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Abstract

This thesis describes geo-spatial visualization of population healthcare data by a literature

study and some practical research.

I first present a literature survey of narrative visualization including geo-spatial visualiza-

tion. Throughout history, storytelling has been an effective way of conveying information and

knowledge. In the field of visualization, storytelling is rapidly gaining momentum and evolv-

ing cutting-edge techniques that enhance understanding. Many communities have commented

on the importance of storytelling in data visualization, and, in growing numbers, storytellers

tend to be integrating complex visualizations into their narratives. We present a survey of

storytelling literature in visualization, and present an overview of the common and important

elements in storytelling visualization. We also describe the challenges in this field as well as

a novel classification of the literature. Our classification scheme highlights the open and un-

solved problems in this field as well as the more mature storytelling sub-fields. We can see

that geo-space is relatively unexplored in this context. The benefits of our work offer a concise

overview and a starting point into this rapidly evolving research trend, and provide a deeper

understanding of this topic.

Then, we present a novel multivariate visualization that combing geo-spatial information

with population healthcare data. The National healthcare Service (NHS) in the UK collects

a massive amount of high-dimensional, region-centric data concerning individual healthcare

units throughout Great Britain. It is challenging to visually couple the large number of mul-

tivariate attributes about each unit region together with the geo-spatial location of the clinical

practices for visual exploration, analysis, and comparison. We present a novel multivariate

visualization that we call a cartographic treemap, which attempts to combine the space-filling

advantages of treemaps for the display of hierarchical, multivariate data together with the rel-

ative geo-spatial location of NHS practices in the form of a modified cartogram. It offers both
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space filling and geospatial error metrics that provide the user with interactive control over the

space-filling versus geographic error trade-off. The result is a visualization that offers users

a more space efficient overview of the complex, multivariate healthcare data coupled with the

relative geo-spatial location of each practice to enable and facilitate exploration, analysis, and

comparison. We evaluate the two metrics and demonstrate the use of our approach on real, large

high-dimensional NHS data and derive a number of multivariate narratives based on healthcare

in the UK as a result. We then report the reaction of our software from two domain experts in

health science.

While previous work focused on multivariate visualization combing geo-spatial data, we

further extend the work by adding time-oriented data. Cartographic treemaps offer a way to ex-

plore and present hierarchical multi-variate data that combines the space-efficient advantages

of treemaps for the display of hierarchical data together with relative geo-spatial location from

maps in the form of a modified cartogram. They offer users a space-efficient overview of the

complex, multi-variate data coupled with the relative geo-spatial location to enable and facili-

tate exploration, analysis, and comparison. In this chapter, we introduce time as an additional

variate, in order to develop time-oriented cartographic treemaps. We design, implement and

compare a range of visual layout options highlighting advantages and disadvantages of each.

We apply the method to the study of UK-centric electronic health records data as a case study.

We use the results to explore the trends and present a narrative of a range of health diagnoses

in each UK health care region over multiple years exploiting both static and animated visual

designs. We provide several examples and user options to evaluate the performance in explo-

ration, analysis, and comparison. We also report the reaction of domain experts from health

science.

Finally, we present a novel algorithm that enhances cartogram understanding and reduces

error by adding features into it. Cartograms are very popular and useful for depicting data on a

map. Dorling style and rectangular cartograms are very good for facilitating comparisons be-

tween unit areas: each unit area is represented by the same shape such as a circle or rectangle,

and the uniformity in shapes facilitates comparative judgement. However, the layout of these

more abstract shapes may also simultaneously reduce the map’s legibility and increase error.

When we integrate univariate data into a cartogram, its recognizability may be reduced. There

is therefore a trade-off between information recognition and geo-information accuracy. And

this is the inspiration of this part. We thus attempt to increase the map’s recognizability and re-



duce error by introducing topological features into the cartographic map. The goal is to include

topological geographic features such as a river in a Dorling-style or rectangular cartogram to

make the visual layout more recognizable, increase map cognition and reduce geo-spatial er-

ror. We believe that compared to the standard Dorling and rectangular style cartogram, adding

topological features provides familiar geo-spatial cues and flexibility to enhance the recogniz-

ability of a cartogram.
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”Live as if you were to die

tomorrow. Learn as if you were to

live forever.” -Mahatma Gandhi1

D Ata visualization is a general term that describes any effort to help people enhance their

understanding of data by placing it in a visual context. Patterns, trends and correlations

that might go undetected in numeric on text-based data can be exposed and recognized easier

with data visualization software [49]. Figure 1.1 represents a ubiquitous pattern of knowledge

1Mahatma Gandhi (1869-1948) was an Indian activist who was the leader of the Indian independence move-
ment against British rule.

16



1. Introduction and Motivation

Figure 1.1: A ubiquitous pattern of knowledge evolution [2].

evolution that the collective digital society is experiencing. It consists of six basic constituents.

It starts with a challenge or goal in the real world. The goal could be to build or optimize a

design, like a car or computer. The start could be a challenge such as reaching a new level of

understanding or observing a behavior or phenomenon rarely or never seen previously. The

goal could be running a successful business and making a profit. We all have real world goals

and challenges. We all have new understanding and knowledge we would like to obtain. We

all have things we would like to build, create, and optimize.

When trying to build something we generally know that whatever it is, it can theoretically

be built in the real-world. For example cars and structures can be built out of raw materials

and components with the right tools. We also know that observations can be made, in general,

by being in the right place at the right time, either personally or with recording equipment.

Experiments can generally be conducted with the appropriate equipment. New levels of un-

derstanding can generally be obtained if enough people are employed to carry out of the task.

This is what we called real-word solution.

However, when implementing a real-world solution, we often run into barriers. Cars and

structures are extremely expensive to build and may also require a long term investment. Obser-

vations may be very expensive, very difficult, or even impossible. Some observations interfere

with the very behavior or phenomena they are trying to study. Recording equipment may be

too expensive or cause logistical problems. Equipment for experiments is generally very ex-

pensive. This is especially true if the equipment is specialized or for very small or very large

scale investigations. Also, hiring people for new understanding may not be feasible due to
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expense. A full-time research assistant costs 100K GBP per year under current funding agency

full economic costing (FEC) requirements in the UK. Real-world solutions are generally very

expensive or not feasible at all. Some real-world solutions are impossible.

It is because of the high cost of real-world solutions that collectively, as a society, we turn

to digital solutions to address our challenges and goals. The dotted line in Figure 1.1 separates

the real, physical, or analogue world on the left side from the digital world on the right. We

all look to the digital world for the answers to our questions. “There must be an app for that.”

or “What app can be built to solve this problem?” is the collective thinking in this day in age.

Society looks towards digital solutions for their real-world problems to deliver the user from

the dilemma they may face. People believe that software is less-expensive to build than objects

in the real world. The virtual world should be more feasible than the physical or analogue

world. And this is true in many scenarios.

However, creating a digital solution to an analogue problem introduces new challenges. In

particular, digital solutions including software, create massive amounts of data. The amount of

data digital approaches generate is generally unbounded. Software and storage hardware are

less and less expensive with time. Thus users collect, collect, and collect even more data. This

is the point at which the knowledge evolution pipeline of Figure 1.1 becomes interesting. Large

collections of complex data are not automatically useful. Extracting meaningful information,

knowledge, and ultimately wisdom from large data collection is the main challenge facing the

digital world today. The collection of essentially unbounded data is what we term data chaos.

Collecting and archiving data without careful planning and well thought out information design

quickly or slowly results in a chaotic data environment. Those who collect data are generally

not yet aware of how difficult it is to then derive useful insight and knowledge from it.

On the other hand, the knowledge that visualization is a key technology to extract meaning

from large data sets is rapidly spreading. This is one solution to the data chaos. In the early

years of data visualization as a field, say the first 10 years, from 1987-1997, data visualization

was considered very niche. Not many people knew about it nor knew of its existence. It is only

since around the turn of the century that word started to spread. In the 2000s the first main-

stream news stories including the phrase ‘Data Visualization’ were published. Nowadays, the

field has come a long way from obscurity to breaking into the main stream. Its presence

and importance as a field is starting to become understood. Word is spreading that a data

visualization community exists and that this is a topic a student can study at university.
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Figure 1.1 is the basic pattern of knowledge evolution [2]. The rest of the chapter provides

concrete examples of these six stages from real-world challenges to the visualization cosmos.

The focus is on the last two stages: from data chaos to the visualization cosmos.

1.1 The Universal Big Data Story (and Quandary)

We can find this pattern everywhere. It doesn’t matter where we look. We can see in com-

putational fluid dynamics. Physicists and astronomers are facing the challenges of big data.

It’s not possible to study all the stars and black holes physically. We see this pattern with ma-

rine biologists, biochemists, psychologists, sociologists, sport scientists, journalists, and those

studying the humanities. We see this evolution with government councils, banks, call centers,

retail websites, transportation. The list is virtually endless. You can experience this yourself as

you collect your own photos. People like to collect things. This is another contributing factor

to the data chaos. A person may not even have a goal to reach or a problem they are trying to

solve. They just like to collect.

1.2 The Visual Cortex

Data visualization uses computer graphics to generate images of complex data sets. It’s dif-

ferent from computer graphics.“Computer graphics includes the creation, storage, and manip-

ulation of model and images of objects. Computer graphics concerns the pictorial synthesis of

real or imaginary objects from their computer-based models, whereas the related field of image

processing treats the converse process: the analysis of scenes, or the reconstructing of models

of 2D and 3D objects from their picture. ”from the classic textbook “Introduction to Computer

Graphics ”by Foley et al, 2000. Visualization tries to generate images of reality. Visualization

exploits our powerful visual system. We have several billion neurons dedicated to our visual

processing and visual cortex [50].

The numbers of neurons are not very meaningful unless we put them into context. We have

eight percent of the cortex dedicated touch and three percent dedicated to hearing. We have

anywhere from 4 to 10 times of our cortex dedicated to visual processing than the other senses.

It is advantageous to explore the visual processing power in our brains as opposed to the other

senses. It’s dedicated to processing color, motion, texture, and shape.
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Figure 1.2: Visualization of call center data. Image courtesy of Roberts et al. [3]

1.3 Visualization Goals

Data visualization has some strengths and goals itself. One of the goals of data visualization

is exploring data. This may be the case when the user does not know anything about their data

set. They just want to find out what it looks like and its characteristics.

Users search for trends or patterns in the data. Exploration is for the user that’s not very

familiar with the dataset. Visualization is also good for analysis: to confirm or refute a hypoth-

esis. An expert may have collected the data for a special purpose and would like to confirm or

refute a hypothesis or answer a specific question. Visualization is also effective for presenta-

tion.

When our exploration and analysis is finished we can present the results to a wider audi-

ence. Visualization is also good for acceleration i.e. to speed up something such as a search

process. This is often a decision making process or knowledge discovery process. We can see

things that were otherwise impossible.

We try to explain the knowledge pattern and motivate the topic of visualization with several

examples. The examples cover from business area to research area and from micro world to

macro world.
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1.4 Example: Visualization of Millions of Calls

Let’s examine at this first example of this pattern of knowledge evolution. This is from a

business context. One of Swansea University’s industry collaborators is called QPC Ltd. They

are an innovator in call center technology. Their goal is to understand call center behavior

and to increase understanding of calls and all the activities that occur inside a call center. The

call centers are staffed with many agents and the agents answer hundreds of thousands of calls

every day. How can we increase our understanding of all those events and what is happening

inside of a call center?

We theoretically could go down the analog or physical route. We could hire more people

that stand and observe what’s happening in the call center, and attempt to take notes to enhance

understanding. Or maybe CCTV could be used to try to film everything that’s going on. These

analogue solutions will be very expensive and not very practical. The analog solution to hire

more people for just observation is not practically feasible and will cost too much money.

So QPC Ltd chose the digital solution. They decided to implement an event database. The

database logs all events in the call center: who called, when they call, how much time they

spend navigating with menus inside the interactive voice recognition system (IVR), how long

they spent in the queue before speaking to an agent, whether or not they abandon their call,

which agent they spoke to, and how long they spoke to each agent etc. That digital solution

in the form of a database stores of millions events everyday. A call center generates lots of

activities. The UK employs over a million people in call centers or about five percent of its

workforce are employed in call centers [51]. It’s a large market.

How do we take the chaos of call center data and visualize it to make sense of it? We

can use a treemap as one of the ways to visualize call center events. See Figure 1.2. The

treemap is a hierarchical data structure. We start with an overview of the data and then zoom

in down to different levels of detail. In this case, the size of the rectangles is initially mapped

to call volume. The different hours start from midnight to midnight again. We can see when

the call center opens and when the call volume increases and reaches its maximum at around

lunchtime. Then it starts to descend again.

Color is mapped to the percentage of abandoned calls by default. We can notice call cen-

ters trying to avoid abandoned calls. We can observe a big increase in abandoned calls in

the evening right after dinner around 7pm-8pm. The user can map the calls to different col-

ors at different costs. They can also map the colors to different kinds of events for example
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abandoned calls or successful calls.

We can also navigate the treemap. We can zoom in smoothly and see more details. We can

zoom in to single hour and each rectangle represents a single call. We can visualize individual

calls and how long they take. There is a call that lasted two hours. The unusual calls that last

long time jump right out. Probably they spent a long time with an agent – a very dedicated agent

spent a long time trying to solve a customer problem. The users can use a clock interface to

smoothly zoom and navigate each hour. The software features a smooth zooming and panning

operation and with the clock showing. The user does not get lost.

We can easily see which hours we are observing even when we zoom in. We can zoom in

even further, one hour is broken up into 10-minute intervals and then those 10-minute intervals

are broken up into single minute intervals. We also see a standard histogram on the left which

represents the data and provides an overview. Each bar represents a 10-minute interval. Color

can also be mapped to some data attribute chosen by the user in this case the average call

length which we can see up in Figure 1.2. We can see, suddenly during, the evening average

call length increases and we can see over the day the average call length increases throughout

the day as an overall trend.

The treemap features a fine level of detail. Each rectangle can represent a single phone call

and in this case how long each call lasted.

At the top level are not individual calls. Each rectangle represents an hour and then each

hour is broken up into 10 minute blocks. So we have 6, 10 minute blocks and then each time

in the block is broken up into individual minutes. This is an exciting project because this is the

first time that QPC Ltd have ever seen overview of the call center activity in any way shape or

form. As soon as we see the overview we can easily make observations about the call center

volume about the increasing level of abandon calls. The average call length is also increasing

as we examine the day.

We can filter calls using different sliders. This is the analytical part of the process. This

is an example of focus and context visualization. See Figure 1.3. We focus on the calls that

spend a longer time in a queue. We can focus on the inbound calls because call centers have

inbound calls and outbound calls. These can be filtered by completed calls. We can combine

filters in different ways.

We can click on an individual call and then obtain the most detailed level of information

like how much time the caller spent in the IVR navigating menus, how much time they spent
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Figure 1.3: Focus + context filtering feature of call center data. Image courtesy of Roberts et al. [3]

queuing and how much time they spent talking to agents. We have two different queuing events,

an agent event, a second agent event, back in the queue, back to another agent, back into the

queue again. That is a complicated phone call. That is the lowest level of detail. We can also

see the type of call in this case a consult call as it shows the number of events, one IVR event

for queuing events and four different agent event.

One detailed view shows that the proportion each event as a unit proportion because some-

times the events disappear when they’re too short for a traditional version.

In this example, the knowledge pattern start with real business world problem and can-

not be solved with physical approach easily. So they collected data and analyzed data using

visualization tools.
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1.5 Example: Visualization of Sensor Data from Animal

Movement

The next example is from marine biology. Marine biologists would like to understand marine

wildlife and how marine wild life behaves. One of the challenges that they face is deep sea

underwater diving. How do you study animals that dive deep underwater for hours or even

days at a time? How is that possible? Theoretically the solution might be to follow the animal.

That might be kind of an approach. But there are some problems with that. People cannot just

dive a few kilometres underneath the water. They can try to build submarines or similar but

to try to follow a cormorant or tortoise in a submarine is not a very practical solution. It’s not

feasible, very expensive, and the analog solution is one of those cases where the observation

itself influences the behavior we are trying to study.

Marine biologists look to the digital world for a solution. They use sensor devices at

Swansea University called a daily diary [4]. They actually capture the animals like a cormorant.

They attach the digital sensor or maybe more than one digital sensor to the subject and then

release it. See Figure 1.4. Then they recapture the sensor a few hours or a few days later.

They remove it from the animal and they study the information that it collects about the local

environment. It collects information on acceleration, local acceleration, local temperature,

pressure, ultraviolet light, and a few other properties. Another challenge currently is that GPS

does not work underwater at great depths. It’s not possible to just plot a path naively in a dead

reckoning fashion the same way we can for land animals.

However when the user get this data this is what it looks like (See Figure 1.4 right). This

is a tiny little piece of what it looks like. They plot, for every attribute, magnitude versus time.

Acceleration Magnitude is on the y-axis and time is on the x-axis. They claim they can infer

animal behavior based on these wave patterns. They can look at a wave pattern and say that it

looks like the animal is diving or the animal hunting.

But you can see that that’s not easy. This is only a few seconds of data. If you plot the

day’s worth of data in this fashion, it will wrap around a building a few times. The acceleration

has three components: x, y, z. These are three components decoupled. In reality they form a

vector in 3-space.

The marine biologists asked us if we can drive visualizations that facilitate the understand-

ing of marine wildlife behavior. We have a standard visualization coupled with a new visual-
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Figure 1.4: Visualization of Sensor Data from Animal Movement. Image courtesy of Grundy et al. [4]

ization. (See Figure 1.5.) In the new visual design we can see the geometry of the animals and

how the animal is oriented immediately. What Grundy et al. did was reintegrate the x, y, z com-

ponents of the acceleration and plot them in spherical space rather than time versus amplitude

space. And they map the unit vectors onto a sphere and can immediately infer animal behav-

ior. They can also map pressure to the radius. Figure 1.5 shows the animal swimming at the

surface and then the pressure increases. Pressure mapped to radius represents diving behavior

and the diving behavior is very easy to notice. Now that is visualized in spherical space we can

observe swimming, hunting, searching behavior. This spherical space is interactive so that we

can rotate, zoom, and pan at different angles.

Figure 1.6 presents a spherical histogram. The vectors are binned into unit rectangles and

the more time an animal spends in a given posture at that orientation, the longer histogram

bin. We can see the postures and the states that the animals spend a long time in. Rather than

focusing on all of the time, the user chooses a special region and then the region is plotted

up close in the left-hand corner. The user can cluster the vectors into different groups. (See

Figure 1.7) Assigning each data point to a group that represents some interesting aspect of the

animal behavior. The user can adjust the probability of any data sample belonging to one of the

clusters. These are clusters of animal postures calculated using K-means clustering. Grundy

et al. can represent clusters as spheres and then connect the spheres or the postures with edges

that represent transitions from one orientation to another successively. We can observe the

transitions between various states and postures. We can see the most popular or dominant

states. That information pops up immediately.

In this example, the knowledge pattern starts with real research world problem which can-

not be solved with ordinary physical approach. A digital solution is good way for collecting
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Figure 1.5: Spherical visualization of sensor data coupled with standard visualization (bottom). Image
courtesy of Grundy et al. [4]

corresponding data, and visualization tools is developed for analyzing data and generating use-

ful observations.

1.6 Example: Visualization of Molecular Dynamics Simulation

Data

The goal here is to understand biology at the molecular level. There are analog approaches and

solutions to this challenge. Biologists run experiments at the molecular level and try to under-

stand behavior of molecules using experiments and nuclear magnetic resonance spectroscopy.

These machines and experiments are very expensive.
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Figure 1.6: Spherical histogram of sensor data. Image courtesy of Grundy et al. [4]

The whole field of computational biology attempts to address this challenge in the digital

world because it’s much less expensive than the analog world. As with any simulation data

all the simulation experts generate massive amounts of data. They try to use the latest high

performance computing machines.

This is the interaction of lipids and proteins. See Figure 1.8. That’s what this simulation

data shows and Alharbi et al. [5] develop some visualization software to enhance understand-

ing of this. These holes are protein and then the paths are lipid trajectories. See Figure 1.8.

The computational biologists attempt to visualize the interaction between trajectories and the

proteins.

Alharibi et al. are trying to develop visualizations to help computational biologist under-
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Figure 1.7: Utilising data clustering methods of sensor data. Image courtesy of Grundy et al. [4]

stand the data with a special focus, in this case, on path filtering. Given the massive number

of trajectories hundreds of thousands or millions of trajectories over multiple time steps, is it

possible to select a subset of those trajectories based on interesting properties that help the bi-

ologists understanding the behavior? Alharibi et al. develop tools for filtering and selection of

these trajectories to try to understand behavior. One example is just changing the time step of

the simulation or filtering the path by its length. They can focus on shorter paths or on longer

paths. They can slide the filter over to long paths or the long trajectories.

The user can filter the paths based on other characteristics. They chose a few properties

that they hope will be interesting for the computational biologists. One property is curvature.

There are highly curved paths.

The atom trajectories are actually three dimensions but they’re limited to a layer analo-

gous to the biosphere such that the z dimension is relatively small compared to the x and y
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Figure 1.8: Visualization of molecular dynamics simulation data. Image courtesy of Alharbi et al. [5]

dimensions. They can visualize projected 2D space or the volumetric 3-space. The user can

experiment with 2D versus 3D. The standard visualization packages for this are constrained to

a two-dimensional plane and they’re generally not interactive.

In this example, it focuses on real micro world challenge. It is too expensive to analyze the

biology in molecular level by physical solution. Collecting data and developing visualization

tools tend to be a better way for this problem, which fit our knowledge evolution pattern.

1.7 Example: Visualization of Public Healthcare Data

The last example is to analyse population healthcare. It starts with the real world challenge

which is improving the health of the British population. The standard approach by the NHS

to address this challenge is using hospitals and providing services through chemists, doctors
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and other health related staff in UK. However, this approach is very costly. There are limits to

the NHS budget. The NHS then try to collect as much data as possible to investigate whether

they can optimise their services by analysing population healthcare data. That is the service of

public healthcare in England [46] do. They switch from physical solution to a digital alternative

inspired by budget constraints. The goal of this thesis is to help the domain experts make sense

of the public healthcare data by using visualization. It fits the pattern in taking data chaos

provided by Public Healthcare England and turning it into understanding.

1.8 Conclusion

This chapter presents a ubiquitous model of knowledge evolution witnessed at a collective level

by a society deeply involved with the digital world. It presents a theory supported by a number

of case studies ranging from the call center industry, to computational biology and to healthcare

area. It sets the stage for data visualization as a vital technology to evolve our understanding of

data and the world it describes to the next level. It will be exciting to witness how this model

and pattern evolve over time.

1.9 Thesis Overview

This section contains summaries for the following main chapters. For continuity, these sum-

maries are arranged to start with corresponding chapter headings.

Chapter 2: A Survey of Narrative Visualization Including Geo-space

Chapter 2 presents a literature survey of narrative visualization including geo-spatial vi-

sualization. Throughout history, storytelling has been an effective way of conveying informa-

tion and knowledge. In the field of visualization, storytelling is rapidly gaining momentum

and evolving cutting-edge techniques that enhance understanding. Many communities have

commented on the importance of storytelling in data visualization. Storytellers tend to be in-

tegrating complex visualizations into their narratives in growing numbers. In this Chapter, we

present a survey of storytelling literature in visualization and present an overview of the com-

mon and important elements in storytelling visualization. We also describe the challenges in

this field as well as a novel classification of the literature. Our classification scheme highlights

the open and unsolved problems in this field as well as the more mature storytelling sub-fields.

We can see that geo-space is relatively unexplored in this context. The benefits offer a concise
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overview and a starting point into this rapidly evolving research trend and provide a deeper

understanding of this topic.

