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Chapter 1

EnsembleDashVis Views and
Volunteers: A Retrospective and
Early History
Qiru Wang, Rita Borgo and Robert S. Laramee

Abstract

This paper offers a retrospective history of the early development stages of
EnsembleDashVis, a visualization dashboard specifically crafted to support mod-
elers in interpreting a simulation model utilized to forecast COVID-19 trends. The
volunteer effort behind this dashboard was collaboratively contributed with the
Scottish COVID-19 Response Consortium (SCRC), with the objective of enabling
an enhanced comprehension of the complex dynamics of the pandemic through
modeling of COVID-19 data collected by NHS Scotland during the first wave of
the outbreak. This retrospective chronicles the design and development journey
of the system, guided by feedback from domain experts, all taking place amidst
the exceptional circumstances of an unprecedented pandemic. The outcome of
this volunteer work is a streamlined relationship discovery process between sets
of simulation input parameters and their respective outcomes, which leverages
the power of information visualization and visual analytics (VIS). We hope
that this retrospective will serve as an insightful resource for future effort, in
VIS for pandemic and emergency responses and promote mutually beneficial
engagement between scientific communities.

Keywords: Data Visualization,Visual Analytics,Information Visualiza-
tion,Emergency Response,Visual Design

1. Introduction and Motivation

The Scottish COVID-19 Response Consortium (SCRC) [1], in collaboration
with the Royal Society’s call to action in March 2020, has taken a proactive
approach to address the need for enhanced epidemiological models of COVID-
19 transmission. This joint volunteer effort, known as Rapid Assistance in
Modeling the Pandemic (RAMP) [2], aims to foster a deeper understanding of the
consequences associated with various exit strategies from lockdown measures.
Moreover, this consortium attracted the involvement of distinguished scientists
and experts from diverse organizations both within the United Kingdom
and abroad, thus augmenting the collective knowledge base and ensuring
comprehensive expertise in specialized domains.

RAMPVis [3] is a group of researchers specialized in Data Visualization and
Visual Analytics (abbreviated as VIS). The group voluntarily came forward to
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Figure 1.
A timeline of the events between Mar 2020 and the end of our volunteer work on 19 May 2021. The upper
section include policy changes during the time span, the lower section includes project developments and
meetings. Milestone events are shown in red.

contribute its specialized skills and knowledge in order to provide valuable
support to the SCRC modelers. The term modelers used here refers to the SCRC
researchers who were actively engaged in the development of epidemiological
models in SCRC. This target user group predominantly includes experts in
domains such as mathematics, statistics, and epidemiology.

Serving as the volunteer team responsible for providing visualization support
to one of the epidemiological models developed by the SCRC modelers [4], our
main objective is to provide VIS researchers and practitioners with valuable
insights gained from our research and development (R&D) activities conducted
during the COVID-19 pandemic. In an effort to predict the potential impact of
diverse interventions, modelers have actively utilized COVID-19 data, employing
a method known as Uncertainty Quantification (UQ). This process seeks to
measure uncertainties through the application of mathematical models and
simulations. However, modelers are faced with significant challenges, including
the aspects of expert elicitation and effective communication. In other words,
there is a need for software engineering efforts coupled with visualization to
provide support for validation and verification tests of models, and to create
efficient workflows between modelers and researchers from other disciplines [5].

In addressing these hurdles, Data Visualization and Visual Analytics (VIS)
emerge as a potent tool, offering the capacity to significantly enhance and
streamline their collaborative workflows [6]. While our work may not have
showcased the state-of-the-art VIS techniques, it effectively delivered rapid and
practical VIS support to the modelers during an exceptional and demanding
time.

Our contribution is an early history of our volunteer response from a software
engineering and visualization perspective. We present the earliest stages of the
visualization dashboard, EnsembleDashVis, developed during the pandemic,
aiming to assist the modelers in interpreting an Approximate Bayesian Com-
putation Sequential Monte Carlo (ABC-SMC) inference model that they have
developed using COVID-19 data collected during the first wave of the outbreak
in Scotland [7]. Much of this effort and the reasoning behind this volunteer work
was never documented.
Unconventional Software Development: The visualization software created in
this project was developed under unconventional and unprecedented circum-
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Figure 2.
The organization of researchers from the SCRC and RAMPVis. The SCRC modeling team is responsible for
developing the epidemiological models leveraging different modeling techniques. The RAMPVis team provides
visualization support to the SCRC modeling team, by establishing four VIS volunteer teams who work on the
actual development under the guidance of the RAMPVis team.

stances. One of the distinctive features of this software project was the significant
level of uncertainty encountered at the project’s inception. The following aspects
were unknown at the project outset:

• An unknown a priori requirements specification: We did not know what
the user requirements and expectations were.

• An unknown project team: The members of the project team were unknown
and/or had no previous history of collaboration. We only knew the leader
of the visualization team, Prof Min Chen. In addition, the project team was
dynamic with new members joining throughout.

• Unknown data characteristics: We did not know what the simulation data
was at the start of the project.

