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Similarity Measures for Enhancing
Interactive Streamline Seeding

Tony McLoughlin, Mark W. Jones, Robert S. Laramee, Rami Malki, Ian Masters,
and Charles D. Hansen

Abstract—Streamline seeding rakes are widely used in vector field visualization. We present new approaches for calculating
similarity between integral curves (streamlines and pathlines). While others have used similarity distance measures, the
computational expense involved with existing techniques is relatively high due to the vast number of Euclidean distance tests,
restricting interactivity and their use for streamline seeding rakes. We introduce the novel idea of computing streamline signatures
based on a set of curve-based attributes. A signature produces a compact representation for describing a streamline. Similarity
comparisons are performed by using a popular statistical measure on the derived signatures. We demonstrate that this novel
scheme, including a hierarchical variant, produces good clustering results and is computed over two orders of magnitude
faster than previous methods. Similarity-based clustering enables filtering of the streamlines to provide a non-uniform seeding
distribution along the seeding object. We show that this method preserves the overall flow behavior while using only a small
subset of the original streamline set. We apply focus + context rendering using the clusters which allows for faster and easier
analysis in cases of high visual complexity and occlusion. The method provides a high level of interactivity and allows the user
to easily fine-tune the clustering results at run-time while avoiding any time-consuming re-computation. Our method maintains
interactive rates even when hundreds of streamlines are used.

Index Terms—Flow Visualization, Clustering, Similarity Measures, Focus+Context, streamlines
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1 INTRODUCTION

S TREAMLINES are curves that are everywhere tangent
to a steady-state (time-invariant) vector field. They

depict the path a massless fluid element traverses at any
given time. The placement of these curves strongly affects
the impact of the resultant visualization. Many automatic
streamline seeding strategies are presented in visualization
literature [19]. However, in practice these are not commonly
used by Computation Fluid Dynamics (CFD) experts. Rea-
sons for this stem from requiring knowledge of the seeding
algorithm to correctly interpret the results. Also some
seeding strategies place emphasis on uniform coverage
using evenly-spaced streamlines [13], however changes in
the physical proximity of streamlines may convey important
properties of the flow that are lost while using a technique
based on producing a fixed resolution output. Also domain
experts may not be interested in the entire spatial domain.
Their efforts may be focused on investigating a specific
sub-region. In this case, a global seeding strategy may add
visual clutter to the resulting visualization and impede the
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investigation by the user. Consequently, CFD engineers rely
heavily on manual seeding. In fact, the popular visualization
package, TECPLOT [1], includes no automatic seeding of
streamlines and relies entirely on the user to do so.

There is less focus on research enhancing the user
experience while employing manual seeding. Typically,
streamlines are seeded at equidistant positions along a curve
or plane with little further opportunity for interaction or
refinement. In many cases, this does not result in a visually
optimal set of streamlines for the given seeding object.
Whilst working with CFD experts we found that they pre-
dominantly use interactive seeding when using streamlines
to investigate their data. CFD experts rely heavily on the
derived visualizations for disseminating the results of their
simulations. The work presented here aims to enhance
the domain expert user’s experience while employing this
frequently used tool. We provide novel interaction with, and
control of, the set of streamlines produced from interactive
seeding objects. This allows the user to easily customize
the resultant visualization enabling them to portray their
results with more flexibility. Our method relies on only a
small number of parameters which are simple to navigate.
We place a high-level of importance on this observation in
order to provide an improved user experience. The user is
not required to navigate an unintuitive, high-dimensional
parameter-space.

The core of our method is a set of similarity measures to
compare streamlines. Clustering based on similarity is then
performed, which then enables several enhancements such
as a focus+context visualization and filtering of streamlines
to leave an expressive subset of streamlines. The main
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contributions of this paper are:
• A novel approach for computing a signature for an

integral curve, and its use for similarity testing using
the χ2 (Chi squared) test.

• The production of hierarchical signatures and their
use for computing the similarity of spatially shifted
integral curves.

• The use of previous and novel measures for integral
curves, and their comparison to existing state-of-the-
art techniques. The combination of these measures and
signature offers computation two orders of magnitude
faster.

• An interactive algorithm for streamline filtering along
the seeding primitive.

• A focus+context visualization based on the streamline
clusters.

• An algorithm that maintains a high level of interaction
with a large number of streamlines per seeding rake.

