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Abstract

WITH increasing computing power, it is possible to process more complex fluid sim-
ulations. However, a gap between increasing data size and our ability to visualise

them still remains. Despite the great amount of progress that has been made in the field
of flow visualisation over the last two decades, a number of challenges remain. Difficul-
ties can stem from attempting to capture all flow features, the speed of computation, and
spatial perception. This effects the ability of the domain engineer to study, capture, and
visualise, 3D flow phenomena.

A review of 3D flow visualisation literature revealed little presented work for stream
surface placement and visualisation methods. Stream surfaces are a useful tool for visu-
alising 3D flow due to their ability to convey different attributes from their structure. It is
important that the domain engineer can guide the placement, interact with, and examine
specific properties of flow data. Streamlines are one standard tool domain engineers use
for visualising flow data. Although a variety of automatic seeding approaches have been
proposed for streamlines, little work has been presented for stream surfaces. Previous
research generally focuses on manual placement of stream surfaces. Little attention has
been given to the problem of automated stream surface seeding. The placement or seed-
ing of stream surfaces in 3D flow fields face a number of challenges. These challenges
include perception, occlusion, and the appropriate representation of flow characteristics.

Flow visualisation with a focus on stream surface techniques forms the basis of this
thesis. We detail our investigation into new algorithms with discussions of their applica-
bility and their relative strengths and drawbacks. Our goal is to present domain engineers
with state of the art techniques furthering their ability effectively and efficiently study,
capture, and visualise, 3D flow phenomena.

We first describe an algorithm for defining seeding curves at the domain boundaries
from isolines generated from a derived scalar field. We detail the generation of stream
surfaces integrated through the flow and discuss the associated challenges of surface
termination and occlusion. Extending this work we present stream surface seeding and
filtering and discuss a technique for effective surface termination. We present an algo-
rithm that automatically seeds new interior surfaces, to represent locations not captured
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by the boundary seeding. Our approach is designed to capture the flow characteristics
utilising illustrative techniques alleviating occlusion, and providing options for filtering.

Our next approach utilises clustering techniques to simplify the vector field enabling
a range of abstractions for the density and placement of seeding curves and their asso-
ciated stream surfaces. It is important that the domain engineer can define and target
particular characteristics of the flow. In combination with improved placement we fur-
ther illustrative techniques for better perception. Continuing towards our goal of pro-
viding effective techniques for use by domain engineers, we then tailor this algorithm
towards a specific application: The Bloodhound project. The Bloodhound project de-
velops a rocket propelled land vehicle designed to break the land speed record. We
describe modifications to the seeding algorithm for large CFD simulation data includ-
ing: searching large unstructured grids, reducing the memory footprint of the algorithm
data structures, and customisation of the distance metric used to cluster the simulation
data.
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CHAPTER 1

Introduction

DATA visualisation is the study of mapping abstract data into a visual form that
makes data more humanly digestible, and to improve cognitive understanding.
The abstract data can be both numerical and non numerical. Examples of non

numerical data are present in literature from geographic, social, environmental, and cul-
tural domains. The requirement to efficiently and effectively extract implicit, non trivial,
unknown and potentially useful patterns and knowledge from data has roots dating back
prior to recorded history. One such example is the Aboriginal rock art in Western Aus-

Figure 1.1: This graph shows the size of Napoleon’s army mapped to the width of
the path across the map. Its shows the outward and return journeys. Image courtesy
of [Fri08].
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tralia’s Pilbara region, and the Olary district of South Australia, estimated to be up to
around 40,000 years old [Abo]. Rock art gives us descriptive information about social
activities, material culture, economy, environmental change, myth and religion.

In more recent times the French engineer Charles Minard (1781-1870) illustrated in
Figure 1.1 the disastrous result of Napoleon’s failed Russian campaign of 1812 [Mer].
This statistical graphic provides valuable insight into the factors contributing to the fail-
ure of this campaign. Later in the same century (1820-1910) Florence Nightingale’s
place in history is at least partly linked to her use of graphical methods in Figure 1.2
to convey complex statistical information dramatically to a broad audience [Lyn]. After
witnessing deplorable sanitary conditions in the Crimea, she wrote an influential text
including several graphs which she called "Coxcombs". The work covered matters af-
fecting the health, efficiency and hospital administration of the British Army.

The introduction of computers during the 20th century brought the ability to com-
pute, process and store large amounts of data. As with data which precedes the computer
age, we use visualisation techniques to efficiently extract knowledge, perceive patterns,
and gain useful insight into the data. However, as the quantity and complexity of the data
increases, our ability to efficiently and effectively deduce knowledge from it decreases.
Research into visualisation techniques suitable for representing complex data is becom-
ing an increasingly important focus. With the advancement of technological media and
computational power becoming more accessible, many applications such as simulation,
data logging, business and financial data are growing both in complexity (number of

Figure 1.2: The inset text describes what the contributing factors where to the causes
of death on the battle field for the British Army. The graphics visually represent the data
supporting the text. [Fri08]
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Figure 1.3: This figure shows stream surfaces in an automotive application. This tech-
nique, by Garth et al. [GKT∗08], enhances the perception of the flow structures over the
vehicle bodywork.

attributes) and quantity.
Visualisation techniques map raw or derived data to an intuitive visual metaphor.

The type of visualisation approach required is dependant on the given data. Typically,
visualisation approaches are classified into two general subcategories depending on the
properties of data; information visualisation and scientific visualisation [PNB02]. Infor-
mation visualisation predominantly deals with the visual representation of abstract data
which consists of data that is not coupled within a spatial domain. Examples of such
data types are commonly found in practice such as finance or business domains. Visual-
isation approaches such as histograms, pie charts, scatter plots, and parallel coordinates
are frequently used for this subset [War04]. Scientific visualisation deals with compu-
tational scientific data generated from engineering simulation or modelling data. Some
practical domains that use scientific data are medical, flow simulations, and weather en-
sembles. Common techniques that have been used to visualise such data include glyphs,
streamlines, and volume rendering [PNB02].

1.1 Flow Visualisation
As flow data increases in size and complexity, it becomes more important to support ef-
fective exploration of the features and characteristics. Many of today’s applications for
flow visualisation are centred around fields such as aerospace, automotive, energy pro-
duction, and other scientific research. Automotive design tends to focus on aerodynamic
drag to help improve the efficiency of the vehicle. Figures 1.3 and 1.4 demonstrate flow
distribution across the vehicle body aiding the engineer in studying drag characteristics.
There is also an emphasis on airflow around the engine compartments which provide
much needed cooling for the various engine/cockpit heat exchange systems. The heat
exchange systems themselves are also an important focus for analysis. Aerospace also
focuses on aerodynamics and engine design for aircraft, with similar goals for space
craft. Electromagnetism and turbine design within the energy production industries
are other common applications. One example application of visualisation within as-
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Figure 1.4: This figure shows hatched cycle shading in an automotive application. This
technique, by Weiskopf and Hauser [WH06], enhances the perception of flow over the
surface of the vehicles.

trophysics is the simulation of ionisation front instability [IEE]. Another area of study
is the topic of acoustic flow to simulate and visualise such things as engine exhaust,
and speaker cabinet design [Tan]. The medical field uses visualisations to study such
phenomena as blood flow, for example, when designing heart pumps to support failing
hearts. Another area of utilisation is weather systems analysis by organisations such as
the MET office [GOV].

There are many different origins of vector data. In general, these are obtained
through intricate flow simulation and flow measurement. Flow simulation is often used
to predict real world conditions both as an aid to design and for the analysis of large
physical systems which may not be captured or recorded with the existing devices. This
is especially true for very large and expensive projects such as aircraft, ship, and car
design. The cost of building physical prototypes for testing can be great. Therefore, the
ability to simulate the test conditions using virtual representations such as CAD (Com-
puter Aided Design) data combined with computational systems such as CFD (Com-
putational Fluid Dynamics) is highly beneficial. CFD is a method in which continuous
movement of a fluid is modelled using numerical methods. The three main simulation
steps are:

• Preprocessing: Geometry creation, mesh generation, definition of boundary con-
ditions and fluid properties.
• Solving: Performing the computation using numerical methods.
• Post Processing: Visualisation of the CFD results for analysis.

The application of flow visualisation techniques for post processing CFD problems is
essential for engineers and practitioners to gain an understanding of the information the
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data contains. Current techniques have been integrated into a wide variety of test and
simulation systems, for example; Fluent [ANS], EnSight [CEI], Tecplot [Tec]. Allowing
the engineers to explore and evaluate data from within these systems in visual a form
is key to effectively gain insight. The graphical representation and exploration of data
not only allows for much faster analysis but also enables non-experts to understand the
underlying phenomenon.

1.2 Basics of Fluid Dynamics and CFD

In the following subsection we will discuss the set of basic fluid equations underpinning
the concept of fluid dynamics. These equations are used to model the characteristics
of fluid flow using CFD numerical solvers. A moving fluid can be mathematically de-
scribed by two scalar fields and a vector field. A scalar field is where every discrete
point within the spatial domain has a single real value R. A vector field is where every
discrete point within the spatial domain has a 3 tuple of real values R3 representing a
vector quantity. The vector field describes the state of fluid velocity v across the spatial
domain, and the temporal domain. The scalar field of any two thermodynamic quantities
of the fluid; pressure p and density ρ being the most common, are needed to fully de-
scribe the state of the fluid. Other thermodynamic quantities, such as energy, momentum
and temperature, are derived directly from the results of the simulation.

Conservation of Mass The continuity equation, [And11] Section 2.4, describes the
conservation of mass of a fluid flowing through a fixed volume.

∂ρ

∂ t
+ρ(∇ ·v)+∇ρ ·v = 0 (1.1)

Where ρ is density, v is velocity vector, ∇ is the gradient operator, and t is time. For
more information on the gradient operator ∇, and other notations, refer to Appendix A.

Incompressible Fluid An incompressible fluid does not change its volume with a
change in pressure; it has constant density ρ . Some liquids may be approximated with
this concept for example; water, petroleum, mercury. Both the derivative with respect to
time and the gradient of the density in Equation 1.1 therefore disappear, [And11] Section
3.6, and [MYO10] Section 6.2. For incompressible flow the continuity equation reduces
to:

∇ ·v = 0 (1.2)

An incompressible fluid is still bound by the continuity equation e.g. the conservation
of mass. Therefore the flow must be divergence free, and cannot contain any sources or
sinks.
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Inviscid Flow The Euler equation describes the motion of inviscid flow. An inviscid
fluid is an ideal fluid of zero viscosity. An inviscid fluid does not exhibit any internal
shear stress, for example, a layer of fluid can slide over another layer of fluid and not
generate any resisting force due to friction.

The Euler equation together with the Continuity equation 1.1 describes the motion
of an inviscid fluid ([MYO10] Section 8.2.2):

∂v
∂ t

+∇v ·v =−1
ρ

∇p+g (1.3)

Where p is pressure, and g is the gravity vector. This model approximates fluid flow
where the effects of viscosity, energy dissipation, and thermal conductivity are consid-
ered negligible.

Viscous Flow The Euler model describing fluid flow ignores the effect of internal
friction, however, all fluids have some amount of viscosity. For example, one layer of
fluid sliding over another layer of fluid now generates a resistive force as a result of
friction. This is described as sheer stress. The friction force:

ν∇2v (1.4)

is proportional to the Laplacian of the velocity ∇2 and the Kinematic viscosity:

ν =
µ

ρ
(1.5)

where µ is the dynamic viscosity and ρ is the density, [And11] Section 18.2. Adding
the friction force to the Euler equation 1.3, we obtain the Navier Stokes equation:

∂v
∂ t

+∇v ·v =−1
ρ

∇p+ν∇2v+g (1.6)

Together with the conservation of mass Equation 1.1 this equation describes the motion
of a viscous incompressible fluid, [MYO10] Section 8.2.2. The book by Hirsch [Hir89]
details the discretisation of the above equations and the physical models these equations
describe.

Types of CFD Meshes

As described in Section 1.1 one of the inputs to the CFD solver is a mesh describing the
discretisation of the spatial domain. This mesh is also used in the post processing step of
the pipeline by the visualisation tool visualising the simulation data. The mesh can take
a number of different forms. In this section we will discuss the mesh types provided for
visualisation in this thesis.
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Figure 1.5: These illustrations demonstrate a two dimensional version of a regular
Cartesian grid (left), and an irregular polygonal grid [Sta] (right).

Meshes are subcategorised into two main types; regular, and unstructured, See Fig-
ure 1.5. Regular meshes, or structured grids, are defined by specifying the dimensions
in the topological i jk coordinate system. The i jk coordinate system is a parametrisation
of the global xyz coordinates. The regular grid is essentially a tessellation of the three
parametric dimensions i jk into a Cartesian grid. The advantage of this type of grid is
that the coordinates of the vertices are not stored as they can by computed from the lin-
ear relationship between the parametrised coordinates and the global coordinates. The
parametrised coordinates are directly used to index 3D data arrays storing the CFD so-
lution data. This makes access time very fast and reduces the memory footprint of the
data.

Unstructured meshes, or unstructured grids, are a tessellation of the spatial domain
into a set of irregular sized polygons usually tetrahedrons or hexahedrons. Along with
the vertex data, a connectivity list is also required to describe each of the polygonal cells.
Although relative to the regular grid more data is required to be stored, the unstructured
grid cells may vary greatly in size. This allows refinement in areas of expected com-
plexity, and coarseness in areas of simplicity. Overall, this can significantly improve the
memory usage to represent the mesh. There is a significant overhead, however, when
sampling the mesh. Refer to Appendix A for more information on cell structures and
interpolation.

2 Flow Visualisation Classification
Flow visualisation is one of the classic subfields of scientific visualisation. The tech-
niques in this field of study can be classified into four general categories: direct, geo-
metric, texture-based and feature-based flow visualisation [PVH∗03, LHD∗04, LHZP07,
Lar08, PL09, MLP∗10, ELC∗12b]. Each of the following classifications are discussed
in greater detail throughout Chapter 2.
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Figure 1.6: These illustrations demonstrate direct visualisation techniques. Arrow
glyphs directly represent the underlying data. Image courtesy of Peng et. al. [PGL∗12]

Direct Flow Visualisation Techniques: Direct visualisation techniques directly map
the vector field to primitives. Common approaches visualising flow include placing ar-
row glyphs at each sample point to depict the associated vector field. These direct tech-
niques are able to make flow visualisation universally and intuitively understandable. It
has been used in many applications of CFD flow visualisation. Direct techniques can
suffer from a lack of visual coherence and might suffer from visual complexity and
occlusion. See Figure 1.6 for examples of direct flow visualisation.

Texture Flow Visualisation Techniques: This approach is rendered with convolved
textures to reflect the local properties of the vector field. Texture-based techniques pro-
vide a dense and coherent visualisation even in areas of complex flow. It has been suc-
cessfully applied to 2D and 2.5D (surface) data, but can suffer from visual complexity
and occlusion when applied to 3D volumetric flow data. For examples of texture-based
techniques, refer to Figure 1.7.

Figure 1.7: These illustrations demonstrate texture-based visualisation techniques. The
pixels of a noise textures are smeared by a small perturbation in the direction of the
vector field. Left image courtesy of Laramee et. al. [LEG∗08]. Right image courtesy of
Shen et. al. [SK98]
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Figure 1.8: These illustrations demonstrate feature-based visualisation techniques. The
images display the topological extraction of flow features. Images courtesy of Theisel
and Weinkauf et. al. [TWHS03] and [WTHS04].

Feature Flow Visualisation Techniques: Feature-based techniques extract subsets of
data that are deemed interesting by the user. The visualisation is then based on these
extracted subsets rather than the whole dataset. There is significant computational cost
when dealing with the complexity of feature extraction, especially when visualising flow
based on 3D unstructured CFD meshes. Refer to Figure 1.8 for examples of feature-
based flow visualisation.

Geometric Flow Visualisation Techniques: This approach represents flow with ge-
ometric primitives. A typical example of geometric techniques is the streamline. Tra-
jectories are computed from an initial location within the domain (seeding point) using
integration techniques such as the Runge-Kutta integration scheme (Refer to Appendix
A). The resulting geometric objects from these trajectories are then rendered. Due to
its comparatively accurate and coherent result, geometric flow visualisation has been
widely used to visualise almost all types of CFD data. However, visual clutter and oc-
clusion can stem if poor seeding (placement) strategies are applied to a 3D domain. See
Figure 1.9 for examples of streamlines and stream surfaces. Geometric flow visualisa-

Figure 1.9: These illustrations demonstrate geometric visualisation techniques. The left
image demonstrates streamlines rendered onto a stream surface which is propagated
through the velocity field from a seeding curve. The right illustration shows a dense
streamline visualisation technique. Image courtesy of Mattausch et. al. [MT∗03].
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tion is the context of the research presented in this thesis, with a focus on the effective
placement of stream surfaces in a 3D flow field.

3 The Challenge of Surfaces and Placement

Surface-based flow visualisation methods inherit some common problems associated
with flow visualisation in general. Examples of these challenges include large, time
dependent simulation data requiring the utilisation of out of core techniques, and the
handling of unstructured data. Surface-based methods also face their own unique chal-
lenges which we discuss in more detail in the following chapters.

Surface construction is a key topic because the surface must represent an accurate
approximation of the underlying simulation. When using surfaces the problem of occlu-
sion occurs frequently. This may stem from multiple surfaces that occlude one another,
a large surface that produces self occlusion, or a combination of both. While surfaces
offer many advantages in terms of perception, a basic visualisation of the surface alone
may not provide sufficient information about the underlying data. For example, a stream
surface alone does not show the behaviour of inner flow contained within the surface.
There is a strong correlation between seeding and occlusion of integral surfaces. Seed-
ing too many surfaces, or seeding them in such a way that they occupy the same region
of the domain leads to high levels of occlusion.

Manual placement is the most common stream surface placement method currently
used by the CFD engineer. Traditionally, determining the location for seeding of stream-
lines and surfaces has presented a significant challenge the the engineers studying CFD
simulations. The challenges are in terms of the time required by the user to identify the
important flow features, and also in terms of the consistency when comparing simulation
data for different engineering designs or configurations that have been computed on dif-
ferent meshes. Since aerodynamic phenomena can affect the macroscopic behaviour of
the body, often at the very small scale, e.g. flow separation/detachment or vortex shed-
ding, the detection (or non detection) of such features is highly sensitive to the initial
seeding of streamlines and stream surfaces. An efficient and robust system for interpret-
ing the vector field resulting from the CFD analysis is therefore highly desirable by the
CFD engineer.

4 The Evaluation of a Visualisation Framework

To meet the demands of the CFD engineer, a visualisation framework is developed in
collaboration with experts from Swansea University College of Engineering. In this
section we discuss aspects of the collaboration pertinent to the evaluation of the proposed
algorithms. The evaluation of our algorithms are in the form feedback from the experts
based on provided visualisations and collaborative use of the software framework. Our
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approach is in part motivated by the need for feedback reviewing the visual performance
of the visualisation results, rather than mathematical evaluation of the underlying model.
It is the visualisation that seeks to inform the target CFD engineer.

Figure 1.10: This flow chart illustrates the basic evaluation process undertook while
working with the domain experts. During the process a number of feedback iterations
may occur prior to the final results being presented.

As part of our collaboration we worked with a number of experts from Swansea
University College of Engineering. The engineering domain experts included; Dr Ian
Masters, and Dr Rami Malki of the Marine Energy Research Group (MERG) [Swaa],
and Dr Ben Evans of the Bloodhound group [Nob]. The general area of expertise of
these domain experts is numerical modelling including CFD.

The approach we took involved a set of meetings and demonstrations that together
formed the process shown in Figure 1.10, and the timeline shown in Figure 1.11. The
process starts with the aim of discovering, and then defining, what the domain expert
actually requires. An analysis of the requirements is then performed; defining any as-
sumptions, specifying the problem logic, and formulating a proposal. This proposal is
then implemented, and a set of results is reviewed by the domain experts either inter-
actively or from static visualisations. The domain expert provides feedback which is
used to update the model. After refinement of the model is complete, the final results
and feedback are generated for inclusion into a formal written document i.e. journal
papers and this thesis. Output from the collaboration with MERG resulted in the work
described in Chapter 4, and collaboration with the Bloodhound group resulted in the
work described in Chapter 5.
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Figure 1.11: This GANTT chart demonstrates the key events for both projects through-
out the evaluation process.

5 Proposed Solutions: An Overview of Contributions
In this thesis we address the challenges of visualising simulation data with a focus on
automated stream surface placement. We apply our techniques to a range of flow data
from analytical to large unstructured CFD data. The proposed algorithms are studied
and evaluated in conjunction with domain experts who specialise in CFD.

Surface-based Flow Visualisation: Despite the great amount of progress that has
been made in the field of flow visualisation over the last two decades, a number of
challenges remain. While the visualisation of 2D flow has many good solutions, the
visualisation of 3D flow still poses many problems. Flow visualisation with a focus
on surface-based techniques forms the basis of the literature review in Chapter 2. The
review includes surface construction techniques and visualisation methods applied to
surfaces. Detailed is an investigation into these algorithms with discussions of their ap-
plicability and their relative strengths and drawbacks. Reviewed are the most important
challenges when considering such visualisations. Challenges such as domain cover-
age, speed of computation, and perception remain key directions for further research
[ELC∗12b].

Advanced, Automatic Stream Surface Seeding and Filtering: Chapter 3 presents a
novel automatic approach to the seeding of stream surfaces in 3D flow fields. Stream-
lines and stream surfaces are standard tools for visualising 3D flow. Although a variety
of automatic seeding approaches have been proposed for streamlines, little work has
been presented for stream surfaces. A set of seeding curves are defined and prioritised at
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the domain boundaries from isolines computed from a derived scalar field. Surfaces are
then traced from the seeding curves through the flow field. An algorithm that automat-
ically seeds new interior surfaces to represent locations not captured by the boundary
seeding is presented. The user controls the separation distance from the initial surface
set. Discussed is a technique for effective surface termination using a distance field to
aid the reduction of visual clutter. We also present the results of this algorithm, how
we achieve satisfactory domain coverage, and the capture of flow field features. Strate-
gies for resolving occlusion resulting from seeding multiple surfaces are also presented
[EML∗11] and [ELC∗12a].

Automatic Stream Surface Seeding: A Feature Centred Approach: Chapter 4 in-
troduces a novel automatic stream surface seeding strategy based on vector field clus-
tering. It is important that the user can define and target particular characteristics of
the flow when placing surfaces. Our strategy allows the user to specify different vector
clustering parameters enabling a range of abstraction for the density and placement of
seeding curves and their associated stream surfaces. We demonstrate the effectiveness
of this automatic stream surface approach on a range of flow simulations and incorpo-
rate illustrative visualisation techniques to assist in analysing the flow. Domain expert
evaluation of the results provides valuable insight into the users requirements and effec-
tiveness of our approach [ELM∗12].

Stream Surface Seeding for a Land Speed Record Vehicle: Chapter 5 describes a
novel cluster-based, automatic stream surface seeding strategy for structured and un-
structured CFD data. The algorithm described in Chapter 5 is adapted to tailor it to-
wards a specific application: The Bloodhound SSC Project [Nob]. The Bloodhound
SSC project develops a rocket propelled land vehicle designed to break the land speed
record. Detailed are modifications to the automatic stream surface seeding algorithm
for large CFD simulation data including: handling large unstructured grids, reducing
the memory footprint of the algorithm data structures, and customisation of the distance
function used to cluster the simulation data. The modified clustering algorithm is used
to capture interesting subsets of the flow and seed stream surfaces in an objective, au-
tomatic way. We demonstrate the performance and effectiveness of our framework on
the Bloodhound flow simulations and provide domain expert evaluation of the results
[ELEC13].

Design of a Flow Visualisation Framework: Chapter 6 discusses research related
software. Research software often consists of individual isolated prototype applications.
Small proof of concept applications are usually enough for demonstrating new algo-
rithms. The unification of new research algorithms into a cohesive software framework
has its advantages. Adding new features to an existing pipeline reduces implementa-
tion overhead. The researcher is able to compare and contrast existing or previous work
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with new research. Utilising previously implemented techniques, researchers are able to
combine visualisation options in new ways that typical research prototypes cannot. The
software application is made available to the domain expert for evaluation and future
use.

These goals are in part realised by utilising advancements in game design technol-
ogy, and by leveraging features available with recent graphics hardware. Described is
the design of a feature rich flow visualisation software framework, and discussed is the
effectiveness and scalability of the approach. It is a system that has been developed and
refined for four years [EL13].

Conclusions and Future Work: Chapter 7 presents conclusions and future work.
First a summary and a restatement of the main contributions from this thesis are pre-
sented. This is followed with a detailed discussion of the conclusions drawn from each
chapter focusing on the outstanding challenges and how the following work addresses
them. Finally potential future work directions are presented highlighting the challenges
which remain for flow visualisation with surfaces.

Mathematical Concepts for Vector Fields: Appendix A describes the mathematical
concepts used throughout this thesis. We start with a formal description of the vector
field domain, then discuss the structure and interpolation of mesh cells. We then detail
the hierarchical spatial hash grid used for fast lookup of unstructured grid cells. Follow-
ing this we present methods for spline interpolation, and the Runge-Kutta integration
techniques. We follow this with a study of the derived fields, finishing with a Table of
Notation covering the notation used throughout this thesis.

Gallery of User Options: Appendix B demonstrates the algorithm defined in "Stream
Surface Seeding for a Land Speed Record Vehicle" applied with a range of parameters.
The motivation for the gallery of results is to demonstrate the variation of the results
with change in parameter values. Included are; a gallery of final images of the seeded
surfaces, and an equivalent gallery demonstrating the seeding curves used to generate
the surfaces.
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Surface-based Flow Visualisation

FLOW visualisation is a powerful means for exploring, analysing and communicat-
ing simulation results. Flow visualisation is characterised by a range of differing
techniques such as direct, feature, texture, and geometric-based representations

[PVH∗03, LHD∗04]. Each technique has a range of differing accuracies and speeds
[LEG∗08]. The phenomena to be studied can be sampled using regular or irregular grids,
which can stem from steady state or unsteady flow. There are many challenges to over-
come in this field of research. The topic of flow visualisation with surfaces has become
an increasingly important field of research in recent years (see Figure 2.1). This is due
to the advantages that surface-based techniques offer over more traditional curve-based
methods. This provides strong motivation for studying and categorising the breadth and
depth of surface-based research for flow visualisation.

Figure 2.1: This histogram shows the number of publications per year focused on flow
visualisation with surfaces studied in this chapter. It indicates the growing momentum
of this topic.
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1.1 Challenges

Surface-based approaches share some common problems associated with flow visualisa-
tion in general. Examples of these challenges include: large, time dependent simulation
data requiring the utilisation of out of core techniques; and the handling of unstructured
data. Surface-based methods also face their own unique challenges which we discuss in
more detail throughout the chapter.

Construction Surface construction is a key topic for this survey. Surfaces must repre-
sent an accurate approximation of the underlying simulation. Adequate sampling must
be maintained while reducing the extra computational overhead associated with over
sampling. Resulting meshes must also remain smooth in the presence of various flow
phenomena such as vortex cores (the axis about which fluid rotates e.g. the centre of a
tornado), and highly divergent or convergent flow (fluid which separates or contracts).
A large amount of effort has been put into the creation of various types of surfaces and
these form a large portion of this survey. See Section 2 for literature that addresses this
challenge.

Occlusion When using surfaces the problem of occlusion occurs frequently. This may
stem from multiple surfaces that occlude one another, a large surface that produces self
occlusion, or a combination of both. There are several approaches that can be taken
depending on the surface type to reduce this problem. A general approach is to use
transparency. With integral surfaces, i.e., surfaces to which the flow field is tangent, we
have more options. Advanced texture mapping may also be used. Additionally, integral
surface seeding positions may be changed to reduce clutter. See Section 3 for literature
that addresses this challenge.

Information Content While surfaces offer many advantages in terms of perception,
a basic visualisation of the surface alone may not provide sufficient information about
the underlying data. For example a stream surface alone does not show the behaviour
of inner flow contained within the surface. A review of the research that enhances the
resulting visualisation of surfaces is also provided in this survey. See Section 3 for
literature that addresses this challenge.

Placement and Seeding Interactive placement is the most common method currently
used. There is a strong correlation between seeding and occlusion of integral surfaces.
Seeding too many surfaces, or seeding them in such a way that they occupy the same
region of the domain leads to high levels of occlusion. The placement of isosurfaces is a
function of the selected isovalue. Choosing optimal isovalues is an analogous problem.
See Sections 2.4, 2.5, 3.2 and 3.3 for literature which studies these challenges.
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Classification
Constructing Surfaces for Flow Visualisation

Integral: Stream/Path Integral: Streak/Time Implicit Topological
[Hul92]s,

[USM96]s,

[SBH∗01]s,

[GTS∗04]s,

[STWE07]t,

[GKT∗08]t,

[PCY09]s,

[SWS09]s,

[MLZ09]t, [PS09]s.

[YMM10]t.

[SRWS10]s.

[vFWTS08b]t,

[KGJ09]t,

[BFTW09]t,

[MLZ10]t,

[FBTW10]t,

[vW93]s,

[WJE00]s,

[Gel01]s.

[TWHS03]s,
[WTHS04]s,
[TSW∗05]t,
[BSDW12]t

Rendering Flow on Surfaces for Visualisation
Direct Geometric Texture: Static

Texture
Texture: Dynamic

Texture
[PL08]s,

[PGL∗12]s.

[LMG97]s,

[LMGP97]s,

[WH06]s,

[SLCZ09]s,

[BWF∗10]s,

[HGH∗10]t.

[vW91]s,

[dLvW95]s,

[FC95]t,

[MKFI97]s,

[BSH97]s, [SK98]t,

[Wei07]t, [PZ10]s.