• An unfamiliar work environment: The collective work environment
landscape shifted to a work-at-home model which was new to the team at
the time.

While arguably, these characteristics could describe other software engineering
projects, we believe that the uncertainty in this particular case was unusually
high. All aspects of this project had the feel of “laying down the tracks as the train
was running”.

2. Background and Related Work

VIS has been widely utilized in critical applications such as emergency
responses and healthcare, assisting public officials and decision-makers in
understanding intricate datasets and extracting useful, actionable insights from
them [8]. VIS has also played a prominent role in disseminating COVID-19
information through various media channels. It has played a substantial role in
enhancing public communication, making it more efficient and clear, thereby
fostering a wider comprehension of the crisis [9].

In our work, our primary objective was to extend support through VIS to
two distinct user groups. Firstly, the statisticians, who could significantly benefit
from VIS in comprehending their models more effectively and fine-tuning them.
Secondly, to the epidemiologists, whom VIS could assist in interpreting the
outcomes of these computational models. Our outcomes are later included in
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multiple publications [4, 10, 11, 12]. The early stages functioned as the prelimi-
nary VIS prototype, shaping a portion of their respective studies. We refer the
reader to Preim and Kai for an overview of VIS applied in the context of public
health [13].

VIS for Emergency Response

Previously, we described related work that focuses on the use of VIS in
emergency response. We refer the readers to the related work section in Chen
et al. [4]. The aforementioned literature review laid the foundation and was
conducted prior to the development of our study in 2020.

Maciejewski et al. [14] develop a VIS toolkit to analyze the effect of decision
measures enforced during a simulated pandemic, the tool was later utilized by
the Indiana State Department of Health during an outbreak of H1N1 (swine flu).
Ribicic et al. [15] leverage VIS with the intention of delivering real-time feedback
derived from flood simulations to non-expert users, while Konev et al. [16] use
VIS to support decision-making in flooding scenarios.

Jeitler et al. [17] use VIS to analyze social media data to aid rescue teams,
specifically in terms of optimal allocation of resources during emergency
response situations. Similarly, Nguyen and Dang [18] harness social media data,
paired with VIS, to facilitate and improve post-earthquake resource allocation
and rescue effort.

In contrast to the majority of previous studies mentioned here that generally
focus on preparing for future emergencies, our work was undertaken during
the COVID-19 pandemic as a rapid response to a then current and ongoing
emergency.

VIS for COVID-19 Data Modeling

In the rest of the section, we focus on the use of VIS to analyze the compu-
tational modeling of COVID-19 data. These studies were not published nor
available to us during the development of the work we present here (from July
2020 to April 2021). In fact, the use of VIS in epidemiological modeling was rare,
the modelers might have been unaware that they had such a potent instrument
readily available [4].

He et al. [19] developed an SEIR (Susceptible, Exposed, Infected, and Recov-
ered) model for spread prediction by leveraging COVID-19 data obtained from
the Hubei province in China. They employed a variety of 2D plots to estimate the
parameters of the model and interpret the results that the model yielded. Godio
et al. [20] took the same approach in developing an SEIR model for the Lombardy
region in Italy.

The IHME COVID-19 Forecasting Team [21] take the application of data
visualization (VIS) a step further in their development of the SEIR model
for accessing social distance mandates, they extend the use of VIS to include
choropleth and violin plots, and small multiples for 2D plots.

Chinazzi et al. [22] develop a model to simulate the effectiveness of interna-
tional travel restrictions in containing the spread of COVID-19. In addition to
the use of 2D plots to refine their models, they also utilize a range of geospatial
approaches. This enabled them to more effectively interpret the results generated
by their models. The use of geospatial visualizations is also adopted by Alvarez
Castro and Ford [23] in their development of a model for analyzing transmission
in a university campus in the UK.
Studies have also been introduced which focus on the individual level, examining
the transmission chain from person to person. Antweiler et al. [24] collaborated
with public health departments in Germany and introduced a novel visual
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Table 1.
16 input parameters for the ABC-SMC inference model. As constant parameters such as K and rrd do not affect
the simulation results, they are not rendered in our visual designs.

Name Description
T lat Mean latent period (days)
juvp s Probability of juvenile developing symptoms
T inf Mean asymptomatic period (days)
T rec Mean time to recovery if symptomatic (days)
T sym Mean symptomatic period prior to hospitalization (days)
T hos Mean hospitalization stay (days)
inf asym Reduction factor of infectiousness for asymptomatic infectious individuals
p inf Probability of Infection
p hcw Probability of Infection (Healthcare Worker)
c hcw Mean number of Healthcare Worker contacts per day
d Proportion of population observing social distancing
q Proportion of normal contact made by people self-isolating
p s Age-dependent probability of developing symptoms
rrd Risk of death if not hospitalized
lambda Background transmission rate
K Hospital bed capacity

analytic method to identify clusters of COVID-19 infections in contact tracing
networks. Meanwhile, Baumgart et al. [25] presented a visualization system
designed to explore and analyze the pathways of pathogen transmission within
hospitals. The system leverages linked views, including a transmission pathway
view inspired by storyline visualization, aiming for efficient and intuitive contact
tracing.