Many observations motivate this work. Our discussion
with domain scientists demonstrates that they primarily use
rakes to visualize and explore vector fields. Rakes tend to
be the first tool of choice because they offer real-time inter-
activity with no pre-computation, provide an intuitive visual
representation of the data and do not rely on complicated
user parameters. The drawbacks of rakes are that resulting
visualizations can be cluttered, there is no existing way
to highlight streamlines or to customize the visualization
to produce high quality rendering for communication and
presentation purposes. Controlling the streamlines using
streamline seeding or placement algorithms could improve
this situation, but this introduces lengthy pre-computation.
We investigate this area and report an approach that offers a
solution to these problems. This work is related to the well
researched topic of seeding to control streamline placement
and bundling of DTI fibers. Our approach is compared
to existing algorithms in those areas. The comparison
demonstrates that our new approach has applications to
general integral curve similarity calculations.

The rest of the paper is organized as follows. Section 2
provides a survey of related literature. Section 3 provides
the overview and detailed description of our method. Sec-
tion 4 describes the datasets used in the examples in this
paper. Domain expert evaluation and enhancements to our
algorithm are presented in Section 5. Section 6 contains a
discussion of our algorithm in comparison with other state-
of-the-art techniques and provides performance results.
Finally, Section 7 concludes the paper with directions of
future work.

2 RELATED WORK
Here, we discuss related work in the areas of similarity
metrics for streamlines and other integral curves, automatic
seeding strategies for global placement of streamlines and
clustering from a similarity matrix.

2.1 Streamline Similarity Metrics
Streamline similarity metrics have been widely used to con-
trol the number and proximity of streamlines for streamline

placement applications. The goal is to produce uncluttered
visualizations of flow fields whilst maintaining the depic-
tion of the major features. The area was introduced by
Turk and Banks [27] through streamline seeding whilst
minimizing an image-space energy function. This was ex-
tended using a farthest point seeding by Mebarki et al. [20].
Evenly-spaced streamlines [13][26] are another solution
to the seeding problem. For example, Liu et al. [15],
incorporate the goals of maximizing streamline length,
seeding based upon distance controls and loop detection to
place streamlines. Chen et al. [2] observe that (a) streamline
placement algorithms tend to use a uniform resolution that
either potentially misses salient features or contains redun-
dant streamlines; or (b) rely on feature detection in order
to sample streamlines adequately, leading to problems due
to incorrect feature identification. They propose a similarity
metric that allows them to adapt streamline resolution in the
vicinity of dissimilar streamlines. Their similarity metric
is based on computing distances between points along a
streamline that leads to slower non-interactive computa-
tional times compared to our approach. Li et al. [14]
present a ’less is more’ approach to streamline seeding. The
goal is to capture the most important flow features using
the fewest streamlines. This produces results comparable
to hand-drawn diagrams. This similarity metric is also
distance based. It is demonstrated in 2D with low numbers
of streamlines (relying on a distance transform). Extending
to a large 3D volume with the number of streamlines
we enable and maintaining interactivity is unresolved as
we demonstrate with our comparison in Section 6. Other
relevant work includes streamline predicates by Salzbrunn
and Scheuermann [24] which are boolean maps that are
used to differentiate streamlines based on input queries
from the user. Similar to flow topology, the idea is to
partition the domain into regions of coherent flow behavior.
Shi et al. [25] create an interactive environment wherein
they calculate various properties for pathlines, and then
allow the user to analyze and create selections upon the
basis of those attributes. Janicke et al. [11] and Daniels
et al. [5] operate directly on the vector field by mapping
multi-dimensional points into an attribute space that is
subsequently interactively visualized. Both methods use
vortex detection for working with flow fields. The aim is
that it will be possible to select similar regions throughout
the data. Cucitore et al. [4] also propose local criteria for
vortex detection that could be built into such a system or
used within our streamline attributes (Section 3.1).

2.2 Similarity for DTI Fiber Tracts

Distance metrics have also been applied in the domain of
DTI fiber clustering. For an introduction to the area see
Moberts et al. [21] where they review various clustering
approaches and distance metrics for DTI fiber clustering.
Two widely implemented and state-of-the-art techniques
are by Corouge et al. [3] and Zhang et al. [29]. Corouge
et al. [3] introduce a symmetric distance measure based
on the mean of all the distances of the closest point on
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Fig. 1. Overview of our algorithm pipeline. First, stream-
lines are traced. Streamline signatures are then computed
based upon streamline attributes. The streamline signatures
are used to order the streamlines based on similarity. This
ordering is then used to extract the cluster centroids and the
streamlines are assigned to the relevant cluster. Dotted lines
show user interaction and which stages of the pipeline need
to be re-computed resulting from interaction.

curve B from each point on curve A. Zhang et al. [29]
also introduce a threshold into the distance so that curves
that are close for a good portion of their length but then
diverge widely at the end are quantified as distant. They
also compare their method to Corouge et al. Demiralp and
Laidlaw [6] introduce a weighting term in order to weight
the ends of the curve more in the distance calculation
and also introduce a perceptual coloring. Jianu et al. [12]
extend that work further ([6]) with a coordinated views
representation of the DTI model and the clustering. They
use average linkage hierarchical agglomerative clustering.
See Jain et al. [10] for a classification of clustering. In
Section 6.1 we compare our method to the measures by
Corouge et al. [3], Zhang et al. [29] and Chen [2].