Chapter 3: Cartographic Treemaps for the Visualization of Healthcare Data

From Chapter 2 we learn that including geo-space can increase memorability and cog-

nition. Chapter 3 presents a novel multivariate visualization combing geo-spatial informa-

tion. The National healthcare Service (NHS) in the UK collects a massive amount of high-

dimensional, region-centric data concerning individual healthcare units throughout Great Britain.

It is challenging to visually couple the large number of multivariate attributes about each unit

region together with the geo-spatial location of the clinical practices for visual exploration,

analysis, and comparison. We present a novel multivariate visualization we call a cartographic

treemap that attempts to combine the space-filling advantages of treemaps for the display of

hierarchical, multivariate data together with the relative geo-spatial location of NHS practices

in the form of a modified cartogram. It offers both space filling and geospatial error metrics

that provide the user with interactive control over the space-filling versus geographic error

trade-off. The result is a visualization that offers users a more space efficient overview of the

complex, multivariate healthcare data coupled with the relative geo-spatial location of each

practice to enable and facilitate exploration, analysis, and comparison. We evaluate the two

metrics and demonstrate the use of our approach on real, large high-dimensional NHS data and

derive a number of multivariate narratives based on healthcare in the UK as a result. We report

the reaction of our software from two domain experts in health science.

Chapter 4: Time-Oriented Cartographic Treemaps

While the previous chapter focused on multivariate visualization combing geo-spatial data,

in Chapter 4 we extend the work by adding time-oriented data. Cartographic treemaps offer

a way to explore and present hierarchical multi-variate data that combines the space-efficient

advantages of treemaps for the display of hierarchical data together with relative geo-spatial

location from maps in the form of a modified cartogram. They offer users a space-efficient

overview of the complex, multi-variate data coupled with the relative geo-spatial location to

enable and facilitate exploration, analysis, and comparison. In this Chapter, we introduce

time as an additional variate, in order to develop time-oriented cartographic treemaps. We

design, implement and compare a range of visual layout options highlighting advantages and

disadvantages of each. We apply the method to the study of UK-centric electronic health

records data as a case study. We use the results to explore the trends and present a narrative
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of a range of health diagnoses in each UK health care region over multiple years exploiting

both static and animated visual designs. We provide several examples and user options to

evaluate the performance in exploration, analysis, and comparison. We also report the reaction

of domain experts from health science.

Chapter 5: Cartograms with Features

Chapter 5 presents a novel algorithm that enhances cartogram understanding and reduces

error by adding features to a cartogram. Cartograms are very popular and useful for depicting

data on a map. Dorling style and rectangular cartograms are very good for facilitating compar-

isons between unit areas. Each unit area is represented by the same shape such as a circle or

rectangle, and the uniformity in shapes facilitates comparative judgment. However, the layout

of these more abstract shapes may also simultaneously reduce the map’s legibility and increase

error. When we integrate univariate data into a cartogram, the recognizability of a cartogram

may be reduced. There is a trade-off between information recognition and geo-information

accuracy. This is the inspiration behind this Chapter. We thus attempt to increase the map’s

recognizability and reduce error by introducing topological features into the cartographic map.

Our goal is to include topological geographic features such as a river in a Dorling-style or rect-

angular cartogram to make the visual layout more recognizable, increase map cognition and

reduce geo-spatial error. We believe that compared to the standard Dorling and rectangular

style cartogram, adding topological features provides familiar geo-spatial cues and familiarity

to enhance the recognizability of a cartogram.

Chapter 6: Conculsion and future work

Chapter 6 concludes the thesis and provides potential future research directions based on

our work.
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”Study the past if you would define

the future.” -Confucius 1

T His Chapter presents a literature survey of narrative visualization including geo-spatial

visualization. Throughout history, storytelling has been an effective way of convey-

ing information and knowledge. In the field of visualization, storytelling is rapidly gaining

momentum and evolving cutting-edge techniques that enhance understanding. Many commu-

nities have commented on the importance of storytelling in data visualization. Storytellers tend

to be integrating complex visualizations into their narratives in growing numbers. In this Chap-

ter, we present a survey of storytelling literature in visualization and present an overview of the

common and important elements in storytelling visualization. We also describe the challenges

in this field as well as a novel classification of the literature on storytelling in visualization.

Our classification scheme highlights the open and unsolved problems in this field as well as the

more mature storytelling sub-fields. The benefits offer a concise overview and a starting point

into this rapidly evolving research trend and provide a deeper understanding of this topic. This

Chapter is based on the paper ”Storytelling and Visualization: A Survey” [52] and ”Storytelling

and Visualization: An Extended Survey” [53].

1Confucius (551-479 BC) was a Chinese teacher, editor, politician, and philosopher of the Spring and Autumn
period of Chinese history.
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2.1 Introduction And Motivation

“We believe in the power of science, exploration, and storytelling to change the world” - Susan

Goldberg, Editor in Chief of National Geographic Magazine, from “The Risks of Storytelling”,

October 2015 [54].

“In a world increasingly saturated with data and information, visualizations are a potent

way to break through the clutter, tell your story, and persuade people to action” [55]. -Adam

Singer, Clickz.com, “Data Visualization: Your Secret Weapon in Storytelling and Persuasion”,

October 2014.

Throughout history, storytelling has been an effective way of conveying information and

knowledge [12]. In the field of visualization, storytelling is rapidly developing technique that

enhance understanding. Many communities have commented on the importance of storytelling

in data visualization [18]. Storytellers tend to be integrating complex visualizations into their

narratives in growing numbers.

As contributions, we present a survey reviewing storytelling papers in visualization and

present an overview of the common and important elements in storytelling visualization. We

also describe the challenges in this field and present a novel classification of the literature on

storytelling in visualization. Our classification highlights both mature and unsolved problems

in this area. The benefit is a concise overview and valuable starting point into this rapidly

growing and evolving research trend. Readers will also gain a deeper understanding of this

rapidly evolving research direction.

2.1.1 Definition and Storytelling Elements

A story can be defined as “a narration of the events in the life of a person or the existence of a

thing, or such events as a subject for narration” [56] or “a series of events that are or might be

narrated” [57]. Storytelling is a popular concept that is used in many fields, such as media [18],

education [58] and entertainment [59]. Storytelling is a technique used to present dynamic re-

lationships between story nodes through interaction. According to Zipes [58], storytelling can

involve animation and self-discovery, incorporating models, ethical principles, canons of liter-

ature, and social standards. In education, a storyteller can improve and strengthen the literacy

of students. Also, the storyteller can engage audiences so they feel a desire to read, write, act,

and draw. Audience members can learn to express themselves critically and imaginatively with

techniques they may learn from the storyteller or teacher.

35



2. A Survey of Narrative Visualization Including Geo-space

In the context of the visualization literature. Lee et al. [60] argue that “the community has

been using the term ‘storytelling’ in a very broad way without a clear consensus or discussion

on what a visual data story encompasses”. They state that a visual data story includes a set of

story pieces. Most of the story pieces are visualized to support one or more intended messages.

Story pieces are presented with a meaningful order or connection between them to support the

author’s high level communication goal.

Furthermore no agreed definition of “visual data story” has yet emerged in the visualization

literature [60]. For a full-length 6 page discussion on this topic, we refer the reader to Lee et

al. [60].

For the purpose of this thesis, we define narrative visualization as a visual design that can

be used to explain this result of visual exploration and analysis to a wider audience. This

usually includes provenance information that can inform users as to how an observation was

generated.

2.1.2 Classification of Literature and Challenges in Storytelling and

Visualization

Although storytelling has been developing in other fields for years, storytelling is a relatively

new subject in visualization. As such, it faces many challenges. In this survey we have ex-

tracted the fundamental characteristics of storytelling both as an entity and as a creative pro-

cess. Our literature classification is based on the logical notions of who are the main subjects

involved in storytelling for visualization (authoring tools and audience), how are stories told

(narratives and transitions), why can we use storytelling for visualization (memorability and

interpretation). From these characteristics we have then developed the following dimensions

which are common to storytelling in visualization.

Authoring-Tools: Authorship addresses who creates the story and narrative. Authorship

commonly refers to the state or fact of being the writer of a book, article, or document or the

creator of a work of art [61] and its source or origin [62]. Central to this definition is the writer

or author. Rodgers[63] defines an author as “an individual solely responsible for the creation

of a unique body of work.”

User-engagement: Engagement is about the audience and also concerns why we use sto-

rytelling. How can we ensure that the message comes across to the audience? Can we measure

engagement?
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Narratives: Narrative concerns how an author tells a story. Narrative structures include

events and visualization of characters. Narrative visuals contain the transition between events.

This entails, “Using a tool to visually analyze data and to generate visualizations via vector

graphics or images for presentation,” and then deciding ”how to thread the representations into

a compelling yet understandable sequence.”[20]

Transitions: Transitions are about how authors may tell the story. Transitions seamlessly

blend events within a story and are key to its flow. Successful transitions vary actions as little

as possible to strengthen overall coherence. Transitions in visualization can be either dynamic

or static.

Memorability: Memorability addresses why authors present data in the form of a story.

Memorability is an important goal of storytelling. A good visualization technique draws the

viewer’s attention and increase a story’s memorability [37].

Interpretation: Data interpretation refers to the process of critiquing and determining the

significance of important data and information, such as survey results, experimental findings,

observations or narrative reports.

When examined in the context of storytelling in visualization each dimension raises inter-

esting questions: Are current storytelling platforms taking into account the role of the author

and supporting the authorship process? What forms of narrative structures and visuals best ap-

ply to storytelling in visualization? Are static transitions or dynamic transitions more effective

for storytelling in visualization? Can visualization increase the memorability of data informa-

tion or knowledge? Does storytelling and visualization aid with data interpretation? What is

the most effective way to engage an audience? Data preparation and enhancement is another

challenge for which there is currently no literature. Thus we include it as a future research

direction but not in our classification.

Starting from the logical notions of who, how, why, and these open questions we have

chosen these dimensions to form the basis of our literature classification on storytelling in

visualization. See Table 1. It is important to note that some papers address multiple topics in

Table 1 and in our classification. We placed papers by what we determined to be the main focus

of the paper. This is very useful for obtaining an overview. However some papers address more

than one theme, e.g. authoring tools and narratives.
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Table 2.1: Our classification of the storytelling literature. The y-axis categories fall into who-
authoring-tools and user-engagement, how-narrative and transitions, why-memorability and
interpretation. See section 2.1.2 for a complete description.

Linear User-directed/Interactive Parallel Random

W
ho Authoring-Tools

Gershon et al. 2001[64]
Lu and Shen, 2008[7]
Cruz et al. 2011 [8]

Wohlfart, 2006 [9]
Wohlfart et al. 2007[10]
Lidal et al. 2012 [11]
Lee et al. 2013[13]
Lidal et al. 2013[12]
Lundblad et al. 2013[14]
Fulda et al. 2016[65]
Amini et al. 2017 [66]

Eccles et al. 2007[15]
Kuhn et al. 2012[16]

User
Engagement

Figueiras, 2014 [25]
Boy et al 2016 [67]
Borkin et al,2016 [38]

H
ow

Narrative

Hullman et al. 2013 [19]
Hullman et al. 2013 [20]
Gao et al. 2014 [68]
Amini et al. 2015 [69]
Bach et al. 2016 [21]

Viegas et al. 2004[22]
Hullman et al. 2011[23]
Figueiras, 2014 [25]
Figueiras, 2014 [24]
Nguyen et al, 2014 [26]
Satyanarayan et al. 2014 [70]
Gratzl et al. 2016 [71]

Akashi et al. 2007[27]
Fisher et al. 2008[28]
Hullman et al. 2011[23]
Bryan et al. 2017[72]

Static
Transitions

Ferreira et al. 2013[29]

Robertson, 2008[30]
Chen et al. 2012[31]
Tanhashi et al. 2012[32]
Liu et al. 2013[33]
Ferreira et al. 2013[29]

Animated
Transitions

Heer et al. 2007 [34]
Liao et al. 2014 [73]

Bederson and Boltman, 1999[35]
Akiba et al. 2010[36]
Nagel et al. 2016[74]

W
hy Memorability

Bateman et al. 2010[37]
Borkin et al, 2016[38]

Saket et al. 2015 [39]

Interpretation

2.1.3 Classification of Literature: the Second Dimension

In addition, the literature is also classified by the ordering or sequence of events, which refers

to the traversal the path viewer takes through the visualization. This dimension is adapted

from Segal and Heer [18]. It forms our second categorization for Table 1. The classification

includes:

Linear: A story sequence path in linear order is prescribed by the author.

User-directed path: The user selects a path among multiple alternatives or creates their

own path. This is not pre-defined like it is in the case of linear.

Parallel: Several paths can be traversed or visualized at the same time. This can be linear

or user-directed but is always parallel.

Random access or other: There is no prescribed path. There is currently no literature

prescribing random order.
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Table 2.2: An alternative classification of the storytelling literature based on scientific, infor-
mation, and geo-spatial visualization. Geo-spatial is separated from scientific visualization
because these two topics are historically always separted in the literature. Both mature areas
and unsolved problems are apparent.

Scientific
Visualization

Information
Visualization

Geo-spatial
Visualization

Authoring
Tools

Wohlfart, 2006 [9]
Wohlfart et al. 2007[10]
Lu and Shen, 2008[7]

Gershon et al. 2001[64]
Cruz et al. 2011 [8]
Kuhn et al. 2012[16]
Lee et al. 2013[13]
Fulda et al. 2016[65]
Amini et al. 2017 [66]

Eccles et al. 2007[15]
Lidal et al. 2012 [11]
Lidal et al. 2013[12]
Lundblad et al. 2013[14]

Narrative Viegas et al. 2004[22]
Akashi et al. 2007[27]
Fisher et al. 2008[28]
Segel and Heer, 2010[18]
Hullman et al. 2011[23]
Hullman et al. 2013 [19]
Hullman et al. 2013 [20]
Figueiras, 2014 [24]
Figueiras, 2014 [25]
Nguyen et al, 2014 [26]
Amini et al. [69]
Lee et al. 2015 [60]
Bach et al. [21]
Bryan et al. 2017[72]
Gratzl et al. 2016 [71]

Gao et al. 2014[68]
Satyanarayan et al. 2014[70]

Static
Transitions

Robertson, 2008[30]
Chen et al. 2012[31]
Tanhashi et al. 2012[32]
Liu et al. 2013[33]

Ferreira et al. 2013[29]

Animated
Transitions

Akiba et al. 2010[36]
Liao et al. 2014[73]

Bederson and Boltman,
1999[35]
Heer et al. 2007 [34]

Nagel et al. 2016[74]

Memorability Bateman et al. 2010[37]
Borkin et al. 2013 [75]

Saket et al. 2015 [39]

Interpretation
Engagement Figueiras, 2014 [25]

Mahyar et al.,2015 [17]
Boy et al 2016 [67]
Borkin et al,2016 [38]
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2.1.4 Literature Search Methodology

We search both the IEEE and ACM Digital libraries for the terms “storytelling”, “narrative

visualization”, “memorability”, “transitions in visualization”, “user-engagement”, and various

combinations of these phrases. We focus primarily on the IEEE TVCG papers. We check

the references of each paper and looked for related literature on storytelling. We also search

the visualization publication data collection [76] for these major themes in visualization and

storytelling. Google scholar is also used as part of our search methodology.

In summary, our literature search includes:

1. IEEE EXPLORE Digital Library

2. ACM Digital Library

3. Visualization publication data collection [76]

4. the annual EuroVis conference

5. the Eurographics Digital Library

Several other papers were discovered by looking at the related work section of the papers

we found.

2.1.5 Survey Scope

The storytelling visualization papers summarized in this survey include the subjects of scien-

tific visualization, information visualization, and geo-spatial visualization. In order to manage

the scope of this survey, storytelling papers from other fields are not included, such as:

Virtual reality and augmented reality: For example, Santiago et al. [77] present “mogre-

storytelling” as a solution to interactive storytelling. This tool provides different functionalities

for creating and the customization of scenarios in 3D, enables the addition of 3D models from

the Internet, and enables the creation of a virtual story using multimedia and storytelling ele-

ments.

Education: For example, Cropper et al. [78] address the extent of how scientific story-

telling benefits our communication skills in the sciences, and the connections they establish

with the information itself and others in their circle of influence.
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Gaming: Alavesa et al. [79] describe the development of a small scale pervasive game

which can take storytelling from camp-fire sites to modern urban environments.

Multi-media and Image Processing: For example, Chu et al. describe a system to trans-

form any temporal image sequence to a comics-based storytelling visualization [80]. Correa

and Ma present a narrative system to generate dynamic narrative from videos [81]. Image pro-

cessing falls outside the scope of this survey. Video processing also falls outside the scope of

the survey [69].

Language processing: Theune et al. [82] develop a story generation system. It can create

story plots automatically based on the actions of intelligent agents living in a virtual story

world. The derived plots are converted to natural language, and presented to the user by an

embodied agent that makes use of text-to-speech.

There are other fields that study storytelling as well. In the next sections we describe the

literature on storytelling in visualization. Our classification is presented in Table 2.1. An alter-

native classification is presented in Table 2.2. Figure 2.12 shows the visualization techniques

used in storytelling for data visualization literature.

Ma et al. [6] state that a story that is well paced exhibits deliberate control over the rate

at which plot points occur. They present a selection of scientific storytelling visualizations

from NASA related work and describes various examples. The Scientific Visualization Studio

(SVS) at NASA uses storytelling visualization to investigate observational data collected by

instruments and sensors and make it more suitable for consumption by the public [83][84].

The science museum presents visualization to the public with complex and abstract ge-

ographic phenomena at extreme size scales for explanatory animations. The science muse-

ums provide further interpretation through labels, videos, and live demonstrations. See Figure

2.1[6].

Storytelling enables the user to interact with geographic data such as the Earth’s climate or

the collapse of a star by using a story model, such as story nodes or story transitions[36]. Ma et

al. is based on previous scientific visualization work at NASA, based in the scientific research

center and scientific museum and describe how visualization can be used to tell a good story,

and tell it well. This is a topic that the scientific visualization research community paid little

attention to at that time.
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Figure 2.1: Ma et al. show the interactive software used at the Exploratorium in San Francisco.
The purpose of this software is to educate users on the process of how tides, currents and rivers
combine in the estuary of San Francisco bay. A touch-screen is used to place floats into the
virtual water so that the user can see the effects of the current on the float. Users can watch
the effects of predicted tide and river flow cycles on the floats trajectory. Other contextual
information is provided as an animation alongside the visualization [6]. Image courtesy of Ma
et al. [6].
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2.2 Authoring-tools for storytelling and visualization

Authorship refers to writing or creating a book, article, or document, or the creator of a work

of art according to The Oxford English dictionary[61] , especially with reference to an author,

creator or producer [62]. For our purposes, we will adopt a definition of author described by

Rodgers[63], “An author is best described as an individual solely responsible for the creation

of a unique body of work.” Hullman [20] et al. state, “Story creation involves sequential pro-

cesses of context definition, information selection, modality selection, and choosing an order

to effectively convey the intended narrative”.

Presenting the findings of a qualitative study of undergraduate writers at The City Uni-

versity of New York, Hullman explores student perspectives on models of authorship, the re-

lationships between these models and student experiences of authorship in different writing

situations, and proposes the importance of distinguishing between the multiple models and

definitions of authorship and the rhetorical contexts associated with each [63]. Rodger de-

velops a qualitative study of 800 students on the definition of authorship and their rhetorical

contexts over a one-hour interview. Students defined authors as “[people] who see writing as

being beyond a hobby,” and as a term that should be applied only to those individuals for whom

writing is “something he or she has to do”, “a career”, or “an act that will lead to something

being published.”

All papers in this section focus on authoring-tools for storytelling. Wohlfart [9] creates

new volume visualization stories for medical applications. Gershon [64] and Cruz [8] present

general storytelling for information visualization. Kuhn [16], Lee [13] and Plowman [85] all

develop unique creator tools for storytelling visualization.

It is important to note that our survey is not simply a list of papers. Individual papers are

summarized according to a special methodology [86]. This process connects related papers

together such that the connections and relationship to previously published literature is made

clear.

2.2.1 Authoring-tools for Linear Storytelling

The literature in this sub-section focus on visual designs for authoring in a linear style that is

prescribed, automatic, or semi-automatic (as opposed to interactive) or decided by the users.

In other words, creators are provided with assets to formulate a linear story.
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Gershon and Page state that storytelling enables visualization to reveal information as ef-

fectively and intuitively as if the viewer were watching a movie [64]. They introduce the

concept of storytelling and presents advantages of storytelling.

One example presents a situation in which a number of enemy positions surround a school

with children trapped inside as de facto hostages as the crossfire fills the space overhead and

both sides move toward confrontation.Gershon and Page is based on previous work of Denning

[87] and explain the usage of storytelling in information visualization.

Lu and Shen propose an approach to reduce the number of time steps that users required in

order to visualize and understand the essential data features by selecting representative datasets.

They design a flexible framework for quantifying data differences using multiple dissimilarity

matrices [7]. A new visualization approach that filters data analysis results, which is achieved

by measuring the degree of data similarity/difference and selecting important datasets that

contain essential data features [7]. See Figure 2.2.

They interactively select representative datasets that include a significant portion of features

of scientific data, whose data distribution requires more analysis than time sequence, reduces

the amount of data to necessarily visualize and still keeps the essential data information. This

can be used to improve the efficiency of time-varying data visualization [7].

An interactive storyboard is used to visualize and explore the overall content of time-

varying datasets through composing an appropriate amount of information that can be effi-

ciently understood by users [7].

Lu and Shen [7] is based on the previous work of time-vary visualization [88] and design a

general method for comparing data dissimilarities. They do not require a dense sampling fre-

quency to capture the object evolution and their work is not limited to specific feature models,

such as geometry or interval volumes, and their attribute designs.

Storytelling, in the context of this article, deals with the core of information visualization

by extracting relevant knowledge and enhancing its cognition [8]. Cruz et al. present generative

storytelling as a conceptual framework for information storytelling. They create stories from

data fabulas using computer graphics as a narrative medium. Data fabulas are a set of time-

ordered events caused or experienced by actors [8].

A story is formed by characters. It involves the representation of the fabula’s actors and the

definition of a temporal structure. The engine transforming a fabula into story consists of two

models. The event model creates a story timeline and an action model creates a set of actors
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Figure 2.2: This figure shows the system architecture from Lu and Shen. It integrates the
information of data analysis and a single 3D data visualization method for users to explore
and visualize overall time-varying data contents [7]. Image courtesy of Lu and shen [7].

behaviours. For example an empire’s decline visualizing western empire’s decline in the 19th

and 20th centuries. See Figure 2.3.

Cruz et al. is based on previous work of narrative theory[89] and presents generative story-

telling as a conceptual framework for information storytelling.

2.2.2 Authoring-tools for User-directed and Interactive Storytelling

A large body of research has been carried out for authors wishing to create their own user-

oriented or interactive stories. This literature focuses on interactive, user-driven authorship (as

opposed to automatic or semi-automatic authorship). Storytelling is a relatively new form of

interactive volume visualization presentation [9]. Wohlfart explores the usefulness of story-

telling in the context of volume visualization. He presents a story telling model and divides

the concept of volumetric storytelling into story authoring and storytelling constituents. He

presents a volumetric storytelling prototype application, which is based on the RTVR (real

time volume redering) Java library [90] for interactive volume rendering. See Figure 2.4. The

storytelling model contains a range of hierarchy levels, in top-down order, which are: story
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Figure 2.3: Cruz et al. show the British hegemony and the newly independent South America
in 1891. Each empire and independent territory is a circle whose area is proportional to that
entity’s land area. Former colonies are unfilled circles with rims in the corresponding empire’s
color [8]. Image courtesy of Cruz et al. [8].

node, story transitions, story action group, story action atoms. See Figure 2.4. The story nodes

form the corner marks of the story and store the state of the whole scene. Story nodes are con-

nected by story transitions, each consisting of one or multiple story action groups. Each story

action group stores the scene changes relative to its preceding action group (or story node)

[9, 10].