In contrast to these studies that highlight the efficacy of VIS in supporting
the computational modeling of COVID-19 data with a primary focus on model
development, as they are formulated by the modelers, our study takes a different
approach. We focus our attention on exploring VIS as a potent tool that can
significantly improve the computational modeling of COVID-19 data, all viewed
through the unique lens of a VIS practitioner.

3. Data Description

The data used in our work includes simulation parameters and outcomes
from an ABC-SMC inference model [26] developed by a group of modelers from
Durham University, the University of Edinburgh, the University of Exeter, the
University of Glasgow, and the London School of Hygiene & Tropical Medicine.
The pandemic data used for the simulation was collected by NHS Scotland
during the first wave of the outbreak in Scotland spanning a period of 59 days
[7].

The model was built to analyze the pandemic data and infer the parameters
of the model that best fit the data. The model accepts 16 input parameters
(see Table 1), and a random seed facilitates the generation of 160 distinct sets
of configurations for these input parameters. The model then employs these
configurations as the initial input to perform 1,000 simulation iterations. As
the outcome of these simulations, 160 sets of predictions are generated, each
containing 13 output parameters, as shown in Table 2.

Upon receiving the data, we consulted the modelers to gain insights into
the conventional workflow they employ for data processing, as well as the
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Table 2.
13 output parameters from the simulation performed by the ABC-SMC inference model.

Name Description
iter The simulation number.
day The day number.
age group The age group of the population.
S Number of susceptible individuals (not infected).
E Number of infected individuals but not yet infectious

(exposed).
E t Number of exposed individuals and tested positive.
I p Number of infected and infectious symptomatic

individuals but at pre-clinical stage (show yet no
symptoms).

I t Number of tested positive individuals that are infectious.
I Number of infected and infectious asymptomatic

individuals.
I s Number of infected and infectious symptomatic

individuals.
H Number of infected individuals that are hospitalized.
R Number of infected individuals that have recovered from

the infection.
D Number of deceased individuals due to the disease.

Figure 3.
An illustration of the flow from the input parameters to the prediction results. 160 sets of input parameters are
used to perform 1,000 simulation iterations, resulting in 160 sets of prediction results.

significance and the underlying meaning associated with each input and output
parameter. As constant parameters such as K and rrd do not affect the simulation
results, they are not rendered in our visual designs.

It is worth mentioning that after plotting the output data using a line chart,
an error was immediately spotted, see Figure 7, where an unusual spike can be
observed on day 20. The modelers were notified and the bug was fixed. However,
the rectified output file was never made available to us.

4. EnsembleDashVis

This section presents the development of EnsembleDashVis from its technol-
ogy and design and interaction techniques. We then present the history behind
our fully virtual collaboration between volunteer researchers from multiple UK
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Figure 4.
The overview of EnsembleDashVis. The dashboard consists of five views: (Figure 4A) a parallel coordinates plot
for all input configurations, (Figure 4B) a table view with glyphs for all input configurations, (Figure 4C)
a parallel coordinates plot for simulation outcomes, (Figure 4D) a line chart for model predictions, and
(Figure 4E) a scatterplot for Principal Component Analysis (PCA) outcomes. The views are coordinated
with each other, enabling the modelers to observe relationships between input and outcome through interactions.

institutions. Being one of the four VIS volunteer teams, we received guidance
from the RAMPVis team via regular virtual meetings. The RAMPVis team
communicated with the SCRC modeling team regularly and provided us with
important information and data. We chronicle the development of different
views of the data, the order in which they were introduced, and the reasons and
motivations at the time. In 2020 we were all in an unprecedented and unfamiliar
situation, thus, some of our decisions were ad-hoc.

4.1 An Unconventional Software Development Cycle

A common agile software development life-cycle consists of five stages: 1)
requirements specification, 2) software design, 3) implementation, 4) testing, 5)
documentation. [27] And these five stages iterate repeatedly until the software
project is finished. However, this project deviated significantly from the standard
agile software engineering model.

Knowledge Exchange: This project, as well as all of the other visualization
projects we have collaborated on, start with a phase more aptly named knowledge
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exchange (KE). This is due the fact that the domain experts do not have a back-
ground in visualization, thus they do not know what the options are in terms
of visual analysis. As a result of this absence of visualization expertise, the KE
phase (which replaces the standard requirements specification phase) involves
two sub-phases:

From Domain Experts to Visualization Team: The discussion starts with
the visualization team asking a series of questions to the domain experts.
These questions are typically: 1) What is the data you have collected? 2) Why
did you collect this data? 3) What questions were you trying to answer with
the (simulation in this case) data? 4) What information were you hoping to
obtain as an outcome from your data collection process? 5) Can you describe
the characteristics of your data in more detail? After the visualization team
has gathered enough of the first round of knowledge the next phase of the KE
process can begin.

