between dimensions, we use glyphs showing
the tendency between each axis pair and the corresponding correlation, κ,
(see Section 3.2). By using on these correlation glyphs, the user may exploit
relationship-guided dimensionality reduction via collapsing of axis pairs.

Design Justification: The high-dimensional ensemble data is based on
eight age groups and contains 23 parameters with minimum, maximum and
mean values of each indicator. The data includes repetitive information.
We introduce this user option that gives a different perspective on the data
dimensions by removing some of the redundant elements that do not add new
information to the PCP. The objective of collapsed axis pairs is to decrease
the number of dimensions and depict a less complex PCP view e.g., especially
for values of κ = 1. This feature enables the user to explore and display the
relationship between dimensions, d, that they choose to emphasize and with
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Figure 6: The collapsing of the hmean and hmin axis pair by right-clicking on the correlation
glyph showing the relationship between them. The labels of hmin are stacked to indicate
the collapsing process.

less redundant information (see Figure 1 (D)).
The user option provides a new view of the data dimensions by reducing

some of the redundant dimensions that do not present a particularly notable
pattern in the PCP. Collapsing axes can be guided by observing correlation
glyphs. For example, pairwise axes with a correlation κ of unity may be
collapsed without loss of information. The process is performed by right-
clicking on a correlation glyph for a given axis pair and reducing the space
between them by translating the right axis closer to the left axis. In the new
layout, the axis name and maximum value labels of the right axis are stacked
under the left labels of the pair axis while the minimum label is placed on the
top of other minimum value labels. The collapsing procedure can be undone
by right-clicking on the same correlation glyph to obtain the previous PCP
view.

Figure 6 demonstrates an example of axis pair collapsing between hmean
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and hmin (h: Hospitalization). Selected collapsed axis groups are data vari-
ables with, κ = +1, in other words, showing a direct relationship. As a
result of the collapsing of an axis pair, two dimensions are positioned side-
by-side and axis labels stacked on top of each other are displayed. Figure
1 (D) shows an example where 3 dimensions are juxtaposed after collapsing
two-axis pairs. With the dimensionality reduction feature, redundant and
repetitive information that makes it more challenging to reveal patterns in
the data can be excluded.

Additional Features: In addition to the previous features we intro-
duced, the software includes features that are helpful in exploring the en-
semble simulation data. We provide a feature that allows the min and max
labels to be updated such that the axis data in a given range can be scaled.
We offer six different color scales for color mapping in the PCP using a color
library by Roberts et al. [36]. We also introduce the features of drawing
the average polyline using the average of the edges, or rendering the positive
and negative sloped edges by right-clicking on any area of the PCP, using
focus+context. Finally, we developed a κ matrix to understand the relation-
ship between each data dimension combination. In the matrix, the user can
select one of the dimensions and sort the correlation values from smallest to
largest.

4. Evaluation

We provide three use cases to evaluate our techniques and provide a demo
video for these use cases. We demonstrated the software to the domain expert
and reported feedback collect from the expert in this section. See the demo
video for details [28].

4.1. Case-Study

In this section, three use cases demonstrate the effectiveness of our tech-
niques in understanding underlying trends in the Covid-19 ensemble data.

Use Case 1: Multivariate Comparison of Age Groups To explore
the multivariate differences between age groups, we used the ∆ operator
between two age groups in the first simulation configuration presented in
Figure 1. For example, we render the relationship between the simulation
results under age 20 (Group 1) and above age 70 (Group 7) (see Figure
5) by applying the ∆ operator to these age groups. We observe that the
hospitalization and mortality numbers are much higher compared to Group
1.
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Use Case 2: Comparing Input Parameter Values, pinf Probabil-
ity of infection, pinf, is one of the most interesting input parameters of the
simulation according to the simulation domain experts. We selected the two
simulations with the minimum and maximum, pinf (min) and pinf (max),
for input parameter values. Then we utilized the ∆ operator to compare
the outcomes for these two simulations to investigate how influential the pinf

parameter is and understand how input parameter values influence the out-
put. To compare two simulations, we sorted simulations by the pinf value
and included all age groups in Simulation 3 with the lowest pinf value and
Simulation 101 with the highest pinf. We then used ∆ operator to render the
difference between these simulations. As a result of ∆, Simulation 101 shows
a very clear difference for all output parameters compared to Simulation 3
(see Figure 7). The ∆ operator indicates that pinf is a very influential input
parameter.

Use Case 3: κ-guided Dimensionality Reduction We examine the
PCP in Figure 1 and the correlation glyphs under each axis pair. We observe
that there is always a direct relationship between the mean, min and max
values of each parameter in the output. We used this observation to reduce
the redundant dimensions and produce a new image with the redundant axes
removed. The dimensionality reduction technique we utilize by collapsing
axis pairs results in an image that reduces the number of dimensions by
almost 50% in the PCP (see Figure 8). Note that the pairwise glyphs are
also preserved and remind the user of the redundancy.