[LJH03]t, [vW03]t,

[LvWJH04]t,

[LSH04]s,

[LWSH04]s,

[WE04]t,

[LGD∗05]s,

[LGSH06]s,

[BSWE06]s,

[LTWH08]t.

Table 2.1: This table classifies surface techniques into two main categories; Construct-
ing surfaces for flow visualisation and Rendering flow on surfaces for visualisation. The
table also sub classifies the surface construction into Integral, Implicit, and Topological,
with Integral surfaces further divided between stream/path and streak surfaces. Addi-
tional sub classification of this section into point , triangle and quad primitives are
shown with colour. The rendering section is sub classified into Direct, Geometric, and
Texture techniques, with the texture category further subdivided into static texture and
dynamic texture techniques. Additional sub classification of this section into Parameter
Space, and Image Space techniques are displayed with colour. An additional suffix is
used to represent techniques applied to steady state (s), and time dependent (t) vector
fields. Each of the entries are ordered chronologically within each subcategory.
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1.2 Classification

The classification in this chapter represents the subtopics of flow visualisation with sur-
faces. The classification highlights areas which are more mature and areas which require
additional work. Refer to Table 2.1. The two main classifications highlight the differ-
ences between applying visualisation techniques to surfaces, and the underlying surface
construction. Surface rendering techniques visualise the fluid flow properties on the sur-
face geometry, whereas surface construction techniques represent the fluid flow with the
curvature of the surface.

Each of the two classifications are further subclassified. The surface construction
is classified into Integral, Implicit, and Topological techniques, while the visualisation
of flow on surfaces is divided into Direct, Geometric, and Texture-based techniques.
Topological techniques visualise flow topology explicitly using surfaces to do so. Sur-
face construction is also subclassified into triangle, point, and quad-based meshing tech-
niques, while the visualisation of flow on surfaces is subclassified into parameter space-
based, and image space-based techniques.

Another possible choice for the visualisation of flow on surfaces is classification into
single chart (single parametrisation) and a collection of charts (atlas-based parametrisa-
tion). The image space methods would be treated similar to other simple parametri-
sations such as C-Space (Configuration Space) techniques [MT04]. The subcategories
are further divided into steady flow and time dependent flow. The papers within each
subcategory are ordered chronologically. We note that this survey does not cover flat or
planar surfaces or slices like those described by Laramee [Lar03].

1.3 Contributions and Summary

Surface techniques fall into two main categories: construction of surfaces and visuali-
sation techniques applied to surfaces. Surface construction techniques are a fairly well
researched topic. The majority of techniques are variations and extensions of the orig-
inal Hultquist method [Hul92]. These techniques are either faster, more accurate, cater
to large data domains, or address topology. The self occluding problems inherent of
surfaces are partially addressed by Löffelmann et al. who effectively create holes in the
surface [LMGP97], Theisel et al. [TWHS03] use connectors to represent the separating
surface, and the general approach of using transparency to alleviate occlusion e.g. see
Sections 2 and 3.

The methods of van Wijk [vW93] and Westermann et al. [WJE00] concentrate on
deriving a scalar field from a vector field and then employing isosurface techniques to
represent the domain. Although these techniques provide good domain coverage, visual
clutter and occlusion can result. The projection of vector information onto a surface
by Laramee et al. [LGSH06], improves performance and perception of the flow local
to that surface, but the surface occlusion issue remains due to the nature of the image
space-based techniques, e.g. see Sections 2.4 and 3.4.
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Figure 2.2: The classifications of construction techniques illustrates a chronological
flow of work from author to author. The child parent relationships indicates the key
ideas that are progressed. The flow of work diverges and in some cases converges as
new concepts are built on top of previous ideas. The charts also show the originating
work, and where key work is continued.

A fairly common theme throughout the different surface types is the application of
additional visualisation techniques to enhance the surfaces. Parameter and image space-
based techniques are the main focus of these visualisations as they can provide effective
interactive solutions. Given a surface (it can be any type, as long as it is manifold) and
a vector field defined on it, the flow behaviour can be illustrated with the desired di-
mension of visual mapping, such as 0D (hedgehogs), 1D (streamlines), or 2D (textures).
This enables not only the direct display of the flow data in the Eulerian point of view,
or the visualisation of the behaviour of the selected particles in the Lagrangian point
of view, but also the complete (dense) image of the flow behaviour over the surfaces.
In addition, combined with other conventional visualisation techniques, such as colour
coding and animation, more complete flow information including both vector magnitude
and orientation, as well as the time varying characteristics, can be conveyed. The main
benefits and contributions of this survey survey are:

• A review of the latest research developments in flow visualisation with surfaces.
• A novel classification scheme based on challenges including; construction, render-

ing, occlusion, and perception. This scheme lends itself to an intuitive grouping
of papers that are naturally related to one another.
• The classification highlights both mature areas where many solutions have been

provided and unsolved problems.
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• A concise overview in the area of flow visualisation with surfaces for those who
are interested in the topic and wishing to carry out research in this area.

This report is divided into four main sections: First is a review of the surface con-
struction techniques in Section 2. Then a review of flow visualisation on surfaces in
Section 3. An analysis of the different subclassifications is conducted in Section 4 with
an emphasis on the initial seed or surface placement/generation, perception, visual clut-
ter and occlusion.

2 Constructing Surfaces For Flow Visualisation

This section discusses the different construction techniques reviewed in this Chapter.
Figure 2.2 shows a chronological flow of work from author to author. The child parent
relationships indicate the origin and evolution of key ideas. The work diverges as new
concepts are built on top of previous ideas.

We start this section with a discussion about flow data and associated challenges,
before moving on to the subclassification of primitive types used for the surface mesh
representations. Following this we study the range of surface construction techniques.
These are divided into Integral, Implicit, and Topological surface construction methods.

2.1 Steady State, Time Dependent and Large Complex Data

Early work focuses on processing steady state simulations which represent a static flow
field or single snapshots of flow in time. As the ability to process larger amounts of data
increases, the research into processing this data follows. Data sampling becomes denser,
the size of the simulation domain increases, and multiple time steps are incorporated and
processed. The structure of the data can be complex, incorporating a range of associated
scalar quantities representing range of additional attributes.

Velocity data is comprised of a set of x,y,z components for each sample point within
the data domain. For example a 3D steady state vector field vs(p) ∈ R3 where vs(p) =[
vx(x,y,z) vy(x,y,z) vz(x,y,z)

]
for p∈Ω, vs ∈R3 and Ω⊂R3, where Ω may be a 3D

regular, structured, unstructured or irregular grid. For unsteady flow we have a time de-
pendent vector field vt(pt) ∈ R3 where vt(pt) =

[
vx(x,y,z, t) vy(x,y,z, t) vz(x,y,z, t)

]
for pt ∈Ωt , vt ∈ R3 and Ωt ⊂ R4.

Our survey discusses work addressing the challenges of both steady and time depen-
dent data. In Table 2.1 we use an ’s’ suffix to the citation for techniques which process
steady state vector fields and a ’t’ suffix for techniques addressing time dependent data.
The trend of moving from steady state toward time dependent data can be observed in
the chronological classification of work.
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Figure 2.3: Visualisation of the flow field of a tornado with a point-based stream sur-
face. The stream surface is seeded along a straight line in the centre of the respective
image. Image courtesy of D.Weiskopf et al. [STWE07].

2.2 Point vs. Triangle vs. Quad-based Construction Techniques

OpenGL includes a basic set of primitive constructs exposed by the API. The primitives
are used in the construction of meshes which represent the scene to be rendered [Opeb].
Examining the subclassification of surface mesh construction techniques into point, tri-
angle, and quad-based methods yields some interesting insights into these approaches.
Point-based surfaces are generally simpler and faster to construct as they do not require
any mesh construction computation to represent a closed surface. This approach can
be limiting regarding rendering options. Rendering the vertices as simple point sprites,
disks, or spheres is effective for dense vertex representations, but gaps or inconsisten-
cies can appear when viewing in close proximity to the surface. Lighting can also be a
challenge with this technique as the methods available for normal calculation become
limited and increase computation. Another approach to rendering is using image-based
techniques which don’t explicitly require geometric primitives to render closed surfaces.

Schafhitzel et al. [STWE07] present a point-based stream and path surface algorithm
where the vertices for the surface representation are generated on the GPU. With a dense
output, each of the vertices and their normals are used to render a closed surface as small,
lit, point sprites, as in Figure 2.3. A texture-based closed surface rendering can also be
achieved using Line Integral Convolution (LIC) [CL93] performed in image space. With
a similar approach, Ferstl et al. [FBTW10] present a streak surface algorithm which has
a rendering option using spherical point sprites to represent a closed surface.

To represent a geometric mesh for rendering we must define how the mesh is con-
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structed. Of the two common methods for defining a mesh, one is defined by construct-
ing an array of vertices in the correct order for rendering the primitive. This approach can
hold redundant instances of the same vertices for a given mesh, with a larger memory
footprint and increased data traversing the graphics bus at the cost of valuable band-
width. In some simple surface construction implementations however this method can
be easier to implement.

A second approach to defining a mesh for rendering primitives is the utilisation of
an indexing array along with the array representing the vertices of the surface. An ad-
ditional index array specifies each vertex in the correct order to construct the geometric
primitive. In the context of surfaces the result of this approach is a much smaller data
array, but the addition of an index array. The index array can be compressed, depending
on the quantity of vertices, by using data types requiring less memory such as unsigned
characters or unsigned short integers instead of integers. This also significantly reduces
the graphics bandwidth.

Another constraint on implementations is the method used for constructing the data
and index arrays. The most common mesh primitive used is the triangle. This is the de-
fault for surface construction techniques such as isosurfaces as used by van Wijk [vW93]
and Westermann et al. [WJE00]. This is a byproduct of early graphics card support for
rendering triangles.

The most common approach for meshing integral surfaces with triangles is a greedy
minimal tiling strategy as described by Hultquist [Hul92]. Other approaches include;
additional processing for streak surfaces where the surface topology changes with time
as in the work by Krishnan et al. [KGJ09] as shown in Figure 2.4, and processing of
irregular grids such as tetrahedra as described by Scheuermann et al. [SBH∗01].

With advancing front integration techniques, a simple approach to generating a mesh
is the direct use of the quad patch represented by the bounding streamlines and time-
lines. This approach initially requires less computational expense, however dealing with
issues of sheering quads, t junctions and additional normal computations (one per quad
corner rather than one per triangle) can have a significant impact. Refer to Figure 2.5
and see McLoughlin et al. [MLZ09, MLZ10] and Schneider et al. [SWS09]. Peikert
and Sadlo [PS09] construct their surface geometry in an incremental manner advancing
from the initial curve structure attempting to avoiding the issue of quad sheering. The
algorithm by van Gelder et al. [Gel01] also lends itself to qua-based meshing due to the
connectivity of the curvilinear grids.

2.3 Integral Construction Techniques
In this subsection we present an overview of integral surface construction techniques.
This work is subdivided into stream/path, and streak/time surface construction algo-
rithms. The similarity between the stream and path surface construction provides a
natural classification for discussion in the next subsection. Following the review of
stream/path surfaces we then present a study of streak surface construction. The main
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Figure 2.4: Time surface mesh in the Ellipsoid dataset. Although the surface has
undergone strong deformation, the mesh remains in good condition. Image courtesy of
C.Garth et al. [KGJ09].

challenges addressed by the literature in this subsection are accurate surface construc-
tion, performance time, and continuous representations.

Stream/Path Surface Construction

A streamline is a curve which is tangent to the velocity field at every point along its
length. A Streamline is the trace of a massless particle from an initial location (seed
point). We define a massless particle as being infinitely small, having no kinetic energy,
but still subject to all frictional forces of the fluid, i.e., the particle exclusively follows
the fluid elements which it neighbours. Streamlines show the direction fluid flow within
a steady state flow domain. If v(p) is a three dimensional vector field, the streamline
through a point, p0, is the solution Is(p0, t) to the differential equation:

d
dt

Is(p0, t) = v(Is(p0, t)) (2.1)

where, in the case of a steady state flow field, t is time. The initial condition is I(p0,0) =
p0. The case of a static flow field is treated the same [GKT∗08]. A stream surface is
the trace of a one dimensional seeding curve, C, through the flow. The resulting surface
is everywhere tangent to the local flow. A stream surface, S, is defined by:

S(s, t) := Is(C(s), t) (2.2)

S is the union or continuum of integral curves passing through the seeding curve C.
S(s,−) coincides with an individual integral curve, and S(−, t) coincides with individual
time lines [GKT∗08].
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Figure 2.5: The algorithm by McLoughlin et al. [MLZ09] handles widely diverging
flow while maintaining the desired organised advancing front. This surface is coloured
according to the underlying flow characteristics: left rotation is mapped to yellow, right
rotation is mapped to orange, parallel flow is mapped to green, divergence is mapped to
blue, convergence is mapped to red. Image courtesy of R.S.Laramee et al. [MLZ09].

Since there is no normal component of the velocity along streamlines and stream
surfaces, mass cannot cross their boundary and therefore they are useful for separating
distinct regions of similar flow behaviour. In practical applications, a discretised ap-
proximation of the stream surface is constructed by tracing discretised seeding curves
through the vector field using integration methods such as the fourth-order Runge-Kutta
integration scheme.

Hultquist introduces one of the first methods [Hul92] for the generation of stream
surface approximations. This technique includes strategies for controlling the density of
particles across the advancing front. Points can be added to the advancing front when
the sampling rate becomes too sparse and removed when it becomes too dense. Neigh-
bouring pairs of streamlines are tiled with triangles to form ribbons. These connected
ribbons then form the surface. Ribbons which encounter rapid divergence of flow may
be torn/ripped to allow the surface to flow around an obstacle. The separate portions of
the surface are then computed independently. Hultquist builds on work by Belie [Bel87]
and Kerlick [Ker90] who describe narrow stream ribbon methods, and Schroeder et al.
[SVL91] who describe a stream primitive called the stream polygon.

Ueng et al. [USM96] expand the stream surface work to stream ribbons, stream
tubes, and streamlines on unstructured grids. The authors build on the stream polygons
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Figure 2.6: The formation of vortices at the apex of a delta wing illustrated with the
use of a stream surface. Image courtesy of C.Garth et al. [GTS∗04].

algorithm by Darmofal and Haimes [DH92], the research by Ma and Smith [MS93],
and the steam ribbons of Pagendarm [PW94]. This paper describes extending the tech-
niques to unstructured grids by converting the physical coordinate system to a canonical
coordinate system. The main idea is the use of a specialised fourth-order Runge-Kutta
integrator which requires only one matrix vector multiplication and one vector vector
addition to calculate the successive streamline vertices. This technique significantly
simplifies the construction of the geometric primitives, reducing the computational cost
and therefore improving speed.

Scheuermann et al. [SBH∗01] present a method of stream surface construction on
tetrahedral grids. The technique propagates the surface through the tetrahedral grid, one
tetrahedron at a time, calculating on the fly where the surface intersects the tetrahedron.
This approach enables the inclusion of topological information from the cells such as
singularities. When the surface passes through the tetrahedron, the curve segments end
points are traced as streamlines through the next cell. For each point on a streamline,
a line is added connecting it to its counterpoint. These are then clipped against the
faces of the tetrahedron cell and the result forms the boundary of a polygonal surface
within the cell. This method is inherently compatible with multi resolution grids and
handles increased grid resolution in intricate flow regions. This work is a significant im-
provement over the previous irregular grid work, improving surface construction within
complicated areas, typically of more interest in fluid dynamics.

Garth et al. [GTS∗04] improve on the Hultquist method and showed how to ob-
tain surfaces with higher accuracy in areas of intricate flow. See Figure 2.6. The im-
provements are achieved by employing arc length particle propagation and additional
curvature-based front refinement. They also considered visualisation options such as
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colour mapping of vector field related variables going beyond straightforward surface
rendering. A novel method to determine boundary surfaces of vortex cores and a scheme
for phenomenological extraction of vortex core lines using stream surfaces is discussed
and its accuracy is compared to one of the most established standard techniques.

Next we review the concept of a path surface. We start by describing a pathline. A
pathline or particle trace is the trajectory that a massless particle takes in time dependent
fluid flow. If v(p, t) is a three dimensional vector field for p in domain Ω ∈R3 and t in a
time interval [T0,T1] the pathline Ip(p0, t0; t) passing through p0 at time t0 is the solution
to the ordinary differential equation:

d
dt

Ip(p0, t0; t) = v(Ip(p0, t0; t), t) (2.3)

with the initial condition Ip(p0, t0; t0) = p0. A path surface is the trajectory of a massless
curve, C, in time dependent fluid flow. A path surface, P, is defined by:

P(s, t) := Ip(C(s), t0; t) (2.4)

Where P is the union or continuum of pathlines passing through the seeding curve, C, at
time t0. S(s,−) coincides with an individual integral curve, and S(−, t) coincides with
an individual timeline [GKT∗08]. The first example of this is the work by Schafhitzel
et al. [STWE07] who introduce a point-based algorithm for stream and path surface
construction and rendering.

Schafhitzel et al. combine and build on three specific areas: stream surface compu-
tation Hultquist [Hul92], rendering of point-based surfaces Zwicker et al. [ZPKG02],
and texture-based flow visualisation on surfaces (Weiskopf et al. [WE04]). The stream/-
path surface generation is modified to run on the GPU in a highly parallel fashion. Seed
points are generated and integrated through the vector field. To maintain a roughly even
density, integrated points along the advancing front are inserted and removed. The sur-
face rendering method is based on Point Set Surfaces (PSS) and is extended to include
stored connectivity information, this enables quick access to neighbouring points. The
authors’ approach to the hybrid object/image space LIC method displays clear line pat-
terns which show a choice of path lines.

More recently, Garth et al. [GKT∗08] replaced the advancing front paradigm by an
incremental time line approximation scheme. See Figure 2.7. This allows them to keep
particle integration localised in time. The authors propose a decoupling of the surface
geometry and graphical representation, and a curve refinement scheme which is used to
approximate time lines, yielding accurate path surfaces in large time dependent vector
fields.

Following recent work by Bachthaler and Weiskopf [BW08] who describe the use of
tracing structures perpendicular to the vector field to generate animated LIC patterns or-
thogonal to the flow direction, and work by Rosanwo et al. [RPH∗09] which introduces
dual streamline seeding based on streamlines orthogonal to the vector field, Palmerius
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et al. [PCY09] introduce the concept of perpendicular surfaces. These surfaces are
perpendicular to the underlying vector field.

The authors describe the common properties of such surfaces and discuss the issues
of non zero helicity density, and stop conditions. The construction method starts at a
predefined seed point propagating outwards in a clockwise spiral fashion where each
new point is integrated perpendicular to the flow field for a given distance. The stop
criteria are: length limit, accumulated winding angle limit, and maximum orientation
error as a result of vector fields with non zero helicity. Convergence or divergence is
characterised by cone shaped surfaces. A combination of both results are saddle shaped
surfaces. Vortices distort the surfaces by tearing them apart and producing a fan like
pattern. A fast approach for generating the surfaces and stop conditions is also described.

Extending the previous work by Garth et al [GKT∗08], Schneider et al. [SWS09]
produce a more accurate and smoother timeline interpolation using a fourth-order Her-
mite interpolation scheme when adjusting the advancing front density. The Hermite in-
terpolation between streamlines requires the covariant derivatives to be calculated with
respect to s (streamline) and t (timeline). An additional surface accuracy error criterion
is used to dictate when coarsening or refinement takes place. The error-based refinement
strategy splits a ribbon when the local interpolation error exceeds a given bound. This
error is estimated directly by seeding a new short streamline from a position between
neighbouring streamlines at time tn−1 integrating it to time tn.

Alternatively, McLoughlin et al. [MLZ09] describe a simple and fast CPU-based
method for creating accurate stream and path surfaces using quad primitives. The au-

Figure 2.7: Path surface visualisation of vortex shedding from an ellipsoid. The trans-
parent surface consists of 508,169 triangles. Different layers identified by colour map-
ping. Image courtesy of C.Garth et al. [GKT∗08]. c© IEEE/TVCG.
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Figure 2.8: 2D manifolds visualising the critical point of the Lorenz dynamical system.
Image courtesy of R.Peikert et al. [PS09].

thors propose a method which is based on a small set of simple, local operations per-
formed on quad primitives, requiring no global remeshing strategy. To handle divergent,
convergent, and rotational flow, the sampling rate of the advancing front is updated. The
quad is either divided (in areas of divergence) or collapsed (in areas of convergence). For
curvature, a test of the advancing front rotation is conducted. If true then the advancing
front integration step size is reduced by a factor dependent on the amount of rotation.

Using topology for the construction and placement of flow geometry, Peikert and
Sadlo present topology relevant methods for constructing seeding curves to produce
topologically-based stream surfaces [PS09]. The authors build on work by Garth et al.
[GTS∗04] expanding the notion of feature visualisation applying stream surfaces to a
range of singularities and periodic orbits. The discretised offset curves constructed at the
topological structures are used to initialise the stream surface propagation. See Figure
2.8. The authors construct their stream surface from quads which are divided in areas
of divergence to maintain a consistent mesh topology. This is achieved by subdividing
between neighbouring nodes with a cubic interpolant after tracing back a fixed number
of steps. The nodes of the mesh retain a number of attributes representing the flow field,
which are used for controlling the growth of the surface and texturing.

The work by Yan et al. [YMM10] proposes a number of surface surgery operations
during integration to reveal the fractal geometry (thin sheet rotating around and tending
to the attractors) of the strange attractors in 3D vector fields which previously were
difficult to visualise. Their method consists of three major steps. First a polygonal
surface is advected and deformed according to the vector field. This polygonal surface
is initialised as some regular shape, such as a torus, which neglects the fractal dimension
of the strange attractor. Second, due to the possible high distortion, the polygonal surface
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Figure 2.9: A stream surface in a linear vector field with highly diverging streamlines
where the angle criterion (130 degrees) for splitting the surface fails because the surface
does not run into the saddle. The red part of the surface would have been left out if the
angle criterion were to be used. Image courtesy of D.Schneider et al. [SRWS10].

may need refinement. In this step, a GPU-based adaptive subdivision (i.e. edge division)
of mesh is applied to preserve the necessary features. A mesh decimation on the CPU
may also be conducted to reduce the resolution of uninteresting portion of the surface
for memory efficiency. Third, a mesh retiling is performed to maintain the consistent
triangulation of the thin sheet structure when approaching the attractor and to correct
the self intersection artefacts. This method has shown its utility through examples with
strange attractors and is expected to apply to other integral surface computations.

Another extension to steam surface algorithms inspired by Peikert and Sadlo [PS09],
is the work by Schneider et al. [SRWS10] whose algorithm detects singularities within
the flow field and deals with them appropriately, rather than the current methods of
continuous refinement or splitting the surface. The authors use a preprocessing step
to generate the required topological information. The stream surface algorithm then
detects intersections with the separating two dimensional manifold of a saddle point.
The resulting surface will either follow a new direction appropriate to the local vector
field when encountering a node saddle (See Figure 2.9) or split when encountering a
spiral saddle.
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Streak/Time Surface Construction

The main challenges addressed by the methods presented here are computational time
and maintaining a continuous dynamic surface.

A streakline is the line joining a set of massless particles that have all been seeded
successively over time at the same spatial location in time dependent flow. Dye steadily
injected into the fluid at a fixed point extends along a streakline. If v is a three dimen-
sional vector field defined over a domain Ω ∈ R3 and time interval [T0,T1] to find the
streakline L(p,T0,T1;s) for particles seeded at p0, starting at time T0, as it appears at time
T1, we must solve separately the pathline equation for Ip(p0, t0; t) for each t0 ∈ [T0,T1],
and then let L(p,T0,T1;s) = Ip(p0,T1− s;s), for s ∈ [0,T1−T0]. If seeded at the same
location in a steady state flow field streamlines, pathlines and streaklines are identical.

A streak surface is the smooth union of streaklines from seeding locations along
a continuous curve, C. A streak surface, K, is the union of all particles emanating
continuously from a parametrised curve, C(u), over time interval [t0, t1] and moving
with the flow from the time of seeding t. In terms of individual streaklines it can be
described as:

K(u,T0,T1; t) := L(C(u),T0,T1; t) (2.5)

Introducing the first streak surface approximation, Von Funck et al. [vFWTS08b]
represent smoke structures as a triangular mesh of fixed topology, connectivity and res-
olution. The transparency of each triangle is represented by α where:

α = αdensity αshape αcurvature α f ade (2.6)

The density component αdensity is a representation of the smoke optical model by consid-
ering the triangle primitive to be a small prism filled with smoke. The shape component
αshape of the triangle is defined as the ratio of its shortest edge to the radius of its cir-
cumcircle and represents its distortion. The curvature αcurvature is represented by the
local mean surface curvature. The fade α f ade is defined as an increase in transparency
over time. To effectively render the transparency at real time frame rates a depth peel-
ing algorithm is utilised. The authors demonstrate modifications to the algorithm to
mimic smoke nozzles and wool tufts. This technique is the first step in generating streak
surfaces, and addresses the occlusion issues associated with complex flow structures
represented by surfaces.

Focusing on performance of large, time varying vector fields, Krishnan et al. [KGJ09]
propose a method for time and streak surface generation. Their approach enables par-
allelisation by decoupling the surface advection and surface refinement. The authors
build on work by Von Funck [vFWTS08b] with extensions to time surfaces while paral-
lelising the pipeline and improving the meshing scheme using techniques described by
Bridson [Bri03]. This paper describes the algorithm with respect to time surfaces and
then explores the extension to streak surfaces. A time surface is generated in two steps.
First each point of the initial surface mesh is advected over the next time interval. The
mesh is then passed to the adaptation phase where three basic operations, edge split,
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Figure 2.10: The visualisation of a transparent streak surface rendered using depth
peeling and generated on the GPU. Image courtesy of H.Theisel et al. [BFTW09]. c©
IEEE/TVCG.

edge flip, and edge collapse are applied to refine the surface. To prevent irreparable
changes to the mesh, the integration time step is automatically chosen requiring that no
vertex moves further from its current position than a predetermined function of maxi-
mum velocity. Streak surface evolution is refined using a similar approach accounting
for the new particles seeded continuously from the seeding curve. The surface visual-
isation uses a combination of texture mapping, lighting effects, and depth peeling for
transparency. The use of these effects helps with occlusion and depth perception.

Continuing in the same theme, Burger et al. [BFTW09] describe two methods of
streak surface construction for the visualisation of unsteady flow. Building on work
by Von Funck et al. [vFWTS08b] the authors present the first real time approach for
adaptive streak surface integration and high quality rendering. See Figure 2.10. The
first approach computes a quad-based surface where each quad patch is independent of
all others. This independence enables parallel processing and rendering of each patch
on the GPU. The refinement of these patches is performed independently and is based
on an area criterion. If the criterion threshold is met the quad patch is split along the
longest edge and its opposite edge, forming two new independent patches. The patches
are rendered directly from the vertex buffer using a two pass approach to fill gaps left by
the refinement process.

The second approach computes a point-based interconnecting triangular mesh which
is modified during the refinement process. Each advected timeline is stored in its own
vertex buffer in order, and refined in every time step. The refinement process is com-
pleted in three passes: time line refinement, connectivity update, streak line refinement.
When inserting points the location is determined by fitting a cubic polynomial and bi-
secting it equally between the two diverging points. The connectivity of the mesh is
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Figure 2.11: Particle-based surface visualisation. Red particles correspond to points
on the separating surface. Green particles serve as context information. They corre-
spond to points on time surfaces, which are released from the planar probe at a fixed
frequency. Image courtesy of H.Theisel et al. [FBTW10]. c© IEEE/TVCG.

then updated by searching the previous and next timelines for any given point’s nearest
neighbour. The third pass computes the maximum Euclidean distance between neigh-
bouring timelines. The complete timeline is then added or removed. The mesh is then
rendered after a final pass computes the mesh triangulation.

Extending their work on quad-based stream and path surfaces, McLoughlin et al.
[MLZ10] present a novel streak surface algorithm using quad primitives. The refinement
of the surface is achieved by performing local operations on a quad by quad basis. Quads
may be split or merged to maintain sufficient sampling in regions of divergence and
convergence. Shear flow is handled by updating the topology of the mesh to maintain
fairly regular quads. This method is designed for and implemented on the CPU and
generally achieves interactive frame rates.

Following the collection of works which define methods for streak surface construc-
tion, Ferstl et al. [FBTW10] introduce real time construction and rendering of surfaces,
which represent Lagrangian Coherent Structures (LCS), in conjunction with the render-
ing of the streak surface particles. See Figure 2.11. This technique interactively displays
the separation surfaces leading to new possibilities of studying complex flow phenom-
ena. The user can interactively change the seeding parameters, and visually display the
separation surfaces, resulting in a visually guided exploration of separation surfaces in
3D time dependent vector fields.

LCS are computed by extracting the ridges in the finite time Lyapunov exponent
(FTLE) field. The paper builds on the work by Sadlo and Peikert [SP07] who describe
a filtered ridge extraction technique based on adaptive mesh refinement. The method
enables a substantial speed up by avoiding the seeding of trajectories in regions where
no ridges are present or do not satisfy the prescribed filter criteria such as a minimum
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finite Lyapunov exponent.
The finite time Lyapunov exponent (FTLE) [Hal01] quantifies the local of separation

behaviour of the flow. It is used to measure the rate of separation of infinitesimally close
flow trajectories. The pathline solution p = Ip(p0, t0; t) of Section 2.3 for fixed times t0
and t can be considered as a flow map from a position p0 to the pathline position p where
it is advected by the flow at time t. Using the flow map, the Cauchy Green deformation
tensor field, Ct

t0 is obtained by left multiplying the Jacobian matrix of the flow map with
its transpose [Mas99]:

Ct
t0(p) =

[
∂ (p0, t0; t)

∂ (p0)

]T [
∂ (p0, t0; t)

∂ (p0)

]
(2.7)

From this, the FTLE is computed by:

FTLEt
t0(p) =

1
t− t0

ln
√

λmax(Ct
t0(p)) (2.8)

where λmax(M) is the maximum eigenvalue of matrix M [Hal01].
FTLE requires the choice of a temporal window, the effect of a change in the time

window length has not been studied sufficiently [PPF∗10]. A common use of FTLE is to
extract Lagrangian Coherent Structures (LCS). LCS are extracted from an FTLE field
by ridge extraction [SP07].