From Visualization Team to Domain Experts: Since the domain experts, in
this case the simulation experts, do not have a background in visualization they
look to the visualization team to make recommendations to them in term of what
visual analysis designs might make sense. Thus the visualization team typically
discusses options in terms of graphical displays that might help the domain
experts answer the questions posed in the previous sub-phase. In essence the KE
process flows in the other direction. The visualization team essentially educates
the domain experts on visual analysis options that they may not be familiar with.
After this discussion, the actual next phase of the software engineering lifecycle
can begin.

The software design and implementation phases are the same as in the typical
agile model of software development.

Testing and Evaluation: Instead of the conventional testing phase of a typical
agile development model, this project and our other collaborative visualization
projects, undergo a more aptly described testing and evaluation (TE) phase. Instead
of the emphasis on extensive testing on a wide range of cases, our visualization
software undergoes and extensive evaluation by the domain experts. Specifically,
they carefully evaluate if and how the software can be used to answer their
domain-specific questions or hypotheses. They will ask for a demonstration of
precisely how it can be used for their specific application. Typically, when we
demonstrate a version of the visualization software, the domain experts will
ask several questions about how it works. And then, during the discussion new
feature requests arise. Often these sessions are also characterized by feature creep
[28]. The TE phase is usually fairly intense generating a lot of enthusiasm from
the domain experts since they are seeing visualization software that they have
never seen before and thus a large number of feature requests arise from the
meetings in this phase.

After the TE phase the cycle repeats interactively. In the visualization software
development lifecycle, the requirements specification phase is replaced by the
KE phase and the testing phase is replaced by the TE phase. This is because an
adequate knowledge transfer and evaluation cannot be completed in only one
cycle. The cycle repeats until the project ends, typically constrained by a funding
period.

4.2 Technology and Design

The development of EnsembleDashVis was carried out using a combination
of web technologies, including HTML, CSS, and JavaScript. The dashboard was
designed to be a web-based application, enabling it to be accessed from any
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Figure 5.
The structure of the actual code. Components are organized into separate files, with each file containing the
code for a single view. Utilities contain the code for the data preprocessing and calculations. Data contains the
metadata and preprocessed output by utilities.

device with a web browser. The dashboard was built using D3.js [29], which is
a powerful and flexible library for creating visual data representations in web
applications. D3.js provides a wide range of tools for creating interactive graph-
ics, including support for a wide range of data formats, and a large number of
built-in visual designs. The dashboard was designed to be responsive, allowing it
to adapt to different screen sizes and orientations, and to be accessible, allowing
it to be used by people with disabilities.

The dashboard was then hosted on Netlify [30], which provided unlimited
credits to websites that were dedicated to sharing information about COVID-
19. This allowed the dashboard to be accessed by anyone with an Internet
connection, which was crucial during the pandemic for virtual collaboration.

The dashboard was designed to be easy to use, with a simple and intuitive
interface that enables users to quickly and easily explore the data. It employs
a modular design, with each view of the data being rendered as a separate
component, allowing the dashboard to be easily extended and modified. Data is
preprocessed by utility functions and stored in separate CSV files, which is then
loaded into the dashboard when it is accessed.

The source code is publicly available on GitHub, https://github.com/
thevisgroup/EnsembleVis [31].

4.3 Interaction

In this section, we describe the interaction techniques that were incorporated
into the dashboard to enable the modelers to explore the data and identify
interesting patterns. Here we follow the Visual Information Seeking Mantra [32]:
“overview first, zoom and filter, then details-on-demand”.

4.3.1 Overview First

Figure 4 shows the overview of the dashboard. The dashboard consists of five
views: Figure 4A a parallel coordinates plot [33, 34] for all input configurations,
Figure 4B a table view with glyphs for all input configurations, Figure 4C a
parallel coordinates plot for simulation outcomes, Figure 4D a line chart for
model predictions, and Figure 4E a scatterplot for Principal Component Analysis
(PCA) [35] outcomes.
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Each view provides an overview of the corresponding data, supporting the
modelers to quickly identify interesting patterns and outliers.

4.3.2 Zoom and Filter

The parallel coordinates plot in Figure 4A and Figure 4C allows the modelers
to select a subset of input parameters via brushing to focus on interesting config-
urations. The table view in Figure 4B enables the modelers to sort configurations
by individual input parameters via sorting. The scatterplot in Figure 4E enables
the modelers to reduce the dimensionality and identify key parameters via
brushing.

These interactions enable the modelers to quickly adjust the focus of the views
and drill down into the details.

4.3.3 Details-on-Demand

These views in Figure 4 are coordinated with each other, e.g., brushing on
the input parallel coordinates plot in Figure 4A highlights the corresponding
input configurations in both the table view Figure 4B and scatterplot Figure 4E.
Focusing on a specific row in the table view Figure 4B renders the corresponding
output data in both the output parallel coordinates plot Figure 4C and line chart
Figure 4D.

These coordinated interactions enable the modelers to quickly identify
interesting configurations and observe relationships between input parameters
and model outcomes.