The story authoring process contains two steps: a story recording process and a story edit-

ing process. The outcome of this recording process is a raw prototype of a story told through

volume visualization. In the story editing step, this raw story is refined until the final story

outline is reached [9, 10].

This process presents a volume visualization following the storytelling model. And the key

feature is interaction, including viewing interaction, representing interaction and data interac-
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tion [9, 10]. Wohlfart and Hauser also discuss the paradoxical integration of storytelling and

interaction [10].

Figure 2.4 shows an image sequence taken from a sample linear volumetric story visualized

with their prototype. The distinct story nodes refer to the key events in the story, which provide

an overview first, then details on specific features in the dataset, and at the end a conclusion

made by the story author. The necessary story transitions are represented as orange arrows from

one story node to the next and are animated in the prototype application. The story consumer

may take over some story parameters (e.g. camera angle) already during playback or at the end

of the story to further investigate the dataset [9, 10].

This story guides the observers through the visualization, puts the contained visual rep-

resentations into context with each other and finally introduces them to important features in

the data [10]. See Figure 2.5. Wohlfart is based on previous work of volume visualization

[91, 92, 93] and interactive visualization [94] and combine these concepts together to develop

a storytelling model for volume visualization.

Geological storytelling is a novel graphical approach for capturing and visualizing the rea-

soning process that leads to a geological model [11] [12]. Lidal et al. present a sketch-based

interface for rapid modelling and exploration of various geological scenarios. The authors

present a concept that handles sketching processed over time and a novel approach for exter-

nalizing the mental reasoning process. The process can be presented and evaluated [11][12].

The geological storytelling model contains three main parts. See Figure 2.6.

The canvas is a sketch-based interface where the geologist can draw the geological story

on a 2D seismic slice backdrop, utilizing a pen and paper interaction style. The StoryTree

is a tree graph representation of all the geological stories, each with its own subtree of story

nodes. Individual story nodes can be selected for editing in the canvas. One or more complete

story trees can be selected for playback or comparative visualization in the InspectView. The

InspectView serves two purposes. First, it is a view where a story can be played and evaluated.

In addition, multiple stories can be played synchronized for a side-by-side visual comparison.

Lidal et al. is based on a previous storytelling model [9] for scientific visualization [6] and

develops a storytelling model for geological visualization.

Lee et al. present SketchStory, a data-enabled digital white board to support real-time sto-

rytelling. It enables the presenter to stay focused on a story and interact with charts created

during presentation. See Figure 2.7 [13].
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Figure 2.4: The proposed method to author a story is to record the user’s natural interaction
with the visualization software. This image shows the process of the story creation by Wohl-
fart. Green annotations represent user interaction and red annotations refer to internal system
processes. As soon as the software starts recording, a new story is created and all interactions
are logged [9]. Image courtesy of Wohlfart [9].

The data-based story is recorded in SketchStory as a sequence of charts in XML files. The

charts are linked with specific sketch gestures. The presenter draws an example icon and then

draws a sketch gesture for chart invocation. Sketchstory recognizes the gesture and creates

the corresponding chart. Lee et al. is based on previous work for storytelling of information

visualization [64, 18] and sketch-based interaction [95], and develops the SketchStory system

to enhance storytelling in a presentation.

Storytelling is one of the most impactful ways to teach, learn, and persuade [14]. Lundblad

and Jern present geovisual analytics software with integrated storytelling. It can be applied to

large spatial-temporal and multivariate data through dynamic visual user interfaces.

Using a scatter plot matrix gives the analyst a good overview of all correlations between

the selected indicators. The analyst can use the scatter plot matrix as an overview and then

steer the scatter plot for interesting detailed combinations over time. See Figure 2.8[14]. The

distribution plot presents a special visualization technique that displays the variation within
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Figure 2.5: The top two images show an overview of the CT scan data presented by Wohlfart
and Hauser. A partial clipping reveals both the skin layer and bone layer, but shows the full
set of data. The middle shows a zoomed view that isolates eye swelling in the image (left), and
a filtered view that exposes some blood effusions in the swollen region. The bottom offers a
comparison of the non-injured eye with the injured one and shows the cause of the swelling
which is attributed to a tripod fracture just below the eye. This design offers the user a macro
overview as to lay the foundations of a story background then narrows the scope to view the
focal point of the image [10]. Image courtesy of Wohlfart [10].

49



2. A Survey of Narrative Visualization Including Geo-space

Figure 2.6: Lidal et al. [11] [12] present a sketch-based interface for rapid modelling and ex-
ploration of various geological scenarios.The sketch-based interface is split into two windows.
The Story Tree (left) which shows a tree graph representation of all the geological stories, and
the Canvas (right) which shows the sketching interface which utilises a pen and paper interac-
tion to record geological sedimentary data. A geological story is built using horizontal lines
to separate different geological layers, vertical lines to show fault systems, and polygons for
highlighting large sedimentary layers. The user can navigate through different geological sto-
ries with the story tree and then inspect the geological elements of that story. Image courtesy
of Lidal et al. [11] .

Figure 2.7: Lee et al. show an example of SketchStory in information visualization presentation
[13]. Image courtesy of Lee et al. [13].
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Figure 2.8: Lundblad and Jern show Vislet aimed at a comparative visualization using linked
Scatter Matrix and Scatter Plot to analyze national correlation between 6 indicators between
1960 and 2010 from the World Databank [14]. Image courtesy of Lundblad and Jern [14].

individual European countries [14]. The Motala River map is visualized for different stories

divided into different layers, such as a glyph layer, stream layer, polygon layer and background

map layer. It shows the local and total water flow, and water path from source to ocean [14].

Lundblad and Jern is based on the previous work of the storytelling concept [64] and work

of web-based geovisual tools, integrates storytelling with geovisual analytics software.

2.2.3 Authoring-tools for Parallel Storytelling

In this category of literature, authors create stories in parallel. In other words there may be

multiple authors working in parallel i.e. simultaneously for the final outcome. This is opposed

to a single author as in the previous subsection.

GeoTime events are recorded in x, y, t, coordinate space. This is used in observation

analysis and can make a major contribution to a storytelling model. Eccles et al. presents the

GeoTime stories prototype that combines a geo-spatial map with narrative events to produce

a story framework. See Figure 2.9 [15]. This system provides functions for simple pattern

detection in simultaneous movement activity. These functions look at possible interactions

between people within the narrative, the speed at which they travel, and the type of location

that they visit. Narrative text authoring enables the analyst to create and present stories found

within the data. The story window displays this data as well as discovered patterns. The system
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Figure 2.9: Eccles et al. show a GeoTime visualisation instance. The L axis represented by
height is temporal. X and Y axis represent the geospatial location Here you can see a taxi
driver’s route over the course of a few hours. Each pick up and drop off is labelled and the
route is mapped on the X and Y axis using the map [15]. Image courtesy of Eccles et al. [15].

enables multiple stories to connect together if they follow a linear flow. Also simultaneous

narratives can be shown in a single image for a direct comparison.

This system uses a similar approach to Sense.us [96]. Instead of using a blog-type discus-

sion workflow for adding text, Geotime is designed for authoring a single story and annotations

are integrated into the data itself.

The CodeTimeline visualization by Kuhn and Stocker [16] enables developers who are

new to a team to understand the history of the system they are working on. Designed to show

a development team’s tribal memory, the software offers a partial replacement for exhaustive

documentation. See Figure 2.10.

A collaboration view presents visualizes code ownership and historical patterns in collab-

oration. A sourcecloud flow view presents a word cloud of added and removed vocabulary

between software releases. Lifetime events can be added by users as a frame of reference in

each of the visualizations. This method of linking also enables new users to learn more about

the history of the software development. These events can include anything from email threads

to pictures of the team during work.
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Prior to Kuhn and Stocker, Ogawa [97, 98] presents “software evolution storylines” and

“Code Swarm”, which focus on the interactions between developers on projects but do not

focus on telling a story about the software history. Codebook, a concept presented by Begel et

al[99], outlines a social network that connects software engineers with their shared code base.

It encourages interaction with their code and others, enabling a broader understanding of the

project they share with other developers.

2.3 User Engagement

The literature in this category addresses an important but less developed research topic, namely

user engagement. In other words, who do we engage with storytelling and how can we engage

an audience?

Mahyar et al. [17] address how prior research in different domains define and measure user

engagement. They discuss existing frameworks for engagement from other related fields and

propose a taxonomy based on previous frameworks for information visualization.

They present five levels of user engagement in information visualization. See Figure 2.11.

1. Expose (Viewing): the user understands how to read and interact with the data.

2. Involve (Interacting): the user interacts with the visualization and manipulates the data.

3. Analyze (Finding trend): the user analyze the data, finds trends, and outliers.

4. Synthesize (Testing Hypotheses): the user is able to form and evaluate hypotheses.

5. Decide (Deriving Decisions): the user is able to make decisions and draw conclusions

based on evaluations of different hypotheses.

2.3.1 User Engagement for User-directed visualization

The literature in this subsection focuses on interactive, user-driven visualization for user en-

gagement. Engagement specifically focuses on each user’s investment in the exploration of a

visualization [67]. Boy et al. use low-level user interaction e.g. the number of interactions with

a visualization that impact the display to quantify user engagement. They present the results of
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Figure 2.10: Kuhn and Stocker show the CodeTimeline collaboration view. Colors denote
different user contributions and each line represents the life of files in the code. Sticky notes
are added so the users can learn the history of the code beyond the file evolution [16]. Image
courtesy of Kuhn and Stocker [16].
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Figure 2.11: Mahyar et al. present five levels of user engagement in information visualization
[17].Image courtesy of Mahyar et al. [17].

three web-based field experiments, and evaluate the impact of using initial narrative visualiza-

tion techniques and storytelling on user-engagement with exploratory information visualiza-

tions. The main contribution of their work include: the design of three web-based experiments

on user-engagement information visualizations. They hypothesize narrative elements should

effectively engage the user in exploration of data and analysis the result.

Boy et al is based on previous work on narrative visualization [23] and user-centred metrics

[100]. The negative outcome of their study clearly indicates that more future work is needed

to investigate whether or not storytelling increases user engagement.

2.4 Narrative Visualization and Storytelling

Narrative structures include events and visualization of characters. An example narrative can

be a simple interface that presents trends in keywords over time [28]. Narrative visuals contain

the transition between events. It involves “using a tool to visually analyze data and to generate

visualizations via vector graphics or images for presentation” to decide “how to thread the rep-

resentations into a compelling yet understandable sequence”[20]. Plowman et al [85, 15] report

that a narrative specifically refers to the macro-structure of a document in contrast to the term

story which refers to both structure and content. This structuring of evidence, combined with

the choice of appropriate rhetorical strategies, is referred to as “the art of storytelling” among

literary scholars [85]. Research in narrative visualization points to visualization features that

afford storytelling including guided emphasis and structures for reader-driven storytelling. It

also includes the principles that govern effective structuring of transitions between consecutive

visualizations in narrative presentations, and how different tactics for sequencing visualiza-

tions are combined into global strategies in formats like slideshow presentations. We separate

transitions into their own section, section 5 for static transitions and section 6 for animated

transitions, because of their importance.
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A narrative can be seen as a macro-structure which creates global coherence, contributes

to local coherence and aids recall through its network of causal links and signposting [85].

The focus of Plowman et al ’s research is how students make sense of their learning with

multimedia by constructing their own narratives in conjunction with the narrative guidance

[85]. The design elements presented by the software constitute narrative guidance and can be

a combination of features specific to interactive media, such as the need for clear navigational

procedures, with features associated with traditional media, such as recognizable narrative and

a clear relationship between tasks and the macro-narrative.

All papers in this section develop methods or structure on how to improve narrative sto-

rytelling visualization. Viegas et al. [22] present methods for improving data memorability.

Fisher et al. [28] present ways for tracking narrative events over time. Segal and Heer [18]

investigate the design of narrative visualizations and identify techniques for telling stories

with data. Hullman et al. [23, 19, 20] design the structure of a visualization to present sto-

rytelling. Figueiras [24, 25] studies how to incorporate narrative elements as storytelling ele-

ments. Again, these papers may cover more than one topic in Table 1. The borders between

categories are not 100% black & white. We place papers in the category reflective their main

focus.

An overview of the visualization methods used in storytelling for visualization can be found

in Figure 2.12. We include it in the section on narrative visualization since this is where the

most research has been done. We can observe that most of the visualization designs used are

familiar, such as color-coding, line chart, map and bar chart.

2.4.1 Narratives Visualization Summary

Segel and Heer state that storytelling is revealing stories with data and using visualization to

function in place of written story [18]. The Oxford English Dictionary defines a narrative as “an

account of a series of events, facts, etc., given in order and with the establishing of connections

between them” [101]. Heer et al. investigate the design of narrative visualizations and identify

techniques for telling stories with data graphics and challenges with the salient dimension of

visual storytelling. They describe seven genres of narrative visualization: magazine style,

annotated chart, partitioned poster, flow chart, comic strip, slide show, and video. See Figure

2.13. They also discuss directions for future reader-centric research [102].

In the New York Times visualization on steroid usage in sports, one larger image and
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Figure 2.12: A table summarizing the visualization techniques used in each storytelling paper.
The papers are sorted alphabetically by the first author’s surname.

line chart are combined with small images, line charts, and bar charts to illustrate the usage of

steroids status over 30 years. The visualization incorporates visual highlighting and connecting

elements leading viewing order [103]. The year is mapped to the x axis, the amount of steroids

is mapped to the y axis, and different colors represent different players.

In the New York Times visualization on budget forecast, a progress bar is used to describe

the accuracy of past White House budgets predictions [104]. The time is mapped to x-axis, and

budget situation is mapped to the y-axis.

The Afghanistan nation-building development project example is a interactive geographic

visualization with details on-demand sliders that present the status of Afghanistan nation-
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Figure 2.13: The figure shows the seven genres of narrative visualization presented by Segal
and Heer[18]. These vary in terms of the number of frames and the ordering of their visual
elements. A video, for example has a strict ordering and high frame number, whereas a ‘Mag-
azine Style’ poster may have a few frames in one image that are not strictly ordered. These
genre elements dictate if a story is author-driven or reader-driven. Author-driven content uses
a linear ordering of scenes and has no interactivity. Reader-driven content has no prescribed
order to scenes and a high level of interactivity with the reader [18]. Image courtesy of Segal
and Heer [18].

building development projects [105]. Opium cultivation is mapped to the color, and countries

are shown on the map. Time can be changed from 2005 to 2009 by dragging the control bar.

The Gapminder visualization uses animated bubble charts to show possible detrimental

effects on a person’s ability to follow trends [106]. Continent is mapped to color, region is

mapped to each bubble, and size is mapped to bubble size, and position is mapped to average

yearly income.

The Minnesota Employment Explorer shows how mouse-hover provides details-on-demand,

double-clicking an industry triggers a drill-down into that sector while an animated transition

updates the display to show sub-industry trends [107]. Color represents different industries,

the x-axis represents the time, and the y-axis represents employment.

Segel and Heer is based on previous work of narrative structure, visual narratives, and

storytelling with data visualization [102] and observes the storytelling potential of data visu-

alization and drawn parallels to more traditional media. This paper identifies salient design

dimensions, clarifies how narrative visualization differs from other storytelling forms and how

these differences introduce both opportunities and pitfalls for its narrative potential.
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2.4.2 Narrative Visualization for Linear Storytelling

The literature in this sub-section focus on narrative visualization using linear automatic or

semi-automatic approaches (as opposed to interactive approaches). The research here involves

tools and techniques with an emphasis on how stories are created.

Hullman et al. describe a system called contextifier, which automatically produces custom,

annotated visualizations from a given article [19]. The system architecture contains four main

sections. A news corpus consists of a large set of news articles. A query generator identifies

the most-relevant company in the article. An annotation selection engine integrates selected

features into an annotation. And the graph generator generates line graphs using annotations

and series. The flow of information can be seen in Figure 2.14 [19].

Hullman et al. is based on previous work in storytelling in visualization [18] and Kan-

dogan’s automatic annotation analytics [108]. It develops a system that can automatically

generate custom, annotated visualization from a news article of company. Hullman’s work

places more emphasis on providing background information or perspective on the data than

Kandogan’s [108].

Hullman et al. [20] outline how automatic sequencing (the order in which to present visu-

alizations) can be approached in designing systems to help non-designers navigate structuring

decisions in creating narrative visualizations. Their focus is on how linear, slideshow-style

presentation can be optimized using knowledge of sequencing styles and strategies by incor-

poration.

Hullman et al. argue that analysts using narrated data presentations could be aided by tools

for identifying effective sequences for visualizations. They conduct a qualitative analysis of

the structural aspects of 42 examples of explicitly-guided professional narrative visualizations.

One example is shown in Figure 2.14. They propose a graph-driven approach for finding effec-

tive sequences for narrative visualizations informed by their analysis, including defining data

attributes for transitions, labelling, and maintaining consistency. The result suggests a need for

more sophisticated global constraints than simply summing local transition costs to determine

the best path through a graph of weighted visualization transitions. This paper is based on pre-

vious work of narrative sequencing[109] and narrative visualization[23, 18], and demonstrates

that narrative sequencing can be systematically approached in visualization systems.

Amini et al [69] identify the high-level narrative structures found in professionally created

data videos and identify their key components. They derive broader implications for the de-
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Figure 2.14: Hullman et al. show the architecture of contextifier [19](left) and illustrate Parallelism
in sequencing in the NYT Copenhagen[20](right). Image courtesy of Hullman et al. [19, 20].

sign of an authoring tool to enable a wide audience to create data videos. Amini et al perform

two studies to enhance understanding data videos. They conduct a qualitative analysis of 50

data videos from 8 reputable online sources, and observe that data video categories are also

hierarchical and can be further decomposed into units: sequences that put forward different

points contributing to a single category. They design a series of workshops to observe how

professional storytellers create data video storyboards. They observe the creation process is

non-linear and iterative. Amini et al is based on previous work on storytelling [64] and story-

telling in information visualization [19].

Bach et al. [21] develop graph comics for data-driven storytelling to present and explain

temporal changes in networks to an audience. Bach et al. present six steps to guide graph

comics design. See Figure 2.15.

They first collect diagrams, comic literature, and pictures within comics to understand

traditional comics structure. The second step is to find possible visual encodings that can

represent graph objects, their properties, and the possible changes which they may undergo.

They design principles that define when certain visual marks and their attributes can be used

and when not. They exploit their design challenges and the structural principles to create

comics. They contact two domain experts to collect external feedback and present a qualitative

study to check if graphics comics are readable by a wider audience. Bach et al. is based on

previous work on network exploration [110] and data-driven storytelling [64].

2.4.3 Narrative Visualization for User-Directed and Interactive Storytelling

The literature in this subsection focuses on interactive, user-driven narrative visualization (as

opposed to automatic or semi-automatic). In other words, the papers focus on techniques that
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Figure 2.15: Bach et al. present graph comics for data-driven storytelling [21]. Image courtesy
of Bach et al. [21].

enable users to create narratives interactively. Viegas et al. summarize two methods of visu-

alizing email archives with the aim of improving memorability of the data. Both focus on the

higher level patterns of the user′s email habits. The original goal was for these visualizations

to uncover social patterns in the archive, but the resulting visualizations caused the user to be

more reflective of the data as opposed to analytic. They look at data points and want to recall

the story behind it, even share the visualization with friends. See Figure 2.16 [22].

For visualizing email activity, the two axes stand for time, and the dyadic relationship be-

tween user account holder and each human interaction. Pattern recognition includes interaction

frequency, interaction rhythm, interaction balance, and archive size. The visualization interface

includes two main panels; the calendar panel, showing email intensity, and the contacts panel,

showing the names of the people being interacted with. When the user clicks on a day square

in the calendar panel, the contact panel highlights the names of the people communicated with

that day. A name can be clicked on in the contacts panel and each day where that person had

corresponded will be highlighted in the calendar panel. The contact panel can be viewed as an

animation transitioning through the year of data. The email header data is used to derive the

social context of the communication. Five different relationship types are classified. This can

be either directly between correspondents or through mutual recipients in group emails. The

Social Network visualization looks at each message and evaluates the role of the user (through

the email address used i.e. work, school or personal) and makes connections regarding the

interaction accordingly. This data is visualized as an animation that evolves over time. Each
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Figure 2.16: Viegas et al. show the PostHistory visualisation. On the left is the calendar view,
showing 365 squares to represent each day of the year (This image only shows data up until
May). Size corresponds to the volume of email sent on that day. The colour highlights a
specific recipient that has been selected in the contact panel (left). The contact panel shows all
the contacts the user has been corresponding with over the year. A contact can be selected to
highlight their interaction in the calendar view [22]. Image courtesy of Viegas et al. [22].

second represents one day in the archive. A clustered word cloud is used to display the data.

Previous visualizations of online social interaction data have been focused on unravelling the

data from the researchers’ perspective, whereas these visualizations are for the benefit of the

user [111, 112].

Hullman and Diakopoulos state that narrative information visualizations are a style of vi-

sualization that often explores the interplay between aspects of both exploratory and com-

municative visualization [23]. This work contributes to information visualization design and

theory by providing insight into the types and forms of given rhetorical techniques in narrative

visualizations, and the interaction between those techniques and individual and community

characteristics of end users. The authors study how rhetorical techniques are used in visualiza-

tion. They then investigate the resulting effects of these techniques on user interpretation [23].

The authors collect 51 professional narrative visualizations e.g. from the New York Times and
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BBC. Each visualization is “coded” using theory form semitics, statistics, decision theory, and

media and communication studies. The visualizations are categorized according to a selection

of rhetorics information access, provenance rhetoric, mapping rhetoric, procedural rhetoric,

and linguistic rhetoric. Their work provides a taxonomy of specific information presentation

manipulations used in narrative visualization. See Figure 2.17.

In the mapping America visualization example, The United Stated Census represents a

nation wide attempt to provide an objective view of the demographic of the country. Ethnic

group is mapped to color, samples are shown on a map and a single ellipse represents 200

people [113]. The poll visualization summarizes the accuracy of political poll predictions from

several years and polling agencies in a small multiplies presentation of vertical line graph [114].

Colored bars representing the political parties are drawn to connect data points positioned on

the y-axis according to the amount of time prior to the election and on the x-axis according

to whether the predictions fell over (to the right) or under (to the left) a centred vertical line

representing complete accuracy (or error of zero).

Hullman and Diakopoulos is based on the previous work of Segel and Heer [102] which

makes an initial step towards highlighting how varying degrees of authorial intention and user

interaction are achieved by general design components in narrative visualization. This work

examines the design and end-user interpretation of narrative visualizations in order to deepen

understanding of how common design techniques represent rhetorical strategies that make cer-

tain interpretations more probable.

A visualization with a narrative is set apart from a visualization without through both its

structure and its content. A narrative-based visualization attempts to create a natural flow

whereby the data has an obvious progression and therefore permits easier understanding and

memorability [24].

Figueiras takes professionally produced visualizations as case studies to analyze how to in-

corporate narrative elements as storytelling elements. By presenting prototypes of storytelling

in selected case studies, Figueiras presents a design study and model for narrative visualization

by using storytelling techniques [24].

In the “How many households are like yours” example, users can choose the primary res-

idents and secondary members of a household, then get the number and percentage of house-

holds. Figueiras [24] introduces short stories describing different kinds of families instead of

having only one article about types of families. This technique engages the user with a focus
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Figure 2.17: Hullman and Diakopoulos demonstrate how data can be window dressed to
change the viewers opinion of it. These two images visualize the same data but each illustrator
has different intended outcomes. The top image shows an unstructured, complicated graph of
conflicting colors and shapes, clearly intended to confuse and obstruct the data, whereas the
bottom lays the data out in a simple fashion using consistent shapes and colors [23]. Image
courtesy of Hullman and Diakopoulos [23].
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on creating empathy.