2.3 Streamline Perception in 3D
The goal of good streamline placement is a representation
that is free of visual clutter and contains the salient features.
There are many algorithms for 2D streamline placement,
but 3D placement remains a more challenging problem.
Mattausch et al. [18] provide several strategies for interact-
ing with evenly-spaced flow data in 3D, also providing a
focus+context like visualization by treating the separation
distance as a measure of interesting features. More recently
Marchesin et al. [17] present a view-dependent strategy
for seeding streamlines in 3D vector fields. Based on the
observation that no distribution of streamlines is ideal for
all viewpoints, this method produces a set of streamlines
tailored to the current viewpoint. The algorithm begins by
seeding a random set of initial streamlines. These are then
filtered according to an occupancy buffer, which tracks the
number of streamlines for a given pixel and various filtering
techniques such as angular entropy.

Visual clutter can be reduced by using differing tech-
niques. For example Mallo et al. [16], demonstrate an
improvement on illuminated lines [18] that exploits the use
of diffuse and specular reflection to streamlines to create
better perception of spatial structure. The introduction of

such a shading technique also helps reduce the visual clutter
of large numbers of similarly colored lines. Additional
techniques include additive blending and edge bundling [9]
techniques for streamlines. Our solution is to adapt the
ideas from distance-based similarity metrics, improve upon
them for computational speed and apply them to interactive
seeding rakes.

Yu et al. [28], present an algorithm that computes a
hierarchy of streamline clusters. Their streamline similarity
metric is based on curvature and torsion. Rather than
computing curvature and torsion for each streamline, they
derive these two attributes for every data sample in the
domain. Their algorithm is prohibitively expensive for a
single CPU implementation. The algorithm we present is
fully interactive on a single CPU.

3 STREAMLINE SIMILARITY

Our algorithm begins with the user seeding a set of stream-
lines using an interactive seeding object. Once the seed
positions have been set the streamline trajectories through
the vector field are computed. During the integration we
ensure that the streamlines are created with their samples
placed equidistantly. If an adaptive integrator is used then
the streamlines are re-sampled. Next, streamline signatures
are computed based on the set of attributes (Sections 3.1
and 3.2). A similarity matrix is constructed using the χ2 test
(Section 3.3). Agglomerative clustering is carried out using
the similarity matrix. The user selects the desired number of
clusters which are obtained from the clustering dendrogram.
Streamlines are associated with an appropriate cluster.
The user can vary the number of clusters interactively to
customize the level of detail and their desired visualization
(Section 3.4). We also provide a hierarchical variant of our
algorithm where multiple signatures of differing resolutions
are created for each streamline. When comparing a pair of
streamlines the χ2 test is run once for each signature in the
hierarchy. This extension requires more computation but
addresses issues where shifted signatures may appear very
dissimilar.

In order to facilitate user interaction our system only re-
computes the necessary stages of the pipeline as the user
interacts with the algorithm parameters. For example, once
the similarity matrix and dendrogram have been computed
the user can vary the number of clusters without recomput-
ing those stages. If the user changes the streamline attribute
for the streamline signature, then the signatures, similarity
matrix and streamline clustering are re-computed. If the
user moves the seeding rake, the algorithm is performed
starting with the streamline integration. Figure 1 depicts
the algorithm overview. The dashed lines show the stages
in the pipeline that are affected by the corresponding user-
interaction.

3.1 Streamline Attributes
In order to compute the similarity between streamlines
we use a number of new and existing attribute measures
– curvature, torsion and tortuosity. Curvature measures
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how much a curve deviates from a straight line. Torsion
measures how much a curve bends out of its osculating
plane. Tortuosity quantifies how twisted a curve is.

We compute a curvature field for the entire spatial
domain. The curvature field is computed with the same
sampling as the underlying vector field. Curvature at an
arbitrary position along a streamline is interpolated from
the curvature field. Curvature, c, is computed by [23]:

c =
v×a
|v|3

(1)

where v is the local velocity and a is the local acceleration
computed by multiplying the local velocity gradient (Jaco-
bian) with the local velocity (∇v)v. We only require the
magnitude of the curvature, |c|.