4.4 Meetings and Milestones

In this section, we provide a detailed history of meetings and development
milestones. Section 4.4 shows the list of meetings held throughout the entire
volunteering period, detailing each meeting’s date, the attendees, and the
milestones accomplished.

Meeting #1 - July 2020

On 27 July 2020, amid the UK’s first national lockdown and stricter measures
imposed by local authorities, we convened the initial virtual meeting with VIS
researchers from King’s College London, Loughborough University, Swansea
University, University of Nottingham, University of Warwick, and University of
Oxford.

During the meeting, we received an overview of the SCRC and the responsi-
bilities of the visualization volunteer team. Our assigned task was to create visual
interfaces for the model, for the purpose of enabling the modelers to analyze the
outcomes of the model.

Following the initial meeting, we engaged in email correspondence with the
modelers to delve into the visualization requirements. The modelers shared
a comprehensive list of parameters and model outcomes, along with the
corresponding outcome data [7].

Commit #1 - Sep 2020

We proceeded to create an initial prototype of the visualization, which was
subsequently reviewed by the modelers. Incorporating their input, we refined
the prototype during our weekly internal discussions. On 14 Sep 2020, England
introduced the ‘rule of six’, which banned any gatherings above six. On the
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Date Attendees Milestones
27 July 2020 Dylan Rees, Elif Firat, Hui Fang, Min

Chen, Qiru Wang, Rita Borgo, Robert
Laramee, Tom Torsney-Weir

Volunteer team established.

6 Nov 2020 Cagatay Turkay, Hui Fang, Qiru
Wang, Rita Borgo, Robert Laramee,
Tom Torsney-Weir

First prototype.

6 Nov 2020 Ben Swallow, Hui Fang, Qiru Wang,
Rita Borgo, Robert Laramee, Tom
Torsney-Weir

First prototype feedback

11 Nov 2020 Cagatay Turkay, Elif Firat, Hui Fang,
Rita Borgo, Robert Laramee, Qiru
Wang, Tom Torsney-Weir

6GB of simulation data received. Second prototype.

25 Nov 2020 Cagatay Turkay, Elif Firat, Hui Fang,
Robert Laramee, Qiru Wang

Third prototype.

9 Dec 2020 Cagatay Turkay, Hui Fang, Robert
Laramee, Qiru Wang

All views implemented.

10 Dec 2020 Ben Swallow, Cagatay Turkay, Hossein
Mohammadi, Hui Fang, Janine Illian,
Michael Dunne, Peter Challenor,
Qiru Wang, Richard Reeve, Robert
Laramee, Thibaud Porphyre

Presentation to modelers.

25 Mar 2021 Cagatay Turkay, Elif Firat, Hui Fang,
Rita Borgo, Robert Laramee, Qiru
Wang

Further feedback from modelers.

19 May 2021 Ben Swallow, Cagatay Turkay, Hossein
Mohammadi, Hui Fang, Janine Illian,
Michael Dunne, Peter Challenor,
Qiru Wang, Richard Reeve, Robert
Laramee, Thibaud Porphyre

Final presentation to modelers.

Table 3.
The table shows the list of meetings held throughout the entire volunteering period, detailing each meeting’s
date, the attendees, and the milestones accomplished.

same day, we made our first commit to a GitHub repository, signifying the
commencement of our development1. At the same time, we began preprocessing
the data. A week after the initial commit, the UK witnessed the implementation
of additional restrictions, such as mandatory work from home and a 10PM
curfew.

Meeting #2, View #1 - Nov 2020

On 5 Nov 2020, the first day of the second national lockdown in the UK, we
completed the first view of the simulated input parameters, a parallel coordinates
plot. See Figure 6. We chose to use a parallel coordinates plot as it is a common
technique for visualizing multivariate data, and is particularly useful to explore
relationships and patterns across multiple input parameters. Each axis in the plot
represents an input parameter, the y-axis represents the value of the parameter,
and each polyline represents one input configuration. The plot supports brushing
and linking, enabling modelers to select a subset of input parameters to focus
on interesting configurations. This followed by the second meeting with the
RAMPVis team from other institutions, where we received feedback on the first
view, on 6 Nov 2020. The response from the modelers to the parallel coordinates
view was, in general, very positive. They are very interested in multivariate
analysis and had not seen this visual representation before. More details are
provided in Section 5 on domain expert feedback.

Meeting #3, View #2 - Nov 2020

1 https://github.com/thevisgroup/EnsembleVis
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Figure 6.
The first visual design, a parallel coordinates plot depicting all 160 input configurations of the model, was
completed on 5 Nov 2020. Each axis represents an input parameter, the y-axis represents the value of the
parameter, and each polyline represents one input configuration. The table below shows the configuration details.