Figure 2.12: Dense flow fields are first converted into a scalar field, and then displayed
and analysed by means of level sets in this field. Image courtesy of R.Westermann et
al. [WJE00].
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2.4 Implicit Construction Techniques

This section reviews a set of surface construction techniques which are described by
solving some function of the underlying flow field. The motivation for this type of
technique include avoiding compound error associated with integration schemes and
meshing challenges resulting from convergent, divergent and shear flow. The work in
this area is limited to stream surface representations in steady state velocity data.

van Wijk [vW93] introduces a method for the global representation of the stream
surfaces as implicit surfaces f (p) = C. Once f is defined at the boundary, the defini-
tion is then extended to the interior of the domain by specifying that it is constant on
streamlines. C can be varied to efficiently generate a family of stream surfaces. The
originating curves are defined at the boundary by the value of f . This method greatly
differs from the advancing front methods introduced by Hultquist [Hul92]. Two meth-
ods are presented to derive f ; The first is based on solving the convection equations, and
the second is based on backward tracing trajectories from grid points. The 3D stream
function defines a scalar field from which traditional isosurface extraction techniques
are then used to create the stream surfaces.

Taking this concept a step further, Westermann et al. [WJE00] present a technique
for converting a vector field to a scalar level set representation. See Figure 2.12. An
analysis of the subsequent distorted level set representation of time surfaces is conducted
before combining geometrical and topological considerations to derive a multi scale
representation. This is implemented with the automatic placement of a sparse set of
graphical primitives, depicting homogeneous streams within the fields. The final step
is to visualise the scalar field with iso surfaces. The advantage of this technique is
full domain coverage as the van Wijk [vW93] method constructs surfaces only where
intersections with the boundaries occur.

With a different approach van Gelder. [Gel01] introduce a semi global method which
does not suffer from the compound error from integral surface generation or computa-
tional overhead and error seen in the global approaches. Stream surfaces are constructed
on 3D curvilinear grids which satisfy the constraints of a region expressed as integrals,
instead of solving a local ordinary differential equation. The constraints are expressed as
a series of solvable quadratic minimisation problems. The solution exploits the fact that
the matrix of each quadratic form is tridiagonal and symmetric. The author describes
the transformation of the curvilinear grid into parameter space to simplify the stream
surface construction problem.

2.5 Topological Surface Construction Techniques

The challenge of topology-based methods is to separate or segment the flow into areas
of similar behaviour. As part of this process singularities and separatrices are extracted
from the flow field. In steady state flow the separatrices are stream surfaces. The topo-
logical structures can also useful for supporting other flow visualisation methods, and is
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Figure 2.13: Topological skeleton showing saddle connectors, singularities and bound-
ary switch connectors. Image courtesy of H.Theisel et al. [WTHS04].

the inspiration for techniques is this section.
Theisel et al. [TWHS03] present an approach for constructing saddle connectors in

place of separating stream surfaces is a significant effort to help alleviate occlusion. A
saddle connector is a streamline which connects two saddle points. Building on work
by Theisel and Seidel [TS03] the authors apply saddle connectors in three dimensions.
This work is extended by Weinkauf et al. [WTHS04] who introduce the concept of
separating surfaces originating from boundary switch curves. A boundary switch curve
is a curve generated at the domain boundary where inflow changes to outflow or vice
versa e.g., flow is parallel with the boundary surface. This is achieved by joining saddle
points to boundary switch curves, or between each other, using a type of streamline
called boundary switch connectors. The idea of using streamline connectors in place of
separating surfaces reduces visual clutter as can be seen in Figure 2.13.

Inspired by Theisel and Seidel’s work on tracking features in 2D [TS03], Theisel et
al. [TSW∗05] introduce a method for visualising the propagation of vortex core lines
over time. The contextual surfaces are shown emanating from the vortex core lines in
Figure 2.14. Two 4D vector fields are computed which act as feature flow fields such
that their integration surfaces (e.g. stream surfaces) provide the vortex core structures.
The feature flow field is equivalent to the parallel vector (PV) approaches by Peikert
and Roth [PR99]. In addition, this work describes a method to extract and classify local
bifurcations of vortex core lines in space time through the tracking and analysis of PV
lines in the feature flow field.

Avoiding the integration of hyperbolic trajectories by replacing them with intersec-
tions of LCS while utilising LIC to reveal the tangential dynamics, Bachthaler et al.
[BSDW12] stack 2D vector fields according to time to generate a 3D space time vector
field. The LCS ridge structures are computed from an FTLE scalar field generated in
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Figure 2.14: Time surfaces shown as contextual information emanating from the visu-
alised vortex core lines. Image courtesy of H.Theisel et al. [TSW∗05].

three dimensions. The hyperbolic trajectories are mapped to saturation. Visualising the
LCS dynamics the authors apply the method described by Weiskopf et al. [WE04]. To
address the problem of occlusion in the space time visualisation of the LCS, the paper
describes restricting the visualisation to bands around the LCS intersection curves. The
authors adopt the concept of hyperbolic trajectories and space time streak manifolds.

3 Rendering Flow on Surfaces for Visualisation
This section presents a survey of techniques that enhance the rendering and visualisation
of surfaces used for flow visualisation. Figure 2.15 show a chronological flow of tech-
niques demonstrating the child parent relationships and key ideas that are progressed.
The charts also show the originating work, and where key work is continued.

We start this section with a discussion about the conceptual differences of Parameter
Space and Image Space techniques. We then examine the rendering techniques. The
techniques in this section are classified into Direct, Geometric and Texture-based. The
texture-based subsection is further divided into static and dynamic type textures.

3.1 Parameter Space and Image Space Techniques

One approach to applying texture properties on surfaces is via the use of a parametrisa-
tion. Applying textures to surfaces becomes particularly suitable when the whole surface
can be parametrised globally in two dimensions as shown by Forssell and Cohen [FC95].
The drawbacks with this approach include challenges such as distorted textures as a re-
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Figure 2.15: This classification of rendering techniques show a chronological flow of
work from author to author. The child parent relationships indicates the key ideas that
are progressed. The flow of work diverges and in some cases converge as new concepts
are built on top of previous ideas. The charts also show the originating work, and where
key work is continued.

sult of the mapping between object space and parameter space. A global parametrisation
for many types of surface is not available such as isosurfaces generated from marching
cubes algorithms.

A more recent approach is the use of image space techniques to accelerate compu-
tation. The general approach is to project the surface geometry to image space and then
apply a series of image space techniques. These techniques can range from advecting
dense noise textures [LJH03] to rendering attributes from the underlying data to the sur-
face such as streamlines [SLCZ09], or illustrating various perceptual attributes of the
surface such as silhouette edge highlighting [HGH∗10].

3.2 Direct Rendering Techniques
Direct visualisation techniques are the most primitive methods of flow visualisation.
Typical examples involve placing an arrow glyph at each sample point in the domain to
represent the vector data or mapping to some scalar attribute of the local vector field.
Direct techniques are simpler to implement and enable direct investigation of the flow
field. However, these techniques may suffer from visual complexity and imagery that
lacks in visual coherency. They can also suffer from serious occlusion problems when
applied to 3D datasets. This idea provides motivation for the work classified in this
section.
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Extending the direct visualisation paradigm, combining it with clustering techniques
and utilising image space methods, Peng and Laramee introduce a glyph placement tech-
nique performed in image space which visualises boundary flow [PL08]. This concept
builds on work by Laramee et al. [LvWJH04] by projecting the visible vector field from
object space to image space, then generating evenly spaced glyphs on a regular grid.
The glyphs are a clustered approximation of the underlying vector field mesh resolu-
tion. Calculated on the fly, this algorithm is efficient and can handle large unstructured,
adaptive resolution meshes.

Following their previous image space work [PL08], Peng et al. [PGL∗12] present
a novel, robust, automatic vector field clustering algorithm that produces intuitive im-
ages of vector fields on large, unstructured, adaptive resolution boundary meshes from
CFD. Their bottom up, hierarchical approach is the first to combine the properties of the
underlying vector field and mesh into a unified error driven representation. See Figure
2.16. Clusters are generated automatically, so no surface parametrisation is required,
and large meshes are processed efficiently. Users can interactively control the level of
detail by adjusting a range of clustering distance measures. This work also introduces
novel visualisations of clusters inspired by statistical methods.

Figure 2.16: The combination of velocity range glyphs (Disk glyph) and streamlet tubes
(Arrow glyph) is applied to provide both detailed (the range glyph) and summary (the
streamlet) information of the vector field direction. Image courtesy of R.S.Laramee et
al. [PGL∗12].
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Figure 2.17: Stream arrows offset from a stream surface. The portion offset leaves
holes, reducing occlusion by the surface. Image courtesy of H.Hauser et al. [LMG97].

3.3 Geometric Illustration Techniques
In this section we study a range of geometric illustration techniques. The purpose of il-
lustrative techniques is to enhance the often complex surface representations commonly
found in flow data. A general solution to this problem is to use transparency. With sur-
faces we have additional options. Surface primitives have well defined normals thus they
can offer perceptual advantages including: lighting and shading which provide intuitive
depth cues, the ability to texture map, image space techniques such as silhouette edge
highlighting and the placement of additional geometry on the surface.

Löffelmann et al. [LMGP97] introduce methods for placing arrow images on a
stream surface using a regular tiling, and offsetting portions of the surface, leaving ar-
row shaped holes which alleviate occlusion. The authors are inspired by Shaw’s [AS92]
artistic approach to the use of stream surfaces to help with occlusion within the dy-
namical systems. The authors extend this work as their method provides unsatisfactory
results in areas of divergence and convergence [LMG97]. The arrows could become too
small or too large to provide quality stream surface visualisations. The proposed novel
enhancement is a hierarchical approach which stores a stack of scaled stream arrows as
textures applying the suitably scaled arrow to the surfaces maintaining consistent pro-
portionality. See Figure 2.17.

Weiskopf and Hauser [WH06] explore a Graphics Processing Unit (GPU) based
shading method for the evaluation and visualisation of surface shapes. Cycle shading
and hatched cycle shading methods extend the idea of natural surface highlights in a
regular repeating pattern. This technique can be used where Phong illumination is ap-
propriate as curvature or mesh connectivity information is not required. To reduce depth
induced aliasing an approach similar to Mip Mapping is introduced. The effectiveness
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of cycle shading for the assessment of surface quality is demonstrated by a user study.
Image-based streamline seeding on surfaces by Spencer et al. [SLCZ09] utilise

the perceptual properties of surfaces by displaying the local vector field as as evenly
spaced streamlines [JL97], while maintaining lighting, shading and other useful depth
cues. This image-based approach is efficient, handles complex data formats, and is fast.
The evenly spaced streamlines are produced by scanning the image, checking the depth
buffer value of the fragments, and initialising the seeding where the fragment depth is
non zero (i.e., the fragment is part of some object in the field of view) and no other
streamline is closer than the user specified minimum distance.

The illustration of stream surfaces is explored by Born et al. [BWF∗10] who are
inspired by traditional flow illustrations drawn by Dallmann, Abraham and Shaw in the
early 1980’s. The authors describe techniques for silhouettes and feature lines, halfton-
ing, illustrative surface streamlines, cuts, and slabs to visually describe the surface shape.
User interactive exploration with these techniques allows insight into the inner flow
structures of the data. Implemented on the GPU, this work requires no preprocessing for
the final visualisations.

Further exploration of illustration techniques is performed by Hummel et al. [HGH∗10]
who present a novel application of non photorealistic rendering methods to the visual-
isation of integral surfaces. See Figure 2.18. The paper examines how transparency
and texturing techniques can be applied to surface geometry to enhance the users per-
ception of shape and direction. They describe angle, normal variation, window and
silhouette transparencies with adaptive pattern texturing. The authors present this work

Figure 2.18: Illustrative techniques applied to a stream surface. This technique shows
windowed transparency and two sided surface colouring. Image courtesy of C.Garth et
al. [HGH∗10].
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in a combined rendering pipeline implemented on the GPU. This maintains interactivity
and removes the need for expensive surface processing to generate the visualisations.

3.4 Texture-based Techniques
In this subsection we present an overview of texture-based visualisation algorithms. This
work is subdivided into Static Texture and Dynamic Texture techniques. Dense texture-
based techniques exploit textures to display a representation of the flow and avoid the
seeding challenges. The general approach uses a texture with a filtered noise pattern
which is smeared and stretched according to the local velocity field. Texture-based
approaches provide dense visualisation results, show intricate detail, and capture the
characteristics of the flow even in complex areas of flow such as vortices, sources, and
sinks.

With standard spot noise, a texture [vW91] can be characterised by a scalar function
f (x). A spot noise texture is defined as:

f (x) = ∑aih(x− xi) (2.9)

in which h(x) is called the spot function. It is a function everywhere zero except for an
area that is small compared to the texture size. ai is a random scaling factor with a zero
mean, xi is a random position. In non mathematical terms: spots of random intensity are
drawn and blended together on random positions on a plane.

Static Texture

The concept of the static texture in the context of dense texture-based methods refers
to the non animation of the flow in the final visualisation. Although the images are
static in nature the algorithms can be applied to both steady state or time dependent flow
data. One of the early examples of this classification of techniques is presented by de
Leeuw and van Wijk, who first use the basic textured spot noise principle for visualising
vector fields on surfaces and steady flow [dLvW95]. The authors build on work by
van Wijk [vW91] extending it in four main areas; using a parametrised stream surface
to deform the spot polygon adapting it to the shape of the local velocity field, using a
negative Gaussian high pass filter to remove the low frequency components of the spot
noise textures, using the graphics hardware to conduct a series of transformations of the
matrix stack, normally used for the viewing pipeline, for improved interactive animation,
and synthesising spot noise on highly irregular grids by predistorting the spots in texture
space.

Extending the original LIC (Line Integral Convolution) method [CL93] to the visual-
isation of flows on curvilinear surfaces, Forssell and Cohen [FC95] introduce a technique
to visualise vector magnitude (velocity) as variable speed flow animation. In order to
extend LIC to a parametrised surface the surface geometry and related vector field infor-
mation is mapped to parameter space. The LIC image in parameter space is computed
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and mapped back onto the physical surface through an inverse mapping. The new vi-
sualisation takes into account the vector magnitudes by varying the speed of the phase
shift in the animation, and handles unsteady flow by conducting convolution along the
pathlines instead of streamlines. However, the direct convolution following the pathlines
of the particles can lead to visual ambiguity since the forward and backward pathlines
through a pixel need not match.

Mao et al. [MKFI97] extend the original LIC method by applying it to surfaces
represented by arbitrary grids in 3D. Former LIC methods targeted at surfaces were
restricted to structured grids [For94], [FC95], [SJM96]. Also, mapping a computed 2D
LIC texture to a curvilinear grid may introduce distortions in the texture. The authors
propose solutions to overcome these limitations. The principle behind their algorithm
relies on solid texturing [Pea85]. The convolution of a 3D white noise image, with
filter kernels defined along the local streamlines, is performed only at visible ray surface
intersections.

Battke et al. [BSH97] introduce a fast LIC technique for surfaces in 3D space. In-
stead of using 2D global parametrisation, which is limited to curvilinear surfaces, the
authors propose a 3D local parametrisation scheme. In this way multiple interconnected
surfaces can be handled. An initial tessellation of the surface is conducted and local Eu-
clidean texture coordinates are defined for each triangle. LIC textures are then computed
by projecting a locally scaled vector field onto each planar triangle. To ensure a smooth
transition across the tessellated surface, streamlines are followed across neighbouring
triangles, which results in a smooth textured surface. The textures are packed efficiently
into texture memory by arranging similar patches in rows and then proceeding using a
greedy algorithm. The result is a smooth interactive visualisation of LIC on surfaces in
3D flow.

Shen et al. [SK98] further improve [FC95] by elimination of the artefacts caused
by the ambiguity of backward and forward convolution of flow pathlines. This enables
the visualisation of unsteady flow on surfaces. In order to achieve this a time accurate
scattering scheme, compared to the gathering scheme in the original LIC, is used to
model the texture advection. More specifically, every pixel in the image space "scatters"
its colour value to its neighbours following the pathline of the particle at the centre of the
pixel in a small time step. The resulting colour for each pixel is the weighted sum of all
the contributions from its neighbours by considering their ages. In order to maintain the
temporal coherence, this method uses the previous result as input for the next iteration.
To improve the performance a parallel framework is also discussed.

Weiskopf [Wei07] introduces iterative twofold convolution as an efficient high qual-
ity two stage filtering method for dense texture-based vector field visualisation. The first
stage applies a Lagrangian particle tracing-based user specified compact filter kernel.
The second stage applies iterative alpha blending for large scale exponential filtering. A
discussion of sampling rates demonstrates this order of convolution operations facilitates
large integration step sizes. Twofold convolution can be applied to steady and unsteady
vector fields, dye and noise advection, and surfaces. This work has the potential to be
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incorporated in existing GPU-based 3D vector field visualisation methods.
Palacios et al. [PZ10] advance techniques which illustrate flow on surfaces. The

authors present an algorithm for the visualisation of N way rotationally symmetric fields
(N−RoSy) on 2D planes and surfaces. The basic idea is to decompose the N−RoSy
field into multiple distinct vector fields. Together these decomposed vector fields capture
all N directions at each point. The LIC method is then adopted to compute a flow image
for each vector field. These flow images are blended to obtain the final result. A simple
probability model-based on the correction of normally distributed random variables is
applied to compensate for the loss of contrast caused by the blending of images. This
algorithm is easily extended to surfaces with an additional transformation to combat the
artefacts caused by the perspective difference of the N direction vectors on the tangent
plane and the view plane, respectively.

Dynamic Texture

Dynamic textures in the context of dense texture-based methods refers to the animation
of the flow in the final visualisation. The technique generally known as texture advection
is applied to steady state and time dependent flow data. The main challenges of the
literature addressed here are computational time and visualisation of unsteady flow.

Laramee et al. [LJH03] and van Wijk [vW03] present new methods for the synthe-
sis of dense textures on surfaces, bringing the concept into the realms of interactivity.
These techniques follow previous work in this area in which van Wijk presents a method
for producing animated textures for the visualisation of 2D vector fields [vW02] along

Figure 2.19: A side view of the surface of a 221K polygonal intake port mesh. The vi-
sualisation shows ISA applied to the flow simulation data. Colour is mapped to velocity.
Image courtesy of R.S.Laramee et al. [LvWJH04].
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with methods by Jobard et al. [JEH01]. This technique uses a different order of visual-
isation operations than traditional work. The surface geometry and related vector field
information are projected to image space where the texturing is then applied.

Following this work, Laramee et al. [LvWJH04] perform a comparative analysis
of two techniques: Image Space Advection (ISA) [LJH03], and Image-Based Flow Vi-
sualisation for Surfaces (IBFVS) [vW03]. The authors discuss the best application of
each technique, explaining that IBFVS is a good choice where the pixel to polygon ra-
tio in image space is high, and the ISA technique is better for larger meshes in which
many polygons may cover a single pixel or where there are many occluded polygons,
see Figure 2.19.

Laramee et al. [LSH04] then extend current texture advection techniques to present
a novel hybrid method in which a dense texture-based flow representation is applied
directly to isosurfaces. The authors build on work by van Wijk et al. [vW03] and
Laramee et al. [LJH03] whose methods are suitable for the visualisation of unsteady
flow on surfaces. This paper addresses issues associated with applying texture advection
to isosurfaces where there may be a component of the velocity that is normal to the
surface, the perceptual challenges such as occlusion, and issues related to resampling
of the 3D vector field to 2D image space. The authors use a normal mask to dim areas
of flow which have strong cross flow components at the isosurface, and use a clipping
plane to remove subsets of the geometry to help reduce occlusion.

The proposed texture advection technique by Weiskopf and Ertl [WE04] depends
on Lagrangian particle tracing, which is simultaneously computed in object space and
in image space. This approach builds on previous texture advection work, introducing
frame to frame coherence when the camera position is changed. The input noise is
modelled as a 3D texture which is scaled appropriately in object space. The authors
propose different colour schemes to improve the visualisation of shape and flow. This
technique is implemented on the GPU and supports interactive visualisation.

Studying the application of image-based techniques, Laramee et al. [LWSH04] vi-
sualise the flow characteristics of the cycle of an engine cylinder, focusing on swirl and
tumble motions. A variety of techniques are demonstrated including isosurfaces en-
hanced with an image-based technique. As another application of visualisation of auto-
motive CFD simulations, Laramee et al. [LGD∗05] analyse fluid flow within an engine
cooling jacket. Again, a variety of visualisation methods are demonstrated including
surface-based methods such as stream surfaces and isosurfaces.

Presenting a new extension to previous work by Laramee et al. [LSH04] and Garth et
al. [GTS∗04], Laramee et al. [LGSH06] propose a hybrid method where a dense texture-
based flow representation is applied directly to stream surfaces. This conveys features of
the flow that otherwise would not be seen using stream surfaces alone. Texture advection
applied to stream surfaces avoids issues inherent with isosurfaces such as flow normal
to the surface.

Modifying the texture advection approach by [WE04] to run on a highly parallelis-
ing GPU cluster, Bachthaler et al. [BSWE06] introduce an algorithm which is scalable
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according to the number of the cluster nodes. The authors employ a sort first strategy
with image space decomposition for LIC workload distribution. A sort last approach
with an object space partitioning of the vector field increases the amount of available
GPU memory. This work addresses the challenges of memory accesses locality caused
by particle tracing, dynamic load balancing to support view changes, and combining im-
age space and object space decomposition. For future work, parallel rendering could be
extended to the projection of the surface geometry itself in order to visualise extremely
large surface meshes.

Li et al. [LTWH08] propose a global texture advection and synthesis method for flow
visualisation on surfaces. It solves the problem of inconsistent texture correspondence
between visible and invisible parts of surfaces in image-based approaches. In order to
achieve such global continuous texturing of flow, surfaces are firstly segmented into
patches and parametrised. These patches are then overlapped by a small extent with
adjacent ones and packed into a uniform texture space. Next, a 2D dense texture-based
flow visualisation technique [LHD∗04] such as Graphics Processing Unit Line Integral
Convolution (GPULIC) or Unsteady Flow Advection Convolution (UFAC) is employed
to synthesise the flow texture in texture space. The overlapping patches guarantee texture
continuity across their discontinuous borders. The synthetic flow texture is mapped to
the surface, compositing the overlapping regions to avoid artefacts in texture patterns
caused by inconsistent partial particle traces.

4 Discussion and Analysis

No individual approach provides techniques for all problems or phenomena. The most
suitable technique depends on several factors such as the purpose of the visualisation;
presentation, detailed analysis, or exploration, and the interest of the analyst or engineer
studying the data. This survey provides a study of a variety of techniques and approaches
to cater for most eventualities when studying 3D vector field simulations. However,
there are some topics of study which could potentially benefit from further examination,
experiment, and verification. We summarise and discuss these challenges. Some of
these challenges are more general, while others are specific to this survey.

• Visualising Error and Uncertainty.
• Implicit/Topological/Direct Techniques for Unsteady Flow.
• Interactive Construction and Rendering of Time surfaces.
• Large, Unstructured, Time Dependent CFD Data.
• Perceptual Challenges.
• Information Content.
• Human Centred Evaluation of Flow Visualisation Techniques.
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Visualising Error and Uncertainty: The numerical integration of particle trajectories
sampled using a piecewise interpolation of the underlying data introduces an accumula-
tive error. This error is often overlooked or misunderstood [Hul92] described in section
1.1. Another source of error is the sampling density of the advancing front. If an in-
sufficient density is maintained then the surface may fold or become excessively coarse
producing inaccurate surface representations. The difficulty in determining the correct
splitting conditions, allowing the surface trajectory to split around some boundary or
critical point, is also a potential source of inaccurate representations of the flow. Distor-
tion of the meshing techniques as described by McLoughlin at al. [MLZ10], [MLZ09],
regarding distortion of non planar quads, distortion of triangles in highly diverging flow
regions or areas of high shear strain between adjacent time lines according to Berger et
al. [BFTW09], and the visual representation of the point strategy by Schafhitzel et al.
[STWE07], are areas of future work which should be examined. The current visualisa-
tions computed with these error prone methods could lead to misleading information.
Therefore, a possible future work path is to develop proper techniques to visualise these
different types of uncertainty.

Implicit/Topological/Direct Techniques for Unsteady Flow: The work by van Wijk
[vW93], Westermann et al. [WJE00], and van Gelder [Gel01] focuses on implicitly vi-
sualising some scalar function of the underlying flow field. Section 2.4 provides more
detail. This approach avoids the numerical integration error, refinement schemes, and
user defined thresholds and parameters. However, these techniques do raise new chal-
lenges such as higher dimensionality e.g., temporal data, and resolving areas of highly
turbulent flow are problems which still remain unsolved.

The work by Theisel et al. [TWHS03] and Weinkauf et al. [WTHS04] use topo-
logical constructs to generate visualisations of separatrices, and singularities within the
domain. These techniques are applied only to steady state flow data. Theisel et al.
[TSW∗05] make the step into temporal data. Ferstl et al. [FBTW10] describe fuzzy
ridge structures undergoing frequent topology changes with the FTLE in turbulent areas
of flow, which may cause visual clutter, providing scope for future work.

The direct methods by Peng et al. [PL08] [PGL∗12] deal with unstructured meshes,
with challenges arising from both the resampling computational performance and per-
ceptual issues. Future work includes the investigation of different measures for the
derivation of mesh resolution, and there is great scope to extend this work to tempo-
ral data.

Interactive Construction and Rendering of Time surfaces: There has been little
work studying the challenge of time surfaces in time dependent flow with the excep-
tion of Krishnan et al. [KGJ09] (Section 2.3). This work handles the test cases well,
maintaining a well formed mesh. A study of extending this work to scalable parallel
environments, demonstrated on a wider range of flow types e.g., highly rotational flow,
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could be conducted with a focus on representation error compared to the ground truth
case.

Born et al. [BWF∗10] and Hummel et al. [HGH∗10] extend the use of image space
and GPU technologies to significantly enhance the geometric structure of surfaces, while
representing attributes of the vector field to improve the perception of flow characteris-
tics. Extending these algorithms to dynamic surfaces such as streak and time surfaces
is an area of work yet to be studied in depth. Visualising flow characteristics on the
constantly changing surface geometry, which is not necessarily tangential with the un-
derlying vector field, is one such challenge.

Large, Unstructured, Time Dependent Grids: A significant effort has gone into the
study of processing large, unstructured data [USM96] [SBH∗01] while more recently the
focus has shifted towards studying highly parallel GPU-based implementations along
with utilisation of scalable GPU-based technologies [BSWE06]. With the introduction
of advanced GPU technologies an examination of techniques with a focus on parallelisa-
tion has occurred with the introduction of new challenges. With modifications required
to particle tracing methods [STWE07], restrictions regarding triangulation techniques
[BFTW09], and scalability are all important topics for further parallel/GPU-based re-
search.

Perceptual Challenges: Rendering too many surfaces causes perceptual problems
such as occlusion and visual complexity. Garth et al. [GTS∗04] showed the placement of
stream surfaces is important in the reduction of visual clutter. See section 2 for more on
this. Effective and efficient placement strategies not only for static, but for dynamic data
are areas of work which require significant study. The topological constructs available in
steady flow can easily disappear in dynamic flow. Therefore, a consideration of the time
period would likely be necessary. The work on topology aware seeding is an excellent
starting point along this direction [PS09, SRWS10]. One possible next goal for this area
of research to develop a knowledge assisted seeding strategy for better extracting more
informative integral surfaces.

Information Content: Mapping glyphs to surfaces annotating some feature of the
flow, or enabling users to switch between different visual cues, are interesting directions
of future work [BWF∗10]. For example, Palacios et al. [PZ10] highlight possible future
work investigating efficient contrast adjustment when LIC noise images are not grey
scale and have different hues. One example of this is to visualise both the major and
minor eigenvector fields of a second order flow tensor. Also of interest to the authors are
new decomposition strategies that may lead to fewer images to blend, thus increasing
the interactivity.

A largely unexplored area of further research is the effective visualisation of multi-
variate data attributes normally associated with engineering simulations. This includes

47



Chapter 2

not only the visualisation of the attributes themselves, but also the effective placement
of the surfaces to best represent the information of interest.

Human Centred Evaluation of Flow Visualisation Techniques: Laidlaw et al. con-
duct an extensive user study of 2D visualisation techniques discussing their relative
merits for visualising particular characteristics of the flow [LKJ∗05]. Further two di-
mensional user studies have been conducted more recently by Liu et al. [LCS∗12].
These works would not necessarily translate directly to three dimensions.

One of the key areas of future work which generally has received little attention is a
thorough study of 3D visualisation techniques, outlining a taxonomy of which technique
is best under a given circumstance for providing the required visual information. The
work by Forsberg et al. [FCL09] is a step in the right direction performing a user study
of 3D flow visualisation examining line and tube representations of integral curves with
both monoscopic and stereoscopic viewing.

This type of study performed for surface-based flow visualisation examining the ef-
fective construction, placement, and rendering of surfaces to best handle, and effectively
represent characteristics of a given 3D flow field is an important possible future work
direction.
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Advanced, Automatic Stream Surface
Seeding and Filtering

IN Chapter 2 challenges such as surface placement, perception, evaluation, speed of
computation, and memory footprint are highlighted as future work directions. The
algorithm presented in this chapter studies a placement strategy for stream surfaces,

seeding them at the domain boundary (the spatial boundary of the velocity field) and
integrating them upstream through the domain. Proposals to alleviate the perceptual
challenge of occlusion are studied in this chapter. The question of using streamlines and
their seeding strategies for surface placement is also discussed.