Similarly we pre-compute a torsion field and assign the
values to the streamlines. Torsion, τ , is derived by [23]:

τ =
(v×a) · ((∇a)a)
|v×a|2

(2)

The final attribute we use is tortuosity. We have found
this to produce good results on streamlines whilst having
a low cost to compute. It is the ratio of the length of
curve compared the shortest distance between its start and
end points. We apply this to streamlines as a measure
of deviation from the shortest path. The tortuosity of a
streamline is computed by first summing the distances
between all streamline segments. This value is then divided
by the distance between the start and end points of the
streamline:

ST =
1

||f(N)− f(1)||

N−1

∑
i=1
||f(i+1)− f(i)|| (3)

where f(x) is the spatial location of each sample in the
vector field and N is the number of points in the streamline.
Following this definition, the tortuosity of a straight line is
one, and streamlines with higher tortuosity will demonstrate
greater deviation from the direct path.

For all streamline points we compute the curvature,
torsion and tortuosity values. Each attribute value is then
normalized to the range [0,1] over all streamlines. All
attributes for a given point are then summed. Normalizing
each attribute places equal importance on each and prevents
a large value in one attribute from reducing the importance
of the others. This eliminates the requirement of user-
defined weightings for each parameter, thus, making the
computation fully automatic.

3.2 Streamline Signatures of Density-Based
Streamline Attributes
In exceptional cases an overall quantity using the above
metrics may produce the same or similar value for a range
of streamlines. Thus, dissimilar streamlines may appear
similar according to a given measure. For example, using
the curvature criterion, a streamline that spirals three times
would produce the same result as a more random curve that
exhibits the same amount of curvature over its length (Fig-
ure 2). To alleviate this problem, and further differentiate

Fig. 2. Both of these curves exhibit very similar curvature
magnitude values. Therefore, a single global measure fails
to distinguish streamline sufficiently. In this case, the tortu-
osity attribute would fair better but there are cases where
this would also fail. A better method creates a distinctive
signature for the streamlines using density-based attributes.

streamlines, we introduce the novel concept of a streamline
signature. Our motivation for this approach is that this
stores a compact description of a streamline and facilitates
a matching algorithm (hence the term signature). It is
more descriptive than just the attributes from Section 3.1.
The matching algorithm (Section 3.3) produces a single
dissimilarity rating based on the signature and is shown
to be very effective at distinguishing streamlines. The
streamline signature is computed by splitting the streamline
into several sub-curves or bins consisting of equal numbers
of points. The metric is then computed for each bin. This
set of values then describes how the attribute changes over
the length of the streamline.

We set a number of points per bin. We discuss the
effects of increasing and decreasing this number later
(Section 3.3.3). We then iterate over each streamline point
and calculate which bin it lies in. The point attributes are
then computed (as outlined in the previous sections) and the
value is added to the bin. When the entire streamline has
been traversed the signature is complete. This computation
creates a density-based pattern for each streamline. We refer
to these patterns as density-based as their are computed
as the sum of the above attributes per unit length of the
curve. The signature shows the distribution of the attribute
values along a curve. Figure 3 demonstrates some example
density-based signatures.

3.3 Similarity Measure
We now introduce a novel approach to computing a similar-
ity measure using the streamline signatures. This measure
compares streamline signature patterns using the χ2 test:

χ
2(PA,PB) = ∑

bin∈B
((Pbin,A−Pbin,B)

2/(Pbin,A +Pbin,B)) (4)

where patterns PA and PB correspond to the streamline
signatures of two streamlines, A and B. The χ2 test utilizes
the streamline signatures to provide a single value that more
accurately measures the dissimilarity between streamlines.
Identical streamlines result in χ2 = 0, and χ2 > 0 for non-
identical streamlines. A larger result describes a greater
magnitude of dissimilarity. The advantage of using the χ2

test is that it produces a single value measure of dissimi-
larity between two streamlines just using their signatures.
It operates on the binned data, and is therefore fast to
compute (compared to operating on the raw streamline data
or for example using the distance metrics [2] [14] where
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Fig. 3. Curvature over the streamline intervals. Top: The
streamline starts in a vortex, but spirals out. Second row: The
streamline follows a large arc. Third row: A similar stream-
line, but this one approaches a saddle point in the middle.
Bottom row: A vortex spirals inwards. Note, that to depict
the signatures more clearly, this example only demonstrates
curvature. The actual computation uses the combination of
attributes as outlined in Section 3.1.

distances between numerous points along both streamlines
are evaluated).