On 11 Nov 2020, the group convened for the third meeting, where we received
further feedback from the RAMPVis team on the parallel coordinates plot. As
per the modelers’ requests conveyed via email, we incorporated a line chart to
depict the model outcomes. See Figure 7. The x-axis of the chart corresponds
to the number of days since the first date in the Scottish dataset, while the y-
axis represents the population. Line chart and other classic visual designs are
widely used by the modelers, they are familiar with these designs and can easily
interpret the results. The line chart is coordinated with the parallel coordinates
plot, enabling the modelers to select a subset of the input parameters and quickly
identify the corresponding model outcomes. A focus+context technique is used
to highlight the selected subset of the input parameters in the parallel coordinates
plot.

Meeting #4, View #3 - Nov 2020

On 25 Nov 2020, the group convened for the fourth meeting, held just a day
after the announcement of the gathering rules for Christmas in the UK. During
the meeting, we received feedback from the RAMPVis team on the new view
of the input parameters, a table with glyphs. See Figure 8. We incorporated
this table view featuring glyphs to depict all 160 input parameter configura-
tions, following discussions with the modelers. Each row represents an input
configuration, and each column represents an input parameter. The table view
enables the modelers to sort configurations by individual input parameters. Each
parameter value is symbolized by a bar glyph, the color and length correspond to
its deviation from the average value of 160 predictions.

12
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Figure 7.
A line chart depicting the model outcomes. The x-axis of the chart corresponds to the number of days since the
first date in the Scottish dataset, while the y-axis represents the population. To differentiate between different
population categories, a color map was incorporated: susceptible, exposed, hospitalized, recovered, death,
asymptomatic, and symptomatic. The focus+context technique is used here to highlight the outcome of the
current configuration, while the grey lines represent other outcomes. On day 20, there is an unusual spike which
was later identified as caused by an error in the model.

Figure 8.
The table view depicting all 160 input parameter configurations. The view enables the modelers to sort
parameter values and identify interesting configurations. Each row represents an input configuration, and
each column represents an input parameter. Upon clicking on a row, the line chart in Figure 7 is updated to
display the corresponding model outcomes. Clicking on the column header sorts the table by the parameter
values.

The table view provides the functionality to sort the parameters according
to their values and can be dynamically updated by brushing the parallel
coordinates plot for the input parameters in Figure 6. The line chart in Figure 7
can be quickly updated to display the corresponding model outcomes by clicking
on the configuration index in the table view.

Meeting #5 - Dec 2020
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On 9 Dec 2020, a week after the end of the second national lockdown in the
UK, with England facing a stricter three-tier restriction policy, the group con-
vened for the fifth meeting. At this point, we still had not met with the modelers,
all communications and discussions took place via email. The RAMPVis team
decided to organize a meeting with the modelers to present our prototype for
feedback.

Meeting #6, Views #4 & 5, Feedback #1 - Dec 2020

On 10 Dec 2020, we finally met with modelers from Durham University, the
University of Edinburgh, the University of Exeter, the University of Glasgow, the
London School of Hygiene & Tropical Medicine, for the first time. In contrast
to sharing screenshots via email and deploying a website with a live view of
our development (which they might not have been proficient in using), we
delivered a live presentation, fielding numerous questions. The modelers were
pleased with the dashboard, and a list of ad-hoc requirements was provided.
Furthermore, we collected insightful feedback that we elaborate on in detail in
Section 5.

1. The modelers found that the parallel coordinates plot is useful in identify-
ing outliers, and requested the incorporation of another one for the model
outcomes. Given that the outcome data mirrors the input in a multivariate
format, employing a parallel coordinates plot could potentially be useful.
We implemented this as shown in Figure 9.

2. The modelers requested that all the simulation results be displayed in the
line chart, with the current one highlighted. This resembles their usual
workflow for analyzing multiple simulation outcomes. We implemented
this as shown in Figure 7.

3. The modelers requested the incorporation of a scatterplot to visualize the
model outcomes, specifically a Principal Component Analysis (PCA) result
obtained from another VIS volunteer team. The motivation behind this is to
reduce the dimensionality and identify key parameters. We implemented
this as shown in Figure 10.

4. The modelers requested all views to be coordinated with each other,
enabling observation of relationships between input parameters and model
outcomes through interaction.

a. Brushing on the input parallel coordinates plot (Figure 6) highlights
the corresponding input configurations in both the table view
(Figure 8) and scatterplot (Figure 10).

b. Brushing on the scatterplot (Figure 10) for input configurations
highlights the corresponding input configurations in both the table
view (Figure 8) and input parallel coordinates plot (Figure 6).

c. Clicking on a specific row in the table view (Figure 8) renders the
corresponding output data in both the output parallel coordinates plot
(Figure 9) and line chart (Figure 7).

Furthermore, we received the exciting news that initial funding had been
successfully secured [36], which led to the transition of our volunteer work to a
team of paid developers, who would continue with further implementation of
the project.

Meeting #7, Feedback #2 - Mar 2021

On 25 Mar 2021, the UK was in the process of cautiously lifting its third
national lockdown, the ‘rule of two’ was still in place. The group convened for
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Figure 9.
A parallel coordinates plot depicting the model outcomes by age group. As requested by the modelers, the mean
value of 160 predictions generated by each input configuration, as well as for each age group, was computed and
rendered here. Each axis represents one variable from the outcome and its value. Each age group is mapped to a
color, the dashed red line represents the average value, and the dotted red line . . . . . represents the standard
deviation.