A streamline is the trace of a massless particle from an initial location (seed point)
and is always tangent to the velocity field at every point along its length. If v(p) is a 3D
vector field, the streamline through a point p0 is the solution I(p0, t) to the differential
equation:

d
dt

I(p0, t) = v(I(p0, t)) (3.1)

where, in the case of a steady state flow field, t is time. The initial condition is I(p0,0) =
p0. The case of a static flow field is treated the same [GKT∗08]. Streamlines are an in-
tuitive, fast, and simple method for visualising flow. Streamlines require less computa-
tion than surfaces and are generally easier to implement than their surface counterparts.
These types of curves can present disadvantages, however, such as visual clutter (when
too many streamlines are rendered) and lack of depth perception.

There is no native support for the lighting of line primitives in Graphics Libraries
such as OpenGL, due to the fact that line primitives have no unique normal vector. Zöck-
ler et al. introduce a method of illuminating streamlines [ZSH96]. For the placement of
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streamlines a stochastic seeding algorithm is applied. See Weinkauf et al. [WHN∗03]
[WT02] for applications of this seeding strategy. Mattausch et al. [MT∗03] combine the
illuminated streamlines technique of [ZSH96] with an extension of the evenly spaced
streamlines seeding strategy of Jobard and Lefer [JL97] to 3D. The approach by Vi-
lanova et al. [VBvP04] concentrates on seeding hyper streamlines and the use of sur-
faces to visualise Diffusion Tensor Imaging data. Chen et al. [CCK07] present a novel
method for the placement of streamlines that does not rely solely on density placement
or feature extraction. This approach is based on a similarity method which compares
candidate streamlines based on their shape and direction as well as their Euclidean dis-
tance from one another.

Li et al. [LS07] present a streamline placement strategy for 3D vector fields. This
is the only approach of its kind where an image-based seeding strategy is used for 3D
flow visualisation. Interactive seeding strategies have been used in various modern,
real world applications including the investigation and visualisation of engine simu-
lation data [Lar02] [LWSH04] [LGD∗05]. An image space-based method for place-
ment of evenly spaced streamlines on boundary surfaces is presented by Spencer et
al. [SLCZ09]. The vector field is projected onto the image plane. Thus, the com-
plexity of tracing in the large unstructured grids that typically result from CFD simu-
lations is avoided. Streamline density is controlled by an adaptation of the method of
[JL97]. More recently Marchesin et al. [MCHM10] present a view dependent strategy
for seeding streamlines in 3D vector fields. No distribution of streamlines is ideal for all
viewpoints. Therefore, this method produces a set of streamlines tailored to the current
viewpoint.

Methods described for seeding streamlines do not necessarily translate directly to
seeding stream surfaces. Construction from discontinuous seed locations will produce
surfaces which are inconsistent, twisted, folded, and self occluded, conveying little
meaningful information. To produce well formed surface representations the seeding
structure should be smooth; designed to represent some underlying flow characteristic.
A stream surface can be described as the union of all streamlines passing through a seed-
ing curve. It can be approximated by generating a series of streamlines along a seeding
curve and joining them to produce a polygonal representation. Chapter 2 Section 2.3
discusses stream surface construction techniques in greater detail.

Stream surfaces are useful for understanding flow structures within a single time step
or static flow field and are relatively simple to compute. Stream surfaces for visualisa-
tion face many challenges. These surfaces must represent an accurate approximation of
the underlying simulation. Adequate sampling must be maintained while reducing the
unnecessary computational overhead associated with over sampling. The problem of
occlusion may stem from multiple surfaces that occlude one another, a large surface that
results in occluding itself, or a combination of both.

While surfaces offer many advantages in terms of information content, a basic visu-
alisation of the surface alone may not provide sufficient information about the underly-
ing data. For example a stream surface alone does not show the behaviour of any inner
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Figure 3.1: Automatic Stream Surface Seeding: A set of stream surfaces seeded auto-
matically using our technique on the 1283 tornado simulation at time step zero. The left
image shows surfaces visualised using silhouette edges. The centre image shows sur-
faces with opacity mapped to the magnitude of local curl. Pixels are filtered according
to opacity. This reduces occlusion and allows insight into the inner flow structures. The
right image demonstrates the use of clipping planes.

flow contained within the surface. Illustrative techniques can be used to improve percep-
tion and information content. Surface primitives (as opposed to curves in space) have
well defined normals. They offer perceptual advantages including: lighting and shading
which provide intuitive depth cues, the ability to texture map including texture advection
[LGSH06], the placement of additional geometry on the surface [LMGP97], and their
use for depicting boundaries. Utilising depth cues for depicting surface shape, colour
mapping and texturing to convey broader/clearer information content to the user, are
examples of the advantages surface visualisations can provide. Examples of illustration
techniques can be seen in Chapter 2 Section 3.

A significant body of research has been invested into automatic seeding strategies us-
ing streamlines, but, little has been offered for automatic stream surface seeding. Man-
ual seeding is the most common method for the placement of stream surfaces. However
interactive stream surface placement is based on trial and error. Important character-
istics of the flow can easily be missed. To maximise the information content for the
user, stream surfaces must be carefully illustrated and seeded such that they capture the
underlying characteristics and features of the flow. Surfaces generally suffer from less
visual clutter than lines, points, or other geometric primitives because they offer greater
spatial continuity. Stream surfaces are an effective medium to convey not only the char-
acteristics of the flow structures, but can also communicate additional information to the
user. This provides strong motivation for studying stream surfaces and their seeding.
The benefits and contributions of this chapter are:

• A novel approach to seeding stream surfaces in 3D flow fields automatically seeds
surfaces throughout the domain based on user specified separation.

• Effective boundary computed seeding curve prioritisation.
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Figure 3.2: Algorithm pipeline: The first stage creates a scalar field at the domain
boundary Ω′ based on the angle of incidence of out flow. A set of isolines is generated,
then prioritised to create seeding curves for the stream surfaces. The stream surfaces
are integrated through the velocity field. In parallel with surface advancement, a dis-
tance field, Ωd , is updated describing the proximity to existing surfaces. This process is
repeated for a range of isovalues. After generating an initial set of surfaces, new seed-
ing curves are computed and refined in the domain interior Ω. Each surface, in a list of
unprocessed surfaces, is searched along its length to locate timelines for the potential
production of seeding curves. Timelines are offset at distance dsep in the direction of the
surface normal. If they pass a set of refinement criterion, they are used for the construc-
tion of smooth seeding curves. These seeding curves initialise new stream surfaces. This
process is repeated until Ω is covered. The final stage filters and renders the surfaces
using semi opacity based on curvature, clipping, and colour mapping.

• Surface to surface proximity termination based on distance field techniques.
• Techniques for surface filtering and illustration, enhancing the information con-

tent.

A detailed presentation of the algorithm is given in Section 2. The results are discussed
in Section 3.

2 Automatic Surface Seeding
This section presents the automatic stream surface seeding algorithm. We start with an
overview of the seeding pipeline. Refer to Figure 3.2. The achievement of complete
domain coverage in areas such as recirculating flow is the focus of the seeding strategy.
Generation of surfaces in areas of flow which cannot be traced to the domain boundary
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is important to provide a complete visualisation. The algorithm input is a 3D steady
vector field v(p) ∈ R3 where v(p) = [vx(x,y,z),vy(x,y,z),vz(x,y,z)] defined for p ∈ Ω

and Ω⊂ R3

1. The starting point is the derivation of boundary seeding curves. We generate
the seeding curves from isolines derived at the boundary of Ω denoted Ω′. The
2D scalar field f (Ω′) is a function of flow direction exiting Ω. The isolines are
constructed using marching squares. Once the vertices are correctly ordered and
stored, the seeding curves are then prioritised into a suitable seeding order. Refer
to Section 2.1.

2. Once the boundary seeding curves are computed, we generate stream surfaces
advancing through Ω until they meet terminating conditions. The termination
parameters are maximum length lmax and distance dtest to neighbouring surfaces.
A distance field is used to evaluate dtest . The process is repeated from step one
until all isovalues are seeded. Section 2.2 and 2.3 provide further details.

3. We search the initial surface list along their length to locate empty regions. Each
timeline of a given surface is offset normal to the surface dsep . The proposed
timeline is then analysed for suitability. If the resultant curve does not pass the
suitability criterion, we recursively select the next downstream timeline. Refer to
Section 2.4.

4. The next step produces a smooth seeding curve from a suitable offset timeline.
This refinement is achieved by removing vertices which are in close proximity
to each other. Interpolating new vertices maintains an evenly distributed smooth
discretised curve. Refer to Section 2.5.

5. The originating surface is transferred to the processed list and searched no further
once a suitable seeding location is found. The new interior stream surface is added
to the list of unprocessed surfaces. The surfaces are searched both sides iteratively
through the list of unprocessed surfaces until empty. Section 2.6 provides further
details.

6. The final step is rendering the scene. A number of techniques are implemented
to aid the viewer in perceiving the resulting visualisation. This includes the use
of transparency, colour mapping, clipping planes, edge highlighting, and surface
filtering. Refer to Section 2.7.

2.1 Boundary Seeding Curve Generation
For the problem of generating seeding curves between and inclusive of boundary switch
curves (previously defined in Chapter 2 Section 2.5), we compute a scalar field repre-
senting the flow exit trajectory from the domain boundary. This approach reduces the
problem to a simple marching squares isoline extraction technique.

Generation of seeding curves from isolines derived from Ω′ is performed in three
steps. The first step is to define a scalar field. The derived field f (Ω′) represents the
scalar field which is a function of the direction of flow exiting Ω. The scalar represents
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the angle of incidence between the vector field defined at Ω′ and the domain extent
itself. The calculation is performed by projecting the unit vector onto a plane at Ω′ (See
Figure 3.3). The resultant magnitude |v′| is used as the scalar. If the exit trajectory
is perpendicular to the domain boundary a scalar value of zero is stored, if the exit
trajectory is parallel to the boundary then the scalar is stored as unity.

The next step is to construct the isolines from the scalar field Ω′ using a marching
squares algorithm. The resulting vertices would normally be rendered as order inde-
pendent line segments. However the vertices require sequential ordering for the seeding
curve. Modifying the initial isovalue used for the generation of the seeding curves pro-
duces results that are different.

The idea of using isolines derived from exit flow direction is the binding of the
coherent flow structures at the boundary and tracing them through the domain. Boundary
switch curves [WTHS04] are an example of this, where an isovalue of 1.0 equates to a
boundary switch curve. The range of isovalues used in the construction of the isolines,
and resultant density of seeded surfaces, can be specified by the user. This effectively
seeds surfaces between pairs of boundary switch curves, where they exist. The algorithm
subdivides the range from 1 to 0 by a user defined division. i.e. if the range is divided
by 5, then isovalues at 0.2 steps are used (e.g. 1.0, 0.8, 0.6, etc.). The seeding curves,
and then surface generation is performed iteratively from the first isovalue to the last
e.g. curves at isovalue 0.8 are generated, then the surfaces for that value are constructed,
then curves at the next isovalue (0.6) are constructed etc. It is important to note that
the isovalue is proportional to sinθ . This produces denser surface seeding closer to
boundary switch curves when using evenly spaced isovalues.

The seeding curves are prioritised in order of surface generation. The order of seed-
ing new surfaces can influence the resulting visualisation. A logical order is longest

Figure 3.3: Vector projection. u(p) is the unit vector of v(p), e.g. u(p) = v(p)/|v(p)|.
v′(p) is the vector projected onto Ω′.
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Figure 3.4: Tornado and ABC simulations with boundary seeds generated using an iso-
value of 0.9. In these figures a surface is generated from the first boundary seeding curve
in the prioritised list of curves. The left image illustrates the prioritisation capturing the
vortex core of the Tornado. The right image shows the longest surface propagating from
a closed loop boundary seeding curve.

seeding curve first. This heuristic is based on the idea of prioritising large domain filling
surfaces. After some experimentation we find that seeding from closed loop curves is
beneficial to visualising vortex cores. The final heuristic is to seed closed loop curves
first; longest to shortest, and then seed open ended curves; longest to shortest, starting
with an isovalue nearest one; seeding each set of isolines in descending order of isovalue.
Refer to Figure 3.4.

2.2 Boundary Surface Generation

Our work utilises a standard solution to stream surface computation (See [GKT∗08]
using the integration scheme in Appendix A). Stream surfaces are propagated from each
of the seeding curves defined in section 2.1. The surfaces are then terminated according
to a set of conditions such as lmax, boundary proximity, and dtest .

Calculating surface integration distance and determining boundary proximity are
straightforward. However a distance field Ωd is used for the efficient detection of neigh-
bouring surfaces. As each surface is generated, its location is added to Ωd . Then Ωd is
updated. As the next surface is propagated through Ω, it is tested against the Ωd to de-
termine if the proximity to any neighbouring surfaces is less than a predefined minimum
distance dtest . If so the surface propagation is terminated. This process is repeated for
all surfaces.
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(a) For a given set of vertices where the focal ver-
tex p f ocus is highlighted in red, a set of vectors
v f ocus representing the distance from each of the
vertices p of the bounding cell are calculated, i.e.
v f ocus = p f ocus−p.

(b) |v f ocus| is compared to the currently stored
vectors vstored , which are replaced if the magni-
tude is smaller, i.e vstored =min(|vstored |, |v f ocus|)
.

(c) The vector information is then propagated
throughout the domain using the Vector City Vec-
tor Distance Transform (VCVDT) method which
is detailed in [SJ01].

(d) Proximity is computed thus: |vdist | =
|v f ocus + vstored |, where v f ocus is the distance
from the test vertex p f ocus to the cell vertex p.

Figure 3.5: The distance field is a fast and versatile method used to locate the nearest
object in the domain. The distance test compares the shortest magnitude to a predefined
minimum allowable distance.

2.3 Distance Field

The detection and computation of distance to the nearest object in a given domain from
any given point is non trivial. A brute force approach can be implemented testing the
distance to every vertex of every object in the domain with the current vertex and stor-
ing the shortest. This method is very expensive and thus distance field techniques to
improve the speed are used. In general, there are two groups of approaches [JBS06]:
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Distance computation for common surface representations, which discards most of the
objects by exploitation of spatial coherency, e.g., computing distances from objects in
close proximity. Distance transforms are a second category which initially use a similar
technique to evaluate distances to certain regions, e.g., a thin layer around the surface,
and then propagates them through Ω.

The most interesting method appropriate for use with discretised surfaces is the Vec-
tor City Vector Distance Transform or VCVDT [SJ01]. The first step is to calculate
the vector v f ocus from the vertex of interest p f ocus (in our case surface vertices) to the
bounding cell vertices p. See Figure 3.5(a). The vector magnitude, |v f ocus|, is compared
with the currently stored vector magnitude, |vstored|, at all bounding cell locations. The
shortest in each location i.e. |v f ocus| < |vstored| is stored replacing the original vector.
See Figure 3.5(b). This process is repeated for every vertex representing the surface.
Ωd is then propagated throughout the domain. See Figure 3.5(c). While computing a
new surface each new vertex is proximity tested against Ωd . If the distance is too short
|vdist | < dtest then the surface front propagation is terminated. See Figure 3.5(d). Once
each surface is terminated it is then added to the distance field regardless of termination
method.

2.4 Timeline-based Seeding Curve Generation

This stage of the pipeline takes a list of stream surfaces seeded from Ω′ from which
additional surfaces can be seeded in order to gain complete domain coverage. This list
is initially unprocessed. Each unprocessed surface is searched in turn to find a suitable
location to generate a new seeding curve. This involves offsetting each timeline in turn
along the length of the surface to find empty regions at which seeding of new interior
stream surfaces can take place. Each timeline of a given stream surface is projected nor-
mal to the surface and analysed for suitability against predefined criteria. The surfaces
are searched both along their front and rear face.

The first criteria is the boundary test. Every new vertex of the candidate seeding
curve must be inside Ω. Therefore any vertex pi projected outside Ω is rejected (Figure
3.6(a)). The second criteria is the distance test. Each candidate curve vertex is tested
against Ωd . The vertex is marked reject if the location is within a user defined minimum
distance parameter dtest , e.g. too close to a neighbouring surface (Figure 3.6(b)). The
candidate curve is then tested for spatial continuity guided by user defined parameters of
minimum contiguous length dlength, and maximum split distance dsplit . If any resulting
gaps in the offset timeline are too large, or any remaining section is too short, the candi-
date seeding curve is rejected. If the candidate curve does not pass the criterion then the
next timeline along the length of the surface is selected, and the process repeats.
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(a) The proposed seeding point is outside the do-
main boundary and is rejected.

(b) The two rejected proposed seed points are in
too close proximity to another surface.

(c) The proposed seed points are too close and is
rejected.

(d) New vertices are inserted into the seeding
curves.

Figure 3.6: The process of accepting or rejecting proposed new interior seeding points.

2.5 Interior Seeding Curve Refinement

If the candidate interior seeding curve passes the previously described criterion it is
refined. The refinement process is intended to evenly distribute and smooth out any
inconsistencies with the new curve. As a result of the projection in concave or convex
areas of the surface the vertices may be too close to one another, too far apart.

The refinement starts by removing vertices too close in proximity. The vertices are
tested in groups of three, pi−1, pi, pi+1, starting from one end of the curve, incrementing
one vertex at a time. The purpose of this approach is to test the central vertex against
a user defined proximity dprox to its neighbours. If a neighbouring vertex is too close
|pi−1−pi|< dprox or |pi−pi+1|< dprox, vertex pi is removed (Figure 3.6(c)).

The curve is further refined by inserting additional vertices at locations where prox-
imity to the next vertex is too great. The insertion process uses cubic interpolation

58



Advanced, Automatic Stream Surface Seeding and Filtering

(Catmull-Rom spline). The process of insertion marks the position along the curve a
new vertex p′ should be inserted. A new vertex is interpolated and held in a temporary
list. This is repeated for every section along the curve (Figure 3.6(d)).

Once completed the temporary list of vertices, p′ and p′′ in the example, are then
inserted at the correct locations along the seeding curve. The approach of inserting the
vertices into the array post interpolation prevents newly inserted vertices from violating
the proximity test, interfering with the interpolation. This process is repeated for all
candidate interior seeding curves.

2.6 Interior Stream Surface Generation

Once the seeding curve has been formed, a new surface is generated in both downstream
and upstream directions. Distance field Ωd is updated with the vertices representing
the new surface. The given stream surface is added to the list of processed surfaces.
The new surface is added to the list of unprocessed surfaces. This is repeated for every
unprocessed surface until no further interior seeding curves, and therefore surfaces, can
be generated. The surface termination criteria are the same as for boundary surfaces.

2.7 Stream Surface Filtering and Rendering

A number of techniques are implemented to aid the viewers perception of the visualisa-
tion. The techniques used to render the results include the use of transparency, colour,
silhouette edge highlighting, lighting and shadow, and surface filtering. Colour is often
mapped to |v| and opacity is mapped to the magnitude of vector field curl |∇×v|. The
curl of vector field v is described as a vector having magnitude equal to the circulation
at each point v(p), and is perpendicular to the plane of circulation at each point. In
Cartesian coordinates, this is defined as:

∇×v =

(
∂vz

∂y
−

∂vy

∂ z

)
i+
(

∂vx

∂ z
− ∂vz

∂x

)
j+
(

∂vy

∂x
− ∂vx

∂y

)
k (3.2)

where i, j,k are components of a unit vector. Lighting and shading are standard tools
for depth and shape perception. Silhouette edge highlighting is used to help the viewer
understand where the surfaces curve away from any given viewpoint, and enhances the
perception of surface edges.

Another technique involves filtering of the surfaces to aid in the reduction of visual
clutter. As our visualisations are rendered with opacity mapped to |∇×v|, the result is
opaque surfaces in areas of high vector field curvature i.e., opaque vortex cores. This
criterion is defined on a normalised scale which can be interactively adjusted by the user.
An example of this can be seen in Figure 3.1 (middle).
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Figure 3.7: The 1283 tornado simulation. The top left image shows surfaces seeded with
boundary seeding using an isovalue of 0.9. The boundary seeding curves are highlighted
in thick red. The top right image shows seeding interior surfaces at dsep = 5.0. The
bottom image shows the final visualisation with silhouette edges and clipping planes.

3 Results

To demonstrate the technique we choose a number of datasets which best capture the
range of scenarios we may encounter when studying CFD data. The Tornado data best
highlights a large vortex structure filling the domain and thus curved areas of flow cross-
ing the domain. The cuboid data represents data with an inflow and outflow region,
and flow past an object with turbulence. The Lorenz Attractor and ABC data are highly
curved analytical datasets, where the curvature is formed from different phenomena, i.e.,
singularities (Lorenz Attractor) or waveforms (ABC).

We achieve full domain coverage and capture the properties of the flow field by al-
lowing the user to control the density of neighbouring stream surfaces. Figure 3.1 shows
results from automatic seeding in a tornado simulation. The surfaces are seeded using

Figure 3.8: A set of stream surfaces on a simulation of flow behind a cuboid [CSBI05]
[vFWTS08a]. The images show a set of 5 isovalues used to fill the domain. Colour is
mapped to velocity. The left image visualises the generated surfaces and demonstrates
domain coverage. The right image uses edge highlighting and is clipped to revel the
centre of the visualisation. Note: The cuboid is not shown for clarity.
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Figure 3.9: The Lorenz attractor with a resolution of 1283. The parameters for this
simulation are; σ = 10.0, ρ = 28.0, and β = 8/3. The familiar circulation interaction
is seen from the underside of the domain. This visualisation shows a spars set of seeding
parameters. The left image shows boundary seeding at 3 intervals. The middle image
shows the interior seeding filling the remaining unseeded areas of the domain using
dsep = 10.0. The right image is clipped revealing the inner flow characteristics.

boundary seeding from isovalue 1.0 to 0.0, at isovalue intervals of 0.2. It can be seen
that the domain is adequately covered to capture the structure of the tornado. On any
planar domain boundary, the scalar field range may not extend to 1 (boundary switch
curve). However, our method is able to generate seeding curves at isovalues less than
1 effectively extrapolating between boundary switch curves on an extended boundary
plane. Using transparency, filtering and silhouette edges improve the users perception
of the results. The centre image highlights well the tornado core using curl-based sur-
face filtering. Figure 3.7 demonstrates the interior seeding and resultant surfaces filling
the domain from an initial set of surfaces generated at the boundary. The bottom im-

Figure 3.10: This visualisation of the Lorenz attractor shows the effect of denser seed-
ing. The left image shows boundary seeding at 5 intervals. The middle image shows
interior seeding using dsep = 5.0. The right image is clipped revealing the inner flow
characteristics.
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Figure 3.11: A 1283 Arnold Beltrami Childress (ABC) simulation. The left image
shows boundary seeding at 5 intervals. The images show surfaces with colour mapped
to velocity. The right visualisation is sliced using clipping planes.

age uses a clipping plane to section the flow field. It clearly shows the interior seeding
following the structure of the tornado. Figure 3.8 visualises the vortices generated be-
hind the cuboid. A section through the visualisation aids the users perception of these
characteristics.

The Lorenz attractor can be seen in Figures 3.9 and 3.10. The images in Figure
3.9 show the vector field visualised with a sparse set of surfaces. The top left image
is seeded only from the boundary. Using interior seeding the top right image shows
complete domain coverage. The bottom image uses clipping planes to understand the
inner flow structure. The second set of images in Figure 3.10 demonstrates a denser
visualisation which better captures the underlying flow characteristics using the same
techniques as Figure 3.9. The ABC visualisation shown in Figure 3.11 demonstrates the
capture of the inner flow structures. The use of clipping planes and edge highlighting
significantly improve the perception of the flow field.

The illustrative strategies implemented for resolving clutter, resulting from seeding
multiple surfaces, improve perception and therefore aid understanding of the underlying
flow structures. Visualisation of less complex flow characteristics produce clear results
from the different strategies employed. When visualising more complex flow data en-
abling the user to filter surfaces (Figure 3.1 middle) or clip areas of the domain (Figure
3.11 right) can reduce the visual clutter improving the information content of the visu-
alisation. In practical applications indicating the flow direction would by required by
the user. This can be implemented using textures applied to the surface mesh, or using
techniques such as [CSFP12] by Carnecky et al. Also, stream surface generation can
be influenced by topological structures such as invariance and separation features and is
discussed in depth by Schneider et al. [SRWS10].
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Automatic Stream Surface Seeding: A
Feature Centred Approach

CHAPTER 3 studies stream surface seeding at the domain boundary followed by in-
terior stream surface seeded at a user specified density. This approach combined
with filtering and rendering techniques improved the perception and information

content of the visualisations, while reducing the visual clutter. Some challenges remain
with these approaches such as; seeding surfaces where there is no boundary inflow, man-
ual interaction for the filtering process, and realtime interaction with large datasets.

To address these challenges this chapter investigates the hypothesis that stream sur-
faces must be placed such that they capture the important characteristics of the flow
field with minimal quantity. Seeding curves must be positioned and oriented in the
neighbourhood of geometric structures best representing the flow field. Illustrative tech-
niques must enhance the perception of surface structures supporting the roll of effective
placement. Stream surface orientation is an important consideration in light of these
requirements. Of the possible visualisation techniques that can be used to simplify the
flow field and present potential seeding locations, vector field clustering algorithms and
feature extraction techniques are considered.

Explicit feature extraction techniques perform a search of the flow field in order to
locate and visualise specific subsets of the flow [PVH∗03]. However, features are not
always well defined. For example, there is no universal definition of a vortex. Features
are often user dependent and thus they may not always be predicted a priori [LGD∗05].
Each type of feature requires a special algorithm to extract it. Implementation of an
algorithm for each type of feature may not be practical. Many explicit feature extrac-
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tion algorithms rely on threshold values which ultimately determines the presence (or
absence) of the feature of interest. This can result in false positives or missing subsets
of interest (this is especially true for 3D CFD data exploration). In contrast, vector field
clustering does not rely on an algorithm threshold value and can highlight weak or par-
tial features in the flow. Vector field clustering has been used to show interesting flow
features for real world datasets [PGL∗12].

Peikert et al. [PS09] present topology-based methods for constructing stream sur-
faces in the neighbourhood of critical points. The authors discuss error bounds and give
application examples for the range of topological features under consideration. Topo-
logical methods are of limited use for this application. First, no sources or sinks are
present in our 3D flow simulations. Periodic orbits are quite rare and saddle points are
certainly not the only features of interest to the user. Plus, explicit extraction of topology
also relies on special threshold values which may result in overlooked features of interest
[LHZP07]. We demonstrate how our algorithm constructs stream surface seeding curves
in areas of interest such as rotational flow (fluid which rotates about an axis), high curva-
ture (fluid with a high degree of direction change) and saddle points (an infinitesimally
small location of stationary flow).

Vector field clustering algorithms provide a general approach to generating a sim-
plified, feature-based representation of vector fields. We employ this approach in our
framework of automatic placement of the seeding curves. Clustering distance measures
can be tuned to yield a range of results. They offer the advantage of presenting a detailed
representation in important areas of the flow field, and offer flexibility required by the
user. General clustering algorithms are based on agglomerative hierarchical grouping
techniques which are widely used in the information visualisation domain [XW05].

In this chapter, we present a novel adaptation of a vector field clustering algorithm
that can be guided by the user in order to automatically seed stream surfaces. The clus-
tering technique, based on a distance measure driven by error, is used to locate potential
stream surface seeding positions which are used to generate the final visualisations. The
main benefits and contributions of this chapter are:

• An adaptation of vector field clustering to guide stream surface seeding.

• An approach to automatically locating seeding positions associated with important
structures within the 3D flow field.

• A technique for generating seeding curves automatically which reflect important
characteristics of the flow field.

• A technique combining flow curvature with illustrative techniques to provide en-
hancements to the perception of the visualisation.

We illustrate how to capture the characteristic structures within the flow field such
as rotational flow. The key to capturing the required properties of the flow is in defining
the appropriate clustering metric and providing the user with the flexibility to guide the
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Figure 4.1: The automated stream surface seeding pipeline. The pipeline shows the vec-
tor field clustered with customisation parameters, the derivation of the curvature field,
and seeding curve generation. Stream surfaces are then propagated from the seeding
curves through the vector field, and then rendered.

seeding within the domain. Our focus pays particular attention to the flexibility of the
clustering technique combined with the seeding curve generation strategies.

The rest of this chapter is divided into the following sections: A detailed presentation
of the algorithm is given in Section 2. The results are reviewed in Section 3. Domain
expert feedback is provided in Section 4.

2 Automated Stream Surface Seeding
This section describes the stream surface seeding algorithm for the visualisation of vec-
tor fields. We start with an overview of the processing pipeline illustrated in Figure
4.1. The algorithm is presented in multiple stages consisting of the clustering process,
calculation of the curvature field used to support seeding and illustration, seeding curve
generation, stream surface generation, and rendering. The choice of clustering for gen-
erating good seed locations is based on the premise that the clustering process can guide
seeding, at varying levels of simplification, in the vicinity of the flow features of interest
to the user. Examples of this can be seen in Section 3. Domain expert feedback can
be found in Section 4. This process results in stream surfaces which represent the flow
structures contained within the domain.

1. Clustering is performed on the flow field with options that guide the clustering
process. The parameters provide the user with great flexibility in controlling the
density of surfaces and prioritising the formation of clusters at locations corre-
sponding to subsets of the flow interesting to the user. Vector direction, magnitude,
and location are comparison attributes that can be set. See Section 2.1.
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2. The curvature field is derived from the flow field. It is used to compute seeding
curves after the clustering process has identified the seeding locations. It is also
used to map opacity to stream surfaces for illustrative rendering. See Section 2.2.