In the case where the number of bins in PA and PB
are not equal, we iterate only over the number of bins
contained in the shorter streamline. This produces partial
matching, where only the corresponding portion of the
longer streamline is compared to the shorter one. This
produces a lower value when the χ2 test is performed,
i.e., the curves are more similar. Another alternative is to
give the smaller streamlines the same number of bins as
the largest streamline and assign the bins with a value
of 0. Thus, when the χ2 test is performed a greater
value is produced, resulting in the streamlines being more
dissimilar. However, we favor the first approach because,
if we used the latter approach smaller streamlines (which
cover only a small part of the volume) would have large
dissimilarity, and so would end up having high significance
in the visualization.

3.3.1 Similarity Matrix
The χ2 test is performed for all streamline pairs, from
which, a 2D matrix, Msim, of similarity values is con-
structed. The similarity matrix provides a fast lookup table

Fig. 4. Streamlines seeded from a seeding plane. The top
image shows streamline clustering based solely on using
the streamline signatures (α = 0). The bottom image shows
clustering using only the euclidean distance measure (α = 1).
Which set of clusters is correct is subjective. Our method
provides the flexibility to allow the user to quickly navigate
to their preferred results.

for the clustering phase of our algorithm. Each column in
the matrix corresponds to the set of similarity values for a
streamline against all others and the row determines which
streamline it is measured against. Entry Msim

i, j corresponds
to the dissimilarity between streamlines i and j. The
similarity matrix is therefore a symmetric matrix, whose
main diagonal is composed of zeros, i.e., Msim

i, j = Msim
j,i and

Msim
i,i = 0.

3.3.2 Euclidean Distance Measure

Previous distance metrics attach a high weight to prox-
imity. In those approaches two similarly shaped stream-
lines far apart are more dissimilar than two dissimilarly
shaped streamlines collocated. Since our approach com-
pares streamlines based on signatures related to stream-
line shape, it is independent of proximity and may
match streamlines not collocated. Therefore we introduce a
weighting based on distance to give the user more control
over this aspect. The default is for no weighting (zero)
attached to proximity (so only the signature is matched).
If the user desires close streamlines to have a higher
similarity, the weighting can be increased using a slider.
This occurs in real-time, so the user can explore this
parameter space interactively. We provide this option by
adding a lightweight distance measure into our pipeline.

Many distance tests result in the degradation in per-
formance of similarity algorithms, this is demonstrated in
Section 6. We keep the number of distance tests to a
minimum as they are only meant to supplement our χ2

similarity measure. We record the position of the last point
in every bin. The mean of the distances between these end
of bin points for each pair of streamlines is used to construct
a second similarity matrix.

A new distance similarity table, M′sim
i, j , is then combined

with the Msim
i, j similarity table and a weighting coefficient

to produce the final result. The similarity value for a given
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similarity matrix element, M′sim
i, j , is equivalent to this single

measure:

M′sim
i, j = (1−α)Msim

i, j +αmean dist(i, j) (5)

where α is the weighting coefficient and mean dist(i, j) is
the mean distance between streamlines i and j, computed
using only a subset of their points as outlined above. This
extra measure provides the expert user with more control
over the clustering results. Figure 4 shows the effect of this
parameter.

3.3.3 Choice of Bin Size
If we have a high number of bins a finer sampled signature
is produced. In some cases this may produce a very local-
ized change in the signature. This can lead to problems with
the streamline bins incorrectly aligning between a pair of
streamlines. For example, a pair of neighboring streamlines
that both have a point of inflexion in their signatures, will
have a spike due to a large change in curvature. However, if
the spike occurs at a slightly different position (arc-length)
along each streamline, a finer sampling of the signatures
may result in the inflexion point occurring in different
bins on the streamlines. This would result in the χ2 test
producing a high dissimilarity for these streamlines. A
slightly more coarse sampling for the signatures provides
a greater probability that the feature is captured by the
same bin(s) and thus gives the desired result. This problem
is greatly reduced when using rakes and seeding planes,
where the seeding object is set to be orthogonal to the local
flow. To reduce this problem further we use a hierarchical
approach described next. Hadjidemetriou et al. [7] apply a
similar technique to create multiresolution histograms for
image recognition.