Figure 10.
A scatterplot depicting the PCA outcome from another VIS volunteer group, was added upon request by the
modelers. Upon brushing, the selected configurations are highlighted in the table view in Figure 8.

the seventh meeting, where we received further feedback from the modeling
team on our implementation. We detail the feedback in Section 5.

Last Commit - Apr 2021

By 28 Apr 2021, more restrictive measures were abolished, although the
prohibition on mixing between households was still in effect. On this day, we
made our last commit to our GitHub repository. This act signified the completion
of our volunteer work, as we had smoothly transitioned all tasks to a team of paid
developers.

During the entire development process, our meetings were exclusively
conducted virtually, and our communication relied heavily on email correspon-
dence. Despite the lack of in-person interactions, we successfully met the initial
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requirements of the modelers and delivered a VIS solution that received very
positive feedback from the SCRC modeling team.

Meeting #8, Feedback #3 - May 2021

On 19 May 2021, the UK was viewing the light at the end of the Covid tunnel,
weddings and funerals were still restricted to 30 people, and indoor gatherings of
more than two households were still banned. The group convened for the eighth
and final volunteer meeting. During this final meeting, a modeler joined and
gave us some in-depth feedback on the influence our work had on their modeling
process, as well as suggesting potential improvements. We detail the feedback in
Section 5.

5. Domain Expert Feedback

In this section, we share the invaluable feedback collected from the modelers.
Meeting #6 and #7 were held prior to the conclusion of our development, serving
as an iterative process of refinement aimed at validating and improving our
visual designs while ensuring their relevance and utility to domain experts.
Meeting #8 was held after the conclusion of our development, functioning as
a means to gather feedback on our work and to identify potential future work.
Three domain experts in statistics from Durham University, the University of
Exeter, and the University of Glasgow, were invited to join these meetings.

5.1 Summary of Feedback

In this section, we provide a summary of the feedback collected from the
domain experts during our meetings.

Appreciation for Interaction and Visualization Design

The experts commended the visual designs for effectively depicting the
relative importance of input parameters on model predictions, highlighting
the utility of interactive graphics in understanding the significance of different
inputs. The ability to visually present the connection between input and output
parameters was particularly appreciated, emphasizing the value of visual
techniques in elucidating the relationships between variables.

Identification of Ineffective Parameter Combinations

The linked visual designs were recognized for their potential to help identify
ineffective parameter combinations, aiding in the optimization and calibration
process by revealing which combinations may not be useful. The ability to filter
out redundant input parameter configurations was seen as beneficial for focusing
on the most influential parameters, thereby reducing the dimensionality of the
problem.

Potential for Identifying Model Discrepancy

There was interest in the potential of visual designs to aid in identifying
model discrepancies when observational data becomes available, highlighting
the importance of visualizing observational data alongside model predictions.

Overview of Input Parameters and Distributions

The table view was praised for providing a clear overview of input parameters
and their distributions, enabling quick identification of influential parameters
and possible adjustments, as well as the elimination of unnecessary complexities.
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5.2 Detailed Feedback

In this section, we present some of the original quotes collected from the
domain experts during these meetings.

Domain Expert #1 - Professor in Statistics, Durham University

On 25 March 2021, Meetings #6 and #7, we presented the dashboard through
screen-sharing demonstrations, the domain expert appreciated the interactions
provided by the visual designs in depicting the relative importance of different
input parameters on the model’s predictions. “The visualizations are able to show
how important a particular input is for a particular output.”

In addition, the ability to visually present the link between the input and
output parameters. “The real interesting game here is the connection techniques to
understand the relations between the input and output.”

The linked visual designs also potentially enable the domain expert to
identify ineffective parameter combinations. “The different configurations is the
sort of history of calibration and by looking at those visualizations you can start saying
certain combinations may not be useful.”

The inclusion of a PCA plot was seen as a significant step towards dealing
with feature selection. The expert suggested adding two further plots depicting,
MDS and possibly ICA, to support model calibration using history matching.
“to perform history matching MDS is really what we use. The PCA plot is already very
informative ... t-sne like methods are ill suited for the task.”

Furthermore, the domain expert also expressed interest in the potential of our
visual designs to aid in identifying model discrepancy, when the observational
data becomes available. “The visualization would be helpful in identifying model
discrepancies when we eventually plot the observational data.”

Domain Expert #2 - Professor in Statistics, the University of Exeter

On the same date, during Meeting #6 and #7, the domain expert was pleased
with the ability of the visual designs to provide the potential to filter redundant
input parameter configurations, enabling users to concentrate on the most
influential configurations. “For particular input configurations after filtering, the
visualization shows that some of the input parameters can be ignored, which reduces the
dimensionality of the problem, and we can focus on the important parameters.”