4.2. Domain Expert Feedback

This work is partially carried out in collaboration with Ramp Vis [29]
team, who support the modelling scientists and epidemiologists in the Scot-
tish COVID-19 Response Consortium (SCRC) [30] (see Subsection 3.1). We
had three meeting sessions, including visualization experts, modellers, and
statisticians. The brainstorming sessions facilitated understanding of the
data simulations and exploring the most influential input parameters. We
organized a feedback session and interviewed Dr Ben Swallow, with a PhD in
Statistics and working in the School of Mathematics & Statistics, University
of Glasgow. He has been working in statistical simulation and estimation for
seven years and has spent approximately four years on epidemiological stud-
ies. Some of his work focuses on Bayesian parameter inference and model
selection and methods for zero-inflated data. Our interview questions were
adopted from Hogan et al. [38].
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Figure 7: This figure displays the subtraction operator applied to Simulation 3 with lowest
pinf and Simulation 101 with highest pinf. The color is mapped to the first axis [-8, +8] of
the PCP.

Correlation Glyph: We demonstrated the correlation glyphs, and he
reported: “It’s a really good way of guiding the dimension reduction when
you have so much information. Users are trying to find a way of deciding
how to reduce it down and extract information. It’s pretty cool.”

Dynamic Edge Glyph Lenses: When we presented the both glyph
lenses to watch the behavior of the glyphs and discover areas with a lot of
variation, he stated that the feature is useful and added; “I think it’s just
another way of looking at the kind of sensitivity to that particular parameter
and in what direction it’s going. I particularly know the type of people that
would likely use this. I think you can get this through more hardcore mathe-
matical sensitivity analysis, but I think getting an idea of a sensitivity across
regions of parameters and different parameters will be very welcome. It would
be huge benefit of having this type of software. Yes, I really like that.”

Dimensionality Reduction: We mentioned that there are a lot of re-
dundant dimensions in the data and to the expert. He agreed on this and
reported: “Yes, that’s what we found from the mathematical analysis as well.
It was pinf and Ps that we really the only two parameters that had any impact
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Figure 8: This figure demonstrates dimensionality reduction applied on axis pairs with κ
= 1.

at all. It seems that that’s what’s being visualized here and in a much more
clear manner.”

Use Case 1: Comparing Age Groups When we first demonstrated
the subtraction operator, ∆, to the expert, he liked the concept of presenting
the difference between two multidimensional data sets visually to compare
them and stated: “I think it’s highlighting differences. The differences are
going to be specific to particular groups or compartments of the model. So
I like being able to observe that. From a policy point of view, you think “if
I change this parameter, what’s it going to change?” If it has a negative
impact on say younger people, in terms of the number of cases, but maybe it
reduces the deaths in another age category, then that’s going to be useful from
a policy perspective rather than just saying, “well, we’ve just looked at the
combined groups”. There’s going to be more cases in group two. You know
group two is going to be less impacted by Covid-19 in general. And knowing
how it’s affecting things in a more detailed and visual way, I think, is really
useful.”

Use Case 2: Comparing Input Parameter Values, pinf The pinf

input parameter has a significant influence on the outcome, and the differ-
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ence between simulations verifies that. We demonstrated this in Figure 7
and asked the expert if he finds this helpful. He commented: “I would like
confirming what we have done already [formal mathematical sensitivity anal-
ysis], or if we used the software first and looking at what we think might be
the most important parameters. You know most of the model developers will
have an idea of which is the most important parameters are. Visualizing that
is very useful for confirmation.”

We also asked the expert how he figured out the most influential parame-
ters without the software and how long it takes. He reported: “We normally
have to do a full mathematical sensitivity analysis of the model. You could
look at things like histograms of the output, so they would tend to be either
visualized viewpoints, but probably nowhere near as sophisticated as this. Or
kind of formal mathematical way you look at things like the derivative, i.e.,
changes in the output as a function of the different parameters. But that’s a
lot more complex and time-consuming than this. The process really depends
on the complexity of the model and number simulations you have to do, but it
would take probably at least a couple of hours to run mathematical analysis.
Because you generally use a Monte Carlo approach across lots of simulations
as you are plotting here. But again, there are lots of different questions that
you could ask using this the PCP software in terms of the sensitivity across
time, different age groups, and different classes. You would have to do it
on the separate simulation or sensitivity analysis for each of those different
configurations, whereas here you have the option of interrogating them all
in one go or very quickly switching between the different questions that you
might want to ask of them to the model.”

Use Case 3: κ-guided Dimensionality Reduction Dimensional-
ity reduction and axis ordering are still considered unsolved problems. We
demonstrated our κ-guided dimensionality reduction features by collapsing
axis pairs (see Figure 8). We asked the expert if the feature let him see
anything that he might previously have not been able to see or make some
new observations or hypotheses. He reported: “One of the common aspects
of these types of models is over parameterization. When you try and estimate
the parameters, if the model is not sensitive at all to the input parameters,
then no matter how much you try and make any inference, it is not going to
be useful at all. So from that perspective, I think this feature is useful. The
standard approach to deal with overparameterization is that if you have got
parameter redundancies to make some model reduction - that’s quite complex
to do without a good understanding of the model and where it is lack of sen-
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sitivity arises. So I think it would be really helpful in deciding how to think
about either combining outputs into a single one. For example, if there was
age differentiation or there was no impact on the parameters on age, then I
think you would see that here and in terms of looking at the different com-
partments, I think that is really useful. Parameter redundancy is generally
quite a useful way of guiding model reduction and that would be very helpful
there.”