3.3.4 Hierarchical Signatures
During the streamline integration phase we record the
maximum streamline length and use this as the basis for
computing the number of levels in the signature hierarchy.
We take the number of sample positions in the longest

Fig. 5. Our similarity measures and clustering algorithm
segment the streamlines on this rake into distinct, intuitive
clusters. Two rakes were used to generate two sets of
streamlines on a simulation of Bénard convection in this
image. Color indicates cluster membership. Note colors are
re-used for each rake (i.e. the two red clusters are distinct
clusters).

streamline and then round that number up to the nearest
power of 2. The number of levels in the signature hierarchy
is then computed as:

levels = log2 x (6)

where x is the lowest power of 2 which is larger than the
number of samples in the longest streamline. For example,
if the longest streamline contains 1000 sample positions,
x = 1024 and levels = 10.

Next we compute the resolution of the signature at each
level. At the lowest level we create x bins. Therefore,
for the longest streamline there is a one-to-one mapping
between samples and bins. For shorter streamlines with
fewer samples we set the values of the extraneous bins
to 0. As we proceed up the signature hierarchy the number
of samples per bin doubles at each level, i.e., the second
lowest level has 2 samples per bin and the next level has 4
samples per bin. For a given level the number of samples
per bin can be computed by:

samples per bin = 2level (7)

The top level in the hierarchy has a single bin which
contains all of the samples for a given streamline.

The computation of multiple signatures per integral curve
is not expensive nor wasteful in terms of memory because
we just need to store the signature. The χ2 test is computed
once per level, during each iteration we sum the corre-
sponding bins that comprise the higher levels. A further
optimization is to store the summed values at each iteration
and over-write some of the values in the bins. For example,
if we had 4 bins with values 3,5,1,8 on the second iteration
we would change the bin values to 8,9,-,-. The number of
bins used halves for each level upwards and so for this
iteration we only need to iterate over the first two bins
for the χ2 test. The following iteration would combine the
bins again, producing 17,-,-,-. Bins represented by a ‘-’ are
unused in the computation.

We present a comparison between using a single sig-
nature and the hierarchical scheme. We demonstrate that
the hierarchical case is more aware of shifted signatures
and further differentiates vastly differing signatures when
compared to the non-hierarchical approach.

Figure 6 shows a test case of three signatures. The middle
(B) signature is a shifted version of the top (A) signature.
The bottom (C) signature varies greatly from the two above.

Table 1 shows the steps of our hierarchical method
applied to the signatures shown in Figure 6. The top table
shows the similarity computation between the top and
middle signatures and the bottom table shows the similarity
computation between the top and bottom signatures. The
middle signature is the same as the top one but has been
shifted along the x-axis. The columns in table 1 show the
χ2 computations for each level of the hierarchy between
the corresponding bins of the signatures. The average of
all the similarity values is then computed.

The table shows that for the top two levels in the
signature hierarchy the signatures between A and B are
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Level
Bin 1 2 3 4 5 Result

0 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000
2 0.000 0.000 14.519
3 0.000 0.000 21.778
4 0.000 6.231
5 0.000 8.805
6 0.000 24.500
7 0.000 0.000
8 0.000
9 7.364

10 17.190
11 0.000
12 17.190
13 7.364
14 0.000
15 0.000

Total 49.108 39.536 36.296 0.000 0.000 124.940

Level
Bin 1 2 3 4 5 Result

0 12.250 19.593 29.455 58.909 53.751
1 7.364 9.941 29.455 9.800
2 2.667 19.593 13.755
3 7.364 9.941 0.889
4 12.250 19.593
5 7.364 0.615
6 2.667 0.455
7 7.364 9.941
8 12.250
9 7.364
10 2.667
11 0.000
12 0.714
13 0.000
14 2.667
15 7.364

Total 92.313 89.671 73.553 68.709 53.751 377.997

TABLE 1
These tables show the χ2 computations using our

hierarchical method for the signatures shown in Figure 6.
The top table computes the similarity between the top two
signatures and the bottom table computes the signature

between the top and bottom signature. The intermediate χ2

result for each bin is shown in the columns. The overall χ2

for each column is shown in the bottom row. The final value
in the bottom row is the final similarity result.

identical. For the first 3 levels the similarity values are
49.108, 39.536 and 36.296 respectively. When all levels
in the hierarchy are averaged a value of 24.988 is obtained.

The bottom table shows that the overall similarity com-
putation between signatures A and C as 75.599. Other
than the levels where the signature is identical, using the
hierarchical approach, the ratio of dissimilarity between the
two pairs of curves is greater than using a single level.
Using our hierarchical approach, the level of dissimilarity
is more accurately conveyed than using any single level
in the non-hierarchical version. The exception to this rule
is when both signatures are identical, in which case both
methods indicate produce the same results and successfully
show them as identical.