The domain expert also noted the usefulness of the PCA plot and suggested
to replace the method with MPCA [salter2019-mpca] to further support the
process of detecting implausible input values “One approach is to look for inputs
configurations which would produce implausible outputs, we work with a sort of
implausibility statistical measure”.

Domain Expert #3 - Assistant Professor in Statistics, the University of Glasgow

On 19 May 2021, Meeting #8, the domain expert praised the visual designs’
ability to provide a clear overview of the input parameters and their distribu-
tions. This enables them to quickly identify possible adjustments they can make
to their input parameters, as well as to identify the most influential parameters.
“The table view is really useful in showing how close those input parameters are to the
threshold, which is very useful to understand affordability.”

The domain expert also noted that some overlapping distributions can be
ruled out quickly via the interactivity provided by our visual designs, this
enables them to eliminate unnecessary complexities and increase the overall
efficiency of their model. “It’s fairly obvious that some of the parameters can be ruled
out quite quickly, including some overlapping distributions.”
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An avenue for future work, as unanimously identified by all three domain
experts, involves integrating new visual designs to render and compare observa-
tional data against model predictions effectively.

6. Limitations

Due to the impact of the pandemic, the project was conducted in a fully
virtual manner, with all meetings and discussions taking place online, between
a large group of researchers from different disciplines and different institutions.
In total, 33 VIS researchers and 7 modelers were involved in this volunteer work.
The development was ad-hoc in some ways due to the unprecedented nature of
the pandemic. This resulted in a number of limitations, which we will discuss in
this section.

Lack of Novel and Advanced Visual Designs: Operating under a time con-
straint, the primary objective of our project centered on offering immediate
visual analysis assistance to the modelers. Thus, we were unable to explore
the inclusion of innovative and advanced visual design approaches. Instead,
we integrated a series of classic views, such as line charts and scatterplots.
These are visual designs commonly leveraged by modelers in their day-to-
day research. Interestingly, the modelers welcomed the introduction of a less
conventional (to them) visualization technique: parallel coordinates. They had
never before employed this, and its introduction proved beneficial to their
research. Consequently, they expressed a desire for the incorporation of an
additional parallel coordinates to assist in the visualization of model outcomes.

We believe that this is a testament to the effectiveness of advanced visual
designs in enhancing the modelers’ understanding of their models, this signals
the possibility for future inclusion of more sophisticated visual designs.

Lack of Formal Requirements Gathering: We were unable to meet with
the modelers until a particularly late stage. Instead, we had to rely on email
correspondence, which was arguably not as effective as face-to-face or even
virtual meetings. In a traditional software engineering project, requirements are
gathered through a series of meetings and discussions with end users. This did
not occur in our case.

This resulted in a lack of proper requirement gathering, which in turn led
to a number of challenges during the development process. For example, the
modelers made ad-hoc requests to incorporate different views at different stages
of the project, resulting in unexpected changes on the development side. This
could have been avoided if we had a better understanding of their requirements
from the beginning.

Dynamic Group Membership: The group membership was dynamic, with
researchers joining and leaving the group at different stages of the project.
This introduced some lack of continuity, as newcomers had to spend time to
familiarize themselves with the project. Furthermore, members came from
different disciplines, with different levels of expertise in visualization. This
has resulted in a lack of consistency in the development process, as different
members have different ideas on how to implement the views. The responsibility
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of each member, apart from the only developer in the group, was not clearly
defined.

Uncertain Project Direction: The exact direction of the project was not clearly
defined from the outset. Numerous details remained unknown to us during the
development process, such as the exact purpose of the visualization, the target
audience, and the end product. Consequently, the final product suffered from
suboptimal utilization of screen-space, as additional views were requested, the
implementation of a multi-view display design or collapsible views became time-
constrained and unattainable.

Other Technical Limitations: Some additional technical limitations include:
• Real-time updating: Coupling the simulation with the visual rendering

directly would have been very beneficial to the project, e.g., computational
steering.

• Standardization: Standardization of the data format would be beneficial to
all participants.

• Interpretability: A more formal evaluation of how interpretable our
visual representations are would be beneficial, e.g., presenting complex
epidemiological concepts in a clear and understandable manner to a wider
audience.

7. Conclusions

In this paper, we present the stories behind the development of Ensem-
bleDashVis, an interactive dashboard designed to visualize the input parameters
and outcomes of an ABC-SMC inference model used to analyze COVID-19 data
collected during the first wave of the outbreak in Scotland.

Given the multitude of uncertainties and challenges during this exceptional
period, a considerable amount of information was unavailable to us during
the development process. It was only through the Scottish COVID-19 Response
Consortium Stakeholder Report [37], published in late 2021, and various
publications [4, 10, 11, 12] that unveiled the remarkable endeavors undertaken
by other volunteer teams, that we gained additional insight and details.

We hope that our experience serves as a valuable source of insight into how
VIS research and techniques can play a crucial role in emergency response
initiatives and aid in effectively preparing for future emergencies, serving as an
inspiration to future volunteer efforts.
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