3. The error level parameter, or simplification level sl , controls which clusters are
selected from the hierarchical tree providing the required level of detail or seed-
ing density. Seeding curve generation starts with the selection of representative
clusters. The cluster location is automatically used as the basis of the seeding
curve. The seeding curves are then generated by integrating forward and back-
ward through the curvature field at a length proportional to the cluster size. This
generates seeding curves which follow the local flow structures while maintaining
orthogonality with the flow. See Section 2.3.

4. Once the seeding curves are computed, stream surfaces are propagated from each
of the seeding curves. Flow attributes such as velocity magnitude may be colour
mapped. Opacity can be mapped to local flow curvature. See Section 2.4.

5. After the generation of the stream surfaces, the surface data is rendered using
a number of illustrative techniques to enhance the perception of the flow field.
Opacity derived from curvature of the flow field is utilised in conjunction with
depth peeling for rendering semi transparent surfaces. See Section 2.5.

2.1 Customised Clustering

The algorithm presented in this chapter adapts the clustering method of Telea and Van
Wijk [TvW99]. The aim of this work is to generate a globally simplified vector rep-
resentation while maintaining enough detail to represent complex local flow structures.
This is achieved using a process which progressively evaluates pairs of neighbouring
cells according to a distance metric that minimises error. The error is calculated from
two elliptic similarity functions: one compares direction and magnitude, and the second
compares location of the neighbouring vectors.

The clustering process iterates until a single cluster remains nroot . This is the root
of a binary hierarchical tree. The clusters at each level of the tree stores the resultant
vector as a product of the child pair. This results in a tree of size nt +nt −1 where nt is
the quantity of initial clusters. The algorithm displays the clusters representative vectors
at a user specified level of the hierarchical tree sl . The accumulated error in the paired
clusters is inversely proportional to sl which is designed to directly correlate with the
number of clusters selected from the hierarchical tree and therefore the number of seed
locations. See subsection 2.1.3. This combined with the user defined parameters for the
error function provides a flexible range of stream surface density and locality which can
be tailored to the users requirements.
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Step 1 initClusters()

1: ClusterSet s;
2: for (all cells celli in Ω) do
3: c = makeCluster(celli);
4: clevel = 0;
5: add c to s;
6: end for

Step 2 initHashTable()

1: for (all clusters ci in s) do
2: for (all clusters c j neighbours of ci) do
3: ε = clusteringError(ci, c j);
4: insert pair (ci, c j) in increasing order of ε in a hash table;
5: end for
6: end for

Step 3 genTree()

1: int l = 0;
2: for (all pairs (ci, c j) in increasing order in the hash table) do
3: if (both ci and c j are NOTCLUSTERED) then
4: c = mergeClusters(ci, c j);
5: clevel = ++l;
6: mark ci and c j as CLUSTERED;
7: for (all neighbours ni of c) do
8: ε = clusteringError(c, ni);
9: insert pair (c, ni) in increasing order of ε in the hash table;

10: end for
11: end if
12: end for return c as root of hierarchical tree;

Figure 4.2: Pseudocode of the clustering process. The code shows three main steps;
first is the generation of the initial clusters, second is the pairing of the initial clusters,
and third is the clustering of the pairs and new pair evaluation.

2.1.1 Clustering Process

The input of the algorithm is a 3D steady state vector field v(p) ∈ R3 where v(p) =[
vx(x,y,z) vy(x,y,z) vz(x,y,z)

]
for p ∈ Ω, v ∈ R3 and Ω⊂ R3, where Ω is a 3D uni-

form grid. The first step requires each (pi,v(pi)), where pi is the grid location, to be
stored as a cluster ni in an initial list of clusters, or cluster set. Each ni is evaluated
against each of its neighbours in Ω. For each neighbour n j the cluster pair (ni,n j) is
stored in a hash table along with the derived error ε as the key. The hash table stores all
(ni,n j) in increasing order of ε . The clustering process retrieves, in increasing order of
ε from the hash table, each (ni,n j). If both (ni,n j) have not previously been clustered,
then (ni,n j) are merged. Once merged the new cluster nk is then compared to each of
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(a) The relationship of vector v and the elliptical
isocontour ετ are described in terms of parame-
ters a, b, c, and vector length |v|.

(b) w1 and w2 have equal error as they lie on the
same isocontour ετ from the reference vector v.
w3 however lies on a larger isocontour.

(c) Similarly to figure 4.3(b), the location of w1
and w2 have equal error as they lie on the same
isocontour ετ from the reference vector location
v. w3 location lies on a larger isocontour.

Figure 4.3: An illustration of the Elliptic Similarity Function. Figure 4.3(a) describes
the relationship of the parameters. Figure 4.3(b) describes the direction and magni-
tude components of the error function. The error function represented in figure 4.3(c)
describes the relative location of a vector to a reference vector.

its neighbours, storing each pair in the hash table in increasing order of ε . This process
continues until there are no more pairs to merge. The result is a single cluster covering
the entire domain with a single representative vector. The clustering process pseudocode
is detailed in Figure 4.2.

2.1.2 Distance Metric and Cluster Merging

The clustering algorithm utilises two important functions. The first is the error esti-
mation function, and the second is the merging function. The cluster error function
describes the error generated by merging (ni,n j) i.e. the similarity between (ni,n j). In
addition to this we implemented an alternative error function that provides additional
flexibility when less similarity is desired. The cluster merging function dictates how the
representative vector is calculated from (ni,n j).

The clustering algorithm utilises two important functions. The first is the clustering
error function, and the second is the cluster merging function. The cluster error function
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describes the error generated by merging (ni,n j) ie. the similarity between (ni,n j). In
addition to this we implemented an alternative error function that provides additional
flexibility when less similarity is desired. The cluster merging function dictates how the
representative vector is calculated from the clustered pair.

The Elliptic Error Function As shown in Figure 4.3(a) a, b, and c are parameters of
an elliptic contour ετ which represents error, or deviation from v. The error contour is
defined as:

f (xτ ,yτ ,ετ) =
[

xτ−c(ετ )
a(ετ )

]2
+
[

yτ

b(ετ )

]2
−1 (4.1)

The parameters a, b, and c are linear functions of ετ and are defined as:

a(ετ) =Cαετ (4.2)
b(ετ) =Cβ ετ (4.3)

c(ετ) = |v|+Cγετ (4.4)

Solving for ετ when f (xτ ,yτ ,ετ) = 0 and ετ > 0, with respect to the coefficients Cα , Cβ ,
Cγ , and vector length |v| yields:

ετ =

√
((xτ −|v|)2 + C2

α

C2
β

y2
τ)(C2

α −C2
γ )+C2

γ (xτ −|v|)2

C2
α −C2

γ

−
Cγ(xτ −|v|)

C2
α −C2

γ

(4.5)

Values for the coefficients Cα , Cβ , and Cγ , based on the vector length |v| provide an
aspect ratio of 1:2, and are given as:

Cα = 2|v| (4.6)
Cβ = |v| (4.7)

Cγ = |v| (4.8)

The function describes the similarity of two vectors by the quantity of error denoted by
the iso error contour ετ . Two vectors of identical error will lie on the same isocontour
eg. w1 and w2 in figure 4.3(b). The error of w3 is greater than that of w1 and w2 relative
to v.

The relative location of w to v are similarly modelled. The vector locations described
as xψ ,yψ are evaluated by an elliptic function in the same way. The error is described
by the isocontour is illustrated in figure 4.3(c). The error εψ , when εψ(xψ ,yψ) = 0, is
given as:

εψ(xψ ,yψ) =
x2

ψ

d2 +
y2

ψ

e2 −1 (4.9)

The user can specify the the aspect ratio ηψ = d/e of the elliptic iso contour where
ηψ [0, . . . ,1], d + e = 1, and ηψ = 0.5 for a ratio of 50:50 (1/1). A ratio of 75:25 (3/1)
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(ηψ = 0.75) will emphasis clustering along the direction of the reference vector, and a
ratio of 25:75 (1/3) (ηψ = 0.25) will emphasis clustering adjacent to the direction of
the reference vector. The linear combination of the error functions ετ , which represents
the error between vectors directions and magnitudes, and εψ , which represents relative
location error, is combined as:

ε = ητψεψ +(1−ητψ)ετ (4.10)

where ητψ [0, . . . ,1] is a user controlled coefficient which emphasises either ετ or εψ in
the clustering process.

Experiments with Elliptic Error Functions Our experiments with the elliptic error
functions produced interesting results when used for stream surface seeding. However
we observe limitations which are addressed with a customised distance function.

When modifying the input parameters, a range of characteristics are observed. For
example, when ητψ = 0.9 emphasising position, and ηψ = 0.75 emphasising neighbours
along the vector direction, the process produces an evenly distributed set of clusters at a
given sl . Setting ητψ = 0.9 emphasising position and ηψ = 0.25 emphasising neighbours
orthogonal to the vector direction, concentrates the clusters around areas of curved flow.

Our aim is to generate seeding curves in locations adjacent to the flow structures
with minimal density i.e. enough to represent the flow structure without clutter. Seeding
curves at the centre of highly curved structures such as vortices is not ideal and may
result in complex surfaces that are difficult to discern. The complexities include high
curvature, shearing, crossing, and diverging surfaces. The ideal solution is to construct
the minimum quantity of seeding curves at locations of interesting flow and at a non
zero distance from the centres of complex, curved structures. Flow structures are char-
acterised by their curvature and velocity gradient. The vortex is one example of this.
See Figure 4.4.

Generating clusters to emphasise pairing in areas where there is a non zero velocity
gradient motivates us to define a parameter which supports this. For example if the
error function returned lower ε for cluster pairs which have a greater differences in
magnitude than their neighbours, while favouring orthogonal clusters e.g. ηψ = 0.25,
we can predict a concentration of clusters in areas of greater velocity gradient. Extending
this strategy to vector direction, we can specify a concentration of clustering in areas of
high curvature while emphasising clusters orthogonal to the vector direction e.g. ηψ =
0.25. In the remainder of this section we present our customised distance function which
is designed to implicitly capture, in combination, areas of non zero velocity gradient and
areas of curved or rotating flow.

A Customised Distance Function To address the hypothesis in the previous subsec-
tion, we are motivated to create a customised distance function. The distance function
will be required to effectively pattern match attributes of the compared vectors using
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unsupervised machine learning, or agglomerative hierarchical (binary) clustering. To
achieve this our parameters are constructed to return low error not just for similar, but
also dissimilar directions or magnitudes of a quantified amount.

To achieve this, we start by decoupling the direction v̂ and magnitude |v| components
of the original distance function. This allows the user to treat direction and magnitude
independently providing greater control over the clustering process. This enables em-
phasising a particular direction or difference in magnitude rather than pure similarity.
This is effectively pattern matching, for example we can now return low error values
when vectors are orthogonal to each other rather than just parallel.

To incorporate the direction εδ , magnitude εµ , and position εψ functions, we simply
linearly combine them. Combining the functions in this way allows the user to more eas-
ily comprehend the effect of changing those parameters. The user options for specifying
the emphasis of a particular direction ηδ ∈ [0,1], difference in magnitude ηµ ∈ [0,1] or
position ηψ ∈ [0,1] are included:

ε = εδ (ηδ )+ εµ(ηµ)+ εψ(ηψ) (4.11)

where ε ∈ [0,1].

Figure 4.4: A 2D slice taken at the centre of the Tornado simulation. Velocity is mapped
to colour where blue is minimum velocity and red is maximum. This illustrates the
velocity gradient initially increasing and then decreasing away from the centre of the
vortex.
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Direction The user controlled coefficient ηδ corresponds to parallelism or orthogo-
nality. Setting ηδ = 0 emphasises parallel vectors v ‖ w, whereas ηδ = 1 emphasises
opposing vectors. ηδ = 0.5 emphasises orthogonal vectors v⊥ w. The linear combina-
tion is specified as:

εδ (ηδ ) = (ηδ ·δ )+(1−ηδ ) · (1−δ ) (4.12)

Where εδ ∈ [0,1] represents the direction centred error, with lower values favoured by
the clustering process, and δ ∈ [0,1] is:

δ =
(ŵ · v̂)+1

2
(4.13)

Magnitude Setting ηµ = 0 emphasises vectors of equal length |v|= |w|, whereas ηµ =
1 emphasises vectors of different length |v| 6= |w|. The linear combination is:

εµ(ηµ) = (ηµ ·µ)+(1−ηµ) · (1−µ) (4.14)

Where εµ ∈ [0,1] represents the magnitude centred error, with lower values favoured by
the clustering process, and µ ∈ [0,1] is the absolute value of µ ′ defined as:

µ
′ = |v|/(|v|+ |w|)−|w|/(|v|+ |w|) (4.15)

Position For position we use the elliptic error function by Telea and Van Wijk [TvW99].
For consistency our user controlled coefficient ηψ corresponds to B, and εψ(ηψ) corre-
sponds to s where εψ ∈ [0,1].

Default Settings The process of arriving at a set of default values for the user is based
on visual insight gained from the visualisations rather than formal mathematical analy-
sis. This approach was undertaken with the aid of domain experts. As a result of feed-
back from experimenting with the customised distance function parameters, we derived
two sets of values which provide the user with either feature centred or overview set-
tings. For the feature centred settings ηψ = 0.25, ηδ = 0.3, ηµ = 0.2. For the overview
settings ηψ = 0.75, ηδ = 0.0, ηµ = 0.0. From hereafter we will refer to these settings
as feature centred or overview. Further discussions of clustering parameters reside in
Section 3.

The Merging Function The union of a pair of clusters (ni,n j) results in a parent
cluster nk. The new nk stores a representative vector v(n) and location p(n). This is
achieved by computing a volume weighted average of (ni,n j) representative vectors and
locations. Each level of the tree contains clusters of increasing ε .
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Figure 4.5: The left image is the 3D Bernard flow simulation visualised with ηψ = 0.25,
ηδ = 0.0 ηµ = 0.5 and sl = 27. The glyphs demonstrate clustering in the vicinity of
the velocity gradient associated with the vortices. The right image demonstrates cluster
representations focusing around cores of the vortices. This is achieved using parameters
which emphasise clustering of vectors with orthogonal directions. sl = 27, ηψ = 0.5,
ηδ = 0.5 and ηµ = 0.0.

2.1.3 Simplification Level

The simplification level sl is an option for the user to select clusters or seeding locations
from the cluster hierarchy at rendering time. Error metric ε is used in the first step of
the clustering algorithm to place pairs (ni,n j) in the hash table in order of increasing ε .
A second step clusters them in this order marking each new cluster with a unique order
number l incremented from 0. As a result ε is directly related to l. Once the tree has
been built this order number l is compared to the user parameter sl to determine cluster
selection for seeding or display. The following describes the computational relationship
of sl , l and ε and how the clusters are selected from the tree. Because we use a binary
tree the root cluster’s level l(nroot) = nt−1 where nt is the quantity of initial clusters.

To select clusters from the tree, the user specifies sl in the range sl ∈ [1,nt −1]. We
next calculate l where l = nt − sl . The level l is then used to search the tree for all
clusters with levels l(n)≤ l with parents having l(n)> l. The set of clusters which meet
this condition are returned as the seeding locations. sl is designed to be equal to the
number of clusters or seeding locations, and is inversely proportional to ε . sl provides
consistency for the user across different simulation data for selecting the quantity of seed
locations. See Figure 4.5. However, the choice of cluster quantity is partially craft as
the user will require foresight of the feature quantity.

2.2 Curvature Field Derivation

From the vector field v(p) we derive the curvature field Ωc. This step allows the curva-
ture data to be sampled or interpolated on demand. The role of Ωc is to support seeding
curve computation (Section 2.3) and illustrative techniques for rendering the stream sur-
faces (Section 2.5). Ωc is not needed for the clustering stage of the pipeline.

Each curvature sample c(p) ∈ Ωc defined for p ∈ R3 and Ωc ⊂ R3, is derived by
applying a combination of operators to the vector field. Ωc is derived from the first
derivative v and second derivative a of the flow field. The second derivative a is accel-
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Figure 4.6: Rotating flow is more intuitively represented in the left figure. The left
figure uses a surface tangent to its curvature and parallel with the axis of rotation. The
right figure is represented by a surface perpendicular to the axis of rotation and flow
curvature.

eration and defined as a = (∇v)v where ∇v is the Jacobian of the velocity field. Steady
state curvature [Rot00] is defined as:

c =
v×a
|v|3

(4.16)

2.3 Seeding Curve Computation
The seeding curve generation commences following the clustering. Every ni in the se-
lected representation stores information regarding its location p(n), its level l(n), its er-
ror ε(n), its representative vector v(n) and spatial volume vol(n). p(n) defines the centre
of each new seeding curve s(p(n)). Location alone is not enough to generate effective
seeding curves. The locations given by the cluster representation provide interesting
seeding positions that capture the local characteristics of the flow. To take advantage
of the potential seeding locations we ensure the seeding curves are positioned, orien-
tated and scaled according to the local flow characteristics. The position is given by the
cluster. The orientation and size of the seeding curves require analysis.

2.3.1 Seeding Curve Orientation

The orientation of the seeding curve stems from the observation that seeding curves
generally produce informative surfaces maximising coverage when orthogonal to the
flow. In addition the seeding curve should be oriented with respect to the local flow
structures. If this point is ignored the surface can impart a less useful visualisation to
the viewer. For example if a surface is tangent to the local curvature and parallel to
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Figure 4.7: The Tornado simulation illustrates the alignment of seeding curves to the
curvature field. The feature centred values are specified and sl = 2. The arrow glyph
visualises the representative vector and location. The seeding curves (black) orientation
to flow curvature is emphasised using stream ribbons.

the axis of rotation it intuitively represents rotating flow. If the flow is represented by
a surface perpendicular to the axis of rotation and flow curvature, the representation is
less informative. See Figure 4.6. We position a straight seeding curve s(p(n)), centred
at p(n), orientated in line with the local curvature vector c(p(n)). The curvature vector
c(p(n)) is sampled from the curvature field Ωc at p(n).

The result of this approach is a seeding curve which is orthogonal to the local flow at
its centre. The seeding curve is also orientated such that it is parallel to the axis of local
flow rotation. In Figure 4.7 we see examples of the proposed seeding curve orientation.
The Figure shows how the seeding curve orientation relates to the flow characteristics,
and the potential to provide intuitive visualisations of the nearby flow structures.

2.3.2 Seeding Curve Length

The length of a seeding curve s(p(ni)) is proportional to the volume of cluster ni. The
volume of cluster ni is its spatial volume. Specifying the length of the seeding curve as
equivalent to the clusters volume may lead to the curve exiting the boundaries of Ω. To
refine this, we use the cube root of the cluster volume:

length(s) = 3
√

vol(ni) (4.17)

This is based on the premise that a single cluster representing the whole domain would
require a seeding curve which extends to its boundaries. This approach works well
for all the data we tested. However, the user is also provided with an optional scaling
coefficient for further customisation. This enables shorter seeding curves when seeding
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Figure 4.8: These images show that the seeding curve length is proportional to the
volume weighted average of the clusters children. The left image is represented by 4
clusters and the right image by 1.

with a denser cluster representations, and vice versa. Figure 4.8 illustrates different
seeding curve lengths proportional to cluster density.

2.3.3 Seeding Curve Integration

Our experiments with this method indicated that further refinement of the seeding curve
is desired. In areas of flow which demonstrate high curvature seeding curves may cross
each other. See Figure 4.9. Longer seeding curves can present problems. As the distance
away from the seeding curve centre increases, its orientation relative to the local flow
direction may change. For example the seeding curve is orthogonal to the flow at its
centre, but may be in line with the flow at its extremities. Additionally the seeding
curves do not follow the local flow structures that we aim to capture with the clustering
process. For example a straight seeding curve generated neighbouring a vortex curved
along its core line would either extend away from or cross the vortex.

To address these challenges we further enhance the seeding curve generation. A
logical approach is to exploit the curvature field Ωc. The curvature vector is the cross
product of velocity and acceleration, and therefore always orthogonal to velocity. This

Figure 4.9: These illustrations demonstrate straight seeding curves vs integrated seed-
ing curves. The representative vectors and locations are visualised with arrow glyphs.
The left image shows the seeding curves crossing each other when aligned with the cur-
vature vector. The right image shows the seeding curves following the curvature, not
crossing, and remain orthogonal to the flow.
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Figure 4.10: This illustration of the Bernard simulation demonstrates the seeding curve
following the flow structure. The seeding location derived from the clustering is at the
centre of the curve (black).

is an ideal candidate as we generate a seeding curve orthogonal to the flow along its the
complete length while following the local curvature of the flow field.

Starting at p(n) the seeding curve s(Ωc(p(n))) is generated by integrating through
the curvature field Ωc(p(n)). The integration step is defined by the required seeding
curve discretisation. See section 2.4. The length of the curve is constrained as previ-
ously described. The integration is achieved using a fourth order Runge-Kutta integrator,
sampling the curvature field Ωc(p(n)), in forward and backward directions. Examples
of this method can be seen in Figure 4.10. It is possible within the curvature field to
find degenerate points if v and a are equal. We handle the degenerate points by simply
terminating the integration.

2.4 Stream Surface Generation
Our work utilises a standard solution to stream surface computation (See [GKT∗08]
using the integration scheme in Appendix A). We allow the user to select downstream
or/and upstream stream propagation e.g. forward and reverse integration. By default
surfaces are terminated when they leave the domain, enter a periodic orbit, or reach a
predetermined maximum length. The user has an option to control the length.

During the construction of the stream surface it is useful to sample attributes of the
flow which can be stored with the vertex data representing the surface. This data is then
be passed to the rendering pipeline for further processing as described in 2.5. Attributes
of use can include colour mapping |v|. The alpha channel can be mapped to |c|. This
is particularly useful when rendering semi transparent surfaces with depth peeling as
described in 2.5.

77



Chapter 4

Figure 4.11: The flow past a cuboid simulation demonstrating illustrative techniques
on a stream surface. The surface is generated neighbouring a double vortex structure
emanating from a critical point.

2.5 Rendering Enhancements
A number of techniques are implemented to aid the viewer in perception of the resulting
visualisation. The techniques include the use of transparency, colour, silhouette edge
highlighting, lighting and shading. We incorporate semi transparency with a combined
approach. First as part of the stream surface construction algorithm we can assign alpha
values from Ωc. For example with higher curvature |c| we assign a higher alpha value
αc. Note: max(|c|) is the maximum curvature in Ωc, and is used to normalise αc ∈ [0,1].
This has the effect of increasing opacity of the inner structures of curved surfaces:

αc =
|c|

max(|c|)
(4.18)

The second part of our combined approach is a view dependent strategy which uses the
relationship αv between the view normal n̂v and the surface normal n̂s defined as:

αv =
2cos−1(n̂s · n̂v)

π
(4.19)

where cos−1(n̂s · n̂v) is given in radians. This angle-based relationship has the effect of
increasing the transparency when the surface tends to face the view port, or reducing
transparency when the surface is orthogonal to the view port. A linear relationship with
a user specified bias ηα is used to combine these aspects:

α = ηααc +(1−ηα)αv (4.20)
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The application of transparency to visualisations poses problems relating to the order
of primitive rendering. To solve this issue we use depth peeling, an order independent
transparency technique presented by Bavoli and Myers [BM08].

Silhouette edge highlighting is used to help the viewer in perceiving where the sur-
faces curve away from the viewer, and enhance surface edges. Silhouette highlighting
utilises a simple Gaussian kernel in image space [MH02]. The technique is applied to a
depth image from the current render pass and is blended to the frame buffer. This way it
can be used during normal scene rendering or interleaved with the depth peeling loop.

In addition, reducing the saturation of colour as the surfaces curve away from the
viewer further enhances the perception of shape. To implement this we modify the mag-
nitude of the RGB values during the rendering process. An efficient method is to reuse
αv. This angle-based relationship is then used to scale the RGB values RGBin sent to
the pipeline: RGB = RGBin(1−ηRGBαv) where ηRGB is a user supplied bias. A suitable
value for ηRGB and ηα derived from experimentation is 0.5. In some cases the results
of this technique can be misleading. The change in transparency or saturation can in-
fluence some aspects of the visualisation. For example, it can alter the perception of
the base colour, misdirecting the observer as to the true value in the region of interest.
Thus further refinement, including toggling these techniques on and off, is made avail-
able interactively to users if they so desire. Examples of these settings are shown in
Figure 4.11.

3 Results
The key to an informative visualisation is the ability to capture the flow characteristics
and to represent different data attributes. In this section we discuss the results and the
performance of our algorithm. The results demonstrate the algorithm applied to a range
of data, both analytical and computational.

The first two datasets highlighted are the Tornado and Cuboid data. These two
datasets are used in Chapter 3, and used here for reference in addition to the following
analysis. The Bernard numerical simulation offers the opportunity to test our algorithm
on a vector field with multiple vortex structures located across the domain. Hurricane
Isabel is a large dataset demonstrating flow characteristics related to the Tornado data.
This dataset is used to challenge the computational speed and memory usage of our al-
gorithm. The different simulations provide a diverse environment testing the robustness
of the algorithm. We demonstrate the clustering, seeding, and illustration options on
each of the simulations. The datasets studied in this section are all normalised velocity
fields in the range [0,1].

Hurricane Isabel This is a simulation from the IEEE Visualisation Contest 2004. The
hurricane modelled is Hurricane Isabel which occurred in September of 2003. The clus-
tering and surface seeding process is applied to the Isabel flow data with different sets
of parameters designed to show the flexibility of the algorithm.
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The first set of parameters are ηψ = 0.25, ηδ = 0.3, ηµ = 0.2 (feature centred), with
sl = 3. This produces clusters in the region of the hurricane vortex. Figure 4.12 shows
the stream surfaces which capture the vortex. The visualisation uses transparency and
edge highlighting to enhance the perception of the rotating flow, and capture the inner
structure of the vortex. The use of a higher sl value produces more seeding locations in
this area, moving outwards as the quantity increases. This may be useful in some cases
but is likely to become cluttered. The second set of parameters are designed to give a
more evenly distributed set of seeding locations. The parameters are ηψ = 0.75, ηδ =
0.0, ηµ = 0.0 (overview), with sl = 30.

In Figure 4.13 an overview of the simulation can be seen. The illustrative techniques
support the perception of the flow characteristics with transparency enabling the user to
understand the inner flow structure of the vortex. It can be seen from this visualisation
how the general flow behaviour interacts with the eye of the hurricane. A second vortex
like structure can be seen in the mid left of Figure 4.13, located above the coast.

Flow Past A Cuboid This simulation demonstrates flow past a Cuboid over 102 time
steps. For our experiments we use the last time step containing fully formed flow struc-
tures. The clustering process is applied with one set of parameters at different simplifi-

Figure 4.12: Hurricane Isabel data visualised with automatic stream surfaces. Colour
is mapped to velocity, and opacity is mapped to vector field curvature. This visualisation
emphasises the eye of the hurricane captured by stream surfaces rendered with edge
highlighting and view dependent colour saturation. The inner structure of the vortex
tends away from blue as the velocity increases away from the centre to the vortex.
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cation levels. We use ηψ = 0.25, ηδ = 0.3, ηµ = 0.2 (feature centred), with sl = 2, and sl
= 4 respectively.

Figure 4.14 demonstrates the seeding algorithm at sl = 2. The double vortex structure
is clearly visible. Figure 4.15 illustrates the ability of the user to change the level of
simplification to sl = 4, thus generating a denser visualisation by combining the two
sets of surfaces providing better contextual information. The visualisation captures the
prominent characteristics of the vortex shedding behind the cuboid.

Bernard Flow The Bernard flow data is a numerical simulation defined on a regular
grid [WSE05]. The simulation demonstrates thermal motion as a result of convection.
The analysts are interested in the interaction of the thermal currents, and the structure
of the interacting vortices. The clustering process is applied to the Bernard flow data
with ηψ = 0.25, ηδ = 0.3, ηµ = 0.2 (feature centred). Once the clustering is complete
the user now has the option to specify the level of simplification sl . A slider is used
to adjust the level of detail with visual feedback in the form of glyphs rendered at the
cluster locations. For this visualisation we specify sl = 4.

Figure 4.16 shows the final surfaces rendered with transparency. The coefficient ηα

= 0.5 for this visualisation demonstrates the usefulness of opacity mapped to Ωc. Edge
highlighting is used to emphasise the surface boundaries with the surface colour dark-
ened as the surface curves away from the view port. The curved surfaces and vortex
cores are clearly emphasised using these techniques. This visualisation is further en-

Figure 4.13: Hurricane Isabel visualised using settings designed to give a broader
representation. A second smaller vortex like structure can be seen on the coast in the
mid left of this still image. Stream surfaces are rendered with edge highlighting and
view dependent colour saturation. The inner structures of the simulation are viewed
with additional transparency.
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Figure 4.14: This visualisation of the flow past a cuboid is performed with sl = 2. The
seeding curve follows a neighbouring double vortex structure emanating from a saddle
point. The stream surface is integrated down stream, and is rendered using illustrative
techniques.

hanced with the use of colour mapped to |v|. The unit vectors in this numerical data
give a constant colour across the surfaces, except in areas of degenerate velocity. This
is useful for highlighting critical points across the domain. Figure 4.17 highlights these
saddle points at the centre and ends of the four double vortices.

Tornado The Tornado data is an analytical simulation defined on a regular grid. The
data domain is 64 x 64 x 64 and simulates the flow structure of a fully formed tornado.
The clustering process is applied to this data with one set of parameters at different
representation levels. We use εψ = 0.25, εδ = 0.3, εµ = 0.2, with an sl of 5. Figure
4.18 illustrates the effectiveness of the algorithm in representing the flow characteristics.
The Tornado funnel is captured by the stream surfaces while relating the flow away
from the funnel to the circulating flow within the vortex core. This visualisation further
demonstrates the focus and context nature of this algorithm.

Figure 4.15: This image highlights the ability of our algorithm to provide both overview
and feature centred within the same visualisation. The vortex shedding is represented by
the stream surfaces along with its relation to the rest of the flow field.
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Figure 4.16: The Bernard Flow numerical simulation visualised using our algorithm.
The seeding locations are derived from the clustering process using the feature centred
parameters and sl = 4. The four main vortex structures are clearly emphasised. The
thermal motion of the flow field is captured with our framework. The figure shows the
surfaces rendered with transparency mapped to αc and αv.