Using a hierarchical scheme handles shifted streamline
signatures in a more robust way that regards shifted signa-
tures as similar while maintaining the ability to differentiate
dissimilar signatures.

3.4 Clustering

Our M′sim matrix represents the similarity between each
streamline. The lowest entry of M′sim represents the most

Fig. 6. Test streamlines for the heirarchical algorithm. Left:
A streamline with a high peak towards the end. Middle:
A shifted version of the top streamline. Right: A dissimilar
streamline.

similar two streamlines. We employ agglomerative hierar-
chical clustering using pairwise average-linkage. See Jain
et al. [10] for an overview on data clustering, and [2], [3],
[29] for examples of use in the integral curve matching
literature. The result is a tree (dendogram) recording each
merge during the clustering process. On user interaction,
a cut can be made through the tree for a given number of
desired clusters. Figure 6 shows the results of our clustering
algorithm on a simulation of Bénard convection using two
seeding objects.

4 DATA SETS

This section discusses the datasets used as examples in this
paper.

Hurricane Isabel: The simulation of Hurricane Isabel
is sampled at a resolution of 512× 512× 100 over 48
timesteps. It is a simulation of a Category 5 hurricane
making landfall in North Carolina. This simulation exhibits
several examples of interesting behavior such as vortices
and saddle points. In the case where we demonstrate our
method for unsteady flow using pathlines, we use the entire
temporal domain. Hurricane Isabel data produced by the
Weather Research and Forecast (WRF) model, courtesy of
NCAR and the U.S. National Science Foundation (NSF).

Bénard Convection: A simulation of Rayleigh-Bénard
convection. This simulation is sampled at a resolution of
256× 128× 64. A plane is heated at the bottom of the
spatial domain creating a pattern of Bénard convection
cells. This simulation was created and provided by Daniel
Weiskopf (University of Stuttgart).

Smoke Plume: A simulation of the evolution of a smoke
plume. The simluation was supplied by Han Wei Shen
(Ohio State University, Columbus) and is sampled at a
resolution of 126×126×512.

Arnold-Beltrami-Childress Flow: We also use a syn-
thetic dataset of Arnold-Beltrami-Childress (ABC) flow.
This describes a closed-form solution of Euler’s equa-
tion [8]. This type of flow has theoretical importance in
fluid dynamics and has been used many times in both fluid
dynamics and visualization literature. The vector field is
given:

v(x,y,z) =

 A sin(z)+B cos(y)
B sin(x)+C cos(z)
C sin(y)+A cos(x)

 , x ∈ [0,2π]3 (8)

where A =
√

3, B =
√

2 and C = 1.
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5 DOMAIN EXPERT BASED EVALUATION

5.1 Domain Expert Involvement

The research in this paper resulted from a project team
consisting of four computer scientists and two flow en-
gineers that have worked together for over two years on
various projects. Five of the team are located in the same
building, and a remote collaborator has visited multiple
times. The close collaboration between the interdisciplinary
team has resulted in the visualization team gaining a good
understanding of the research goals and specific problems
of the CFD engineers. Research meetings, feedback ses-
sions, demonstrations, brainstorming and research seminars
between the group have led to a successful working part-
nership for creating the visualization approach in this paper
and other approaches [22]. Our flow engineer co-authors
provided the following design principles:

The techniques should be interactive with low pre-
computation. Various techniques proposed in the literature
(and see Section 5.2.3) frustrate due to the large start up
time, or the inability to interact with their data in any
systematic way. Whilst they may produce good images, the
information derived from them can be quite often low due
to the lack of interaction with a static view or slow update
time.

Effective visual searching. If a visualization not only
captures the flow domain, but also highlights unexpected
behaviour this can massively aid the searching of large
quantities of data, or even leads to locating features that
would otherwise be overlooked. A corollary of this are that
views should not suffer from occlusion and the user should
be able to focus on specific flow features.

Mapping quantities, visual appearance. Visual appear-
ance is difficult to quantify here. Many visualizations from
the literature have been presented to the CFD engineers
and, simply, the most attractive or beautiful visualizations
always generate a great deal of interest. This could be
technique, for example utilizing illuminated lines, opacity
variation, through to clarity of color mappings and effective
legends. Any parameter space exposed by the visualization
should be simple to navigate.

Large aspect ratios. The engineering co-authors tend to
work with domains that have large aspect ratio (for example
a large area of shallow water for tidal generators, or large
area wind farms).