We asked the expert if the feature might increase confidence in terms of
the correctness or accuracy of the simulations. He stated: “Yes, I’m sure.
If you are seeing some of the maximum numbers, if you knew, for example,
that hospitalizations never got above a particular point but your model is
consistently estimating numbers of hospitalizations to be in the hundreds of
thousands, and you know that’s not realistic, you would probably have some
lack of confidence in that model. I think that could be something else that this
helps with. In terms of focusing where you perhaps want to do data collection
as well, if you know there’s a lot of sensitivity. It seems like hospitalization
in this model are a very sensitive, very valuable output. Then you might try
and focus your data collection on that when you want to make inferences and
try and estimate these parameters. That would probably be a good way of
guiding that decision as well.”

5. Conclusion and Future Work

We present interactive glyph lenses, which enable users to explore an over-
plotted image with a dynamic lens that hovers over the PCP using mouse
position. This interaction outlines the edges that overlap with the lens,
represented by arrow glyphs that show the average slope, θAVG, of a dense
collection of edges. We display an arrow glyph below each adjacent axis pair
that indicates the correlation between dimensions. We present a dimension
reduction technique that allows users to simplify a PCP based on the cor-
relation value, κ, between adjacent axes and collapsing axis pairs that do
not add information to the display. We also provide a user option we call a
subtraction operator, ∆, which displays the difference between two multidi-
mensional data sets for comparison. We evaluate our techniques with a case
study based on a simulation of Covid-19 in collaboration with a modeling
expert.

One limitation we encounter with a dynamic lens is run-time edge detec-
tion, which may slow down when there are too many edges. In addition, with
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large data sets, the performance of detecting edge intersections starts to de-
grade. In the next step, pre-computing a summary of edge intersections in a
static grid and then displaying the meta-data, rather than trying to calculate
the edge intersections at run-time, is a way to manage this challenge. We
also note that the subtraction operator is currently limited to (and targeted
at) ensemble data. A more generalized version remains future work.

Future improvements addresses limitations e.g., sorting axis pairs based
on correlation value in ascending order and updating the PCP view accord-
ingly. However, plotting axis pairs according to pairwise, κ, order is not
feasible with the traditional PCP axis ordering. Therefore, introducing a
new axis plotting approach to convey the axes’ relationships is a future en-
deavor. Another limitation is scalability, i.e., how to arrange axis labels
when 10 or more pairs of neighboring axes are collapsed. Future directions
address other limitations such as, including multiple lenses, adjustable lens
size, and additional operators, such as addition, multiplication and division
of simulation data sets.
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APPENDIX: Covid-19 Simulation Data
The simulation model used is from the Epidemiology, Economics and Risk
Assessment (EERA) model [39]. The model incorporates an inference process
to estimate the range of parameters of interest and the ranges of parameters
to extract parameter configurations. In this case, there are 160 parameter
configurations. For each configuration there are multiple simulation runs. In
this case, 1000 runs result in different predictions.

The model takes the same set of input parameters, called simulation
configurations that yield different output results for each run. The model
aims to provide the range of output possibilities for each possible prediction.
For each output result, minimum, maximum and mean values of output
parameters are provided.

For the model, there is a long list of parameters, some are inferred, some
are estimated a priori, and some are fixed across runs. Here are the critical
input parameters:

• nsse cases: Normalised sum of square error for the number of cases

• nsse deaths: Normalised sum of square error for the number of deaths

• p inf: Probability of infection

• p hcw: Probability of infection (Healthcare worker)

• c hcw: Mean number of healthcare worker contacts per day

• d: Proportion of population observing social distancing

• q: Proportion of normal contact made by people self-isolating

• p s: Age-dependent probability of developing symptoms

• rrd: Risk of death if not hospitalized

• lambda: Background transmission rate

For each age group (8 age groups) there are;

• 200 days of predicted time-series of each output data dimension in the
model

• 16 distinct output data dimensions (see the list below)
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The model generates a number of output files for each run. In total, 160
(parameter configurations) × 16 (data dimensions) × 1000 (runs) × 8 (age
groups) = 20,480,000 time series of 200 days each. The data we display by
default is the first configuration.

The output simulation parameters are as follows:

• Age Group: Age groups ID are used in the model.

• Day: The day for the record

• S: Number of susceptible individuals (not infected)

• E: Number of infected individuals but not yet infectious (exposed)

• I: Number of infected and infectious asymptomatic individuals

• IS: Number of infected and infectious symptomatic individuals

• H: Number of infected individuals that are hospitalized

• R: Number of infected individuals that are recovered from infection

• D: Number of dead individuals due to disease

The age groups ID as used in the model are here:

• Group 1: Under 20

• Group 2: 20-29

• Group 3: 30-39

• Group 4: 40-49

• Group 5: 50-59

• Group 6: 60-69

• Group 7: 70+

• Group 8: Health Care Workers
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