“What does China censor online?” example is a tag cloud that only has a title and text

shaped on a map of China. Figueiras [24] introduce a tooltips pop up when a user clicks on one

region, which provides more detailed information. See Figure 2.18. Tooltips provide additional

context in the form of text which help explain the possible reasons for censorship.

The “Death Penalty Statics, Country by Country” figure is a static visualization with differ-

ent size of bubbles representing the number of death sentence rulings. Figueiras [24] designs

an interaction such that when a user chooses a year, a graph displays the number of death sen-

tences handed out that year, which provides extra temporal information and a redesign into a

story.

The following Narrative Strategies are described:

1. Context: Providing context to a visualization enables the user to make sense of the data

using additional information. Without a sufficient amount of context, less meaning can

be derived from the data, whereas the addition of context gives the user more information

to explore the data and begin to understand features found within it. This is made easier

by the development of interactive visualizations and the ability for users to choose what

layers of information they see.

2. Empathy: Although not often associated with information visualization, it has been

found that emotive/empathetic visualizations are more memorable and more enjoyable

for the user [115].

3. Time Narrative: Utilizing the temporal nature of data in visualization allows users to

mentally map the data by adding a sense of story flow. This improves user memorability

and aids in the understanding of the data [115].

Figueiras is based on previous work of storytelling [23][6][18] and narrative visualization [28],

and develops a model to add storytelling in narrative visualization [24].

Storytelling aims to simplify concepts, create emotional connection, and provides capac-

ity to help retain information [25]. Figueiras presents the results of a focus group study on

collecting information on narrative elements. She then suggests strategies for storytelling in

visualization [25].

Sixteen participants are asked to study 11 information visualizations of different types and

different characteristics (interactive, non-interactive, introductory text, accompanying article,
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Figure 2.18: Figueiras shows a visualization of Chinese online censorship enhanced with sto-
rytelling. An interactive feature is added so that the user can click on an instance of censorship
to learn more about it. This supplies context to the user and also may draw an empathetic re-
sponse from the user [24]. Image courtesy of Figueiras [24].

and audio narration). Then they are asked to rate visualizations in terms of comprehension,

navigation, and likability, See Figure 2.19. The participants give high scores to all visual-

izations, particularly to interactive visualizations. The study suggests that a good storytelling

visualization is well-structured and interactive with audience preferences. The results of the

user study suggest that interactivity, the option of drilling-down, context, and a sense of relata-

bility and importance for users to feel engaged.

Figueiras is based on previous work of narrative visualization [18], and storytelling visual-

ization [115, 6]. The author uses a focus group to examine storytelling effects in information

visualization and storytelling visualization.

Nguyen et al. [26] develop a new timeline visualization, SchemaLine, to gather, represent,

and analyze information. They then use a preliminary study to evaluate its effectiveness. See

Fig 2.20.

The system contribution includes: a visual design for an interactive timeline that groups

notes into schema determined by the analyst; an algorithm to automatically generate a com-

pact and aesthetically pleasing visualization of these schema on the timeline; and a set of fluid

interactions with the timeline to support the sensemaking activities defined in the Data-Frame
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Figure 2.19: Figueiras shows the visualizations used in the focus group study and the elements
that compose them [25].Image courtesy of Figueiras et al. [25].

Figure 2.20: Nguyen et al. present the SchemLine system [26]. Image courtesy of Nguyen et
al. [26].

model. Their work is based on previous work of timeline visualization [6, 32] and sensemark-

ing with timeline [116].

2.4.4 Narrative Visualization for Storytelling in Parallel

In this category of literature, the structure of events is layed out in parallel. The research

here focuses on tools and techniques that create multiple narratives at once, in other words

simultaneously. These can be useful for groups.

Information visualization systems enable users to find patterns, relationships, and struc-

tures in data which may help users gain knowledge or confirm hypotheses [27]. The most

basic element in a narrative is a character. An event occurs through the interaction of a set

of characters. In this paradigm, a scene consists of a chunk of events, a story consists of a
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Figure 2.21: This figure shows the architecture of Narrative Navigator [27].

sequence of scenes, and a world model is made up of a set of stories. Akaishi et al. propose

several methods for visualization of chronological data based on the narrative structure of a

document [27]. Akaishi et al. map each narrative component (world model, story, scene, event,

character onto elements of a document, set of stories, sequence of scenes, part of sentence, sets

of terms). The system features a decomposition unit and a composition unit. A set of stories

is stored in a database by the decomposition unit. In the database, each story is divided into

scenes, forming a world model. Appropriate scenes are selected and used by the composition

unit to compose a new story. When a user accesses the information, the software provides the

results as a story. The story is presented in various ways.

The dependency relationship among terms forms a directed graph, called a Word Colony. In

a Word Colony, interdependent terms are embedded into the same node. The strength of term

dependence is mapped onto the distance between nodes of terms, and term attractiveness is

mapped onto the size of node. To visualize this relationship, Akaishi et al. use a spring model

graph, which is a visual overview of a document. Narrative navigator framework (NANA)

represents the content of a document as a topic sequence and topic matrix. Topic sequence

is regarded as the graphical plot of a document and topic matrix represents the relationships

among several topic changes. Akaishi et al. support users’ efforts to find desired parts of

documents and to guess the context (plot) of the document.
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Figure 2.22: Fisher et al. show daily references to four US presidential candidates from Jan-
uary 1 to March 26, 2008. Time passes along the x axis for each candidate; number of mentions
of the term along the y axis [28]. Image courtesy of Fisher et al. [28].

Narrative is a simple interface that straightforwardly presents trends in keywords over time

[28]. Fisher et al. present narrative as a way of presenting temporally dynamic data. In this

case, narratives help the user by tracking concepts found in news stories that change over time.

Fisher et al. show how to piece together complex information and examine multiple variables,

See Figure 2.22 [28].

The first step is based on a business analysis task to find trends and public relations. In

this case study, the requirement is to find out how a topic has developed over time and to see

the evolution of the latest and most interesting stories [28]. The system design includes data

acquisition, temporal visualization, using other tools for correlation, understanding readership,

and adding feature in narratives. The narratives project is based on Microsoft’s Live Labs which

provides real time data acquisition. Temporal visualization enables us see how a small group

of words evolves over time relative to one another. By analyzing the form of correspondence

and understanding readership, additional features can be added into the narrative project [28].

Fisher et al. is based on previous work in topic detection and tracking[117] [118], and temporal

visualization [119], and presents narrative as a new technique in visualization [28].

2.5 Static Transitions in Storytelling for Visualization

A transition refers to the process or a period of changing from one state or condition to another

according to the Oxford English Dictionary [120]. In the visualization literature, transitions
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may be the focus of visualization and include both dynamic and static which are alternatives

of presenting visualization. Static visualizations are those that do not rely on animation. Tran-

sitions may be considered part of narrative storytelling. However, we designate the literature

here in its own category to reflect the importance of transitions and to keep related literature on

this topic together. Several research papers focus on the transitions in storytelling. This is why

they are separated into a special group.

In this section, the visual designs of transitions is generally static. The authors focus on

presenting the trend of data along timelines. Robertson et al[30] evaluate three approaches

of using bubble charts and attempts to discover which one works best for presentation and

analysis. Tanahashi and Ma [32] presents a storyline visualization which consists of a series

of lines, from left to right along the time-axis. Liu et al. [33] design a storyline visualization

system, StoryFlow, to generate an aesthetically pleasing and legible storyline visualization.

Ferreira et al[29] propose a method of visualizing a large amount of taxi data consisting of

both spatial and temporal dimensions.

2.5.1 Static Transitions for User-directed and Interactive Storytelling

The literature in this subsection focuses on interactive user-driven transitions. The user creates

static transitions interactively, i.e. using a process they have some control over(as opposed to

automatically).

TaxiVis proposes a method of visualizing a large amount of taxi data consisting of both

spatial and temporal dimensions. This approach examines trends over time as opposed to

individual taxi trips, visualizing data from a day in length, up to a year. Seasonal events such

as Thanksgiving and Christmas can be compared in a like-for-like fashion. See Figure 2.23

[29].

Time selection widget allows the user to change the time frame of the visualization. Maps

server as the canvas for the visualization. A graph of the raw data with time plotted to the x

axis and frequency of taxi trips on the y axis. To reduce clutter, a density heat map is used.

This can either be as points on the map or averaging out the data within regions on the map.

Taxi behaviour is a popular focus of research. Among others, Veloso et al. explored patterns

and trends in taxi ride data looking at the relationship between pick up and drop off points

[121, 122]. Liao et al. developed a visual analytics system to error check GPS data streamed

from taxis [123].
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Figure 2.23: The top-left image shows the trips rendered on the map. However the cluttered
view can be reduced by employing a level-of-detail approach (top right) which takes a subsam-
ple based on the order in which the trips occurred. The bottom-left image shows a density heat
map of the taxi trips whereas the bottom-right image averages out the data in each region to
make a regional density heat map [29]. Image courtesy of Ferreira et al. [29].

2.5.2 Static Transitions for Parallel Storytelling

In this category of literature, the static transitions are shown in parallel. In other words, many

transitions can occur simultaneously. Robertson et al. define a trend in data as an observed

general tendency. The most common way to see a trend in data is to plot a variable’s change

over time on a line chart or bar chart. If there is a general increase or decrease over time, this

is perceived as a changing trend [30]. Robertson et al. propose two alternatives to animated

bubble charts for visualizing trends in multiple dimensions and describes a user study that

evaluates the three approaches for both presentation and analysis. In conclusion, Robertson et

al. state that traces and small multiples work best for analysis [30].

The gapminder trendalyzer uses a bubble chart to show four dimensions of data, life ex-
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Figure 2.24: Robertson et al. show the trace lines of the graph animation. The traces visual-
ization shows bubbles at all x and y locations throughout the time frame. This is a conversion
of an animation into a static image [30]. Image courtesy of Robertson et al. [30].

pectancy is mapped to the x axis, infant mortality is mapped to the y axis, population is mapped

to bubble size and continent is mapped to color [124]. We can see multiple parallel transitions

in Figure2.24 as evolve over time.

An alternative multi-dimensional trend visualization provides the user with the ability to

select particular bubbles such that the animation shows a trace line for the selected bubble

as it progresses. See Figure 2.24 [125]. In a small multiples visualization, countries can be

clustered based on position, size, and location. They are further grouped by continent and

ordered alphabetically within each group [126]. Robertson et al. is based on earlier work by

Tversky et al. [127] and Baudisch et al. [128]. Previous work is limited to small data set sizes

(200 samples or less). Their work focuses on presentation rather than analysis and relies on

animation to show trends over time.

Visual Storylines, by Chen et al. is designed to summarize video storylines in an image

composition while preserving the style of the original videos [31]. Chen et al. present a new

visual storylines method to assist viewers in understanding important video contents by re-

vealing essential information about video story units and their relationships. [31]. The first

step of the algorithm is to extract the storylines from a video sequence by segmenting a video

into multiple sets of shot sequences and determining their relationships. See Figure 2.25. The

second step is to visualize a movie sequence in a new type of static visualization by using a

multi-level visual storyline approach, which selects and synthesizes important story segments

according to their relationships in a storyline.
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Figure 2.25: Chen et al. presents video shot clustering algorithm combines both visual and
audio features to generate a meaningful storyline [31]. Image courtesy of Chen et al. [31].

Chen et al. is based on the work of video summarization [129] and first clusters video shots

according to both visual and audio data to form semantic video segments.

Storyline visualization is a technique that portrays the temporal dynamics of social interac-

tions by projecting the timeline of the interaction onto an axis [32]. Tanahashi and Ma present

a parallel storyline visualization which consists of a series of lines, from left to right along the

time-axis, that converge and diverge in the course of their paths [32]. Transitions are shown

in parallel storylines in Figure 2.26. Algorithm overview is shown in Figure 2.26. The layout

is based on a set of horizontal slots that divide the screen space along the y-axis. Each of

these slots has the capacity to accommodate blocks of interaction sessions as long as they do

not overlap in time [32]. Rearranging lines takes the slot-based layout of interaction sessions

derived from a genome and determines the order of the line segments in each interaction ses-

sion and its alignment in order to reduce unnecessary wiggles and crossovers [32]. In order to

prevent such misleading effects, it is critical for the layout computation to include the removal

of unnecessary white space to determine the final layout [32]. Tanahashi and Ma [32] is based

on the idea of XKCD’s hand-drawn illusion ”Movie Narrative Charts” [130] and develops an

algorithm for general storyline visualization.

Storyline visualizations, aim to illustrate the dynamic relationships between entities in a

story [33]. Liu et al. design a storyline visualization system, StoryFlow, to generate an aes-

thetically pleasing and legible storyline visualization. It supports real-time user interaction,

hierarchical relationships among entities, and the rendering of a large number of entity lines

[33]. The layout pipeline consists of four steps: relationship tree generation, session/line or-
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Figure 2.26: Tanahashi and Ma present the overview algorithm of generating storyline visual-
izations [32]. Image courtesy of Tanahashi et al. [32].

Figure 2.27: Comparison of King Lear using both methods of layout; (a) - StoryFlow, (b) -
previous method by Tanahashi and Ma [32]. The StoryFlow layout presented in this paper
focuses on minimising white space and efficiently ordering the story lines to ensure the most
concise visual representation of a story. Intersecting lines represent interaction between char-
acters and major events in the story are labeled to add clarity to the visualization [33]. Image
courtesy of Liu et al. [33].

dering, session/line alignment, and layout compaction. In the first step, StoryFlow creates a

set of dynamic relationship trees for different time frames, in which the relationship trees are

used to order sessions and entity lines. Next, sessions/lines between successive time frames are

aligned to maximize the number of straight lines in the layout. Finally, a quadratic optimization

algorithm is performed to obtain a compact storyline layout. See Figure 2.27 [33].

Liu et al. is based on previous work of Tanahashi et al. [32]. Liu et al. add support for

real-time interaction, hierarchical relationships, and a large number of entity lines.
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2.6 Animated Transitions in Storytelling for Visualization

Gonzalez and Cleotilde define animation as a series of varying images presented dynamically

according to user actions, in ways that help the user to perceive a continuous change over time

and develop a more appropriate mental model of the task [131]. The results of their study

show that decision making performance is highly contingent on the properties of the anima-

tion user interface such as image realism, transition smoothness, and interactivity style, and

also sensitive to the task domain and the user’s experience. Values of accuracy, time, ease of

use, and enjoyability for the two types of images, transitions, and interactivity styles indicated

that realistic images, gradual transitions, and parallel interactivity produced better decisions.

Decision making accuracy, time, ease of use, and enjoyability in animated interfaces are influ-

enced by the form of image representation, the transition effects, and the form of interactivity.

This research supports the idea that to be an effective decision support tool, animation must be

smooth, simple, interactive, and explicitly account for the appropriateness of the user’s mental

model of the task. Gonzalez and Cleotilde review selected empirical investigations from the

literature in education, psychology, and HCI which suggest that animation may make inter-

faces easier, more enjoyable and understandable, and study the effect of animation on decision

making [132].

2.6.1 Animated Transitions for Linear Storytelling

The literature in this sub-section focuses on animated transitions using automatic, or semi-

automatic approaches(as opposed to interactive techniques to animated transitions).

Heer and Robertson investigate the effectiveness of animated transitions in traditional sta-

tistical data graphs, such as bar charts, pie charts, and scatter plots. A visualisation framework

called DynaVis is created to test the effectiveness of animation on the user’s preference and

information retention. Graph animations are used to keep viewers engaged and to promote

creative thinking about the data. See Figure 2.28 [34].

The software displays animated transitions of statistical data graphs. Sorting and filtering

animation provide the user insight into the composition of the data. All transitions take place

over a time frame rather than instantaneously so the user can see exactly how the visualisation

has changed. Animations between different graph types are implemented by morphing the

data from one shape and size to another. Statistically significant differences in user preference

were found between static graphs and animated graphs. Animated transitions can improve
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Figure 2.28: Heer and Robertson show the process of transition for a scatter plot to a bar
chart. The top path starts by stretching the points to size and then moving to the right location,
whereas the bottom path moves the dots first, then resizes and reshapes them [34]. Image
courtesy of Heer and Robertson [34].

graphical perception. This is reflected in the findings of the user experiments testing recall and

understanding. However, not all transition scenarios are found to be significantly different.

Heer and Robertson is based on the previous work of Bederson and Boltman [35] but builds

upon it by testing different transitional events.

2.6.2 Animated Transitions for User-directed and Interactive Storytelling

The literature in this subsection focuses on interactive, user-driven transitions. The user or

users create animated transitions interactively (as opposed to automatically as in the previous

section). Bederson and Boltman examine how animating a viewpoint change in a spatial in-

formation system affects a user’s ability to build a mental map of the information in the space.

Based on a user-study involving a spatial map of a family tree, animation is found to improve

subjects’ ability to learn the spatial position of family members within the tree without a speed

penalty [35].

Two different family trees of nine individuals are presented to two groups people with

animation and without animation. The subjects were given three kinds of tasks; navigation

of family trees, exploratory family trees, and reconstruction of family trees. The speed and

accuracy of performance are recorded. In this experiment, there is a statistically significant

improvement in accuracy of the reconstruction task over that of other tasks. Animation resulted

in fewer task errors. See Figure 2.29.

Bederson and Boltman is based on Gonzalez [132] and Donskoy and Kaptelinin [133]

which address the relationship between animation and users’ understanding. Compared to

previous work, Bederson and Boltman focus on animation of the viewpoint. The design of the
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Figure 2.29: Bederson and Boltman show the ordering effects when presenting an animated
and non-animated graphic. If the animated graphic is shown first then there is little difference
in recall error, however, if the animation graphic is shown second then the recall error is sig-
nificantly higher for the non-animated graphic [35]. Image courtesy of Bederson and Boltman
[35].

experiment is to change from a single in-between frame to several in-between frames.

Akiba et al. introduce an animation tool named: AniVis for scientific visualization explo-

ration and communication. This tool can turn the results of data exploration and visualization

into animation content and the users can create a complex animation sequence by combining

several simple effects [36].

Parameter-space blending operator creates intermediate frames between two instances of

frames I1 and I2 by interpolating their respective parameters. If I1 and I2 do not overlap in

time, they generate intermediate frames by interpolating the parameters of the last frame of

I1 and the first frame of I2. Otherwise, they generate intermediate frames by interpolating the

parameters of their corresponding frames [36].

An image-space blending operator creates the animation content between I1 and I2 by in-

terpolating their respective image frames. Similarly to parameter-space blending, if I1 and I2

don’t overlap in time, they generate intermediate frames by blending the last frame of I1 and

the first frame of I2. The effect is that the last frame of I1 gradually fades out as the first frame

of I2 gradually fades in. If I1 and I2 overlap, they generate intermediate frames by blending

[36].

A playback operator lets users repeatedly loop through one or more consecutive instances

of interest [36].

A MRI head data case study focuses on highlighting a brain tumor. The animation is
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comprised of four pieces of dynamic content. The first is a spatial overview that rotates the

volume data 360 degrees along the y-axis. The second piece is a spatial exploration in which the

user customizes the view. The third is a parameter-space blending between a spatial exploration

and a slicing, which reveals a tumor’s inner structure. The parameter-space blending highlights

a tumor by varying the opacity while zooming in on the region of interest. See Figure 2.30. A

hurricane data case study has five components. The first is a caption showing the animation’s

content, blended with a spatial exploration that zooms in on the data. The second piece is a

temporal exploration to show early time steps. The third is a variable overview that browses

through three data attributes: vapor, wind speed, and cloud. The fourth piece is a temporal

exploration to show later time steps. The fifth is a spatial exploration that zooms in on the

hurricane’s eye [36].

Akiba et al. is based on previous animation support [134] and an animation enhanced sys-

tem [135] and develops template-based visualization tools for animation.

To explore the challenge of gradually moving from interest to insight, Nagel et al. [74]

propose the term staged analysis. Invoking temporal and theatrical notions, they define staged

analysis as a carefully choreographed process of breaking up a complex whole into its com-

ponent parts and purposefully preparing the manner of their appearance. In the context of

visualization, the concept of staging typically refers to animated transitions broken up to be

more easily observed. They build on top of this notion of staging and extend it to a guided

analysis process.

As we can see, the literature on transitions is spread amongst information and scientific

visualization. Table 2.2 shows an alternative classification of the literature divided up into

information, scientific, and geo-spatial visualization. We can see that most of the storytelling

research focuses on information visualization.

2.7 Memorability for Storytelling and Visualization

Memory refers to the faculty by which things are remembered; the capacity for retaining,

perpetuating, or reviving the thought of things past according to the Oxford English Dictionary

[136]. Memorability is an important goal of storytelling. A good visual narrative technique

engages the viewer’s attention and increases a story’s memorability [37].

All papers in this section evaluate the effects of visual narrative on memorability. Bateman

et al. [37] explore the effects of embellishment on comprehension and memorability. Saket
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Figure 2.30: Akiba et al. show the AniVis animation tool displaying MRI scan data. By blending
the two layers of data together, a new layer of information is revealed (middle image) [36].
Image courtesy of Akiba et al. [36].

et al. [39] illustrate that map-based visual narrative can improve accuracy of recalled data

comparing with node-link visual narrative.

Borkin et al. [75] develop an online memorability study using over 2000 static visualiza-

tions that cover a large variety of visual narrative and determine which visual narrative types

and attributes are more memorable. They investigate a domain at the interface between human

cognition and visualization design.

A visual narrative taxonomy classifies static visualizations according to the underlying data

structures, the visual encoding of the data, and the perceptual tasks enabled by these encod-

ings. It features twelve main visual narrative categories and several popular sub-types for each

category. Borkin et al. run memorability tests via Amazon’s Mechanical Turk with 261 par-

ticipants and gather memorability scores. The results in memorability comparison test demon-

strates that there is memorability consistency with scenes, faces, and also visual narrative, thus

memorability is a generic principle with possibly similar generic, abstract features. The re-

sult in visualization attribute tests illustrates that higher memorability scores were correlated

with visual narrative containing pictograms, more color, low data-to-ink ratios, and high visual

79



2. A Survey of Narrative Visualization Including Geo-space

densities.

Borkin et al. show that visualizations are intrinsically memorable with consistency across

people. Visual narratives . with low data-to-ink ratios and high visual densities (i.e., more chart

junk and “clutter”) were more memorable than minimal, “clean” visualizations [75].

The literatures in this subsection indicates that maps increase memorability. This motivates

our choice of using geo-spatial visualization in the remaining chapters of the thesis.

2.7.1 Memorability for Linear Visualization

The literature here shows and tests visual designs in linear order and focuses on memorability.

Users are asked to compare the visual designs (e.g. standard bar charts) verses embellished bar

charts. In other words, users are tested on their ability to recall one visual design at a time in

linear fashion.

Bateman et al. examine whether embellishment is useful for comprehension and memo-

rability of charts. Bateman et al. compare plain and embellished charts, and conclude that a

user’s accuracy in describing the embellished charts is no worse than for plain charts and that

their recall after a two-to-three week gap is significantly better [37].

Fourteen embellished charts are selected from Nigel Holmes’ book Designer’s Guide to

Creating Charts and Diagrams [137], and converted to plain charts. See Figure 2.31. Twenty

participants are presented a chart on a slide, alternating between embellished and plain ver-

sions. Participants are required to perform two tasks (reading and describing task and recall

task) after five-minutes and after 2-3 weeks. The eye-gaze and task performance of participants

are recorded for analysis. This study shows that there is no significant difference between plain

and embellished versions for interactive interpretation accuracy and recall accuracy after a five-

minute gap, but after a long-term gap, recall of both topic and detail of chart (categories and

trend) is significantly better for embellished charts. Participants saw the value in message more

often in Holmes’ charts than in the plain charts.