Parameters While the selection of a simplification level is simple, as it directly corre-
lates to the number of seeding locations, its selection is important as the final visualisa-
tion can easily become over populated or too sparse. The selection of parameters is im-
portant for producing the type of visualisation required by the user as they are, although
progressive, sensitive to change. The two proposed default settings are demonstrated
in this section. It was found from experimentation that careful thought and a general
understanding of fluid flow is required to design sets of parameters that are useful to the
flow engineer. A poor choice of parameters could lead to cluttered visualisations of little
meaning to an engineer, similar to a naive approach (See Figure 4.19). These ideas are
further discussed in Section 4.

Figure 4.17: The Bernard Flow numerical simulation visualised with sl = 4, and the
feature centred parameters. This figure shows one of the 4 surfaces which highlights
saddle points within the domain. The stream surface is rendered red, while the degener-
ate areas are highlighted green to blue.
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Figure 4.18: The Tornado simulation visualised using our algorithm. The seeding loca-
tions are derived from the clustering process using the feature centred parameters and
sl = 5. The left image shows the cluster centres represented by the base of the arrow
glyphs. The arrow glyphs represent the cumulative velocity of the cluster. The right
image shows the surfaces rendered with transparency mapped to αc and αv.

Clustering Performance
Data No. of Clusters Time [ms]
Hurricane Isabel 49,999,999 542,452
Bernard Flow 524,287 2,908
Tornado 524,287 2,908
Cuboid 1,179,647 6,898
Lorenz Attractor 4,194,303 34,812

Table 4.1: Clustering performance of a range of simulations.

Performance Our algorithm is implemented in C++ and QT4 on a PC with an NVIDIA
GeForce GTX480, an Intel quad core 2.8GHz CPU with 8GB RAM. The bottleneck in
the performance of our algorithm is the clustering step as seen in Table 4.1. The clus-
tering process compares closely with previous vector field clustering algorithms that
operate on uniform grids [PGL∗12].

The field derivation ranges from 8ms for 262,144 data samples to 958ms for 25,000,000
data samples. The seeding curve generation is a function of sl and curve length which
decreases as sl increases. Timings are from 15ms for sl = 30 to 35ms for sl = 100.
Stream surface rendering performance is a function of surface size and complexity e.g.
the number of vertices and depth peeling layers. We achieve 20fps+ when rendering
meshes of 400k vertices while utilising 10 depth layers. This is comparable to the work
by Born et al. [BWF∗10] and Hummel et al. [HGH∗10] who discuss surface rendering
performance in detail.
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4 Domain Expert Feedback

To study the usefulness of the proposed framework in the visualisation of complex CFD
data, we have shown our visualisation results and system to a number of CFD experts,
i.e., Dr. Malki, Dr. Masters, and Dr. Croft, co authors of this chapter. This section
summarises their positive and constructive feedback.

One of the most commonly used software packages for the visualisation of numerical
simulation results is Tecplot, which does not offer the user the option to create stream
surfaces (only stream tubes). An example is a vertical axis wind turbine[MMWC11],
where the classical analysis partitions the flow into vertical slices. Both streamlines
and stream surfaces have their uses, however, where 2D images are extracted for use in
reports or presentations and the user cannot rotate the model to evaluate it from different
viewing angles, streamlines can be quite messy and difficult to comprehend. Stream
surfaces on the other hand are much neater and clearer showing how different layers of
flow may fold over each other.

Surfaces are very helpful in defining boundaries in the flow. The particular approach
of this chapter, where the surface seeding line is curved in response to the physical data,
gives a surface that is analogous to the classical definition of the boundary of a stream
tube [DGS79] or stream slice [Par82] [Hom91]. This gives the surface two properties
that are very useful. First, it is a solid surface partitioning the flow into regions. Second,
the surface relates (approximately) to the boundaries of stream tubes, when you realise
that a stream tube can be any arbitrary shape [Hom91].

Compared to manual seeding there is an advantage of using automated methods.
They are able to identify regions where interesting features occur within the flow, which
may otherwise be overlooked. This is particularly relevant where the user does not
have a clear understanding of the flow structure through the domain. The user may not
necessarily be able to identify the locations of such features.

Figure 4.19: A naive seeding approach to the flow past a cuboid simulation. Although
the range of illustrative techniques are applied the perception of the flow characteristics
is limited. The surfaces are seeded at regular intervals at a consistent orientation across
the domain.
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The experts from the CFD community welcome the flexibility of control of seeding
parameters, although it may be sufficient to provide the user with a few standard param-
eter sets to quickly provide the user with alternative views of the data. However, there
are likely to be situations where the user is particularly interested in a specific region,
even if it is not necessarily the most exciting location in terms of flow structure. It would
be useful in such situations for the user to have more control over what is shown, in what
level of detail and where within the domain.

Varying the number of clusters enables the user to evaluate the flow structure in dif-
ferent levels of detail. Fewer clusters can be used to evaluate the most complex regions
of the flow, such as the swirling region of a turbine wake [MMWC11], whilst the num-
ber of clusters can be significantly increased to evaluate the far field regions and obtain
a more general picture of the flow throughout the entire domain. Together, these can
be used to build a more complete picture of how the flow is behaving throughout the
domain.

Applying transparency to the stream surfaces enables the user to view much more
detail in terms what is happening within the flow at different levels and understand how
the flow structure is developing. Also, it is very useful to use a colour scale showing
the variation on various parameters e.g., velocity, pressure or turbulence intensity. This
provides much more information to the user in the process of trying to identify and better
understand the flow characteristics.

This framework is useful for the identification and visualisation of interesting flow
features such as vortices, and for visualising the interaction of wakes behind obstructions
with downstream objects falling within the wake’s flow path. The tool would be of
particular benefit to someone who may not be entirely familiar with the details or nature
of the data.
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Stream Surface Seeding for a Land Speed
Record Vehicle

THE challenge of visualising CFD simulations include handling large, unstruc-
tured, high dimensional data. Although many algorithms have been described
for the seeding of streamlines, relatively few have been presented for stream sur-

faces. In this context, the work in Chapter 4 automating the seeding of stream surfaces
is extended. We adapt a previous surface seeding algorithm such that it is more applica-
ble to large, unstructured CFD simulation data with emphasis on reducing the memory
requirements and computational time for the clustering, while processing unstructured
data efficiently. Part of the motivation behind our work is a request from CFD experts
to interactively select a subset (or cluster) of the CFD data and obtain more details. We
further study the domain expert requirements, developing a visual interface and tools for
interactive selection and filtering of cluster representations of CFD data.

The requirements of the domain experts include visualising large datasets, user guided
semi automatic seeding of surfaces to represent interesting subsets of the flow, locating
and visualising areas of turbulent flow. We define those large datasets as being able
to just fit into RAM on standard CFD visualisation hardware (approx 8-16GB). Blood-
hound SSC is a jet and rocket powered car designed for a speed of 1,000 mph (just over
1,600 kph). It is classified as a car because it has four wheels and is under full control
of its driver. It has a slender body of approximately 14m length with two front wheels
within the body and two rear wheels mounted externally within wheel fairings. It weighs
over 7 tonnes and the engines produce more than 135,000 horsepower. The Bloodhound
is a mix of car and aircraft technology, with the front half being a carbon fibre mono-
coque like a racing car and the back half being a metallic framework and panels like an
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aircraft [Nob].
In order to accelerate computational speed, and process large datasets such as the

Bloodhound SSC CFD simulation, we introduce an algorithm based on k-means clus-
tering. k-means clustering is able to partition the flow into subsets of data defined by
a customised distance function. To produce meaningful subsets comparable with the
work in Chapter 4, we use a derived curvature field and a velocity gradient field both
combined with Euclidean distance for a unified distance function. The distance function
uses weighting parameters to enable the user to guide the final results.

Xu and Wunsch II [XW05] survey the topic of clustering, focusing on scalar cluster-
ing algorithms rooted in Statistics, Computer Science, and Machine Learning. Cluster-
ing algorithms can be divided into hierarchical clustering or partition-based clustering.
The Telea and Van Wijk [TvW99] algorithm utilises a hierarchical approach, as does the
work in Chapter 4. These algorithms are effective in providing a simplified represen-
tation of a vector field. However, these algorithms are O(n2) complex where n is the
number of initial samples. This has a significant impact on computation and memory
requirements. Alternatively, partitioning algorithms such as k-means clustering [Boc07]
are generally O(i · k ·n) complex [Kog07], where k is the number of centroids or means,
and i is the number of iterations. We utilise the k-means clustering to partition the do-
main using a novel distance function combining flow curvature, velocity gradient, and
Euclidean distance. k-means is suitable for large, unstructured CFD datasets due to its
computational efficiency and small memory footprint.

For sampling unstructured data we generally use a regular grid, Octree, BSP tree
or other data structure storing pointers to intersecting tetrahedral cells, cutting down
the search space when sampling the dataset. To improve memory usage and maintain
good sampling speed we utilise spatial hash grids. Teschner et al. [THM∗03] propose
an approach to collision and self collision detection of dynamically deforming objects
that consist of tetrahedrons. The algorithm employs a hash function for compressing a
regular spatial grid. The hash function can be generated very efficiently and does not
require complex data structures, such as Octrees or BSPs. The authors investigate and
optimise the parameters of the collision detection algorithm, such as the hash function,
hash table size and spatial cell size. Following this work Eitz et al. [EL07] present
a hierarchical spatial hash grid scheme for real time collision detection. The authors
employ an infinite hierarchical spatial hash grid in which for each single tetrahedron in
the scene a well fitting grid cell size is computed. A hash function is used to project
occupied grid cells into a finite 1D hash table. We employ this hierarchical spatial hash
grid scheme for the fast, memory efficient sampling of an unstructured tetrahedral mesh.

To aid the capture of the underlying flow structures we use seeding curves derived
from the curvature field. A seeding curve is placed at the centre of each cluster. This
technique is used in Chapter 4, however we make a modification utilising an adaptive
step integrator to refine the curve in complex areas resulting in a smoother stream sur-
face. The clustering technique is used to locate areas of interest for the domain user, and
then to generate seeding curves and surfaces associated with a given cluster, which yield
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insightful representations of the CFD data.
Vector field clustering has been used to show interesting flow features for real world

datasets [PGL∗12]. It offers the benefit of not having to make a binary decision based
on the presence of a feature. k-means clustering algorithms provide a general approach
to partitioning data. This approach enables the domain expert to focus on an individual
structure in the flow. We illustrate how to capture the characteristics of the flow field
for the domain users. Our focus pays particular attention to the performance, memory
footprint, and flexibility of the clustering. The main benefits and contributions of this
chapter are:

• Improved computational speed and memory usage over recent stream surface
work, with the ability to process large unstructured datasets fast and efficiently.

• An algorithm to partition the flow field using k-means clustering, providing supe-
rior performance with less memory overhead, and a feature-based overview of the
data.

• A tailored algorithm specific to the bloodhound project which captures interesting
subsets of the flow, while producing comparative results with previous hierarchical
algorithms.

• The novel use of a curvature field and a velocity gradient field combined with
Euclidean distance for the clustering distance function.

• The application of this visualisation and interaction techniques to real world CFD
data with reviews from the domain experts.

The rest of this chapter is divided into the following sections. A detailed presentation
of the algorithm is given in Section 2. The results are reviewed in Section 3. Domain
expert feedback is provided in Section 4.

2 Stream Surface Placement

This section describes our adapted stream surface seeding algorithm, starting with an
overview of the pipeline illustrated in Figure 5.1. The algorithm features clustering of
combined Euclidean distance, curvature magnitude, and velocity gradient magnitude.
Seeding curve generation starts from the cluster centres. We also discuss the weightings
for the combined distance function and how they can be used to guide the results.

The input to our visualisation framework is an unstructured tetrahedral meshed CFD
simulation. The input to the algorithm is v(p) ∈ R3, where v ∈ R3, p ∈ Ω and is an
unstructured tetrahedral mesh in R3.
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Figure 5.1: The automated stream surface seeding pipeline. The pipeline shows the
curvature field and velocity gradient field derived from the flow field. These are used as
inputs to the clustering, seeding curve generation, and illustration techniques. Stream
surfaces are propagated from the seeding curves through the vector field, and then ren-
dered.

1. We start by deriving a curvature field and a velocity gradient field. These fields are
derived directly from the velocity field, and are used in the clustering process. The
curvature field is also used to compute seeding curves after the clustering process
has identified the seeding locations, and is used to map opacity to stream surfaces
for illustrative rendering. These derived fields are saved to disk for quick loading
by the user on subsequent analysis. See Section 2.1

2. We next partition the domain into k clusters where k is a user defined input. The
data array indices of the vertices representing the scalar attributes are stored. The
k-means algorithm iterates until it converges to a stable set of means. Flow curva-
ture, velocity gradient, and Euclidean distance are comparison attributes that can
be set. See Section 2.2.

3. Next we compute the seeding curves at the cluster centres. The cluster centre
is automatically used as the basis of the seeding curve. The seeding curves are
then generated by integrating forward and backward through the curvature field
at a length proportional to the cluster size. This generates seeding curves which
follow the local flow structures while maintaining orthogonality with the flow. See
Section 2.3.

4. Stream surfaces are propagated from each of the seeding curves. Flow attributes
may be mapped to colour and opacity. After the generation of the stream surfaces,
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the surface data is rendered using a number of illustrative techniques to enhance
the perception. See Section 2.4.

This pipeline differs from Chapter 4 in that we first compute the derived fields as input
to the clustering process. We use the derived fields in combination with our customised
distance metric to generate clusters in areas where there is a non zero velocity gradient
and a concentration of clustering in areas of high curvature.

Following this we cluster the data with our k-means clustering algorithm rather than
the hierarchical clustering proposed in Chapter 4. This reduces the computational and
memory requirements, and enables the clustering of unstructured CFD data without
modification. We then generate the seeding curves in the same way as in Chapter 4,
modified to use an adaptive integration method. The motivation for this is that it in-
creases the accuracy of the initial surface representation in complex areas.

Finally we construct and render the stream surfaces using the same illustration tech-
niques as in the previous work in Chapter 4. These methods are effective for capturing
the characteristics of the flow when applied to stream surfaces.

2.1 Derived Fields
From the vector field v(p) we derive a curvature field c(p), and a velocity gradient field
g(p). The role of c(p) and g(p) is to support the clustering process (Section 2.2). c(p)
also supports the seeding curve computation (Section 2.3) and illustrative techniques for
rendering the stream surfaces (Section 2.4).

The curvature field c(p) ∈ R3, where r ∈ R3, is derived by applying a combination
of operators to the vector field. c(p) is derived from the velocity and acceleration of the
flow field. Acceleration, a, is defined as a = (∇v)v, where ∇v is the Jacobian of the
velocity field. Steady state curvature [Rot00] is defined as |c| where:

c =
v×a
|v|3

(5.1)

The velocity gradient field g(p), where g ∈ R3, is derived from the velocity field as
follows:

∇|v|= ∂ |v|
∂x

i+
∂ |v|
∂y

j+
∂ |v|
∂ z

k (5.2)

where g = ∇|v| i.e. the gradient of the velocity magnitude, and i, j,k are the compo-
nents of a unit vector. The gradient field is computed to support the clustering process
(Section 2.2).

2.2 k-means Clustering
k-means clustering is a fast, simple, and popular method for clustering data. With rel-
atively low computational requirements and memory usage compared to hierarchical

91



Chapter 5

clustering, it is a good candidate to solve data partitioning and significantly reduces the
computational and memory requirements. This algorithm needs no modification to deal
with either structured or unstructured data.

k-means is one of the simplest unsupervised learning algorithms that solves the well
known clustering problem [Boc07]. The procedure provides a way to classify a given
data field into k clusters chosen as a priori by the user. The main idea is to define k
centroids, one for each cluster. We refer the reader to Section 3 for a discussion of the
choice of k. The next step is to take each grid vertex pi belonging to Ω and associate it
with the nearest initial centroid.

For a set of scalars S = {s(p1), ...,s(pn)} ⊂ R, a distance function d(c, s(pi)) de-
fines a centroid c = c(S ) ⊂ R of the set S as a solution of the minimisation prob-
lem [Kog07]:

c = arg min

{
∑

s(pi)∈S
d(c, s(pi))

}
(5.3)

Let ∏ = {π1, ...,πk} be a partition of S , that is:⋃
i

πi = S , and πi∩π j = 0 if i 6= j (5.4)

Given a partition ∏ = {π1, ...,πk} of the set S one can define the corresponding cen-
troids {c(π1), ...,c(πk)} by:

c(πi) = arg min

{
∑

s(pi)∈πi

d(c, s(pi))

}
(5.5)

For a set of k centroids {c1, ...,ck} one can define a partition ∏ = {π1, ...,πk} of the set
S by:

πi = {s : s ∈S , d(ci, s)≤ d(c j, s) for each j = 1, ...,k} (5.6)

noting that in general c(πi) 6= ci. The procedure iterates between the two steps described
above until it converges to a stable set of means and partitions. It is important to note
that we perform our clustering in scalar space utilising the customised distance metric
described next.

A Customised Distance Metric Chapter 4 guides the clustering process to areas of
flow where there is a change in geometric curvature e.g. difference in velocity vector
direction ( ηδ ), and velocity gradient ( ηµ ). These attributes combined with position
( ηψ ) form the basis of the distance function. The distance function can be altered by
modifying the bias between each of the three components.

The aim is to generate seeding curves in locations adjacent to the flow structures,
with minimal seeding density. Interesting flow structures may be characterised by their
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curvature and velocity gradients. Another aim is to generate clusters in areas of non zero
velocity gradient and a concentration of clustering in areas of high curvature.

Based on the same philosophy we introduce a novel distance function d(c(π), s(p))
combining flow curvature |c|, velocity gradient |g| and Euclidean distance |e|, where
e ∈ R3, for use with k-means clustering.

To incorporate the curvature of the flow, velocity gradient, and Euclidean distance
into a single unified distance function we specify their relationship as a simple linear
combination:

l′( |c|, |g|, |e| ) = |c|+ |g|+ |e| (5.7)

This combination alone does not enable flexibility for fine tuning the results in marginal
cases where either flow curvature or velocity gradient strongly influences the results.
Additionally we desire the ability to produce both focus and contextual visualisations
for the domain user. This motivates us to add user specified bias to the distance function.
To control the influence of |c| or |g| we specify a linear relationship:

i( |ĉ|, |ĝ| ) = B|ĉ|+(1−B)|ĝ| (5.8)

where B ∈ [0,1] and ĉ and ĝ are range normalised e.g. |ĉ| ∈ [0,1] and |ĝ| ∈ [0,1]. To
influence a focus or contextual bias we specify a linear relationship between i and |ê|
where A ∈ [0,1] and ê is normalised by the domain extents e.g. |ê| ∈ [0,1]:

l( |ĉ|, |ĝ|, |ê| ) = Ai( |ĉ|, |ĝ| )+(1−A)|ê| (5.9)

The distance function d(c(π), s(p)) = ||c(π)− s(p)||2 determines how we partition the
domain. Both the centroid c(π) and the attribute s(p) are scalar values computed from
the linear relationship l( |ĉ|(p) , |ĝ|(p) , |ê|(p) ). By changing the parameters A and B
we can communicate different insights into the characteristics of the flow behaviour. For
example, increasing the value of A will provide a more focused visualisation, conversely,

Figure 5.2: This image shows the Bernard flow simulation clustered with our algorithm.
The cluster centres are represented by the bases of the arrow glyphs where each glyph
shows vector direction at that location. All images are clustered with B = 0.5, and k =
100. The top left image is clustered with parameter A = 0.05, and shows a more evenly
distributed set of clusters as we emphasise Euclidean distance. The top right image is
clustered with A = 0.5, and the bottom image is clustered with A = 0.95 showing the
emphasis moving towards the centre of the curved flow with higher values of A.
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Figure 5.3: The cluster centres are represented by the bases of the arrow glyphs where
each glyph shows vector direction at that location. All images are clustered A = 0.5, and
k = 100. The top left image is clustered with parameter B = 0.1. The top right image is
clustered with B = 0.5, and the bottom image is clustered with B = 0.9. The changes are
more subtle when emphasising velocity gradient over flow curvature.

reducing A will provide increased context to the visualisation. Adjusting B will adjust
the influence either |c| or |g| has toward the final visualisation.

User Input parameters The choice of user input parameters A, B, and k will effect
the resulting visualisation. In this section we show the effect the different parameters
have on the distribution of the clusters. It can be seen in Figure 5.2 that as the parameter
A is decreased it provides a more evenly distributed set of clusters which provide a good
overview of the characteristics of the flow field. In contrast it can be seen that an increase
of A results in a more focused distribution of clusters in areas of higher curvature.

The change in emphasis between flow curvature and velocity gradient enables the
user to fine tune the clustering, adjusting the cluster centres for more favourable results.
We demonstrate the effects of changing parameter B in Figure 5.3.

Figure 5.4: These image shows the Bernard flow simulation clustered with our algo-
rithm. The cluster centres are represented by the bases of the arrow glyphs where each
glyph shows vector direction at that location. All images are clustered A = 0.5, and
B = 0.5. The top left image is clustered with a k of 50, the top right with a k of 25,
and the bottom image with a k of 12. As the quantity of clusters reduce a more focused
distribution is observed.
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Figure 5.5: The left illustration of the Bernard simulation demonstrates the seeding
curve following the flow structure. The seeding location is derived from the clustering
with parameters A = 0.5, B = 0.5, and k = 4. Three of the surfaces are hidden in the
rendering. The right illustration of the Bernard simulation is provided for comparison
courtesy of Edmunds et al. [ELM∗12].

Another important parameter is the choice of k. Too many clusters will produce a
cluttered visualisation, and too few will not adequately capture the interesting features
within the flow field. The effect of changing k can be seen in Figure 5.4. The problem
of removing the need to choose k, is present for the general case of k-means clustering.
There is much literature on this matter as discussed in Fang et al. [FW12] and Ferreira et
al. [FKSS12], however we are not aware of any definitive approach to solving this prob-
lem. We therefore demonstrate our visualisations, highlighting the number of chosen k,
to provide guidance to the domain engineer. k is a user option.

Figure 5.6: The left illustration is the Bernard flow numerical simulation visualised
using our seeding algorithm. The seeding locations are derived from the clustering
process using parameters A = 0.4, B = 0.5, and k = 8. The four main double vortex
structures are clearly emphasised by the eight surfaces. The thermal motion of the flow
field is captured with our framework. The figure shows the surfaces rendered with trans-
parency. The right illustration of the Bernard simulation is provided for comparison
from Chapter 4
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2.3 Seeding Curve Computation
The seeding curve generation commences following the clustering. The final set of k
centroids {c1, ...,ck} are used to define the location for the origin of each seeding curve.
Seeding curves are generated using the same method as in [ELM∗12]. The seeding
curves are generated by integrating through the curvature field. Their length are re-
stricted to the cubic root of the cluster volume:

length(π) = 3
√

vol(π) (5.10)

where vol(π) is the spatial volume of the cluster π(ck). The integration is achieved
using a fourth-order Runge-Kutta integrator, sampling the curvature field, in forward
and backward directions. We modify the original approach by using an adaptive fourth-
order Runge-Kutta integrator, which provides a discretised seeding curve with a denser
set of vertices in areas of increased complexity. The motivation for this is that it increases
the accuracy of the surface representation in complex areas.

2.4 Surface Construction and Rendering
For the sampling of unstructured tetrahedral data we use a hierarchical spatial hash grid
as described in Appendix A. We employ this method for fast lookup of vertex to tetra-
hedral cell intersection and interpolation. We utilise the hierarchical spatial hash grid
which for each single tetrahedron in the domain, a well fitting grid cell size is computed.

Figure 5.7: The dataset shown here is a direct numerical Navier Stokes simulation
by Simone Camarri and Maria Vittoria Salvetti (University of Pisa), Marcelo Buffoni
(Politecnico of Torino), and Angelo Iollo (University of Bordeaux I) [CSBI05] which is
publicly available [Tos]. We use a uniformly resampled version which has been pro-
vided by Tino Weinkauf and used in von Funck et al. for smoke surface visualisations
[vFWTS08a]. The left illustration of flow past a cuboid simulation demonstrating a
stream surface generated near a double vortex structure emanating from a critical point.
The clustering parameters used for this visualisation are A = 0.9, B = 1.0, and k = 3.
The right illustration of the cuboid simulation is provided for comparison from Chap-
ter 4.
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Figure 5.8: The right image of the flow past a cuboid simulation highlights the ability
of our algorithm to provide both focus and context within the same visualisation. The
vortex shedding is represented by the stream surfaces along with its relation to the rest
of the flow field. The image is rendered with transparency. The clustering parameters
used for this visualisation are A = 0.5, B = 0.5, and k = 9. The left illustration of the
cuboid simulation is provided for comparison Chapter 4.

A hash function is used to store a reference to the occupied grid cells in a finite 1D
hash table. The hash is computed from the bounding box of the tetrahedral cell. When
performing lookup, the hash is computed from the sample vertex. This method reduces
the memory footprint for cell storage, while maintaining fast lookup for intersection and
interpolation tests. In the case of the full Bloodhound SSC CFD data the resolution of
an equivalent regular grid, fine enough to capture a similar quantity of tetrahedral cells
per grid location, would be 13,607× 13,607× 6,792. At one 64bit pointer per grid
cell, an approximate memory usage would be 9,000 GB, not including any other storage
overhead. However, the hierarchical spatial hash grid, at one pointer and one integer per
tetrahedral cell, uses approximately 500 MB not including any other storage overhead.
The storage overhead for the hierarchical spatial hash grid relies on a hash map / binary
tree implementation for fast lookup. This is more expensive than a simple array for the
regular grid. Using standard C++ STL map containers the memory overhead rises to
approximately 2.5 GB.

Our work utilises an out of the box solution for generating stream surfaces [GKT∗08].
An adaptive fourth-order Runge-Kutta integrator (See Appendix A) is used in the surface
construction. The user can select downstream and upstream propagation. Surfaces are
terminated when they leave the domain, enter a periodic orbit, or reach a predetermined
maximum length. The user has an option to control the length.

A number of techniques are implemented to aid the viewer in perception of the re-
sulting visualisation. Options include the use of transparency, colour, and silhouette
edge highlighting. Transparency in visualisations pose problems relating to the order
of primitive rendering. We use depth peeling for order independent transparency. Sil-
houette edge highlighting is used to help the viewer in perceiving where the surfaces
curve away from the viewer, and enhance surface edges. Silhouette highlighting utilises
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Figure 5.9: Bloodhound SSC CFD simulation clustered using parameters A = 0.1,
B = 0.5, and k = 5. The left visualisation demonstrates seeding curves generated from
the cluster centres by integration through the curvature field. The cluster centres are
represented by arrow glyphs where the arrow base is the centre, and the glyph repre-
sents the velocity vector at that location. The right visualisation demonstrates stream
surfaces generated from the seeding curves in Figure 5.9. The surfaces are rendered us-
ing illustrative techniques, and colour mapped to the coefficient of pressure cp clamped
to the range [-1,6]. Red is high pressure and blue is low pressure as compared to the
free stream pressure which is green.

a Gaussian kernel in image space [MH02]. Reducing the saturation of colour as the sur-
faces curve away from the viewer further enhances the perception of shape, as Chapter 4.

3 Results
Interaction and exploratory tools are very useful to the domain expert for the produc-
tion of insightful and meaningful visualisations. Our clustering approach partitions the
domain into meaningful subsets. Placing stream surfaces in areas of interest provides
feedback about the underlying characteristics of the flow. In the following section we
compare our technique to Chapter 4, utilising the same datasets. We then demonstrate
our algorithm in a case study of the Bloodhound CFD simulation from domain experts
for which our algorithm is tailored.

3.1 Visual Comparisons
In this section we compare our algorithm to previous work in Chapter 4. We demon-
strate how we are able to capture the same features found within each of the datasets. We
first look at the Bernard flow numerical simulation defined on a regular grid [WSE05].
The simulation demonstrates thermal motion as a result of convection. Our algorithm
captures the double vortex structures using parameters A = 0.5, B = 0.5, and k = 4. As
shown in Figure 5.5, we have illustrated one of the double vortex structures, which com-
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Figure 5.10: Bloodhound SSC CFD simulation clustered using parameters A = 0.1,
B = 0.5, and k = 5. This visualisation demonstrates stream surfaces generated from
the seeding curves in Figure 5.9. The contextual surfaces are hidden in this visualisa-
tion. The surfaces are rendered using illustrative techniques, and colour mapped to the
coefficient of pressure cp clamped to the range [-1,6]. Red is high pressure and blue
is low pressure as compared to the free stream pressure which is green. A colour map
histogram is shown in the bottom left of the image.

pares well with Figure 4.10 from Chapter 4. We also show a comparative visualisation
of the full Bernard illustration as shown in Figure 5.6. This visualisation is generated
from parameters A = 0.4, B = 0.5, and k = 8. This visualisation compares well with
Figure 4.16 from Chapter 4, and has the advantage of seeding each side of the double
vortices separately. This is useful for a more detailed exploration of the flow structures.

Next we look at the flow past a cuboid simulation as can be seen in Figure 5.7.
This visualisation demonstrates the ability of our algorithm to capture the double vortex
structure down stream of the cuboid. In Figure 5.8 we demonstrate the visualisation
of both focus and context using one set of cluster parameters A = 0.5, B = 0.5, and
k = 9. Figure 4.15 from Chapter 4 was generated using two sets of parameters (focus
and context settings). In summary our algorithm compares well with the approach of
Chapter 4. We are able to capture the same underlying characteristics of the flow fields
with improved computational speed while maintaining a smaller memory footprint.

99



Chapter 5

In addition to the visual comparison with the work in Chapter 4 we present a gallery
of visualisations demonstrating the effect of changing the parameters A, B, and k, for a
given dataset. This gallery is presented in Appendix B.

3.2 Memory and Performance Evaluation

To evaluate our work, we compare the proposed method with the work in Chapter 4.
Our algorithm performs well when compared to the hierarchical clustering of Chapter
4. The hierarchical clustering is O(n2), compared with our algorithm whose complexity
is O(i · k · n), where n is the number of initial samples. It is important to note that no
parallelisation techniques are used in our evaluation. This is to provide clarity of the al-
gorithm performance. Parallelisation techniques can vary significantly, and optimisation
of these techniques for speed or memory usage can disguise the baseline performance
of our technique.

Our algorithm is implemented in C++ and QT4 on a PC with an NVIDIA GeForce
GTX480, an Intel quad core 2.8GHz CPU and 8GB RAM. The data is loaded using
either the freely available TecplotIO library [Tec], or by loading the Swansea University
FLITE [Swab] CFD simulations directly. The bottleneck in the performance of our algo-
rithm is the clustering as seen in Table 5.1. The performance of stream surface rendering
is comparable to previous work e.g. Born et al. [BWF∗10], Hummel et al. [HGH∗10],
and Chapter 4. The memory requirement for our approach is proportional to the size of

Clustering Performance
Data Elements k Time[ms] Chapter 4[ms]
Bernard 128x32x64 4 1,246 2,908
Cuboid 192x64x48 3 2,095 6,898
Lorenz 1283 5 11,058 34,812
Air brake 5,764,071 10 10,795 n/a
Bloodhound 40,963,951 5 37,011 n/a

Table 5.1: Clustering performance of a range of simulations. All are regular grid data
except the Bloodhound data, which is an unstructured tetrahedral grid. For reference
the last column contains comparative times from Chapter 4.

the data set e.g. n, where n is the number of initial samples. We store only one integer
per vertex to reference the cluster it belongs to. The hierarchical approach stores vector
data, location data, cluster size data, cumulative error data, and neighbourhood/connec-
tivity information at each node in the binary tree. The quantity of nodes is 2n−1. The
k-means clustering with the customised distance metric approach can reach up to one
order of magnitude faster than its predecessor.
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3.3 Case Study: Bloodhound Project

In our case study we illustrate the results of our algorithm applied to the Bloodhound
SSC CFD data. This demonstrates the visualisation of large CFD datasets, user guided
semi automatic seeding of surfaces to represent interesting subsets of the flow, and the
ability to locate and visualise areas of turbulent flow which may slow down or interfere
with the stability of the vehicle. In general terms the engineers are looking for flow
phenomena which may interfere with the vehicle’s aerodynamics, causing the vehicle to
become uncontrollable and crash. The engineers are also searching for flow phenomena
which may cause drag thus hindering the record attempt.

Our study is divided into two subsections. The first is a study of the Full CFD
simulation where we are trying to locate any areas of turbulent flow along the length
of the vehicle. The second is a study of the turbulent flow which forms behind the air
brakes when deployed.

Full Simulation at Mach 1.3

The CFD data representing the Bloodhound SSC travelling at Mach 1.3 is a large un-
structured tetrahedral mesh consisting of 40,963,951 elements. The simulation results
include velocity (vx,vy,vz), density (ρ), coefficient of pressure (cp), and energy (E).

We choose a set of parameters that provides a reasonably distributed set of surfaces,
while maintaining proximity to the vehicle body, with the aim of capturing the flow
characteristics around the vehicle in transit. The clustering results from parameters A =
0.1, B = 0.5, and k = 5 are illustrated in Figure 5.9. We are searching for any indication
of turbulent flow forming along the boundary layer of the vehicle body.

Figure 5.9 demonstrates the surfaces generated from the seeding curves and rendered
with illustrative techniques. In Figure 5.10 the contextual surface is hidden to allow
closer examination of the flow along the boundary of the vehicle. These illustrations help
confirm the aerodynamic characteristics, showing no indication of unexpected areas of
turbulent flow. The coefficient of pressure is colour mapped to identify any undesirable
pressure spikes forming as a result of shock waves traversing the body.

Figure 5.11: Bloodhound SSC CFD simulation geometry. The left image shows the
initial air brake design configuration with a solid construction, situated just in front of
the rear suspension. The right image shows the final air brake design configuration with
holes, again situated just in front of the rear suspension.
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Figure 5.12: Bloodhound SSC CFD simulation of the the initial air brake design con-
figuration in use, clustered using parameters A = 0.6, B = 0.6, and k = 13. The bottom
image is using transparency to aid the visual perception of the flow behind the air brake.
A large vortex structure can be clearly seen left of centre. Colour is mapped to coeffi-
cient of pressure cp clamped to the range [-1,6], where free stream cp is green, high cp
is red, and low cp is blue.

Simulation of Air Brakes

The CFD data representing the Bloodhound SSC deployed air brakes is a large unstruc-
tured tetrahedral mesh consisting of 5,764,071 elements. The simulation results include
velocity (vx,vy,vz), density (ρ), coefficient of pressure (cp), and energy (E). In this case
study we investigate two simulations; the first is the initial design configuration of the
air brake which is a solid ’door’ situated up stream of the rear suspension assembly, the
second is a revised air brake design which includes a set of holes. It is predicted the first
air brake design will shed large, high intensity vortex structures at a frequency close to
the natural frequency of the rear suspension assembly. The revised design includes a
set of holes which are predicted to produce a much higher frequency of smaller vortex
structures which will greatly reduce the interference with the rear suspension assembly.
See Figure 5.11 for an image of the geometry used for these CFD simulation. This figure
also demonstrates a simplified overview of the expected results.
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Figure 5.13: The left visualisation shows a close up of 5.12 with the outer surface
hidden. The large vortex structure can clearly be seen at the centre of this image. The
right visualisation views the same vortex structure from behind. The throat of the vortex
is located above the centre. Two further vortex structures can be seen; one rolling
around the top of the throat, and one rolling around the bottom. Colour is mapped to
coefficient of pressure cp clamped to the range [-1,6], where free stream cp is green,
high cp is red, and low cp is blue.

For the first design simulation we choose a set of parameters which focuses on areas
of high curvature with the aim of capturing large, high intensity vortex structures behind
the air brake mechanism. The clustering results from parameters A = 0.6, B = 0.6, and
k = 13 are illustrated in Figures 5.12 and 5.13. In these visualisations we can confirm the
presents of a large, high intensity vortex structure travelling towards the rear suspension
assembly. There is only one instance of a vortex structure in the space between the air
brake and past the rear suspension, indication a lower frequency of vortex shedding. This
visualisation of the CFD simulation clearly confirms the engineers initial predictions.

For the second design simulation we adjusted the parameters focus on a higher den-
sity of interwoven curved flow structures forming behind the air brake mechanism. We
increased the number of k to achieve this, and increased the parameter A to further con-
centrate the clustering in curved areas as we expect a reduction of extreme curvature
found on the first simulation. The clustering results from parameters A = 0.95, B = 0.6,
and k = 19 are illustrated in Figures 5.14, 5.15 and 5.16. It can be seen that the flow
behind the air brake is highly complex. As expected this is a result of the hole configu-
ration causing the formation of small vortices being shed at high frequency from each of
the holes. The high frequency of these low intensity vortices quickly become interwo-
ven into a highly complex area of turbulent flow. This flow pattern again confirms the
engineers predictions and provides great insight into how the turbulent flow is forming
and interacting with the suspension assembly and bodywork.

These illustrations support the domain engineer in consolidating their understanding
of the predicted flow characteristics, and in understanding how the air brake design may
need to be modified to further improve vehicle stability under braking.

103



Chapter 5

Figure 5.14: Bloodhound SSC CFD simulation of the the final air brake design config-
uration in use, clustered using parameters A = 0.95, B = 0.6, and k = 19. The bottom
image is using transparency to aid the visual perception of the flow behind the air brake.
It can be seen that the flow behind this version of the air brake is highly complex. Colour
is mapped to coefficient of pressure cp clamped to the range [-1,6], where free stream cp
is green, high cp is red, and low cp is blue.

4 Domain Expert Feedback

The work presented in this chapter is undertaken in close collaboration with domain
engineers for the purpose of developing an effective application for the improved anal-
ysis of flow phenomena. As a result of the work undertaken, Dr Ben Evans provides us
with valuable expert feedback which follows. Dr Ben Evans is a member of the Blood-
hound SSC design team, and is employed as a researcher in the department of Aerospace
Engineering at Swansea University.

Effective and useful flow visualisation for complex geometrical applications such as
the Bloodhound SSC vehicle is notoriously challenging. Industrial CFD applications,
such as Bloodhound, have specific problems associated with them in terms of flow visu-
alisation including high computational mesh resolution and high levels of adaptivity in
the mesh. Full vehicle Bloodhound CFD meshes, for example, typically contain approx-
imately 10 million sampling points (and greater) with cell sizes varying from 10e−5 m
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Figure 5.15: The visualisation shows a close up of 5.14 viewed from the other side.
Two small vortex structures can clearly be seen at the centre of this image, forming just
behind the air brake. Colour is mapped to coefficient of pressure cp clamped to the
range [-1,6], where free stream cp is green, high cp is red, and low cp is blue.

within the highly refined boundary layer regions in contact with viscous surfaces to over
1m in the far field domain. Bloodhound SSC, being a Land Speed Record vehicle, has
the additional complexity of supersonic flow in close proximity to a large ground sur-
face. This leads to the requirement by the CFD engineer of an understanding of the
interaction of shock waves with the ground plane and vehicle. Industrial CFD simula-
tions are also typically used within design cycles that require CFD engineers to make
rapid design cycle decisions. An efficient and robust system for interpreting the vector
field resulting from the CFD analysis is therefore highly desirable.

The behaviour of aerodynamic bodies such as Bloodhound SSC is governed by the
force coefficients that they generate at a given flight condition, e.g. lift coefficient as
a function of Mach number and angle of attack, or drag coefficient as a function of
Mach number and air brake deployment position. However, it is often very difficult
to determine why a force coefficient varies from one design configuration to another
using the traditional flow visualisation methods of pressure coefficient plots over body
surfaces or cuts through the domain, or glyphs at the computational sampling points (for
the reasons already mentioned). An ability to relate the variation of force coefficients
(and the position of their application on the body such as centre of pressure) to the
underlying causal flow phenomena such as flow separation, vortex shedding and shock
wave formation is important in making informed design decisions in the engineering
design cycle.
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Figure 5.16: The visualisation is a view to the left of 5.15. The two small vortex struc-
tures, identified in Figure 5.15, can be seen in the upper right of this image. Following a
line from the bottom right towards the top left, four small vortex structures can be seen
moving away from the air brake up and over the top of the rear suspension assembly.
Colour is mapped to coefficient of pressure cp clamped to the range [-1,6], where free
stream cp is green, high cp is red, and low cp is blue.

The approach presented in this chapter goes a significant way towards eliminating
both of these issues: speed and consistency in analysis. Note that there is a great ben-
efit that the user still has the ability to interact with the visualisation algorithm via the
parameters A, B, and k and maximum surface length in order to tune the resulting visual-
isation, but holding these parameters constant whilst comparing two designs provides a
level of consistency often not available when the user is manually determining the seed-
ing positions. The automatic seeding of the stream surfaces from cluster centres ensures
that for a given vector field dataset there is the maximum probability of capturing the
most important/significant features of the flow.

The two Bloodhound case studies used to test the approach detailed in this chapter
provide excellent tests for the usefulness of the approach. In the first case, of supersonic
flow over the full Bloodhound vehicle with the air brakes retracted, it is anticipated
that flow separation and vortex shedding should be at an absolute minimum since this
results in the minimum drag solution. In contrast, the second case considers the subsonic
behaviour of the fully extended air brake.

Two air brake designs were considered; one being a solid ’door’, and the second with
holes inserted (see Figure 5.11). One of the concerns about the aerodynamic behaviour
of the air brake system was type of wake that would be generated. In particular, there
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were concerns about how this wake would interact with the complex rear wheel and
suspension system downstream. It was important to ensure that the dominant vortex
shedding frequencies from the air brake were well above the natural frequency of the
rear wheel system (approx. 10Hz). This requirement led to the air brake design with
holes which was an attempt to reduce the size and increase the frequency of the shed
vortices. The flow visualisation approach set out in this paper has been a significant step
towards a better understanding of the complex underlying flow behaviour in the wake
downstream of the air brake. It has helped refine the position of the holes in the air brake
door to optimise the behaviour of the air brake and minimise its impact downstream.

Overall, the benefits of the approach proposed here are: a speed up of the visualisa-
tion component of post processing CFD data for large datasets encountered in industrial
CFD applications and thus a speed up of the overall engineering design cycle, consis-
tency when comparing engineering designs using flow visualisation, and the automatic
detection of otherwise undetectable (or difficult to detect) flow phenomena.
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Design of a Flow Visualisation Framework

COMPUTATIONAL fluid dynamics (CFD) is a rapidly developing tool for fluid
analysis [ANS]. With wide reaching industrial applications such as automotive,
aerospace, weather, and medical, it is an increasingly important software appli-

cation used to speed up the design process while reducing costs. With increasing data
complexity and size, the ability of the user to interpret the CFD results becomes increas-
ingly difficult. Post processing software aims to alleviate this challenge by providing
visualisation methods for the evaluation and correlation of simulation results. Bridg-
ing the gap between current visualisation software techniques and the latest research
techniques is an important goal of our work.

Illustrated in Figure 6.1 is the CFD simulation pipeline which highlights the inputs,
outputs, and processing steps. This process is described in three stages:

1. Preprocessing: A surface and the volumetric mesh is generated to model a physical
object. This mesh is generated from computer aided design (CAD) geometry
utilising mesh generation and manipulation tools. Boundary conditions and fluid
properties are defined and specified.

2. Simulation: A computational simulation of the fluid is performed using numerical
methods applied to the mesh, with respect to the boundary conditions and fluid
properties.

3. Post Processing: The simulation result is explored, analysed, and visualised using
a range of techniques dependent on the requirements of the CFD engineer.

In order to present a visualisation toolkit which is capable of dealing with large
simulation data and complex algorithms, a comprehensive and versatile visualisation

109



Chapter 6

Figure 6.1: The CFD simulation pipeline is comprised of a preprocessing stage, the
simulation stage, and the post processing stage. This illustration shows the inputs and
outputs of each stage, and highlights where the different tasks reside.

framework is needed. It is the focus of this chapter to describe the design and imple-
mentation of a flow visualisation framework which provides scientists and engineers
with effective solutions for the visualisation of CFD simulation data. By drawing on
recent developments in the game and hardware industry, and by combining several sci-
entific visualisation techniques our visualisation framework yields following benefits:

• A platform independent flexible framework which implements state of the art re-
search algorithms in flow visualisation.

• A framework specifically designed to enable quick integration of new algorithms
for study, testing, and evaluation.

• A smooth and efficient threaded user interface, even when processing large data
and complex algorithms.

• Simultaneous comparisons of different techniques.

The remainder of this paper is organised as follows: Section 2 outlines the software
application framework. Section 3 details the design of the GUI. Section 4 describes the
services subsystem. Section 5 details the logic subsystem.

2 System Overview
In this section we start by discussing some design and implementation related work, we
then provide an overview of our application framework and related subsystems. Laramee
et al. [LHH05] describe the design and implementation of a flow visualisation subsystem
which utilises the geometric and texture-based flow visualisation techniques.

In order to guarantee the quick responsiveness for user interaction even when dealing
with large data, Piringer et al. [PTMB09] present a generic multi-threading architecture
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Figure 6.2: This top level overview of the system shows three main subsections of the
software application framework. The GUI subsystem provides the user interface and
all associated user interaction and feedback. The logic subsystem encapsulates the pro-
cessing aspects of the framework. The Services subsystem provides system wide services
for use by the other subsystems.

which enables early cancellation of the visualisation thread due to user interaction with-
out common pitfalls of multi-threading. They also present an interactive visualisation
toolkit, HyperMoVal [PBK10], as an implementation of this architecture in practice.

McLoughlin and Laramee [ML12] describe a flow visualisation software framework
that offers a rich set of features. Their application also serves as a basis for the imple-
mentation and evaluation of new algorithms. The application is easily extendible and
provides a clean interface for the addition of new modules. Peng et al. [PGL13] present
a multi-linked framework which provides customised visualisation techniques for engi-
neers to gain a fast overview and intuitive insight into the flow past the marine turbine.

Our software application system is divided into three main subsystems; the GUI, the
Logic, and the Services. See Figure 6.2. We divide the system into smaller easier to
maintain subsystems using logical groupings of similar functionality. The GUI subsys-
tem is responsible for capturing the user input for computing a visualisation, displaying
the resultant visualisation, and supporting user interaction with the visualisation. The
Logic subsystem encapsulates the algorithms used to compute the visualisations. This
subsystem processes the input data as specified by the user and computes the visual-
isation based on the given user input parameters and selected algorithm. Providing a
central point of storage for input and derived data is the Service subsystem.

Another feature of our framework is the Visualisation Object (VO). The VO is an en-
capsulating aggregate of all the elements of an individual feature or individual algorithm.
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Figure 6.3: This illustration shows the layout of the user interface.

Some examples of features are: Interaction VO’s which encapsulate the interaction with
the visualisation e.g. panning, zooming, and rotating. Colour map VO’s encapsulating
colour map functionality. Stream surface VO’s which encapsulates the stream surface
generation algorithms [ELM∗12].

For each VO within our framework there is an associated Frame Object (FO); an
interface for encapsulating the I/O with the VO. This design approach creates a simple
interface for adding new functionality quickly and easily. We further discuss VO’s and
FO’s within our application, along with the detailed description of the structure of our
framework in Sections 3, 5, and 4.

3 GUI Subsystem Design
The GUI is divided into three main frames. The centre frame for rendering the current
list of VO’s, the left frame for listing the current VO’s, and the right frame area which
displays the FO for the currently selected VO and lists the VO’s currently available
options. Refer to Figure 6.3.

VO’s are added by right mouse clicking the parent VO category and selecting the
required VO from the drop down menu. The VO categories (data, view, scene, visual-
isation) can be seen in the left frame of Figure 6.3. Right mouse clicking a VO in the
list enables the user to delete it. Left mouse click the listed VO and its associated FO
is displayed in the right frame area. The FO lists the attributes of the VO which can be
manipulated. In Figure 6.3 the selected VO is a seeding object. The right frame displays
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the the options available to the seeding object. At the top of this FO a track pad is avail-
able for seeding curve manipulation, under this we can specify type and size. We can
save and load previously specified seeding curves. At the bottom of this FO we have
options for the generation of stream surfaces.

Once we add the required VO’s and set FO options, we can see the results rendered
in the centre frame. Interaction with the visualisation is achieved using the mouse. For
example: to pan press hold and drag the right mouse button, to zoom press hold and
drag the left mouse button, to rotate the view press hold and drag the left and right
mouse buttons together.

Each of the three frames within the interface run their actions in separate threads.
This allows continued interaction with the interface (such as panning and rotation of the
visualisation) while waiting for lengthy processes and computations (such as loading
large datasets) to finish. As a result of our design approach the application of thread
locks to specific VO’s is trivial [cpp].

4 Services Subsystem Design
Some objects in an application can end up communicating with almost all other objects
within the code base. It’s difficult to find a component of our application that does not
need access to objects which encapsulate either input or derived data at some point.
Other examples are objects which encapsulate colour maps or OpenGL rendering. A
method of accessing these objects via interfaces is also desirable. The interface can
allow swapping of the current object for an alternative, or allow intermediate objects to
be installed which can perform additional tasks such as logging. Systems like these can
be thought of as services that need to be available to the entire application.

The Service Locator design pattern [Blac, Cod, Mar] is used to meet these require-
ments in our application. The Service Locator pattern decouples code that needs a ser-
vice from both who it is (the concrete implementation type) and where it is (how we get
to the instance of it). The Service subsystem utilises the Service Locator design pattern
to provide a robust, type safe, central location for accessing system services.

In our services subsystem we focus on data storage and accessibility. The services we
implement includes; raw data storage, derived data storage, model data storage, render
object storage, colour map storage, interaction matrix storage, and a VO factory.

In Listing 6.1 we see the basic layout of the service locator class. The listing shows
an initialisation function, a register function, and a get function. The service locator is
reliant on a service being registered with it before any other objects try to use the service.
The issue with this is that a null pointer could be returned if not initialised or a service
is registered. It is also important to note that the service isn’t aware of the concrete
service class just the service interface. The only location in the code that knows about
the concrete class is the function that registers the service.

If we try to use the service before a provider has been registered it returns a null
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pointer. If the calling code doesn’t check this we will crash the application. To address
the null pointer issue we implement the Null Object design pattern [Blab] or in our case
a null service. A null service inherits the same service interface but its implementation
does nothing. This allows code that receives the object to safely continue on. The calling
code will never know that the service isn’t available, and we don’t have to handle a null
pointer. We are guaranteed a valid object.

Listing 6.1: Service Locator Pattern

#ifndef SERVICELOCATOR_H_
#define SERVICELOCATOR_H_

class ServiceLocator {
public:

static void InitializeDataStore() {
mDataStore = &mNullData;

}

static void Register(DataStoreInterface* service){
if (service == nullptr) {

mDataStore = &mNullData;
} else {

mDataStore = service;
}

}

static DataStoreInterface& GetDataStore() {
return *mDataStore;

}

private:
static DataStoreInterface* mDataStore;
static NullDataStore mNullData;

}

#endif /* SERVICELOCATOR_H_ */
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Figure 6.4: Communication routes from the user to the logic subsystem. User interac-
tion with the GUI is communicated to the visualisation object (VO) responsible for the
selected visualisation algorithm via dedicated subsets of the logic subsystem.

Our service locator is initialised within the main function prior to any other calls.
The initialisation function registers the null objects. We can then register the any ad-
ditional services as required. Registering a replacement service is a simple case of just
registering the service. We don’t delete any services within the service locator class,
which provides us the flexibility of swapping services back and forth if required. An
example of this is two interaction services storing different view matrices; which ever
service is currently registered dictates from which viewpoint the visualisation is viewed
in the centre frame.

Another important feature of this design pattern is the logging or debugging capabil-
ities. Using a decorator design pattern [Blaa] we can easily add an intermediate object
which can output either logging or debugging information. Accessing the services is a
simple matter of calling the accessor function. This returns a reference to the currently
registered service object. Unregistering a service can be achieved by registering a null
pointer. The service locator will then register the default null service.

5 Logic Subsystem Design
The Logic subsystem encapsulates the algorithms used to compute the visualisations.
This subsystem processes the input parameters selected by the user, and computes the
visualisation based on the selected algorithm. Figure 6.4 shows the communication route
from user interaction with the GUI, to the selected VO generating the visualisation data.
There are three main subsets of the logic subsystem responsible for manipulation of the
VO. These are; the factory class, the observer class and the renderer class. In this section
a discussion of the Factory and Observer design patterns takes place. This is followed
by a discussion of the render loop, and finishes with an examination of the aggregate VO
and its life cycle.
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The Factory
There are many cases when a class needs to create several types of object. This class
can have this responsibility but it has to know about each and every object type. The
possibility that the class cannot anticipate all the required objects in advance is clear.
The idea of the factory pattern is to encapsulate the creation of a multitude of different
classes utilising a common interface. A factory is the location of a class in the code
where multiple types of object are constructed. The purpose of utilising this pattern
is to isolate the creation of objects from their usage, and to create groups of similar
objects without the need to depend on their concrete classes. This has the advantage of
introducing new derived types with no change to the code that leverage the base class
type. Using this pattern also introduces the possibility of interchanging the concrete
implementations without code modification. An example of the factory pattern can be
seen in Listing 6.2. If the user chooses to add a new VO in the treeview, the GUI instructs
the factory to create a new VO of a type indicated by a type ID. A reference to the factory
is stored in, and accessed from the Service Locator.

Listing 6.2: Factory Pattern

#ifndef COMPONENTFACTORY_H_
#define COMPONENTFACTORY_H_

class ComponentFactory {
public:

ComponentFactory();
~ComponentFactory();

VisObjectInterface* genObject(const VisTypeEnum& ID) {

switch(ID) {
case VisTypeEnum::surfacevisobject:

return new SurfaceVisObject();
break;

case VisTypeEnum::axisvisobject:
return new AxisVisObject();
break;

default:
return new DefaultVisObject();

}

}
};

#endif /* COMPONENTFACTORY_H_ */
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Figure 6.5: This UML diagram shows the layout of the observer design pattern utilised
for communication between the GUI frame objects (FO’s) and the visualisation objects
(VO’s).

The Observer
The observer design pattern is used to communicate an objects change of state to all
dependant objects. These dependant objects are then automatically updated. This pattern
controls the communication between classes. An object known as the subject is able to
publish a change of state. A set of observer objects which depend on the subject are
registered with the subject such that they can then be automatically notified when the
state of the subject changes. This design pattern provides a loose coupling between the
subject and its observers. The subject has access to a set of observers that are registered
at runtime. The observers must inherit an observer interface thus the base class and its
functionality is not known to, or required by the subject.

Figure 6.5 shows the the use case in our software framework. The VO’s inherit the
observer interface which includes the notify function which must be appropriately over-
ridden in the base class. The VO is registered with the subject, which in our case is the
GuiNotifier class. When a frame object (FO) state changes, it calls the notifyObservers
function which notifies all registered VO’s that the state has changed. The base class im-
plementation overriding the notify function then checks for changes and updates itself
accordingly where applicable.

The Rendering Loop
The GUI centre frame renders the current OpenGL rendering context to its canvas for
viewing by the user 3. An example of this can be seen in the following illustration 6.3.
In Figure 6.6 the centre frame encapsulates the GLCanvas class. When the GLCanvas
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Figure 6.6: This UML diagram shows the relationship between the renderer and the
visualisation objects (VO’s). Note the similarity with the observer design pattern shown
in Figure 6.5

class render event is triggered it calls the renderLoop function from the Renderer class.
The renderer class is designed to encapsulate the collection of OpenGL calls required

to set the state of the OpenGL state machine. This class also has functionality based on
the observer design pattern. VO objects are registered with the renderer, and when the
renderLoop function is called by the GLCanvas class, the overridden display function
called on the list of registered VO’s. The detail of this is shown in the UML diagramme
of Figure 6.6.

The general state of the scene is set from the renderer’s associated frame object (FO).
This includes features such as; perspective parameters, light source locations, lighting
intensity’s e.g. ambient, diffuse, and specular. The type of OpenGL Shader is also
selected from this frame object. The renderer class defines how to render the scene data,
whereas the VO defines what data is to be rendered.

The Renderer interface is used to provide a general interface for the specific OpenGL
implementation. There are differing versions of OpenGL available supported by dif-
ferent specifications of hardware. The advantage of our system is the ability to inter-
change the Renderer class depending on the hardware support for a particular version of
OpenGL. The required version of the Renderer class is registered with the Service Lo-
cator. This is also useful for testing revised OpenGL or GLSL [Opea] implementations.

What is GLSL: GLSL or Graphics Library Shading Language is a high level shading
language which uses a syntax close to that of the C programming language. It was cre-
ated for the purpose of providing developers with more precise control over the built in
graphics pipeline. Previously developers would be required to use OpenGL assembly or
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Figure 6.7: The Visualisation Object (VO) lifecycle.

graphics card specific programming languages to implement modifications to the fixed
functionality pipeline.

In our implementation we use a combination of per pixel Phong lighting, edge high-
lighting using a Gaussian filter to detect sudden changes in depth, and depth peeling
for order independent transparency. These algorithms are discussed in more detail in
Chapters 2, 3, and 4, and in the work by Born et. al. [BWF∗10] and Hummel et al.
[HGH∗10].

The Visualisation Object (VO)

The visualisation object (VO) is a key element in the functionality of this software frame-
work. The entire framework is built around the idea of a single object interface type
used for all implemented features within the code base. In this subsection we describe
the lifecycle of a typical VO. We then describe the aggregate style implementation of the
VO’s and discuss some advantages of this approach over more traditional methods in the
context of a robust visualisation framework for prototyping, testing, and comparing new
techniques.

The life cycle of a VO is illustrated in Figure 6.7. The life cycle of the VO starts
with its creation as the result of user input. The factory is responsible for the generation
of VO’s which are then passed to the GuiNotifierInterface detailed in Figure 6.5. Com-
munication with the VO can then take place. The next step is setting the parameters of
the VO required as input to the particular algorithm the VO encapsulates. Once these
parameters are set the visualisation data is then generated.

During the visualisation generation process, data external to the VO may be required.
An example of this is the vector and scalar data made available by another VO (the data
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Figure 6.8: This UML diagram illustrates a simplified version of a streamline tracer
class and a multi threaded streamline tracer class. Rather than inherit the original
streamline class and adding the multi threading implementation into the new class, we
instead assemble a new class from the original components plus a new thread han-
dling component. If threading was an original intention then the hierarchical inheri-
tance could be designed more efficiently, but now we must refactor the code. With the
component-based approach this foresight is not required. This is particularly useful in
a system which is subject to adding a lot of new functionality.

storage VO) registered with the service locator. This data can be accessed via the service
locator interface, along with other data such as colour maps etc.

Once the visualisation data is generated, in the form of a triangulated mesh, the next
step is to generate the render data. The mesh data is usually generated in dual arrays,
one representing the vertex, normal, colour data, and one representing the node indices.
This data is sent directly to the VBO class encapsulating the OpenGL Vertex Buffer
Object. This class registers the pointers to the data, then specifies the required rendering
parameters needed by the OpenGL state machine to correctly render the mesh.

Once the visualisation algorithm is rendered to the centre frame, the user is able to
interact with the visualisation. The user can directly pan, zoom, and rotate the rendered
scene by dragging the mouse over the scene in combination with the mouse buttons. The
right mouse button is pressed to pan the scene, the left mouse button is pressed to zoom
the scene, and both mouse buttons are used to rotate the scene. While interacting with
the visualisation, the user can also set new parameters for the visualisation and generate
a modified visualisation which is then rendered to screen. See Figure 6.7.