Previous studies have suggested that minor decoration in charts may not hamper interpreta-

tion [138], and work in psychology has shown that the use of imagery can affect memorability

[139], but there is very little work that looks at how chart imagery can affect the way people

view information charts.

Borkin et al. [38] present the first study incorporating eye-tracking as well as cognitive

experimental techniques to investigate which elements of visualizations facilitate subsequent
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Figure 2.31: Bateman et al. compare two different levels of graphical embellishment of the
same data. The top graph is an embellished image but still retains the recognisable features of
a bar chart. The bottom image replaces the bars with a silhouette of a person next to a drink
where the height of the drink corresponds to the height of the original bar. This method also
uses the addition of color to emphasize the data [37]. Image courtesy of Bateman et al. [37].
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Figure 2.32: Borkin et al. design three-phase experiment to evaluate viewer performance of
recognition and recall [38]. Image courtesy of Borkin et al. [38].

recognition and recall. They design a three-phase experiment (See Figure 2.32 ) and evaluate

the performance of recognition and recall. The conclusion includes visualizations with more

memorable content can be memorable ‘at-a-glance.’ Titles and text are key elements in a visu-

alization and help recall the message. Pictograms do not hinder the memory or understanding

of a visualization. Redundancy facilitates visualization recall and understanding.

Borkin et al. is based on previous work on perception and memorability of visualization

[37] and eye-tracking evaluation visualization [140].

2.7.2 Memorability for Parallel Visualization

In this subsection, users are presented with a large number of relation data in parallel (as

opposes to one at a time). And it focuses on memorability. Users are tested on their ability

to process relationship data in parallel (all relationships simultaneously). This is distinct from

memorability for linear visualization where recall focuses on one visual design at a time in

linear order.

Saket et al. illustrate that different visualization designs can affect the recall accuracy of

data being visualized. Compared to a node-link diagram, a map-based visual design is more

effective [39].

Two datasets are examined. A book dataset (small) and LastFM dataset (large) are trans-

formed into a node-link diagram and node-link group (map-based). See Figure 2.33. Three

phrases are performed to examine the difference between node-link diagram and map-based

visualization. In phase 1 participants examine two kinds of visual design without task with

unlimited time. Phase 2 asks participant to study two kinds of visualization with six tasks in

a required time. Phase 3 asks participants to recall what they read in phase 1 and 2, complete
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Figure 2.33: Saket et al. show two visualization of the same data: node-link diagram and
map-based diagram [39]. Image courtesy of Saket et al. [39].

6 tasks similar to phase 2, and 3 new addition tasks [39]. The result of the experiment illus-

trates that recalling map-based diagrams is more accurate than recalling node-link diagrams,

but no faster. The participants spent more time on map-based visualizations than node-link

visualizations [39].

Saket et al. is based on previous work of visualization memorability [37] and a recalling

experiment [141]
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2.8 Discussion and Unsolved Problem

This chapter provides a novel up-to-date overview of narrative visualization. The most impor-

tant recent literature is included and discussed. Since storytelling in visualization is a recently

new subject, we expect an increase in research in the coming years. Moreover we believe it

will evolve into a popular topic in the field of visualization.

By reviewing Table 1 and Table 2, we can see storytelling visualization focuses on infor-

mation visualization more than scientific visualization, which conveys that more challenges

are left unsolved in this field. However, by refining a storytelling model for scientific visual-

ization [10], the implementation of storytelling in scientific visualization could increase in the

future. We can also see that storytelling in visualization concentrates more on exploration than

on presentation. Like Kosara and Mackinlay [115] state: “visualization techniques address the

exploration and analysis of data more than presenting data”.

In future work, there are many directions and unsolved problems. Narrative visualization

will gain importance in data presentation and data exploration. Here is a summary of some

unsolved problems in storytelling for visualization.

• It is clear that objective measures of user-engagement is a relatively unexplored area of

research. Can we derive a mature classification of user engagement activities? Is user

engagement something we can clearly define?

• Data preparation and enhancement: Virtually no one has addressed the challenge of

data preparation and enhancement for storytelling. Moreover, is storytelling data best

captured or derived from an existing data set or software system? Can a standard data

file format be developed?

• Narrative visualization for scientific and geo-spatial visualization: Why has there been

such an imbalance of research narrative visualization for information visualization but

virtually none for scientific and geo-spatial visualization.

• Transitions for scientific visualization: The benefits of static transition versus dynamic

transitions in visualization still remains relatively immature.

• Memorability for visualization: What are the key elements for making a memorable

visualization? This is still an immature research direction.
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• Animated transitions for geo-spatial visualization: Animated transitions for geo-spatial

visualization remains an open research direction. This is surprising given the popularity

and importance of geo-spatial visualization.

• Interpretation for scientific information, and geo-spatial visualization: Currently no pa-

pers to our knowledge focus on the topic of effective interpretation of stories, this topic

remains largely unexplored.

The classification of literature, we present makes it clear that many future research direc-

tions remain open in storytelling and visualization.
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Cartographic Treemaps for

Visualization of Healthcare Data
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”Tell me and I forget, teach me and I

may remember, involve me and I

learn.”-Benjamin Franklin1

1Benjamin Franklin (1705-1790) was an American polymath and one of the Founding Fathers of the United
States.
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T His Chapter presents a novel multivariate visualization combining geo-spatial informa-

tion. As we saw in the previous chapter, including geo-spatial information can increase

memorability and cognition of information and data. The National healthcare Service (NHS)

in the UK collects a massive amount of high-dimensional, region-centric data concerning indi-

vidual healthcare units throughout Great Britain. It is challenging to visually couple the large

number of multivariate attributes about each region unit together with the geo-spatial location

of the clinical practices for visual exploration, analysis, and comparison. We present a novel

multivariate visualization we call a cartographic treemap that attempts to combine the space-

filling advantages of treemaps for the display of hierarchical, multivariate data together with

the relative geo-spatial location of NHS practices in the form of a modified cartogram. It of-

fers both space filling and geospatial error metrics that provide the user with interactive control

over the space-filling versus geographic error trade-off. The result is a visualization that offers

users a more space efficient overview of the complex, multivariate healthcare data coupled with

the relative geo-spatial location of each practice to enable and facilitate exploration, analysis,

and comparison. We evaluate the two metrics and demonstrate the use of our approach on

real, large high-dimensional NHS data and derive a number of multivariate observations based

on healthcare in the UK as a result. We report the reaction of our software from two domain

experts in health science. This Chapter is based on the paper ”Cartographic Treemaps for the

Visualization of Public Health Care Data” [47].

3.1 Introduction

Coupling geo-space to the NHS data will facilitate understanding. Geo-spatial observations

can be made and healthcare patterns can be coupled to their local population. However, multi-

variate geo-spatial visualization is an unsolved problem, thus novel visual designs are required.

Because we are using UK map as our starting point, and its shape is narrow. So there are

too much information crowded in very small area, especially for the London area. A large

percentage of screen space is blank without showing any useful information. That’s why we

are using treemap, which is original space-filling technique, as our approach for displaying

multi-variate and hierarchical information. We believe that our approach is more novel than a

glyph-based approach.

The United Kingdom faces massive challenges with respect to providing the best healthcare

via the National Health-care Service (NHS). In order to provide the best service, Public Health
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England and the UK government collect years worth of region specific-health care data [46].

The public health profiles website [46] is used for publishing the latest national health care

data in the UK. The data archive is designed to support GPs, clinical commissioning groups

(CCGs), and local authorities to ensure that they provide and commission effective and appro-

priate health care services. However the size and complexity of the data creates challenges for

deriving new knowledge and insight.

The NHS data includes a UK map divided into CCGs, which are groups of NHS practices.

Each CCG contains the local population and high-dimensional health care data collected by the

NHS, such as cardiovascular disease (CVD) diagnoses, indicators of respiratory health, mental

health indicators, incidents of chronic obstructive pulmonary disease (COPD), kindey disease,

as well as other diagnoses.

Our goal is to develop imagery that combines UK-centric geo-spatial information with

high-dimensional NHS data in a unified framework. Moreover, we believe the principles ap-

ply equally well to other multivariate data sets of this kind. A hybrid visualization we call a

Cartographic Treemap combines the geo-spatial properties of cartograms with the space filling

properties of treemaps, inheriting advantages of both. We provide the user interactive control

over the trade off between filling the most space, like a treemap, and geo-spatial error. Cur-

rently, visualizing multi-dimensional health care data based on CCGs is not possible because

many CCGs cover the space of only a few pixels. Many CCGs are crowded into the London re-

gion, obstructing any geo-spatial visualization without a second magnified view. We propose a

cartographic treemap to integrate a modified representation of the UK based on the geo-spatial

information of CCG regions combined with a modified treemap to present the multivariate

NHS data. Based on the output, we can generate a linear narrative visualization which try

to engage the users with the data and increase user’s memorability. The contributions of this

chapter include:

• A new hybrid visualization, the Cartographic Treemap, combining geo-spatial informa-

tion in the form of a modified cartogram with space-filling geometry for the visualization

of high-dimensional data.

• A layout algorithm for rectangular cartographic treemaps: increasing region size incre-

mentally and avoiding overlapping regions.
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• A novel, interactive error metric and user options that trade-off screen space versus geo-

spatial accuracy to facilitate user analysis.

• The novel application of our hybrid visualization to complex, real-world NHS data from

the UK.

In order to achieve this, several challenges must be overcome. The first challenge is to

derive an algorithm that can incorporate both the advantages of geo-spatial cartograms with

those of space-filling treemaps. A second requirement is to preserve the local neighborhood

relationships of CCG regions to maximize legibility. Another is to provide user-options to

facilitate both exploration, analysis, and comparison of hierarchical, multivariate data.

Some very helpful survey papers provide an overview of health care research [142, 143,

144, 145]. However we would like to couple geo-spatial information with the health care data

to increase understanding and discover patterns with respect to location.

Multi-variate data visualization: there are a number of survey papers that provide an

overview of many multi-variate visualization techniques. We refer the reader to McNabb and

Laramee for a comprehensive overview [145]. It summaries the visualization techniques used

for multi-variate and hierarchical data, including treemaps, parallel coordinates, and glyphs.

As we are going to make good use of the screen space, we choose treemap for presenting

multi-variate information.

Geo-spatial related work falls into the areas of cartograms and spatially-ordered treemaps.

we separate and review those two categories of previous paper here.

Cartographic visualization Cruz et al. [146] define a cartogram as ”a technique for dis-

playing geographic information by resizing a map’s regions according to a statistical param-

eter in a way that still preserves the map’s recognizability”. They can display geo-spatial

information and another data attribute (such as population or disease prevalence) in one visual-

ization. Tobler [147] and Nursat and Kobourov [148] survey general cartograms. They present

the development of value-by-area cartogram algorithms and performance in computer science.

Auber et al. [149] propose a layout method based on a geographic map metaphor, which

facilitates the visualization and navigation of a hierarchy and preserves the order of the hierar-

chy’s nodes.

Gastner and Newman [150] present a diffusion cartogram for constructing value-by-area

cartograms, which provides a valuable tool for the presentation and analysis of geographic
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Figure 3.1: This graph shows each region size proportional to its population with an added below
average filter (top). The percentage of screen space occupied, s0 = 41% and the local error, el = 3.5%,
eg=8.7% and uniform size output with a below average filter (bottom). s = 47%, el = 2.3%, and eg =
5.5%. All the health care disorders that exhibit higher than average prevalence are filtered and shown
as white context. Note how the London region is healthier with the exceptions of diabetes and mental
health. This is an observation based on multiple variates that would be difficult to make otherwise.

data. Keim et al. [151] develop a faster algorithm for cartograms. It enables display dynamic

data with cartogram visualizations. These two algorithms are categorised as contiguous area

cartograms. Their performance depends on the corresponding value in each area. If the value

does not correspond to the area, the cartogram may be difficult to recognize.
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Raisz [152] presents the rectangular cartogram, using rectangles instead of real area shapes.

Dorling [153] presents the Dorling cartogram which uses circles instead of geographic area

shape, similar to the modified cartogram we present. They are categorized as non-continuous

area cartograms. They can display statistical information well, regardless of original shape

of area, and preserve relative position. Van Kreveld and Speckmann [154] present the first

algorithm for rectangular cartograms. They formalize region adjacencies in order to generate

processable layouts that represent the positions of the geographic regions. It converts a rect-

angular cartogram to a contiguous area cartogram. Our modified cartogram does not fall into

the category of continuous cartograms but resembles a cross between rectangular and Dorling

cartograms [148]. Our algorithm can be considered as a modified space-filling rectangular

cartogram with the addition of a hierarchical structure and multivariate data.

Heilman et al. [155] propose a novel visualization technique for geo-spatial datasets that

approximates a rectangular partition of the rectangular display area into a number of map re-

gions preserving important geo-spatial constraints. They use elongated rectangles to fill the

space whereas we use uniform rectangles to fill the space such that regions can easily be com-

pared with one another. Their work focuses on univariate, non-hierarchical data.

Panse et al. [156] combine a cartogram-based layout (global shape) with PixelMaps (local

placement), obtaining benefits of both for improved exploration of dense geo-spatial data sets.

Their work also focuses on univariate, non-hierarchical data.

Slingsby et al. [157] explore the effects of selecting alternative layouts in hierarchical dis-

plays that demonstrate multiple aspects of large multivariate data sets, including spatial and

temporal characteristics. They demonstrate how layouts can be related, through animated tran-

sitions, to reduce the cognitive load associated with their reconfiguration whilst supporting the

exploratory process. No metric for neighborhood preservation is described in this work.

Slingsby et al. [158] present rectangular hierarchical cartograms for mapping socio-economic

data. They present a detailed map of 1.52 million UK unit postcodes in their spatial hierarchy,

sized by population and coloured by the OAC category that most closely characterises the pop-

ulation. However, no algorithm for preserving geo-spatial information is provided. No metric

for neighborhood preservation is described.

Alam et al. [159] present a set of seven quantitative measures (Average Cartographic Error,

Maximum Cartographic Error, Adjacency Error, Angular Orientation Error, Hamming Dis-

tance, Average Aspect Ratio, Polygonal Complexity) to evaluate performance of cartograms
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based on the accuracy of data and its readability. They compare previous cartogram algorithms

based on statistical distortion, geography distortion and algorithm complexity and evaluate

their performance with respect to different properties. Nursat and Kobourov [148] survey car-

togram research in the field of visualization and present design guidelines as well as research

challenges. They state that mapping multivariate data is still a challenge in cartogram research.

In general, previous cartographic visualizations focus on flat, univariate data, whereas we pro-

cess hierarchical, multivariate data.

Eppstein et al. [160] introduce a new approach to solve the association challenge for grid

maps by formulating it as a point set matching problem. They present algorithms to compute

such matchings and perform an experimental comparison that also includes a previous method

to compute a grid map. Their work focuses on geo-spatial information and filling space. mul-

tivariate, hierarchical data is not considered.

Meulemans et al. [161] design a comprehensive suite of metrics that capture properties of

the layout used to arrange the small multiples for comparison (e.g. compactness and alignment)

and the preservation of the original data (e.g. distance, topology and shape). Their work

focuses on geo-spatial information and neighborhood preservation. Multivariate, hierarchical

data is not considered.

We note that the visualizing multivariate data is one of the top future research challenges

in the latest survey by Nursat and Kobourov [148]. Also cartograms, in general, are not space-

filling and do not necessarily make the best use of screen space.

Treemaps First presented by Shneiderman and Johnson [162, 163, 164], the approach to

building a treemap involves converting hierarchical data to a 2D space-filling region. The main

challenge with building a treemap is the node packing algorithm that positions the leaf nodes.

Traditional Treemaps Variations on the traditional treemap enable data to retain its orig-

inal order when visualised [165] or enable the viewer to maintain an understanding of the

visualisation if the dataset is dynamic which traditionally results in nodes changing position

[166]. The node appearance has also been researched to improve the aesthetic quality of

the design and to reveal an insight into the hierarchical structure of the data within the node

[167, 168, 169].

Further adaptions of the treemap have been created with a focus on aesthetics that place

less emphasis on usability. Voronoi Treemaps do not use regular rectangle node shapes, but

rather a many sided polygon consisting of curved and straight lines. The resulting imagery is
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Figure 3.2: This table shows characteristics of related work. It includes five visualization properties:
geo-spatial information, neighborhood preservation, multivariate, hierarchical and space-filling. Geo-
spatial information implicates whether a visualization conveys geographic information and AP in the
column represents adjacency preservation only. Neighborhood preservation indicates an algorithm that
features a distance metric to preserve neighborhood relationships. multivariate indicates the dimension-
ality of abstract data. Hierarchical indicates a type of hierarchical data and space-filling indicates how
well the output visualization fills the screen. Cartographic treemaps feature all five properties.

more impressive visually but may sacrifice accuracy and readability [167].

Geo-Spatial Treemaps Mansmann et al. [170] present HistoMaps for visual analysis of

computer network traffic visualization with a case study showing that a geographic treemap can

be used to gain more insight into these large data sets. However the visualization is essentially

univariate (one scalar per level in the hierarchy). It is also not adjacency preserving.

Wood and Dykes [171] provide a squarified layout algorithm that exploits the two-dimensional

arrangement of treemap nodes more effectively. It is suitable for the arrangement of data with

a geographic component and can be used to create tessellated cartograms for geo-visualization.

They convert a geographic distribution of French provinces to a spatial treemap layout and pre-
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serve the corresponding geo-spatial relationships to some extent. However, they demonstrate

that it is impossible to preserve local region adjacencies if nodes are constrained to a standard

rectangle parent node. For example, a region map may only have one or two neighbors on

a geographic map. We preserve geo-spatial relationships with less error by allowing gaps in

screen space at the different levels of the data hierarchy.

Jern et al. [172] demonstrate and reflect upon the potential synergy between information

and geo-visualization. They perform this through the use of a squarified treemap dynamically

linked to a choropleth map to facilitate visualization of complex hierarchical social science

data. It conveys the neighborhood relationships by using a second view.

Slingsby et al. [173] develop an OAC (Output Area Classifier) explorer that can interac-

tively explore and evaluate census variables. There is no inherent information preserving the

geo-spatial location of regions because a synthetic grid is used to sub-divide space. It is not

possible to derive any information about the geography of the UK regions.

Buchin et al. [174] describe algorithms for transforming a rectangular layout without hi-

erarchical structure, together with a clustering of the rectangles, into a spatial treemap that

respects the clustering and also respects to the extent possible the adjacencies of the input

layout. The work of Buchin et al. is similar to ours with few differences. First, they do not

demonstrate their layout algorithm on a full geo-spatial map, e.g. the UK. Second, the space-

filling requirement results in elongated rectangles that are difficult to compare. Third, the data

is univariate.

Wood et al. [175] present Ballotmaps that using hierarchical spatially arranged graphics

to represent two locations (geographical areas and spatial location of their names on the bal-

lot paper) that affect candidates at very different scales but their work does not contain any

neighborhood preservation algorithm.

Wood et al. [176] identify changes in travel behavior over space and time, aid station re-

balancing and provide a framework for incorporating travel modeling and simulation by using

flow maps. Their work focuses on univariate, non-hierarchical data.

Duarte et al. [177] propose a novel approach, called a Neighborhood Treemap (Nmap), that

employs a slice-and-scale strategy where visual space is successively bisected in the horizontal

or vertical directions. The bisections are scaled until one rectangle is defined per data element.

Nmap achieves good space-filling visualization that couples related rectangles using a distance

metric. However, the distance metric is not geo-spatial, it is also not a treemap of multivariate
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data nor a hierarchical visualization.

Ghoniem et al. [178] present a weighted maps algorithm, which is a novel spatially de-

pendent treemap. They present a quantitative evaluation of results and analyze of a number of

metrics that are used to assess the quality of the resulting layouts. The work of Ghoniem et al. is

similar to ours with some important differences. They place emphasis on evaluating adjacency

relationships between nodes rather than geo-spatial positions. Requiring 100% space-filling

results in higher geo-spatial error and elongated nodes. Also the data is not multivariate.

Treemaps: Geo-spatial information versus adjacency preservation: In general, the

treemap layout algorithms attempt to reflect geo-spatial information implicitly through ad-

jacency relationships between the nodes. As shown by Ghoniem et al. [178], this leads to high

geo-spatial error, e.g. in the 40%-50%. It also leads to elongated rectangles which may be dif-

ficult to compare. It may be difficult to recognize the correspondence to the original geo-spatial

map when looking at a treemap. In contrast, our algorithm emphasizes geo-spatial preservation

with less emphasis on adjacency relationships. We give the user new interactive control over

the amount of error and allow spaces and gaps to reduce geo-spatial error.

The work we present here differs from previous work in that it attempts to combine the

space-filling, hierarchical characteristics of ordered space-filling treemaps together with the

geo-spatial information conveyed by a cartogram. Table 3.2 compares the current work with

the work presented here. No previous algorithm combines all five properties. Cartographic

Treemaps convey geo-spatial information. They feature an error-driven distance metric be-

tween nodes and visualize multivariate hierarchical data. They also give the user interactive

control over how much screen space is used.

3.2 NHS Data Description

The NHS data includes a UK map divided into CCGs, groups of NHS practices. See Figure

3.3. A standard map of the UK only covers about 18 % of screen space due to its awkward

shape. Each CCG contains various categories of disease in prevalence value. Prevalence is

the proportion of a population who have a specific medical diagnosis in a given time period,

typically an illness, a condition, or a risk factor such as depression or smoking. Prevalence is

a derived metric of the local population of each region. Prevalence is usually expressed as a

percentage.
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Typically this data is displayed using line charts, bar charts, and pie charts. The map pro-

vided by public health England is a standard UK map with 209 CCG regions. See Figure 3.3.

The boundaries of CCG regions vary and are difficult for presenting high-dimensional data.

The CCGs coupled directly to the geography do not make efficient use of space. The UK map

itself only occupies 18% of screen space. For visualization purposes the CCG regions in Lon-

don for example, crowd together and hamper our ability to visualize multi-dimensional data

clearly. This will be true in the capital region of most countries and other densely populated

areas. Other health care data, for example, the population distribution data is typically visu-

alized using a single line chart showing the percentage of age groups distributed from 0-4 to

85+. Standard graphs show no connection with other health data attributes such as geo-spatial

location and clinical diagnoses. This challenging data set is the inspiration behind cartographic

treemaps. See the supplementary PDF for a description of the health disorders.

The specific data attributes of each CCG include:

• Local population, which contains the number of patients in 5 year intervals starting with

age ranges from 0-4 to 80+.

• A Practice summary providing information on practice demography, deprivation, patient

satisfaction and life expectancy estimates.

• Also included are estimated disease prevalence which includes prevalence estimates for

cardiovascular disease (CVD), coronary heart disease (CHD), chronic obstructive pul-

monary disease (COPD), hypertension and stroke.

• Coronary heart disease (CHD) contains the estimated prevalence value of CHD and heart

failure, blood pressure readings and total measured cholesterol.

• CVD - Stroke and TIA contains estimated prevalence values of stroke, blood pressure

reading and total measured cholesterol that relate to stroke and transient ischaemic at-

tacks (TIA).

• CVD - Heart failure and atrial fibrillation contains estimated prevalence value of heart

failure, atrial fibrillation, and estimated stroke risk.

• CVD - Risk factors for CVD contains prevalence of hypertension, obesity, smoking,

ex-smoking.
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Figure 3.3: This graph shows the original 209 CCG regions (Clinical Commissioning Groups) pro-
vided by Public Health England [40].Only 18% of screen space is covered by a traditional map.

• Diabetes contains estimated prevalence values of diabetes, hypertension, smoking and

obesity.

• Mental Health contains estimated prevalence values of mental health, demetia and de-

pression.

• Respiratory Disease contains estimated prevalence values of chronic obstructive pul-

monary disease (COPD), asthma, smoking and ex-smoking.

• Chronic Kidney Disease (CKD) contains estimated prevalence value of chronic kidney

disease, and reading of blood pressure.
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• Musculoskeletal Conditions contains estimated prevalence values of osteoporosis and

rheumatoid arthritis.

• Other Conditions which contains other QOF clinical indicators including cancer, epilepsy,

learning disabilities, hypothyroidism, palliative cares and cervical screening.

• Secondary Care Use - Outpatients contains outpatient attendances, first outpatient ap-

pointment, and the value of general practitioner (GP) refers to various diseases per 1000

person.

• Secondary Care Use - and Inpatients contains indicators of hospital accident and emer-

gency and inpatient use. It contains indicators for CHD, respiratory disease, diabetes,

cancer, COPD and long-term neurological conditions.

• Child health contains demographic data and secondary indicators (such as attendances,

Elective hospital admissions, Emergency hospital admissions) related to child health.

3.3 Cartographic Treemaps

This section describes the cartographic treemaps construction algorithm and interactive error

control, starting with an overview. We choose cartograms because data is coupled to location.

See Figure 3.4. The processing begins with reading the UK geo-spatial information and high-

dimensional health care data. The algorithm is as follows:

(1) Compute region center points: We use the QGIS [41] tool to calculate the center points

of each CCG region. The center points are the starting positions of the rectangular region

nodes. (2) Update node size: We start with a unit square to represent each CCG region as a

node in the cartographic treemap and increase the size of each node according to the user’s cho-

sen space-filling target or error constraint. (3) Update cartographic layout: During the region

growing process, one region may shift adjacent neighboring regions to remove overlap and

preserve relative position. When all regions reach their maximum size or the user-specified

geo-spatial error is reached, the cartogram layout stops. We use the fast overlap removal algo-

rithm [179, 180] incrementally for this process.

(4) Treemap node layout: After the cartographic node layout is completed, an ordered

squarified treemap layout is used to present the multivariate health care data in each CCG

98



3. Cartographic Treemaps for Visualization of Healthcare Data

region, the lowest (finest) level in the treemap hierarchy. (5) Interactive user options: For fur-

ther exploration, analysis and region comparison, several user options are designed to present

the results focusing on different user requirements, such as modifying algorithm parameters,

region selection for detail, modifying the color legend, and exploring the hierarchy.

1. Compute region center points: We use the QGIS [41] tool to calculate the center points

of each CCG region. The center points are the starting positions of the rectangular region

nodes.

2. Update node size: We start with a unit square to represent each CCG region as a node

in the cartographic treemap and increase the size of each node according to the user’s

chosen space-filling target or error constraint.

3. Update cartographic layout: During the region growing process, one region may shift

adjacent neighboring regions to remove overlap and preserve relative position. When all

regions reach their maximum size or the user-specified geo-spatial error is reached, the

cartogram layout stops. We use the fast overlap removal algorithm [179, 180] incremen-

tally for this process.

4. Treemap node layout: After the cartographic node layout is completed, an ordered squar-

ified treemap layout is used to present the multivariate health care data in each CCG

region, the lowest (finest) level in the treemap hierarchy.

5. Interactive user options: For further exploration, analysis and region comparison, several

user options are designed to present the results focusing on different user requirements,

such as modifying algorithm parameters, region selection for detail, modifying the color

legend, and exploring the hierarchy.

Computing Region Center Points QGIS (known as ”Quantum GIS”) is a cross-platform

free, open-source desktop geographic information system (GIS) application that provides data

visualization, editing, and analysis capabilities [41]. We use QGIS to calculate the centroid of

each CCG region as seed points for our cartographic treemap algorithm. The CentralPoint

calculation tool calculates the central point of each CCG region and stores them in a CSV file.

See Figure 3.5. The algorithm for computing a centroid is from Boruke [181]. Consider the

area made by n points from x0, y0 to xn−1, yn−1, the central point c(x,y) is given by following
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Figure 3.4: This is the processing pipeline for producing cartographic treemaps. k is the counter used
to gradually expand each region node during node layout.

formula, and A is the polygon’s signed area defined by

A =
1
2

N−1

∑
i=0

(xiyi+1− xi+1yi) (3.1)

cx =
1

6A

N−1

∑
i=0

(xi + xi+1)(xiyi+1− xi+1yi) (3.2)

cy =
1

6A

N−1

∑
i=0

(yi + yi+1)(xiyi+1− xi+1yi) (3.3)

This formulation is provided by Boruke [181] for the computation of a closed 2D polygon

centroid.

3.3.1 Updating Node Size

After calculating the center point of each CCG node, we initialize CCG nodes as unit squares

on the cartographic treemap. The algorithm increases the size of each node to make the most

efficient use of space. It terminates when the user-specified geo-spatial error or a target screen
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Figure 3.5: This figure shows the original CCG map (top) filling 18% of screen space and the output
with 60% space filling and 6.6% error(bottom). The QGIS color map is used[41].

space percentage is reached. The algorithm can also increase the size of each node based

on any property of the region (or proportion to a fixed maximum size region), e.g. the local

population of the CCG like a traditional cartogram. Because we gradually increase the size of

each CCG region node, the relative geo-spatial position between nodes is preserved. After the

area of each square is increased by a small amount (1 pixel by default) some adjacent nodes

may overlap. We then update the position of each node in the tree by running the fast node

overlap removal algorithm[179, 180] described in the next section. We provide an animation to

present the incremental processing from 1 pixel to maximum size. Slingsby et al. demonstrate

the benefit of animation in this context [157].
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Figure 3.6: This figure shows the resulting region node layout with 1% error (top) and the output with
60% space filling and 6.6% error(bottom). These use the QGIS color map [41].
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3.3.2 Updating Region Node Position

We use the fast node overlap removal algorithm presented by Dwyer et al. [179, 180] for

removing overlap between neighboring region nodes. With this algorithm, the overlap is re-

duced in the quickest, most effective way. That means if a node, n, overlaps with its northern

neighbor, nn, running this algorithm shifts n south or its neighbor nn north (similarly in the

east-west orientation), the most effective way to remove overlap. By constraining the overlap

to a small area, the relative position of adjacent nodes is preserved. If we increase all nodes to

their maximum size before running the overlap removal algorithm, relative geo-spatial position

of region nodes is not preserved either. The reason for this is when a node (n) is much smaller

than its neighbor (nn), it may lie completely inside its neighbor after its size has expanded to

its maximum. In this case, it is faster to reduce overlap without preserving relative position.

The fast node overlap removal algorithm has two phases. In the first phase a number

of constraints are applied that derive the separation distance between nodes. In the second

phase, the solution is searched based on location as close as possible to the original node

positions [179]. To address relative geo-spatial position preservation, we run the fast node

overlap removal algorithm incrementally. In each pass, we increase the size of nodes by 1

unit and run the fast node overlap removal algorithm. In this way, the algorithm removes

overlap and preserves relative position. The process is repeated until all nodes have reached

their maximum size or a user specified error threshold is reached. (Some examples are shown

below.) We can also animate the region growing process in order to increase the legibility

of the visualization. Please see the accompanying video for a demonstration. Observing the

evolution of each region provides benefit [157].

3.3.3 A Neighborhood Preservation Error Metric

We introduce a novel neighborhood preservation error metric that objectively quantifies how

closely the relative geo-spatial positions of the resulting nodes correspond to their original

positions. In other words, a west neighbor na should remain west of a given node after the

layout is updated. Likewise for the east, north, and south directions. We consider it as an

error when the relative geo-spatial position of the region center points cross. We use global

error, eg, to record any two center points crossing while we use local error, el , to record center

points crossing when the distance between two center region points is less than a user specific

threshold in Euclidean space, e.g. 20% of screen space.
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Figure 3.7: The illustration of global and local error for neighborhood preservation. The error dis-
tance is decoupled into x(west-east) and y(north-south) components. The x components is illustrated
here.

As shown in Figure 3.7, we focus on the relative position of the center points of regions na

and nb. After looping through the layout algorithm, an error is counted if the longitudinal line

of nb crosses the longitudinal (along y) line of na. i.e. the longitudinal distance d(we)=na(x)

-nb(x) > 0 initially and d(we)=na(x) -nb(x) < 0 after updating the node positions. That means

the relative longitudinal positions of na and nb are not preserved, thus we count this case as

one error, similarly for the north-south orientation/position. If the total distance between the

centers of na and nb is less than a user specific distance, we consider this error as local error,

el . We consider the worst-case scenario or maximum geo-spatial error when the whole map

is flipped both latitudinally and longitudinally, similar to the worst case of bubble sort O(n2).

Figure 3.8 shows an actual depiction of this error. We want to distinguish between local and

global error because local error is more important in this context.

We consider the worst-case scenario when the center of every region node n crosses every

other region node, n−1. We adopt the result that n+(n−1)+(n−2)+ ...+1 = n(n+1)/2.

In our case n is 209, however node n cannot cross itself. Thus we use n(n−1)/2 as our worst

case result. The worst-case number of crossings in our application is 21736. And all error can

be expressed as a percentage of this total.

We do not claim that this is the best distance metric in all of the literature. Ghoniem et

al. [178] and Nusrat and Kobourov [148] provide a comprehensive review and comparison of

distance and error metrics for cartograms and spatial treemaps. In fact many of those could
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be substituted here. We call this metric “novel” because this error metric is interactive as the

user controls the level of error. For the first time the user controls the trade-off between filled

screen space and relative error of geo-spatial position. Because we are focusing on preserving

geo-spatial information with better screen space usage efficiency. This metric is directly fitted

for our requirement. This metric is certainly not the only way to measure error. This is not

main focus of this chapter, see Nusrat and Kobourov [148] for a survey of error metric.

3.3.4 Ordered Treemap Algorithm

After the size and position of each CCG region node is computed, a treemap node layout algo-

rithm is used to visualize the non-spatial, multivariate health indicator data within each CCG.

We require this data layed out consistently for each CCG region node to facilitate comparison

between CCGs. Ordered treemap algorithms create rectangles in a visual order that matches

the input order of the data. Bederson et al. [182] present two algorithms to display ordered

treemaps: A Pivot treemap and the Strip treemap algorithm. Compared to the Pivot treemap

algorithm, the Strip treemap results in a lower rectangular aspect ratio. This version is more

squarified with a higher readability score. So we choose the Strip treemap algorithm to present

data inside each individual CCG node. The Strip Treemap Algorithm of Bederson et al. [182]

is described as below.

Input: Rectangle, r, to be subdivided into a list of items with area, l1 to ln.

Output: List of rectangles, r1 to rn

1. Scale the area of all the items on the input list so that the total area of the input equals

that of the layout rectangle.

2. Create a new empty strip, the current strip.

3. Add the next rectangle li to the current strip, recomputing the height of the strip based

on the area of all the rectangles within the strip as a percentage of the total layout area,

and then recomputing the width of each rectangle.

4. If the average aspect ratio of the current strip has increased as a result of adding the

rectangle, in step 3, remove the rectangle, pushing it back onto the list of rectangles to

process and go to step 2. When the rectangle is removed from a strip, restore that strip

to its previous state.
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Figure 3.8: Visualization of errors: Here we show what the geo-spatial error looks like. This figure
shows error crossing edges in north and south orientation (top), in west and east orientation (bottom).
The screen space-filling percentage, s, is 20% and el is 0.9%, and eg is 1.8%.
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5. If all the rectangles have are processed, stop. Else, go to step 3.

3.3.5 Interactive User Options

For further exploration and analysis, several user options are available to explore and present

the results focusing on different requirements such as filling the maximum space, specifying

the local or global error, animating the node layout algorithm, modifying layout parameters,

region selection for detail, modifying the color legend, and exploring the hierarchy.

Geo-spatial Error and CCG Region Node Size As our goal is to combine the geo-spatial

properties of cartograms with the space filling properties of treemaps, the first user controlled

parameter setting is the maximum geo-spatial error of the CCG regions. All CCG region sizes

are uniform by default in order to facilitate comparison between regions. However, their size

can also be proportional to the maximum sized region. The size of each CCG region can

be mapped to the size of its local population or any health data indicator like a traditional

cartogram. So we enable the user to set the maximum size of the region with the largest

population and the other regions are adjusted relative to the maximum. As in Figure 3.9.

Figure 3.9: Nodes proportional to CCG size. The screen space-filling percentage, s=36% and el=2.4%,

eg = 4.5. The two red outlines show the two biggest region nodes on the map: Cambridgeshire Peter-

borough and North East & West Devon. This is unexpected since we hypothesized the largest regions to

be in London or Birmingham. This example uses color map from the Disk Inventory X tool [42].
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Figure 3.10: This visualization shows the output of cartographic treemap with region size proportional
to population, and with a details-on-demand window for one region node. s=30%, el=2.4% and eg=
5.1%. The first three rectangles in each region node represent three CVD health disorders. Note the
prevalence of hypertension and diabetes is very widespread the UK. This type of multivariate observa-
tion display itself clearly with this type of visualization.

Node Size Increment and Animation In the cartographic treemap layout algorithm, the

region size grows incrementally. As discussed in section 3.3.2, immediately increasing the

node size to its maximum does not preserve the geo-spatial relationship between regions as

well, while iterative increments take more time to generate the final result. So we provide a

user option to explore an ideal size of area increase in a single layout algorithm pass. The

increment size is set between 1 and 10 pixels. The layout takes more time when the increment

size is small, but the accuracy of geo-spatial neighborhood relationships is increased. There

is a trade-off between processing speed and accuracy of the geo-spatial relationship between

nodes. A user option of animating the region node layout process is provided so the user

can observe the correspondence between the original node position and the final visualization.

Slingsby et al. [157] demonstrate the value of animation. The multi-pass layout algorithm is

shown gradually from initial to final layout.

Uniform Size Regions A cartographic treemap node for a single region represents the
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prevalence of various health disorders. As the size of each CCG region may be uniform or

represent its population, the size of bottom level rectangles represents the proportion of the

population with a particular health disorder in the respective region. We can get an overview of

the prevalence of various diseases in CCG regions, as in Figure 3.10. However, as the popula-

tion sometimes varies greatly among CCG regions, the size of bottom level rectangles may not

be directly compared with other CCG region nodes. For example, a large population of heart

failure in Oxfordshire CCG may not indicate heart failure there is relatively prevalent. The

prevalence of heart failure in Oxfordshire is 0.51 which is lower than the average of 0.73. In

order to facilitate direct comparison of health disorders across CCG region nodes, we provide

a user option to generate uniform size region-level nodes set to true by default. In this way, the

size of rectangles at the bottom level of the treemap hierarchy can be compared directly. As in

Figure 3.11.

Difference Cartographic Treemap and Focus+Context To make the health care visual-

ization clearer, we introduce a user option: a difference cartographic treemap. The size of each

rectangle at the bottom level of the health care treemap does not represent the absolute preva-

lence value of each health disorder. Instead, it represents the difference from the average UK

value. Using this option, we can emphasize how the prevalence of a specific health condition

differs from the national average level and understand the conditions in a particular region. As

in Figure 3.12. We also use a focus+context visualization incorporating a focus+context color

map. The user may choose to focus on above average or below average values by user options.

Focus attributes are then rendered in color while context rectangles are rendered in grey-scale.

As in Figures 3.15 and 3.1.

Area Groups We introduce area groups to classify CCG regions into 27 area groups in the

treemap hierarchy based on area code. This option creates a more space-filling cartogram and

another hierarchy level in the treemap. It facilitates comparison of CCG regions health care

data within their own CCG groups and enables exploration and analysis. As in Figure 3.13. It

also results in a more space-filling layout with greater resemblance to a traditional treemap.

Details-on-Demand and on-mouse-over: For the finest (lowest) level of data detail in

CCG regions or area groups, a details-on-demand feature is implemented. By hovering the

mouse over or clicking on any region, a new window opens with a higher resolution treemap,

providing the CCG code, CCG name and value of each health diagnosis category. As in Figure

3.10. To improve the appearance, we also add user options for various color maps and color
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Figure 3.11: This graph shows the output of cartographic treemap with uniform size region nodes.
s=50% and el=2.4%, and eg=5.8%. The region with the red circle (Bradford City) contains the largest
purple rectangle which indicates the highest relative prevalence of diabetes in the UK. This example
uses a published color-map from Setlur and Stone [43].

gradient styles (See Figure in supplementary file). The color maps come from different sources;

one is from the disk inventory X tool [42], the second one is from ColorBrewer [44], the third

one is from Telea [45], the fourth is from QGIS [41], and the last one is from Setlur and Stone’s

paper [43]. As in Figure 3.11.

3.4 A Narrative of UK Population Healthcare Data

In this section, we present the results of our interactive metrics and derive a number of obser-

vations based on cartographic treemaps.

Accompanying Demonstration Video URL

https://vimeo.com/199637583

Evaluation of Space and Error Metrics To evaluate the performance of our algorithm,
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Figure 3.12: This graph shows the cartographic treemap using average difference maps. s=50%,
el=2.4%, and eg=5.8%. The larger a bottom level rectangle is, the more it deviates from the UK
average. This example uses a well-known color map from color-brewer [44].

Figure 3.13: This graph shows the cartographic treemap with 27 area groups. s= 70% and eg = 5.2%
. The regions in red highlights are London areas. This example uses Telea’s color map [45].
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Figure 3.14: This figure shows the details-on-demand output map of one region (left) and
detailed output of one area group (right).

Table 3.1: Neighborhood Preservation Metric

s el local error frequency eg
global error
frequency

10% 0.4 164 0.7 293
20% 0.7 308 1.5 667
35% 0.9 409 2.5 1073
57% 1.1 476 3.1 1369
66% 1.2 524 3.6 1593

we measure the percentage of filled screen-space, s, versus the local and global geo-spatial

error. As the original map is narrow, the space filled with respect to the screen is 18.5% and

by using our algorithm the percentage of filled screen can reach up to 70%. The relationship

between error and screen space filled is shown in Figure 3.17. We experimented with aspect

ratios that are very common to commodity displays including 16:9, 4:3.

Based on the algorithm described in section 3.3.3, the local and global error is shown in

Table 3.1 and Figure 3.7. It shows the connection between el , eg and s. It presents percent

space filled along with local and global percentage and frequency of center-axis crossings. We

can see that el increases linearly with s occupied while eg increases more rapidly. We can

achieve 65% screen-space occupancy with only 1-4% global error.

Performance and Observation The algorithm requires less than a second to run (85ms-
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Figure 3.15: A focus+context cartographic treemap visualization with uniform size regions. s=50%,
el=2.4%, and eg=5.8%. The data is mapped to two color scales: one for the focus data and the other
for context. All the health care prevalence categories are shown as context except for user selected data
attributes. The red circle shows the relatively largest rectangle in the map that represents the highest
prevalence of Chronic-kidney-disease disorder in the UK (Nottingham North And East).

Figure 3.16: This figure illustrates some different color and gradient mapping options. The color
legend of the left treemap is from ColorBrewer [44] . The middle one is from Telea [45]. The right one
is from QGIS [41] with an added color gradient.

1000ms). The computer used to run this algorithm is a MSI desktop with i7-4770 CPU, 8g

RAM, GeForce GTX 770 GPU and Windows OS. We slow it down for purposes of animation

and user observation.

Based on the cartographic treemap visualization, several observations can be derived from

the public health data. Several of these observations would be very difficult without the carto-

graphic treemap.
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Figure 3.17: This figure shows the relationship between percentage of both local and global error
versus the amount of filled space. The red line shows the global error while the blue line indicates the
local error.

1. From the region node layout in Figure 3.13, we can see that the London area contains

the most CCG group regions (32 in total) and the largest population.

2. The individual CCG regions with largest population are Cambridgeshire Peterborough

and North East & West Devon. See Figure 3.9. This is not what we would expect but

rather the largest populations in a London CCG.

3. Hypertension is most prevalent health disorder with the largest proportion throughout

the UK. The second largest health disorder is Diabetes. See Figure 3.10. This is clear

from an overview cartographic treemap.

4. Three kinds of CVD related disorders (Coronary-heart-disease, Heart Failure, Stroke) are

prevalent throughout the UK, and coronary heart disease is the most common disorder

in the CVD disorder group (a multivariate observation ). See Figure 3.10.

5. From the uniform size nodes, the regions with a significantly higher prevalence health

disorder can easily be observed. Bradford City has the relatively highest diabetes in the

UK. See Figure 3.11. Also, we can find highest relative Chronic-kidney-disease disorder

prevalence in the Nottingham North & East CCG. See Figure 3.15. And the highest

relative mental health disorder prevalence is found in Islington.

6. Compared to the average value across all health disorders, regions in London are gen-

erally better than the average in most health categories with the exceptions of mental

health and diabetes. See Figure 3.1. This is another multivariate observation.
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7. CCGs closer to the coast have lower asthma. See Figure 3.1.

8. The Northwest regions are higher than average in most health disorders, such as, Cum-

bria and Northumberland. The values are higher than the average for a range of health

disorders. For example, diabetes is more prevalent in Northern regions than Southern

regions. This is shown in Figure 3.1. Cartographic Treemaps facilitate these kind of

multivariate observations.

3.5 Health Science Domain Expert Feedback

This software is targeted at domain experts in healthcare analytic and not the general popula-

tion. Therefore, no general user-study is performed. The domain experts are from the Medical

School at Swansea University. One is professor and chair in applied statistics. And the other

is a senior research officer at medical school of Swansea University. Domain expert 1: ”Data

analysts are often required to analyse complex sets of spatial, multivariate, longitudinal, and

event history public health data in order to answer research questions as part of major studies

such as CORTEX, ELAStiC and the Carmarthenshire Housing Project. Cartographic treemaps

facilitate the recognition of patterns within the data such as geographical clustering and tem-

poral trends, as well as the identification of salient features including outliers and extreme

values, thereby helping to complement machine learning and data mining techniques and to

inform statistical modelling. This visualization will make a major contribution towards help-

ing data analysts to achieve their research objectives. Therefore, we are delighted that this new

technique will be utilised by data analysts in the Farr Institute @ CIPHER within Swansea

University Medical School. We are confident that the cartographic treemaps will provide data

analysts with the opportunity to gain additional deeper insights into their complex public health

care data.”

Domain expert 2: ”Some of the biggest challenges of working with linked population

health datasets relate to the sheer volume of the data: the scale is daunting in terms of the pop-

ulation sizes, and dimensionality. There are thousands of potentially interesting facts stored in

various data sources. The depth and breadth of the data make it hard to see the big picture of

what is going on in a population, as well as to sort through the noise to identify what informa-

tion is relevant. These challenges are multiplied if the data is to be used directly in a clinical

setting by people who are not expert analysts. Something that is necessary to derive maximum
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benefit from available data resources. Visualization is a key technology to help users, both

academic and clinical, make sense of the data. The cartographic treemap approach described

here addresses our challenges by allowing a number of related variables to be presented simul-

taneously. Geography is often an important dimension in health research and service planning,

and this technique allows data to be organized geospatially while transcending some of the

limitations of traditional map-based visualizations. The ability to see geography, population

sizes, and several health measures at the same time will help users get a much more accurate,

at-a-glance understanding of the data and the population it represents. It has potential to aid

research, particular in the hypothesis-generation phase; and it could be quite beneficial in the

healthcare sector, supporting activities such as service planning.”

3.6 Summary

This chapter presents a novel hybrid visualization, the Cartographic Treemap, combining geo-

spatial information, a novel interactive neighborhood preservation metric, and space-efficient

geometry for the interactive visualization of geo-spatial, and high-dimensional data. It com-

bines the advantages of both cartograms and treemaps. We implement and demonstrate this

visualization with a real-world high-dimensional health care data collected by NHS to support

clinical commissioning groups (CCGs) and the health care service providers. Several inter-

active user options are available to explore and present the results focusing on different user

requirements for further exploration, analysis and comparison. Also, we present several multi-

variate observations based on the cartographic treemap visualization and report feedback from

two domain experts in health science.