The final part of the process is deletion of the VO. If the user removes the VO from
the left frame 6.3 by selecting delete from the VO context menu, the VO is then passed
back to the factory for deletion ending this VO’s lifecycle. All VO objects are created
and deleted by the factory. This centralised approach makes for easy debugging of
erroneous VO’s during the VO lifecycle.

The VO’s are constructed by aggregating the set of subclasses needed to compute the
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Figure 6.9: This UML diagram illustrates a simplified version of a multi threaded stream
ribbon tracer class and a stream surface tracer class. Some components are reused, and
new components are added to provide the required functionality. In these illustrations
the thread handler used in the stream ribbon tracer class is dropped from the stream
surface tracer class, while the time line generator class is added for timeline refinement.

required algorithm. The more traditional method of class hierarchies implement features
available in a set of classes by extending them and therefore maximising code reuse. The
design of the class hierarchy is made in advance with anticipation of possible additions
to the code at a later date. This approach is tried and tested and generally works well.

However, a more recent approach is being more commonly utilised particularly
within the games industries; the aggregate design pattern [Nys] [Wes]. With the more
traditional hierarchical inheritance approach problems can arise in a number of ways.
If the insight into the type of additions to the inheritance hierarchy were not well pre-
dicted, the code base can easily end up struggling to cope with the required changes
leading to major refactoring of the code base. Also with more and more features being
added the interwoven complexity of the inheritance hierarchical tree can quickly become
unwieldy, and difficult to maintain. These scenarios do not lend themselves to quick and
simple implementations of new features.

The aggregate design pattern provides an alternative approach which is more ap-
plicable to the type of framework discussed in this Chapter. We need to be able to add
new algorithms quickly and easily but without the issues and complexity associated with
large inheritance hierarchies. Another advantage of this approach is the ability to min-
imise the inherited overhead of unrequired features when extending a class of which
only some of the functionality is required.

The parent class is constructed from an aggregation (collection) of a set of com-
ponents classes. The component classes separate all the functionality required by the
system into individual components which are independent of each other. The parent
class becomes a wrapper for communication between each of the individual compo-
nents i.e. the parent class performs no computation or stores any data with the exception
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of the aggregated component classes, see Figures 6.8 and 6.9. Distinct new functionality
is implemented in the system by creating a new component. New combinations of com-
ponent classes are aggregated together to form new base classes providing the required
system functionality.

Summary This chapter presents a comprehensive and versatile cross platform state of
the art flow visualisation toolkit. This framework has the flexibility to add new algo-
rithms fast and efficiently for testing, evaluation, comparing results, and for study by the
domain experts. This chapter focusses on describing the design and implementation of a
generic visualisation framework which provides scientists and engineers with effective
solutions for the visualisation of CFD simulation data.
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Conclusions and Future Work

THE goal of this thesis is to study and propose effective methods for the seeding
of stream surfaces. In order to achieve this objective this thesis presents several
novel algorithms which address the challenges of placing stream surfaces at lo-

cations effectively capturing the underlying characteristics of the flow field. This work
is completed in close collaboration with researchers from the Engineering CFD domain,
and apply the proposed techniques to their data producing insightful visualisations for
further analysis.

Chapter 2 surveys the current state of the art of flow visualisation with stream sur-
faces. These algorithms are discussed and categorised providing a concise overview of
related work. Future work paths are discussed and provide the basis for further examina-
tion in this thesis. Following from this Chapter 3 focuses on placement techniques which
fill the domain and require filtering. These algorithms are applied to data with differing
flow characteristics testing the robustness of the approaches. Chapters 4 and 5 focus on
placing stream surfaces adjacent to geometric flow structures. These approaches further
address the challenges of clutter, visual perception, computational speed and memory
footprint. The proposed algorithms and visualisations are evaluated by the domain ex-
perts.

This thesis is concluded first by restating the main contributions of each chapter,
listed next in bullet form. This is followed by a detailed discussion of conclusions in
Section 2. Then possible future work directions are presented in Section 3:

• Chapter 2 surveys the latest research developments in the area of flow visualisa-
tion with a focus on visualisation using surfaces, forming a concise overview of
the related literature. Introduced is a classification scheme guided by Research
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challenges including: construction, rendering, occlusion, and perception. This ap-
proach produces an intuitive grouping of papers that are naturally related to one
another. The classification scheme highlights both mature areas of work where
many solutions have been provided, and areas of work where unsolved problems
remain. The study of literature focusing on flow visualisation with surfaces aided
the formulation of new hypothesis and experiments which this thesis studies fur-
ther.

• Chapter 3 describes an automatic approach to placing stream surfaces in 3D flow
fields. The technique generates seeding curves from isolines derived from a scalar
field at the domain boundary. The scalar field is derived from the angle of flow
exit trajectory relative to the domain boundary plane. This chapter then discusses
extending the concept to place surfaces throughout the domain rather than being
confined to the domain boundary. After propagating surfaces from the domain
boundary the algorithm then searches for free space on both sides of each surface.
When free space is found a seeding curve is placed and used to trace a new steam
surface in upstream and downstream directions. The free space search utilises a
distance field for inter surface awareness and surface termination. Included are
new techniques for reducing occlusion related to seeding multiple surfaces. Chap-
ter 3 illustrates how to achieve adequate coverage of the domain capturing the
features of the flow. Also introduced are improved techniques for surface filtering
and perceptual enhancements such as interactive pixel filtering and clipping. The
focus pays particular attention to seeding curve generation and occlusion.

• Chapter 4 presents an adaptation of a vector field clustering algorithm that can be
guided by the user to automatically place stream surfaces. The clustering tech-
nique, driven by a distance measure based on error, is used to determine poten-
tial stream surface placement locations. Introduced are seeding curves generated
by integrating through a derived curvature field. The seeding curves follow the
curved flow structures maintaining orthogonality with the flow. Flow curvature,
view dependant transparency, and view dependant saturation are combined with
depth peeling and silhouette edge highlighting to provide enhancements to the
perception of the visualisations. The results illustrate how to capture the char-
acteristic structures within the flow field. The focus of this work pays particular
attention to the flexibility of the clustering technique combined with the seeding
curve generation strategies.

• Chapter 5 develops the concept presented in Chapter 4 closely working with the
domain expert CFD engineers. The algorithm is tailored to work with large un-
structured data fast and efficiently. The algorithm partitions the domain using
k-means clustering combined with a novel distance function based on; a curva-
ture field, a velocity gradient field, and normalised Euclidean distance. The focus
pays particular attention to the performance, memory footprint, and flexibility of
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the clustering. The seeding curve generation is modified for use with the k-means
clustering. The work is evaluated by the domain expert CFD engineers.

• Chapter 6 presents the output from collaborations with domain experts CFD en-
gineers in the form of a visualisation software framework. The framework unifies
the presented algorithms into a cohesive application for continued use by the CFD
engineers. We utilise advancements in game design technology, and leveraging
features available with recent graphics hardware. We describe the design of our
flow visualisation software framework, and discuss the effectiveness and scalabil-
ity of the approach.

2 Conclusions

Despite the great amount of progress that has been made in the field of surface-based
flow visualisation over the last two decades, a number of challenges remain. Challenges
such as surface placement, speed of computation, memory footprint, perception, and
evaluation remain key topics for further research. Chapter 2 provides a study of a va-
riety of surface techniques and approaches for studying 3D vector field simulations. A
summary and discussion of the challenges highlights both the unsolved problems and the
mature areas where many solutions have been provided. There are some topics of study
which could potentially benefit from further examination, experiment, and verification.
Chapter 2 provides an up to date overview of the current state of the art providing an
accurate guide for further research on the topic of flow visualisation with surfaces.

Chapter 3 studies the hypothesis that successful placement of stream surfaces could
be achieved from the domain boundary when considering the boundary flow trajectory.
This combined with the hypothesis that placing surfaces with a suitable density across
the domain would capture all the characteristics of the flow field. An investigation of a
range of methods for improving perception are studied as this approach can lead to very
cluttered visualisations. Surface termination using a distance field proved an effective
approach for maintaining a minimum distance between surfaces alleviating clutter. In-
teractive pixel filtering and transparency implemented in the rendering loop is effective
at further reducing the visual clutter and occlusion. The placement strategy employed
removes the need for the user to conduct lengthy examinations of the flow fields using
manual seed placement techniques.

The algorithm is tested on a variety of simulations ranging from simple to complex
in terms of data size, and fluid flow complexity. The techniques show adequate domain
coverage capturing the features within the flow field. However some challenges remain
with these approaches. First, the placement of stream surfaces at the boundary can only
occur when there is flow crossing the boundary. Without this there can not be any seed-
ing. Second, manual interaction with the filtering techniques is required to produce the
final visualisation, with different settings being required for different scenarios. Third,
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the quantity of stream surfaces required to fill very large datasets would prevent real
time interaction.

To address these challenges we hypothesise that stream surfaces must be placed
such that they capture the important characteristics of the flow field with minimal quan-
tity. Seeding curves must be positioned and oriented in the neighbourhood of geometric
structures best representing the flow field. Illustration techniques must enhance the per-
ception of surface structures supporting the roll of effective placement.

To simplify the flow field and present potential seeding locations adjacent to impor-
tant flow structures, hierarchical binary vector field clustering is presented in Chapter
4. The algorithm automates the capturing and visualisation of important characteristics
within the flow field as defined by the user. The user is able to guide the visualisations by
specifying the feature centred or overview clustering parameters. Emphasis is placed on
flexibility allowing the density of seeding curves and their associated stream surfaces to
be controlled by the user. The novel adaptation of an existing clustering method provides
greater flexibility over the formation of the clusters and their locations. This approach
leads to automatically locating seeding positions near important structures within the
domain.

Chapter 4 discusses a novel technique for locally orienting straight seeding curves in
line with a derived curvature field. This is further enhanced by integrating the seeding
curves through the curvature field thus following the curvature of the flow structures.
Chapter 4 also describes illustrative techniques which provide enhancements to the per-
ception of the visualisations. Silhouette edge highlighting, combined view dependant
and curvature dependant transparency, and view dependant saturation techniques are
utilised to improve perception, reduce the visual clutter and occlusion associated with
rendering multiple overlapping surfaces.

Chapter 4 demonstrates the feature centred and overview default settings of this ap-
proach for each dataset. The domain experts conclude that a set of standard parameter
combinations would be beneficial for normal use. As a result of the flexibility of this
framework, standard settings can be designed for use according to the requirements
of the engineers using our technique. This approach produced effective visualisations,
however some challenges remain. The memory footprint of this approach does not al-
low very large unstructured data to be examined due to main memory constraints. The
binary clustering process is also slow and is not easily extendible to unstructured tetra-
hedral data.

The goal of the work in Chapter 5 is to improve computational performance, mem-
ory footprint, and robustness of the clustering technique from Chapter 4. This technique
tailors stream surface seeding for the Bloodhound SSC project [Nob] which is charac-
terised by large unstructured CFD data. We improve the performance and memory usage
with the application of k-means clustering. The distance function, which combines flow
curvature, velocity gradient, and Euclidean distance, produces comparable results with
the technique from Chapter 4. While providing an environment and tools for the domain
engineer to visualise undesirable flow behaviour related to vehicle drag, the domain ex-
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perts provide feedback and conclude that this technique is a significant improvement.
In Chapter 6 we demonstrate how the simple and intuitive layout of the GUI is effec-

tive for reducing the software related learning curve by the domain experts. The subdivi-
sion of the GUI, Service Locater, and Logic into logical subsystems not only simplifies
the system, but also simplifies the communication between the different subsystems, and
provides greater flexibility when accessing the raw data. The use of aggregation with
the VO’s proved very successful and flexible when adding new algorithms and features
to the software stack.

3 Future Work

Chapter 2 surveys, discusses, and summarises potential future work directions for flow
visualisation with surfaces. Challenges such as: visualising error and uncertainty, ex-
tending current techniques for unsteady flow, interactive construction of time surfaces,
large unstructured time dependant CFD data, perceptual challenges, information con-
tent, and evaluation of flow visualisation techniques, are highlighted as areas for further
research. In this thesis we study algorithms for improved speed of computation, mem-
ory footprint of stream surface seeding, and we discuss our techniques with the aid of
domain expert feedback.

There are still a number of challenges remaining for the effective placement and il-
lustration of integral surfaces within a 3D flow field. The proposed techniques studied in
this thesis require input parameters to be specified by the user prior to generating the vi-
sualisations. In Chapter 3 the choice of iso value for isoline generation at the boundary,
and the surface separation values for the interior surfaces, are used to guide the visuali-
sation results. The illustrative techniques also require user input to produce the required
results. In Chapters 4 and 5 user input is required for the distance functions again for
guiding the resultant visualisations. Although improvements are made to the illustrative
techniques user input is still required for the level of transparency. The domain experts
are happy with the flexibility of guiding the visualisation results for differing cases, how-
ever the ultimate goal must be to eliminate the need for input parameters to be set. As it
stands the user must understand the effect of changing the input parameters in advance
of generating the visualisations. If this requirement is removed while maintaining the
desired level of visualisation performance, it will simplify the users task and thus must
be an important direction of future work.

The choice of the initial clusters in Chapter 5 impact the results achieved by k-means
clustering after convergence to the local minimum. We do not guarantee the results
are globally optimal. Also, the clustering results can produce cluster centres which
may reside outside the flow domain e.g. inside the object of study as a result of a
cluster boundary straddling the object in Euclidean space. A similar issue is present
with the clustering technique in Chapter 4. U-shaped clusters can form as a result of the
hierarchical binary clustering process. An in depth study of these challenges and their
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effect on the results would be a valuable future contribution.
There is also potential to extend the algorithm in Chapter 5 to path and streak surface

placement. An examination of the memory and performance requirements associated
with extending the algorithm to time dependent flow would be required. The perception
and information content of the surfaces, when modified to work with unsteady flow
behaviour, would also be key topics for further research.

Visualising error or uncertainty introduced by the underlying numerical techniques,
or from the sensitivity of the algorithms used to generate visualisations, could lead to
misleading information. This points to possible future work developing techniques to
visualise these different types of error and uncertainty. Another potential future work
direction is the study of multivariate CFD data. Often CFD data contains not only vec-
tor data, but also a range of additionally computed attributes such as pressure, density,
temperature, turbulence intensity etc. Utilisation of these attributes to compute mean-
ingful visualisations must be an important goal of future work.

Future work for the visualisation framework described in Chapter 6 includes further
abstraction of the VO’s and FO’s to a plugin-based system where new features and algo-
rithms can by added via a plugin interface. This would further simplify implementation
and remove the need to modify the main code base. Another area of further work is
extending the aggregate pattern of composite components to an XML-based approach
for constructing the VO’s. This combined with a plugin interface for the components
would produce a very flexible way to add new features and algorithms to the software.

Another topic of future work for our visualisation framework is the use of a rainbow
colour map. Although not studied within this thesis, research has shown that the rainbow
colour map is rarely the optimal choice when displaying data. This particular colour
map may confuse the user due to; reduced perceptual ordering, uncontrolled luminance
variation, and the introduction of non data-dependent gradients [BTI07]. The application
of more suitable colour maps within our software framework, with consideration for
issues related to colour blending while rendering transparency, must therefore be an
important next step.
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APPENDIX A

Mathematical Concepts for Vector Fields

IN this appendix we discuss a range of mathematical concepts used in the context of
this thesis which are not previously described. We will start with some vector field
basics, which will be followed by some cell interpolation schemes. Next we will

describe how a spatial hash grid is used to speed up domain sampling. We follow this
with spline interpolation schemes, and then the Runge-Kutta integration scheme. After
this we describe some derived fields and finish this appendix with a table of notation.

A scalar field s(p) is where every discrete point p, within the spatial domain Ω,
has a single real value R. A vector field v(p) is where every discrete point p, within
the spatial domain, has a 3 tuple of real values R3 representing a vector quantity v =
[vx,vy,vz]. Velocity data is represented as a vector quantity describing both direction and
magnitude. For example, assuming a Cartesian coordinate system, a three dimensional
steady state velocity field is described as v(p) ∈ R3 where p ∈ Ω, Ω ⊂ R3, and Ω may
be discretised as a structured regular grid/mesh, or an unstructured irregular grid/mesh.

Cell Interpolation Schemes Regular and unstructured meshes are a tessellation of
the spatial domain using simple geometric structures. The mesh structures in this thesis
are based on tetrahedrons or hexahedrons. These structures are referred to as cells, see
Figure A.1. Each cell is an ordered combination of connected nodes. The ordering is
impotent for correct interpolation and memory layout. Different CFD systems my use
alternative orderings. Each node refers to a discretised point in the domain.
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Figure A.1: This illustration shows two cell types; a tetrahedron, and a hexahedron.
The cells are constructed from ordered nodes n(0...i). Each node is a discrete point in
within the spatial domain.

Interpolation of cells is required to deduce the value of attributes between each of
the nodes. Referring to Figure A.1 the following equation is used for interpolation:

d =
n−1

∑
i=0

Wi ·ni (A.1)

where d is the data to be interpolated and W ∈ [0,1] is the weighting factor for each
node, and where ∑Wi = 1. For a tetrahedron W is calculated as follows:

W0 = 1− r− s− t
W1 = r
W2 = s
W3 = t

(A.2)

and for a hexahedron W is calculated thus:

W0 = (1− r)(1− s)(1− t)
W1 = r(1− s)(1− t)
W2 = (1− r)s(1− t)
W3 = rs(1− t)
W4 = (1− r)(1− s)t
W5 = r(1− s)t
W6 = (1− r)st
W7 = rst

(A.3)

where r, s, and t are the canonical coordinates of the cell, normalised to [0,1] [SML03].

Spacial Hash Grid The determination of the correct cell for interpolation is trivial for
regular grids. A simple conversion from global coordinates to grid/parametric coordi-
nates is required to identify the correct cell. Determining the correct cell to interpolate
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for an unstructured grid however is not trivial. A brute force approach would be to
search every cell in the domain and test if the point is situated inside. This approach
is incredibly expensive. An alternative approach, utilised in this thesis, is the use of a
spatial hash grid [EL07].

In summary we partition the domain into a hierarchy of virtual cubic grid cells of
differing resolutions. These are associated to the irregular cells they bound using a hash
function, and then stored in a hash table for fast retrieval. The virtual Euclidean grid
consist of a potentially infinite number of cubic axis aligned grid cells. Each grid cell’s
edge length is defined as k ∈ R. We map a certain grid cell resolution with a hierarchy
using the subdivision level l ∈ Z. l becomes a unique identifier for the hierarchical level
of a virtual grid cell resolution. For every vertex within the domain we can derive a
virtual grid cell resolution level l with the mapping:

bx/kc
by/kc
bz/kc

l

 7→


a
b
c
l

 (A.4)

For any tetrahedron or hexahedron c within the domain, the hierarchical level l is chosen
such that the edge length k of the virtual grid cell optimally fits the size of c. k is optimal
when c resides inside no more than eight virtual grid cells at level l. If s = size(c) is the
longest edge of the axis aligned bounding box of c we can define the hierarchical level l
as follows:

l = dlog2(s)e (A.5)

we can then define k as:
k = 2l (A.6)

The virtual grid cell size k is now defined such that c occupies virtual grid cells at the
lowest possible level while never occupying more than eight virtual grid cells. We build
the hash table of irregular cells using the following hash function storing a list of levels:

Algorithm XOR hash function.

1: function XORHASH(a,b,c,l)
2: hash← [ a x 73856093
3: hash← [ hash⊕b x 19349663
4: hash← [ hash⊕ c x 83492791
5: hash← [ hash⊕ l x 67867979
6: return hash mod m
7: end function

Retrieval of the correct cell from the hash table is achieved by recalculating the hash of
the vertex of interest, iterating through the list of stored levels until we find the correct
cell.
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Spline Interpolation Schemes There are cases when interpolation needs to be a smooth
transition between vertices, which linear interpolation will not achieve. Cubic interpo-
lation is one such method of producing a C1 continuous curve. This thesis uses Hermite
interpolation, specifically the special case of a cardinal spline known as a Catmull-Rom
spline. This method calculates the tangents from the available vertices with lower com-
putational cost, and thus ideal for our requirements. The computation of a C1 continuous
curve requires two vertices pi which we interpolate between, and two tangents ti, one at
each vertex. The Hermite scheme of interpolation requires the use of four basis func-
tions h j. The method of computation to find any point p along the interpolated curve at
the interval l ∈ [0,1] follows:

p(l) = h0 l p0 +h1 l t0 +h2 l p1 +h3 l t1 (A.7)

The basis functions:
h0 = 2l3−3l2 +1

h1 = l3−2l2 + l

h2 =−2l3 +3l2

h3 = l3− l2

(A.8)

The tangents for the Catmull-Rom spline:

ti =
pi+1−pi−1

2
(A.9)

Runge-Kutta Integration A fundamental technique for the generation of integral
lines or surfaces in a discretised vector field is the Runge-Kutta integration scheme.
This method reconstructs a curve from a discrete set of tangents. The method used in
this thesis is a fourth order double stepping adaptive integration scheme which provides
a dense output in areas of high curvature [Hos94]. The refinement is achieved by spec-
ifying an error threshold beyond which the scheme will refine linearly. The idea is to
determine the vector quantities vi from an initial vertex location pn and then compute
a new vertex pn+1 in the direction indicated by the vector field. The step size or dis-
tance is defined by h noting that for the case of a velocity field h is the distance in time.
For a steady state vector field, h is valid as we assume the vector field does not change
over time, it remains steady. To compute the two half steps pn+1/2 and pn+1 we use the
following formulae:

v0 = v(pn)

v1 = v(pn +
hv0

4
)

v2 = v(pn +
hv1

4
)

v3 = v(pn +
hv2

2
)

(A.10)
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pn+1/2 = pn +
h

12
(v0 +2v1 +2v2 +v3) (A.11)

v4 = v(pn)

v5 = v(pn +
hv4

4
)

v6 = v(pn +
hv5

4
)

v7 = v(pn +
hv6

2
)

(A.12)

pn+1 = pn+1/2 +
h

12
(v4 +2v5 +2v6 +v7) (A.13)

And to deduce the estimated error as a result of this step size we use this formula:

estn =
h

72
(−v0 +2v1−v2−2v3 +3v4−v6) (A.14)

Because the error estn is linear we can simply divide estn by the error threshold εmax to
find the new subdivision between pn and pn+1 which will satisfy εmax.

Derived Curvature Field From the steady state vector field we derive the curvature
field [Rot00]. For any position on a curve or surface there is circle or sphere of radius
r which approximates the local curvature. If the local curvature is straight then the
curvature k is zero, and increases as r reduces from infinity. The curvature at any given
location is defined as the reciprocal of the radius:

k =
1
r

(A.15)

The curvature field c(p) ∈ R3 is derived by applying a combination of operators to the
vector field. Steady state curvature is defined as:

c =
v×a
|v|3

(A.16)

The curvature vector direction is the axis about which the vector field curves. The actual
curvature k is the length of the curvature vector |c|:

k = |c| (A.17)

The curvature field is derived from the first and second derivatives of the flow field.
Where the velocity vector v is the first derivative:

v =
[
vx vy vz

]
(A.18)
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and the second derivative is acceleration a:

a = (∇v)v (A.19)

∇v is the Jacobian of the velocity field, and is defined as:

∇v


∂vx
∂x

∂vx
∂y

∂vx
∂ z

∂vy
∂x

∂vy
∂y

∂vy
∂ z

∂vz
∂x

∂vz
∂y

∂vz
∂ z

 (A.20)

where the gradient operator implies a vector of partial derivatives:

∇⇒
[

∂

∂x
∂

∂y
∂

∂ z

]
(A.21)

Table of Notation Following is a list of mathematical notation used in this thesis.
Each chapter is listed separately:

Chapter 1
v Velocity field
ρ Fluid density
∇ Gradient operator
p Fluid Pressure
g Gravity vector
∇2 Laplacian operator
ν Kinematic viscosity
µ Dynamic viscosity
i jk Parametric coordinate system
xyz Global coordinate system

Chapter 2
p Steady state vertex
vs Steady state velocity field
Ω Steady state domain
pt Time dependant vertex
vt Time dependant velocity field
Ωt Time dependant domain
Is Streamline
s Position along a seeding curve
t Time

Continued on next page
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Chapter 2 cont’d
C Seeding curve
S Stream surface
Ip Pathline
P Path surface
T Time interval set
L Streakline
K Streak surface
α Transparency
αdensity Density component of transparency
αshape Shape component of transparency
αcurvature Curvature component of transparency
α f ade Fade component of transparency
Ct

t0 Cauchy Green deformation tensor field
FTLEt

t0 Finite Time Lyapunov Exponent
λmax Maximum eigenvalue

Chapter 3
p Steady state vertex
v Steady state velocity field
I Streamline
t Time
Ω Spacial domain
Ω′ Spacial domain boundary
lmax Maximum surface length
dtest Minimum distance to nearest surface
dsep New surface offset distance
v′ The velocity projected onto Ω′

p f ocus Vertex of interest
v f ocus Vector of interest
vstored Stored vector
Ωd Distance field
vdist Distance vector
∇×v Curl of the velocity field (Vorticity)

Chapter 4
p Steady state vertex
v Steady state velocity field
n Cluster
Ω Spacial domain

Continued on next page
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Chapter 4 cont’d
ε Error: total
a,b,c Parameters of elliptic contour
ετ Error: deviation from a velocity vector
f (xτ ,yτ ,ετ) Function of elliptic contour
Cα ,Cβ ,Cγ Coefficients of elliptic contour
εψ Error: location
ηψ User controlled location coefficient
d,e Aspect ratio parameters
ητψ User controlled elliptic coefficient
εδ Error: direction
εµ Error: magnitude
ηµ User controlled magnitude coefficient
ηδ User controlled direction coefficient
sl Simplification level
l Unique level
nroot Root cluster
c Curvature field
Ωc Curvature field domain
a Acceleration field
∇ Gradient operator
∇v Jacobian of the velocity field
vol Spacial volume
length Spacial length
s Seeding curve
αc Transparency: curvature dependant
αv Transparency: view dependant
α Transparency: total
n̂v View normal
n̂s Surface normal
ηα User controlled transparency coefficient
RGB Red Green Blue final colour vector
RGBin Red Green Blue input colour vector
ηRGB User controlled saturation coefficient

Chapter 5
Ω Spacial domain
p Steady state vertex
v Steady state velocity field
c Steady state curvature field
g Steady state gradient field

Continued on next page
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Chapter 5 cont’d
a Steady state acceleration field
∇ Gradient operator
∇v Jacobian of the velocity field
k Number of clusters
s Scalar value
c Cluster centroid
π Cluster partition
e Euclidean distance vector
i Linear relationship of curvature and velocity gradient
l Linear relationship of i and distance
B User controlled curvature or velocity bias coefficient
A User controlled B or distance bias coefficient
d Distance function
vol Spacial volume
length Spacial length
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APPENDIX B

Gallery of User Options

IN this appendix we demonstrate the algorithm defined in Chapter 5 applied to the
Bernard dataset with a range of A and B parameters. The motivation for this gallery
is to demonstrate the variation of the results with change in parameter values. We

assume the ideal parameter for k is 8 due to pre knowledge about the number of features
contained within this flow field. We first show the seeding curves generated from the
clusters to more easily identify the change in location as a result of parameter changes.
These differences quite subtle in some cases.

The seeding curves are coloured red, and there length is a function of cluster volume
as discussed in Chapter 5. The arrow glyphs represent the average vector of all vectors
within the cluster subset. The arrow glyph base represents the centre of the cluster,
which is also the centre of the seeding curve.

Following the seeding curves we show the generated surfaces colour mapped to vor-
ticity in the range [0,1.66], where 0 is mapped to cyan, and 1.66 is mapped to yellow.
The surfaces are rendered with transparency mapped to curvature, with view dependant
saturation switched on. Streamlines are also rendered to the surface, coloured red to
contrast with the colour map.
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Figure B.1: Top left parameters are k=8 and A=0.9 and B=0.1. Top right parameters
are k=8 and A=0.5 and B=0.1. Bottom parameters are k=8 and A=0.1 and B=0.1. The
seeding curves are coloured red. The arrow glyphs represent the average vector of the
cluster; its base is located at the centre of the cluster.

Figure B.2: Top left parameters are k=8 and A=0.9 and B=0.5. Top right parameters
are k=8 and A=0.5 and B=0.5. Bottom parameters are k=8 and A=0.1 and B=0.5. The
seeding curves are coloured red. The arrow glyphs represent the average vector of the
cluster; its base is located at the centre of the cluster.
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Figure B.3: Top left parameters are k=8 and A=0.9 and B=0.9. Top right parameters
are k=8 and A=0.5 and B=0.9. Bottom parameters are k=8 and A=0.1 and B=0.9. The
seeding curves are coloured red. The arrow glyphs represent the average vector of the
cluster; its base is located at the centre of the cluster.

Figure B.4: This visualisation parameters are k=8 and A=0.9 and B=0.1. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.
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Figure B.5: This visualisation parameters are k=8 and A=0.5 and B=0.1. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.

Figure B.6: This visualisation parameters are k=8 and A=0.1 and B=0.1. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.
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Figure B.7: This visualisation parameters are k=8 and A=0.9 and B=0.5. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.

Figure B.8: This visualisation parameters are k=8 and A=0.5 and B=0.5. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.
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Figure B.9: This visualisation parameters are k=8 and A=0.1 and B=0.5. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.

Figure B.10: This visualisation parameters are k=8 and A=0.9 and B=0.9. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.
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Figure B.11: This visualisation parameters are k=8 and A=0.5 and B=0.9. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.

Figure B.12: This visualisation parameters are k=8 and A=0.1 and B=0.9. The surfaces
are rendered with transparency, view dependant saturation, and streamlines.
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