This chapter fits the linear narrative and memorability column in Table 2.1, and geo-spatial,

narrative and memorability column in Table 2.2. It use narrative visualization to link obser-

vations generated from the cartographic treemap, generate story board and present healthcare

data to the audience. We aim to use storytelling and narrative visualization to increase the

memorability of audience.

Future work includes investigating more optional color maps for high-dimensional data

and a more in-depth user feedback study. Future work will include more attributes of NHS

data in addition to population and health disorder prevalence, such as the number of practices

per CCG, and rates of A&E admissions. More filtering options will also be introduced, such

as by age range. Also the population and health disorder prevalence dynamics over time will
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be presented in next chapter.
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”If I have seen further it is by

standing on the shoulders of

Giants.”-Isaac Newton1

1Isaac Newton (1642-1726) was an English mathematician, astronomer, theologian, author and physicist who
is widely recognised as one of the most influential scientists of all time, and a key figure in the scientific revolution.
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W Hile the previous chapter focus on multivariate visualization combining geo-spatial

data, in this Chapter we extend the work by adding time-oriented data. Cartographic

treemaps offer a way to explore and present hierarchical multi-variate data that combines the

space-efficient advantages of treemaps for the display of hierarchical data together with rel-

ative geo-spatial location from maps in the form of a modified cartogram. They offer users

a space-efficient overview of the complex, multi-variate data coupled with the relative geo-

spatial location to enable and facilitate exploration, analysis, and comparison. In this chapter,

we introduce time as an additional attribute, in order to develop time-oriented cartographic

treemaps. We design, implement and compare a range of visual layout options highlighting

advantages and disadvantage of each. We apply the method to the study of UK-centric elec-

tronic health records data as a case study. We use the results to explore the trends of a range of

health diagnoses in each UK health care region over multiple years exploiting both static and

animated visual designs. We provide several examples and user options to evaluate the perfor-

mance in exploration, analysis, and comparison. We also report the reaction of domain experts

from health science. This Chapter is based on paper ”Time-oriented Cartographic Treemap for

Visualization of Publice Health Care Data” [183].

4.1 Introduction

The Cartographic Treemap, combines geo-spatial information, a novel interactive neighbor-

hood preservation metric, and space-filling geometry for the interactive visualization of geo-

spatial, and high-dimensional data [47]. As a hybrid visualization, it combines the advantages

of both cartograms and treemaps. We implement and demonstrate this visual design with

real-world high-dimensional health care data collected by the NHS to support clinical commis-

sioning groups (CCGs) and health care service providers.

In this chapter, we extend cartographic treemaps with time as an additional variate, in or-

der to develop time-oriented cartographic treemaps. Because the data is varying year-on-year,

domain experts are very interested to see trends over time. In term of the outcome, domain ex-

perts are able to get an overview of the changes over years on several diseases. It will help the

domain experts to figure out which places or which disease need more investment. Based on a

three year time span of health care data collecting by the NHS in the England, UK, we present

and compare a range of visual design options highlighting advantages and disadvantages of

each. We provide several user options to evaluate the performance in exploration, analysis, and

119



4. Time-Oriented Cartographic Treemaps

comparison based on a given set of prerequisites and user tasks. Also, we can generate linear

narrative geo-spatial visualization from the observation of our visual design. It will help the

user increase the memorability of the data set. The contributions of this chapter include:

• A new time-oriented cartographic treemap that enables the user to explore hierarchical

multi-variate data over a range of years.

• Both static and animated visual designs for cartographic treemaps: presenting the tem-

poral trends of data.

• Interactive user-options that enable users to customize the visual layout.

• The application of our time based visualization to complex, real-world NHS data from

England, UK.

• The reaction of domain experts from health science.

In order to achieve this, several challenges must be overcome. The first challenge is to

develop several visual designs for incorporating time into cartographic treemaps. A second

requirement is to compare the visual designs and present the relative advantages and disad-

vantages of each. Another is to provide user-options to facilitate both exploration, analysis,

and comparison of time-dependent hierarchical, multi-variate UK-based health care data. This

chapter extends the work of Tong et al. [47] by adding time as a variate.

The rest of the chapter is organized as follows. Section 4.2 presents a description of the

time dependent UK-based NHS data. Section 4.3 presents several tasks and requirements for

the visual design. Section 4.4 describes different visual designs and user options in exploration,

analysis and comparison of time-dependent hierarchical, multi-variate data in a stand-alone

application. Section 4.6 reports the reaction from health science domain experts. And the final

section presents conclusions and future work within the field.

In previous work, we develop a layout algorithm for cartographic treemaps. We extend this

to include time-variate data.

The work we present here differs from previous work in that it attempts to combine the

space-filling, hierarchical characteristics of ordered space-filling treemaps together with the

geo-spatial information conveyed by a cartogram. It add time as a variate into the carto-

graphic treemap. Domain experts are interested to see the trends over time as healthcare data
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Figure 4.1: This table shows characteristics of related work. It includes six visualization properties:
geo-spatial information, neighborhood preservation, multi-variate, hierarchical, space-filling and time-
dependent. Geo-spatial information implicates whether a visualization conveys geographic information
and AP in the column represents adjacency preservation only. Neighborhood preservation indicates
a algorithm that features a distance metric to preserve neighborhood relationships. Multi-variate in-
dicates the dimensionality of abstract data. Hierarchical indicates a type of hierarchical data. Space-
filling indicates how well the output visualization fills the screen. And time-dependent indicates whether
a visualization contain time as an attributes. Our time-dependent cartographic treemaps feature all six
properties.

is varying over years. Table 4.1 compares the current work with the work presented here.

No previous algorithm combines all six properties. Especially, no other works contain a time

variate. Time-dependent Cartographic Treemaps convey geo-spatial information. They feature

an error-driven distance metric between nodes. They visualize multi-variate hierarchical data.

They give the user interactive control over how much screen space is used. And they present

time-dependent information in several visual designs.

McNabb et al. [145] summarized two survey papers of temporal visualization. Cottam
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Figure 4.2: The left map shows the original 209 CCG regions (Clinical Commissioning Groups) pro-
vided by Public Health England [46] (left). The original map only occupies 18% of screen space. The
original visual design of cartographic treemap based on a single year (right) [47]. The cartographic
treemap occupies 60% of screen space. This color map is from a published color-map from Setlur and
Stone [43].

et al. [184] dynamic visualizations as visualizations that change over time. They review the

impact of dynamic data on Information Visualization, and how this data change can influence a

visualization’s discernability. Bach et al. [185] survey a variety of temporal data visualization

techniques and discuss how their operations can be used with spacetime cubes in order to create

a simple visualization from the 2D+time model.

4.2 Time-Oriented Public Health Care Data Description

We study open NHS health care data as a case study for time-oriented cartographic treemap

visualization. The UK government collects yearly diagnoses of region specific health care

data [46]. The public health profiles website [46] is used for publishing the latest national

health care data in the England, UK. The data archive is designed to support GPs, clinical com-

missioning groups (CCGs), and local authorities to ensure that they provide and commission

effective and appropriate health care services. See Figure 4.2. Typically this data is displayed

using standard line charts, bar charts and pie charts. The standard visualizations do not feature

any geo-spatial information. Also, time-related information is generally presented in isolation.

The dataset consists of 14 Excel files of around 10 Megabytes in total together with a CCG

region map containing 209 regions (See Figure 3.3). There are more than 60,000 rows and an

average of 100 columns in each file with three years data. We extract 14 health care disorders
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Figure 4.3: This visualization shows the output of time-oriented cartographic treemaps with bar
charts inside each health care variate, and with a details-on-demand window for one region node (top
area of main map). It also shows the output of time-oriented cartographic treemaps with symmetric bar
charts inside each health care variates (bottom half of UK cartogram), and with a details-on-demand
window for one region node (top right). The three rectangles in each variates represent prevalence
values over three years from 2011 to 2013. We observe that hypertension and diabetes are the most
prevalent diagnoses over this time-period. The color map is derived from Colorgorical [48].
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over three years prevalence indicators 2011-2013 from the dataset and present the informa-

tion in our time-oriented cartographic treemap system. ”The whole cartogram is resembles

a treemap that represents a two-level hierarchy: geographical and various diagnoses in each

box.”

Our goal is to combine hierarchical, multi-variate health care data with complex geo-spatial

information using the cartographic treemap algorithm of Tong et al. [47] and add time-oriented

trends in a unified visual design. The challenge is not only to show the overview of hierarchi-

cal, multi-variate health care data based on regional information, but also depict the temporal

evolution trends of data inside each region. We use the NHS health care data from 2011 to

2013, and the NHS health care regions map as input.

4.3 Tasks and Requirements

The visual design of our application supports the following requirements and user tasks:

1. T1: To provide an overview, both temporal and spatial, of the prevalence rates for each

diagnosis coupled with the geography.

2. T2: To provide selection and filtering options with a special focus on time-oriented

trends, behaviors and patterns.

3. T3: To provide details on demand after exploration, filtering and selection have been

performed.

These tasks mirror those outlined by Shneiderman[186] in 1996 and are customized for this

particular setting.

4.4 Time-Oriented Cartographic Treemap

This section describes the visual designs we used to support tasks 1-3 by adding a time variate

to previous cartographic treemaps. We use the previous cartographic treemap algorithm [47]

for static data as our starting point and then implement several visual designs and user options

for displaying time-oriented information in one visual system. The visual designs and user op-

tions are presented in the following subsections. First, we introduce time-oriented bar charts,

symmetric bar charts, and gradient-oriented bar charts. We compare and discuss the relative
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Figure 4.4: This visualization shows the output of time-oriented cartographic treemaps with gradient-
oriented bar charts (middle), and with a details-on-demand window for one region node (top left). It also
shows the output of time-oriented cartographic treemap with the combinations of symmetric bar charts
(bottom), and with a details-on-demand window for one region node (top right). Only the northern half
of the UK is shown for presentation space purpose. The gradient-oriented bar charts really emphasize
the increase in diabites over time. The visual design support task 1 and task 3.

advantages and disadvantages of each. Then we add the option of animation, showing increas-

ing versus decreasing diagnoses over time, we describe line charts and other user-options for

further exploration including observations based on the visual designs. Finally, we develop an

attribute selection option which enables the user to turn individual health care variates on or

off.
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Figure 4.5: This visualization shows three frames of the details-on-demond view using animation.

4.4.1 Time-Oriented Bar Charts

One of good choices for mapping time to a visual primitive is using a bar chart. Bar charts

are the most popular choice amongst authoring tools according to Lee et al. [187]. Bar chart is

often used for retrieve value, and make comparisons. And bar chart is also an good combination

with treemap and space-filling requirement. Each column can represent one year and one bar

chart can represent the prevalence of each diagnosis. The bar chart is a traditional tool to

visualize categorical data. We start off by using bar charts to display yearly data (2011-2013).

Each bar chart fits inside the rectangular output of region node and treemap node from Figure 2

well. We integrate each bar chart into a single treemap node for displaying the temporal trend

of each health care variate inside a single CCG region (See Figure 4.3). The result addresses

task 1 by providing the user with an overview of the data.

The evolution of data over time is difficult to observe using standard bar charts, neither the

bars nor the data vary in height very much. To make the difference between each bar more

clear, we introduce symmetric bars as a modification to the traditional bar chart (See Figure

4.3). A symmetric bar chart varies the height of each bar from the top while raising the bottom

of each bar by the same amount simultaneously. This emphasizes the differences between bars.

A details-on-demand window for one region node showing a magnified view of the different

style of bar charts is also provided. This supports task 3. By using two styles of bar charts,

the time-oriented, hierarchical, multi-variate health care data 2011-2013 is presented in single

visual design and an overview of yearly health care information can be derived from the output.

The users can see both an overview of all regions and the details-on-demand for a single region.

As we can observe from the result, hypertension is the most prevalent health disorder over the

time-span with the largest proportion throughout the UK while the second most prevalent health
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Figure 4.6: This visualization shows the output of time-oriented cartographic treemaps with increas-
ing only (top half) and decreasing only (bottom half) prevalance value filters to support task 2. Only
the norhern half of the UK is displayed for increasing and southern half of the UK is displayed for
decreasing values is shown for presentation space purposes. We can observe a region in the noth-east
with a group of increasing health dignoses including storks, diabetes, rheumatoid, COPD, ostsoporosis,
cancer, and hypothyoidism. Also the London region reports a decrease in hypertension. The color map
is derived from Colorgorical [48].

disorder during the time-period is diabetes. And both are generally increasing over time.

4.4.1.1 Gradient-Oriented Bar Charts

As the relative difference in height between bars over the three years is small, it is difficult

to obtain a clear understanding of temporal trends inside each region from the previous visual

design. We introduce a gradient-oriented version of the bar chart as a user option in order to

highlight only the changes in prevalence rate during three years (See Figure 4.4). As opposed

to the absolute values, in this version, the height of each bar represents the change between
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Figure 4.7: This visualization shows the output of time-oriented cartographic treemap with bar charts
inside each health care variates, and with a details-on-demand window for one region node. The three
rectangles in each variates represent value of three years from 2011 to 2013.

Figure 4.8: This visualization shows the output of time-oriented cartographic treemap with sysmmetric
bar charts inside each health care variates, and with a details-on-demand window for one region node.
The three rectangles in each variates represent value of three years from 2011 to 2013.
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Figure 4.9: This visualization shows the output of time-oriented cartographic treemap with change
only display.

minimum and maximum data values. Both the standard and symmetric bar charts can be used

to depict the gradient information. The trends of increasing and decreasing diagnosis over

time are depicted clearly from the gradient-oriented bar chars. The gradient-oriented bar charts

really emphasize the increase of diabetes overtime. This supports task 1. However, with this

design too much information is packed into a small area. Distinguishing increasing trends from

decreasing trends is difficult. We introduce animation to further clarify the trends.

Symmetric, Gradient-Oriented Bar Charts Symmetric bar charts are also enabled in

gradient-oriented user options to further highlight the difference between bars to reflect trends

over time (See Figure 4.4). In this version, the changes in value over the three years are

presented with heightened emphasis. An overview of trends for all regions and all health care

variates can be obtained from this visual design. Because the changes in prevalence rates

over time are exaggerated, the user is cautioned when interpreting the graphs. From gradient-

oriented bar charts and symmetric gradient-oriented bar charts, the trend is increasing for the

majority of health care diagnoses. From this visual design, we can observe that for a given

CCG, e.g. Hull, all prevalence rates increase over time with the exception of asthma and

stroke. This supports both tasks 1 and 3.
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Figure 4.10: This visualization shows the output of detail-on-demond view of animation.

4.4.2 Animation

With bar charts, symmetric bar charts and gradient-oriented user options, the overview of time-

oriented health care information is presented in various visual designs to support the domain

expert user requirements. However, we can add another user option that distinguishes increas-

ing trends from decreasing in the visual design display easily as an approach related to task

2. Thus we introduce an animation option to present increasing trends and decreasing val-

ues in different directions. See Figure 4.5, we animate the bars depicting increasing trends

through translation from left-to-right. Decreasing trends are animated by translating the bars

from right-to-left. A white gap is inserted between last and first year to ensure the users can

decipher where the first bar is. From the animation, the trends of time-oriented values are em-

phasized even further. This supports task 1. In order to view the animation we encourage the

reader to visit the video demonstration at https://vimeo.com/223316576.
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Figure 4.11: This visualization shows the output of time-oriented cartographic treemaps with the line
charts visual design user option (middle), and with a details-on-demand window for one region node
(top left). It also shows the visual design with the gradient-oriented user option (bottom), and with a
details-on-demand window for one region node (top right). Only the northern half of the UK and the
southern half of the UK is shown for presentation space purposes.
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Figure 4.12: This visualization shows the attributes selection user option to support task 2 with only
four attibutes selected (top) and the decreasing only filter (bottom). We can observe that kidney disease
is decreasing in the north west and the mid east of the UK.
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4.4.3 Filtering and Focus+Context Rendering

Even though we can obtain a direct overview of health care diagnosis trends from animation,

animation requires video output to be observable. As an alternative, we implement filtering

options based on increasing and decreasing prevalence rates combined with focus+context ren-

dering options. Using these options, we can emphasize increasing and decreasing trends in the

output visualization and support task 2. See Figure 4.6 and 4.13. From those figure, the user

may choose to focus on increasing or decreasing diagnoses over time. Focus attributes are then

rendered in color while context rectangles are rendered in grey-scale. And we may observe

some useful patterns from the result. For example, most health care variates are increasing

during 2011-2013, and Coronary-heart-disease is the most decreasing variate among 209 CCG

regions except for the mid-east of England. Using animation and increasing and decreasing

focus+context rendering user options, we can easily observe that coronary heart disease and

rheumatoid-arthritis are the top two decreasing trends among CCG regions and approximately

half of the hypertension diagnoses are decreasing too. The majority of diagnoses are increas-

ing.

4.4.4 Line Charts

Bar charts are space-filling by nature and too many bars may crowd the display. Therefore we

also experiment with line charts as an alternative visual design. We introduce line charts as a

supplementary tool to simplify the time-oriented visualization. They also support task 1. By

connecting a series of data points, line charts can present the trends of diagnoses occupying

less visual design color and space. We implement line charts inside regions to replace the

treemap layout (See Figure 4.11) as a user option. If we use standard line charts in a similar

fashion as standard bar charts, it is difficult to observe trends. This is due to the very gradual

change in diagnoses over time. Thus we incorporate a gradient-oriented version of the line

chart as well. Gradient-oriented and details-on-demand user options are both provided for the

line charts view. The user can filter and observe increasing and decreasing trends of all regions

from overview and also focus on the details of a single region. As we can observe from line

chart design, the increasing trends dominate diagnoses over time.
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Figure 4.13: This visualization shows the output of time-oriented cartographic treemaps with increas-
ing only and decreasing only prevalance values filters. The selection user option is shown in focus,
while other attributes are left as context information.

4.4.5 Interactive User-options

For further exploration and analysis, several user options are available, to explore and present

the results focusing on different requirements such as choosing individual years and attributes

collectively, which support task 2.

Choosing Years To simplify the standard output of the time-oriented cartographic treemaps,
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Figure 4.14: This graph shows a single year with node size mapped to population. This color map is
from a published color-map from Setlur and Stone [43].

choosing individual years enables the user to focus on a single year of information rather than

multiple years. The users can extract one year of information from the single year overview

and switch between years and observe the differences over time.

The size of treemap nodes can mapped to the population of CCG regions. See Figure 4.14,

choosing an individual year also enables the users to observe the changes to the population in

2011-2013.

Filtering Diagnoses For further simplifying the result and drawing the users attention to

the information they require, we implement filtering attributes options. This enables the users

to turn on and off specific attributes, and recompute the treemap layout with fewer attributes. In

Figure 4.12, only four attributes are selected with an overview layout and details-on-demand

output. The trends of only those four diagnosis in all CCG regions can be focussed on and

observed more clearly. Figure 8 shows another important filtering option, depicting increasing

or decreasing only prevalence values in a focus + context visual design style.

4.5 A Narrative of Time-oriented Population Healthcare Data

Based on the time-oriented cartographic treemap visualization, several observations can be

derived from the public health care data.
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1. Diabetes and hypertension are the most prevalent diagnoses over 2011-2013, as can be

observed in figure 4.3.

2. Diabetes and cancer are increasing over time in most UK regions. See Figures 4.4 and

4.6.

3. Appropriately half of the CCGs exhibit increasing kidney disease over time while the

other half exhibit kidney disease decreasing over time.

4. Coronary heart disease and Rheumatoid arthritis are decreasing over time in most UK

regions. See Figure 4.6.

5. Kidney disease is decreasing in the north west and the mid east of the UK. See Figure

4.12.

6. A group of 11 connected CCGs in north west exhibit noticeable increase in Hypertension

and diabetes. The CCGs regions are South Sefton, Liverpool, Blackpool, Southport and

Formby, Knowsley, Fylde Wyre, St Helens, Halton, Bolton and Warrington. See Figure

4.6.

7. Hypertension is decreasing in the London area. The relevant CCG regions are Haringey,

Islington, Wandsworth, Sutton, Herts Vallys, Richmond, Kingston, Surrey Downs, Brent,

Hammersmith Fulham, Hounslow, North West Surrey, Guildford Waverley, Harrow and

Ealing. See Figure 4.6.

These observations are consistent with our definition of storytelling in chapter 2. Because

these serve to resort the results of exploration and analysis to a wider audience. It also fits the

linear narrative and memorability column in Table 2.1, and geo-spatial, narrative and memora-

bility column in Table 2.2.

4.6 Domain Expert Feedback from Health Science

This software is developed for a specific domain expert audience. Therefore we study their

feedback rather than conducting a general user-study. A full general user-study would require

a new thesis chapter in future work. The domain experts are from the Medical School at

Swansea University. They professor and chair in applied statistics or senior research officer, or
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research officer and data scientist or honorary research associate. The following is feedback

directly from collaborators in health science. Time-oriented data, which are variously known

as repeated, longitudinal or event history data, present analysts with a range of challenges.

These issues become even more challenging when the data also vary spatially. The authors of

this chapter have developed an eye-catching interactive tool with which data analysts may use

animation (please see our later comments) to explore spatial and temporal trends in the values

of one or more attributes, as well as to identify salient features such as outliers or extreme

values.

We feel that potential users of this tool would require some guidance on using the vari-

ous facilities, for example, filters to query the data, and exporting the equivalent numerical

summaries into table or output format. Advice would also be welcomed on interpreting the vi-

sualizations in an efficient and effective manner. For example, the developers of this tool have

implemented an algorithm that maximises the use of space by distorting the original shape of

the outline of the area under scrutiny. Users will need to be advised on how best to avoid

becoming disorientated by this particular feature of the tool. This guidance may need to vary

depending on the user group, for example, data analysts compared to clinicians.

We envisage a wide range of possible applications for this tool. The authors of the current

chapter have used animation to represent time. By using animation, the developers of this

visualization tool have injected an element of dynamism into the analytical process, thereby

enhancing the exploratory analysis of spatial longitudinal data.

137



Chapter 5

Cartograms with Features
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”If you can improve yourself in a

day, do so each day, forever building

on improvement.”-Zhu Xi1

1Zhu Xi (1130-1200) was a Chinese philosopher, politician, and writer of the Song dynasty.
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T His Chapter present a novel algorithm that introducing more geo-spatial information by

adding features into cartogram. Cartograms are very popular and useful for depicting

data on a map. Dorling style and rectangular cartograms are very good for facilitating compar-

isons between unit areas. Each unit area is represented by the same shape such as a circle or

rectangle, and the uniformity in shapes facilitates comparative judgment. However, the layout

of these more abstract shapes may also simultaneously reduce the map’s legibility and increase

error. When we integrate univariate data into a cartogram, the recognizability of cartogram

may be reduced. There is a trade-off between information recognition and geo-information

accuracy. This is the inspiration behind the work we present. We thus attempt to increase the

map’s recognizability and reduce error by introducing topological features into the cartographic

map. Our goal is to include topological geographic features such as a river in a Dorling-style

or rectangular cartogram to make the visual layout more recognizable, increase map cognition

and reduce geo-spatial error. We believe that compared to the standard Dorling and rectangular

style cartogram, adding topological features provides familiar geo-spatial cues and flexibility

to enhance the recognizability of a cartogram. This Chapter is based on paper ”Cartogram with

Topological Features” [188]

5.1 Introduction and Motivation

Cartograms are a very popular and useful technique for depicting geo-spatial data. We sum-

maries previous work on cartograms in previous chapter. It includes different type of car-

tograms and the main feature of them. None of those work introduced additional geo-spatial

feature into the cartograms. (See Figures 3.2 and 4.1 for an overview of cartogram literature. )

A cartogram can be defined as, ”a technique for displaying geographic information by resizing

a map’s regions according to a statistical parameter in a way that still preserves the map’s rec-

ognizability.” [146] According to Nusrat and Kobourov [148], cartograms can be categorized

into four types: contiguous, non-contiguous, Dorling and rectangular. Dorling [153] style and

rectangular cartograms are very good for facilitating comparisons between unit areas. Each

unit area is represented by the same shape such as a circle or rectangle, and the uniformity in

shapes facilitates comparative judgment. However, the layout of these more abstract shapes

may also simultaneously reduce the map’s legibility and increase error. When we integrate

univariate data into a cartogram, the recognizability of cartogram may be reduced. There is a

trade-off between information recognition and geo-information accuracy. This is the inspira-
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Figure 5.1: A cartogram with the Thames river, featuring a wide push width, pε and a river
width, rε of 10 pixels. Color is mapped to Coronary heart disease distribution in England.

tion behind the work we present. We thus attempt to increase the map’s recognizability and

reduce error by introducing topological features into the cartographic map.

In this Chapter, we use the term topology slightly different from the traditional sense as

with graphs and standard cartograms. In the context of graphs and cartograms, topology nor-

mally refers to the unit areas as nodes and the edge connections between them as their topology.

In this work, we adapt the notion of topology from the flow visualization literature [189]. In

flow topology, vector fields are divided up into different regions of flow behavior e.g. rotating

flow versus linear flow. The edges or curves that separate and connect the different regions of

the flow are referred to as the flow’s topology. Hence, we introduce a (flow-inspired) topolog-

ical feature into Dorling style and rectangular cartograms, i.e., a river. The river separates the

unit areas into distinct regions and makes the cartogram more legible and reduces node layout

error. This is analogous to a separatrix in the flow visualization literature [190], a standard

feature in flow topology. A separatrix is a special type of streamline that connects two critical

points and a curve that no flow crosses.

Our goal is to include topological geographic features such as a river in a Dorling-style

or rectangular cartogram to make the visual layout more recognizable, increase map cognition

and reduce geo-spatial error. We believe that compared to the standard Dorling and rectangular

style cartogram, adding topological features provides familiar geo-spatial cues and flexibility

to enhance the recognizability of a cartogram. For example, the Thames river can be converted
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to topological feature on a cartogram. The regions on each side of the river on the real-world

map are also often divided by this topological feature on a traditional map. This helps the user

to locate corresponding region groups near the Thames river easily. We choose the Thames

river base on the hypothesis that it is the most famous landmark or topological feature of the

UK [191]. This is a test of the concept, and we can use other topological feature instead.

Our contributions include:

1. A new way to define and add real geographic features, such as a river, as a topological

feature to a cartogram.

2. A novel cartographic layout algorithm that preserves a nearby region node’s topological

location with respect to a river.

3. The application of this cartogram design to real-world healthcare data provided by the

NHS, England.

Previous chapters develop a Cartographic treemap to integrate a modified representation of

the UK based on the geo-spatial information of CCG (Clinical commissioning group) regions

combined with a modified treemap to present multivariate NHS data. They also present a

metric to analyze the trade-off between space-filled and geo-spatial accuracy. To the best of

our knowledge, the work we present here is the first of its kind to introduce topological features

to Dorling-style and rectangular cartograms.

5.2 Adding Topological Features to Cartograms

This section describes the cartogram construction algorithm starting with an overview. The

processing begins with reading the UK geo-spatial information. The algorithm summary is as

follows:

1. Acquire and input selected river data.

2. Input geo-spatial data for cartogram generation.

3. Define a river approximation and add it to the geo-spatial data set that the cartogram is

based on.
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4. Compute unit area (or region) center points: We use the QGIS [41] tool to calculate the

center points of each CCG (Clinical Commissioning Group) region. The center points

are the starting positions of the rectangular region nodes.

5. Update node size: We start with a unit square to represent each CCG region as a node in

the cartogram and gradually increase the size of each node.

6. Update cartographic layout: During the region growing process, regions may not cross

topological features.

7. Test for river intersection. When a region intersects a topological feature. The layout

algorithm returns this region to its previous position.

8. Remove overlap between nodes.

9. Test boundary conditions.

10. Render the cartogram with features.

Figure 5.2 shows an overview of the algorithm pipeline.

5.2.1 Input River Data

We search for and obtain the Thames river geo-spatial information from OpenStreetMap[192]

for river shape, name and type. Then we use Overpass Turbo API[193] to build a query based

Figure 5.2: The processing pipeline for producing a cartogram with topological features.
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on the search result and export the Thames river as a shapefile. We then input the Thames

shapefile into QGIS[41] described in section 3.2 and combine it with a CCG map, and proceed

to river approximation. The geo-spatial information is from a separate data source than our

cartogram data for this special application which involves population healthcare prevalence

values.

5.2.2 Input CCG Data

We study open NHS healthcare population data as a case study for our topology-based car-

tograms. The UK government collects yearly diagnoses of region-specific population health-

care data. The public health profiles website [46] is used for publishing the latest national

healthcare data in England, UK. The data archive is designed to support GPs, clinical com-

missioning groups (CCGs), and local authorities to ensure that they provide and commission

effective and appropriate healthcare services. Typically this data is displayed using standard

line charts, bar charts and pie charts. The standard visualizations do not usually feature any

geo-spatial information. The dataset consists of 14 Excel files of around 10 Megabytes in total

together with a CCG region map containing 209 regions. There are more than 60,000 rows and

an average of 100 columns in each file.

Our goal is to visualize this CCG data with cartograms, and make it more recognizable and

reduce layout error by adding topological features. We use the NHS healthcare data and the

NHS healthcare regions map as input.

5.2.3 River Definition and Approximation

Our goal is to include a topological geographic feature such as a river in a dorling-style car-

togram to make the visual layout more recognizable, increase map cognition and reduce geo-

spatial error introduced by the layout procedure. We approximate a river to match the car-

togram style and to simplify testing for edge intersections (rather than using the original.) At

first, a river approximation can be converted from geographic map positions to topological po-

sitions that separate the CCG regions on either side of the river. Our process for deriving a

river approximation is as follows:

1. We overlay the river shapefile[192] and combine it with the CCG region map [40].

2. We identify the CCG regions on both sides along its full length.
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Figure 5.3: This figure illustrates how we select pairs of CCG regions spanning the Thames
from the QGIS file. Showing a subset of the Thames first shows CCG 08C and 08X on the bor-
der. We identify 08C and 08X as a corresponding pair for river definition and approximation.
The river continues between 07Y and 08P, we identify 07Y and 08P as the next pair. If the river
flows directly in the middle of one region, such as 08P, a nearby CCG region for this segment
of the river is selected. In this case we add 07Y and 08J as a third pair.

3. For each CCG region adjacent to the river, we couple corresponding CCGs on opposite

sides of the river and save matching pairs of region nodes based on closest centroids. If

the river flows directly in the middle of one region, such as 08P, a nearby CCG region

for this segment of the river is selected. See Figure 5.3.

4. For each pair of corresponding CCG regions, we connect their centroids with an edge,

e(c1,c2).

5. We add the mid-point of each edge e(c1,c2) as a vertex v(r) on a polyline representing

the river, r(v0, ...,vn).

6. Connect all the derived river vertices, v(r)0,...,v(r)n and add the river to the cartographic

map. See Figures 5.3 and 5.4 for an illustration of this process.

5.2.4 Compute Region Center Points

To generate a Doring style or rectangular cartogram, we start with small rectangles to represent

each CCG region, and increase the size of each rectangle until they gradually reach the max-
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Figure 5.4: This figure illustrates inserting the river polyline on the cartographic map by
connecting all the derived river vertices. Green lines show edges connecting pairs of CCG
regions, and the river line is formed by connecting the mid-point of all green lines. The red
rectangle highlights the parts of detail view of Figure 1.

imum size of which the user has control. Initially we input the original CCG map from NHS

website[40] into QGIS [41] and use the centroid calculation tool to calculate the center points

of each CCG region. We export the position of center points to a CSV file and use it as an input

to our cartogram as the starting positions of the rectangular region nodes. Sample center points

can be seen in Figures 3 and 4.

5.2.5 Update Node Size and Remove Overlap

We start with a unit square to represent each CCG region as a node in the cartogram and

increase the size of each node gradually. During the region growing process, one region may

shift adjacent neighboring regions in order to remove overlap and preserve relative position.

We use the fast overlap removal algorithm [179, 180] incrementally for this process. When

all regions reach their maximum size or one of the regions reaches the boundary of map, the

cartogram layout stops. In each step we increase the size of all nodes by 1 pixel (if they have

not reached their maximum size) to make them grow smoothly and gradually.

5.2.6 Test For River Intersection

We also incorporate a river intersection test algorithm to confirm that regions do not cross this

topological feature. When the size of each region increases, we connect the current centroid

with its previous centroid. If the connected edge intersects one of the river edges, we mark this

region as an intersecting region. See algorithms 1 and 2. For the intersection test of two edges,

we first test whether the bounding box of two segments intersect. If not, then the two segments

do not intersect. Then we use a vector cross product to test whether two points of one segment
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Algorithm 1 TestRiverIntersection
Input
CCGList : list of CCG regions
river: list of river edges
Local Variables
Edge : a line segment connecting current position and previous position of each CCG region
Output
intersectionList: a list of CCGs that intersect the rivers
1: procedure TESTRIVERCROSSING (CCGList , river)
2: intersectionList
3: for index = 0; index <CCGList.size(); index++ do
4: Line Edge = Line(CCGList.at(index).getPosition(),
5: CCGList.at(index).getPreviousPosition())
6: if TestIntersection ( Edge, riverEdge) == TRUE then
7: intersectionList.append(CCGList.at(index))
8: endIf
9: endFor (index)

10: return intersectionList

are on the opposite side of the other segment. If they are both true, the two segments intersect

[194].

5.2.7 Topology Preservation Algorithm

After testing river intersection for each region, we select the crossing regions and move them

back to their previous position (those positions are stored because a unit area’s centroid is not

allowed to cross a river edge). This backward transition may cause overlap between regions, so

we rerun the overlap removal algorithm to remove overlap. In some cases, a region may shift

repeatedly between the same two positions by the topology preservation algorithm and overlap

removal algorithm, which we identify as a stalemate. When a stalemate occurs, we move the

affected region back to its previous position again, and push all other overlapping regions in the

reverse push region by same amount. Our first attempts at this algorithm used only a reverse

push line segment. This alone was not enough to prevent a stalemate. Thus we introduced a

reverse push region. See Figure 5.6. The width of the reverse push direction region, pε , may

also be adjusted by user. See Algorithm 2 for a complete procedural description.

5.2.8 Test Region Size and Domain Boundaries

We use maximum size as a control for cartogram node size. The cartogram generation algo-

rithm stops when all the region nodes reach a maximum size. Nodes are same size when the
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Algorithm 2 LayoutNode
Input–
CCGList : list of CCG regions
river: list of river edges
Local variables
MaxSize : the maximum size of CCG regions set by user
crossing: TRUE if a CCG region crosses river
stalemate: TRUE if a CCG region is placed back in its previous position
reverseDirection: the reverse direction that lead neighboring CCG regions to stagnation
1: procedure LAYOUTNODE ( CCGList , river )
2: while CCGList.getMaxSize() < MaxSize do
3: intersectionList = TestRiverIntersection( CCGList, river )
4: if intersectionList.getSize() > 0 then
5: intersectionList.saveCrossedPositions()
6: intersectionList.setPositions (
7: intersectionList.getPreviousPositions())
8: boolean stalemate = intersectionList.isStalemate ()
9: if stalemate == TRUE then

10: intersectionList.deriveReverseDirections ()
11: // push neighboring CCGs
12: CCGList.counterMovement ()
13: endIf // Stalemate
14: else // No intersections
15: CCGList.setSize ( CCGList.getSize()++ )
16: CCGList.savePreviousPosition()
17: endIf // Intersections
18: RemoveOverlap()
19: UpdateLayout()
20: endWhile

user chooses uniform size nodes or the maximum size node when user chooses unit area size

mapped to area population.

The domain boundaries are set to ensure each node does not move outside the screen. When

a region node reaches the north/south boundaries, it will be shifted to west/east direction which

enables the cartogram generation algorithm to continue. When a region node reaches west/east

boundaries, the algorithm terminates. This decision is made due to the elongated shape of the

UK in the north/south orientation.

5.3 Results and Discussion

For a video demonstration of the algorithm and more results, please see the accompanying

video https://vimeo.com/276194111. In this section, we present our cartograms with and

without topological features. Figure 5.5 (top) shows the typical cartogram generated without
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Figure 5.5: The top shows the basic cartogram without topological features. The middle shows the
cartogram with Thames river and a narrow push width, pε . The bottom shows regions marked with a
gray cross are those that cross the Thames river if the topology is not preserved. Color is mapped to
Coronary heart disease distribution in England.
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Figure 5.6: This figure illustrates the configuration when a CCG region (blue) crosses the river
and is placed back to its previous position (dashed outline). A reverse direction is derived used
to push all neighboring CCG regions (red) in the reverse direction. The reverse direction is
turned into a reverse region by introducing a width, pε .

any topological features. Figure 5.5 (middle) presents the output of the cartogram with the

Thames river topology. The reverse pushing width is set to pε = 40 % of a unit region width.

Figure 5.8 shows the cartogram with Thames river and a larger pushing width pε =100 % of

a unit region width. Figure 5.5 (bottom) shows the regions that cross the river topology if no

intersection test is performed. In other words, topologically incorrect region nodes.

Also, instead of using uniform size, we can map the size of node to each regions’ popu-

lation. Figure 5.7 (top) shows the standard cartogram with size mapped to population. Figure

5.7 (middle) shows the cartogram with Thames river feature and mapped to population. Re-

gions in Figure 5.7 (bottom) marked with a gray cross are those that cross the Thames river.

If the topology is not preserved. There are 10 error regions crossing the river in the figure,

which are Oxfordshire, Chiltern, Windsor Ascot & Maidenhead, Hillingdon, Slough, Ealing,

Hammersmith Fulham, Hounslow, Richmond and Wandsworth.

We are using a diverging color map from dark green to dark red (from Colorbrewer [44])

to illustrate a user-chosen health care prevalence from minimum to maximum. In the figures

we present, the color is mapped to coronary heart disease distribution in England. Users also

can select any healthcare prevalence through a menu and generate different cartograms. We
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also enable the user to select the maximum size of a region to control the trade-off between

space-filled and map accuracy.

We also offer zooming and panning tools that help users to zoom close-up for details of the

cartogram.

To increase the river recognizability, as a user option, we also present a river width setting,

rε . A region is marked as crossing a river not just when its center point crosses the river

polyline, but when the distance between its center point and any river polyline segments is less

than a user specified distance. See Figure 5.1. For a supplementary video showing further

results, please see the accompanying video.

5.4 Summary

This Chapter presents cartograms with topological features which increase the recognizability

of a cartographic map and reduce layout error. We convert real geographic information such

as a river into a topological feature on the cartogram using a definition and approximation

algorithm. We then implement a Dorling style cartogram incorporating this topological feature

constraint and display CCG population and healthcare data. Several interactive user options are

available to explore and present the results focusing on different user requirements for further

exploration, analysis and comparison. Future work includes investigating more topological

features, e.g. including more major rivers and a more in-depth user feedback study. A detailed

evaluation including a general user-study is future work and would require an additional thesis

chapter. We believe the main novelty lied in the new concept and a sample implementation.

We believe evaluation start with an objective error metric in this case.
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Figure 5.7: The figure shows the cartogram with unit area size mapped to population without (top) and
with (middle) the Thames topology feature. Regions marked with a grey cross are those that cross the
Thames river if the topology is not preserved (bottom). The color is mapped to hypertension prevalence
in England.
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Figure 5.8: This figure shows the cartogram with Thames river and a wide pushing width, pε

= 100 %. Color is mapped to Coronary heart disease distribution in England.
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Conclusion and Future Work
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”Someday, with my sail piercing the

clouds; I will mount the wind, break

the waves, and traverse the vast,

rolling sea.”-Li Bai1

6.1 Conclusion

I N this thesis, we work on geo-spatial visualization with population healthcare data. I de-

scribe a literature review of narrative visualization including geo-spatial visualization. It

summaries the goals we want to reach in our research: increasing memorability and cognition.

By using cartograms and treemaps, we are able to combine high-dimensional, mutlivariate data

with corresponding geo-spatial information. The work we present differs from previous work

in that it attempts to combine the space-filling, hierarchical characteristics of ordered space-

filling treemaps together with the geo-spatial information conveyed by a cartogram (Chapter

1Li Bai (701-762), also known as Li Bo, Li Po and Li Taibai, was a Chinese poet acclaimed from his own day
to the present as a genius and a romantic figure who took traditional poetic forms to new heights.
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3). Additionally we include time as a variate into the cartographic treemaps (Chapter 4). Fi-

nally, we introduce topological features to Dorling-style and rectangular cartograms (Chapter

5). We strongly believe that our work provides a novel solution for visualizing this kind of

complex data set.

To conclude this thesis, we again re-emphasise the main benefits and contributions of this

thesis:

In Chapter 2, we present a literature survey of narrative visualization including geo-spatial

visualization. We provide a novel up-to-date overview of storytelling in visualization, in which

the most important recent literature is included and discussed. Since storytelling in visual-

ization is a relatively new subject, we expect an increase in research in the coming years.

Moreover we believe it will evolve into a popular topic in the field of visualization.

In Chapter 3, we present a novel hybrid visualization, the cartographic treemaps combin-

ing geo-spatial information, a novel interactive neighborhood preservation metric, and space-

efficient geometry for the interactive visualization of geo-spatial, and high-dimensional data.

It combines the advantages of both cartograms and treemaps. We go on to implement and

demonstrate this visualization with a real-world high-dimensional health care data collected by

NHS to support clinical commissioning groups (CCGs) and the health care service providers.

Several interactive user options are available to explore and present the results focusing on

different user requirements for further exploration, analysis and comparison. Also, we present

several multivariate observations based on the cartographic treemap visualization and report

feedback from two domain experts in health science.

In Chapter 4, we extend the cartographic treemaps presented in Chapter 3 by adding time-

oriented data. In particular, we introduce a new time-oriented cartographic treemaps that en-

ables the user to explore hierarchical, multi-variate data over a range of years. Both static and

animated visual designs are used for cartographic treemaps to present the temporal trends of

data. We also provide interactive user-options that enable users to customize the visual layout.

In Chapter 5, we present cartograms with topological features which increase the recog-

nizability of a cartographic map and reduce layout error. We have done this by converting

real geographic information such as a river into a topological feature on the cartogram using

a definition and approximation algorithm. We then implement a Dorling style cartogram in-

corporating this topological feature constraint and displaying CCG population and healthcare

data. Several interactive user options are available to explore and present the results focusing
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on different user requirements for further exploration, analysis and comparison.

All my research implementation is based on C++ and the QT platform. We are using Git

for version control. The geo-spatial information is converted by QGIS [41] from map files

(shapefile or geojson) to CSV files. The CSV files contain all the useful information we need

for further implementation, such as longitude and latitude of each region, region name, region

code, and area code. We extract 14 main healthcare attributes from excel files provided on the

NHS website [46]. There are many important classes for our software. The DataFile class is

to read and convert all the modified input. The Region file is to store all the geo-spatial related

information, such as region position, size and corresponding healthcare data. The ColorMap

class is to implement different color legends from various sources. We use the Treemaps

class to present treemaps inside a region node or to provide a detailed view. And we use the

LayoutWidget class and Interface class to present the final output and enable user interaction.

We also implement a “step” function to show each single frame of our visual design. This aids

debugging as presented by Laramee in “using visualization to debug visualization”[195].

6.2 Future Work

My whole PhD session is working on geo-space with population healthcare data. We present an

overview of narrative visualization, and develop three different cartograms systems focusing

on multivariate data, time-oriented data and geo-spatial features. Looking ahead, there are

several unsolved problems which need more investment in future work.

For survey of narrative visualization including geo-space

By reviewing Table 2.1 and Table 2.2, we can see that storytelling visualization focuses

on information visualization more than scientific visualization, which conveys that more chal-

lenges are left unsolved in this field. However, by refining a storytelling model for scientific

visualization [10], the implementation of storytelling in scientific visualization could increase

in the future. We can also see that storytelling in visualization concentrates more on explo-

ration than on presentation. Like Kosara and Mackinlay [115] state: “visualization techniques

address the exploration and analysis of data more than presenting data”.

In future work, there are many directions and unsolved problems. Storytelling will gain

importance in data presentation and data exploration. Here is a summary of some unsolved

problems in storytelling for visualization:
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• It is clear that objective measures of user-engagement is a relatively unexplored area of

research. Can we derive a mature classification of user engagement activities? Is user

engagement something we can clearly define?

• Data preparation and enhancement: Virtually no one has addressed the challenge of

data preparation and enhancement for storytelling. Moreover, is storytelling data best

captured or derived from an existing data set or software system? Can a standard data

file format be developed?

• Narrative visualization for scientific and geo-spatial visualization: Why has there been

such an imbalance of research narrative visualization for information visualization but

virtually none for scientific and geo-spatial visualization?

• Transitions for scientific visualization: The benefits of static transition versus dynamic

transitions in visualization still remains relatively immature.

• Memorability for visualization: What are the key elements for making a memorable

visualization? This is still an immature research direction.

• Animated transitions for geo-spatial visualization: Animated transitions for geo-spatial

visualization remains an open research direction. This is surprising given the popularity

and importance of geo-spatial visualization.

• Interpretation for scientific information, and geo-spatial visualization: Currently no pa-

pers to our knowledge focus on the topic of effective interpretation of stories; this topic

remains largely unexplored.

The classification of literature we present makes it clear that many future research directions

remain open in storytelling and visualization.

Cartographic treemaps

Future work includes investigating more optional color maps for high-dimensional data

and a more in-depth user feedback study. Future work will include more attributes of NHS

data in addition to population and health disorder prevalence, such as the number of practices

per CCG, and rates of A&E admissions. More filtering options will also be introduced, such as

filtering by age range. Also, a deeper user study on the performance of cartographic treemaps

with more domain expert could be done in future work.
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Figure 6.1: This image shows a map of England with three main rivers, The River Severn(yellow), The
River Thames(blue) and The River Trent(red).

Time-oriented cartographic treemaps

Adding a longer period of time could be considered as future work. Assessing the utility of

animation is also future work. A data analyst may wish to examine how prevalence rate varies

by age group; in other words, to assess the degree of association between two attributes. A

second categorical attribute such as age group could be accommodated readily within this tool

by using clustered or stacked bar charts, pyramidal bar charts or heat maps.

Other possible extensions would involve the graphical representation of other types of at-

tribute (e.g. histogram for a continuous measure or score variable) and combinations of differ-

ent types of attribute (e.g. box and whisker plot to compare the distribution of a continuous

measure or score variable between two or more age groups). Other issues that may arise in

the analysis of longitudinal data include state dependence and the mover-stayer problem [196].

These issues could be explored by displaying a heat map within each tile in order to represent

the matrix of transition probabilities at each location on the cartogram.

Cartograms with features

Future work includes investigating more topological features, e.g. including more major

rivers, such as the River Severn and the River Trent. (See Figure 6.1 ). A more in-depth user

feedback study is also a direction of future work. Do the topological features enhance the
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recognizability of a cartogram? And how many topological features would be a good number

to be implemented?

For the future work of this thesis, we also propose more research work on combining

other visualization techniques with geo-spatial information and high dimensional dataset. A

corresponding case study on presenting visualization output by storytelling techniques for user

memorability and engagement is another direction for future work.
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