Before this work, the CFD engineers chose the most
interactive elements of the visualization software that is
available to them. This primarily leads to examining large
numbers of 2D color mapped contour plots and cognitively
integrating features into 3D. This is because full domain
seeding (regular sampling) leads to clutter, or the large
domains are unsuitable for full domain algorithms due to
speed issues. After this sub-optimal search, the engineer
then uses a rake to generate streamlines in the region of
interest. One of the big challenges is that either the seeding
is dense and results cluttered, or the seeding is not dense
enough and critical features are omitted. Finding the right
balance is challenging. This is a particular problem of

domains with large aspect ratio since streamline generation
treats all regions with equal importance, whereas in such
domains there are large areas of uninteresting flows with
small areas (e.g. the flows around the turbine) where the
flow is highly changeable and thus leads to visual clutter.
For these domains, the context through the largely uninter-
esting areas with focus in the interesting regions would be
most desireable. For aesthetic reasons, the engineers like
evenly spaced streamlines, but for visually searching the
domain they find the lack of interactive seeding control to
be problematic. They resort to seeding rakes due to the
excellent fine control they have over placement.

After our new technique was made available to the
engineers, it was identified that it had an impact in all those
areas. An example illustrating this is presented in the next
section.

Additionally, our flow engineers have specific interest in
tidal stream turbines which require enviromental permits
from regulators, who require a clear understanding of the
changes to flow caused by such devices. This streamline
generation technique gives engineers the ability to fully
control which streamlines are shown, allowing them to
show general contextual flow in reduced opacity, and cap-
ture the salient flow around the turbines. The attractive
visualizations, control over opacity and color mappings
results in a visually desirable form that provides a strong
clear context for discusion with regulators. This satisfied
our demand for visual appearance, ability to deal with large
aspect ratios, and also control and interactivity in order to
produce such images.

5.2 Narrative
This section presents a narrative of the features of our
algorithm with examples from standard data sets.
5.2.1 Focus+context Visualization
Our clustering strategy segregates the streamlines into
groups with distinctive behavior. We provide a tool that
allows the user to analyze the clusters using a focus+context
visualization. This reduces visual clutter and aids in the
analysis of the flow. The varying behavior of streamlines
along the rake can be quickly and easily explored. The
resulting visualization aids the presentation and communi-
cation of results by highlighting a particular flow behavior.

The user selects the cluster they wish to analyze, the
streamlines belonging to this cluster are mapped to a high
opacity for emphasis. This allows the user to focus on
the chosen cluster within the context of the entire set of
streamlines.

Figure 7 shows the focus+context visualization applied
to sets of streamlines on the smoke plume simulation, with
each row corresponding to a different seeding configura-
tion. The left column of images show streamlines colored
according to velocity magnitude. The streamlines exhibit a
high-level of visual complexity. Even using transparency it
is difficult to distinguish the different flow characteristics
and how they interact with each other. The middle and right
column images show the results of our clustering strategy
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with focus+context applied. Streamlines are colored accord-
ing to cluster membership. In each image a different cluster
is highlighted.

5.2.2 Streamline Filtering

A benefit of our approach is that it allows us to introduce
streamline filtering to produce variable inter-seed distance
along seeding objects. Typically streamlines are seeded at
equidistant positions along the seeding curve or at regular
points along a seeding plane. This results in our users hav-
ing to specify a dense set of streamlines if they encounter
complex flow behavior. The side-effect of this is that there
are dense bundles of streamlines in regions where the flow
is more uniform, which may lead to visual clutter. An
ideal solution is to produce an expressive set of streamlines
which captures all of the details of flow behavior while
minimizing the redundancy in the visualization.

Streamline filtering is performed by creating cuts through
the dendogram representing the clustering. The user is
provided with a slider. As the user increases the value of
the slider streamlines are removed from the visualization
(they are simply not rendered, they do stay in memory).

Figure 8 shows our filtering strategy applied to a
set of streamlines generated on a simulation of Arnold-
Beltrami-Childress (ABC) flow. The top-left image shows
the complete set of 200 streamlines. There is a high level
of redundancy with the streamlines. The top-right image
shows filtering removing approx 75% of the original set
of streamlines. In the bottom-left image the number of
streamlines is reduced to 13 using our method. The bottom-
right image shows the result of a more uniform filtering
strategy leaving the same number of streamlines. Using
our method the remaining streamlines still depict helpful
information about the flow characteristics. The uniform
filtering loses important information.

Figure 9 shows a comparison between a dense set of
streamlines and two sparser sets generated on the simulation
of Hurricane Isabel. The left image shows the rake at a
resolution of 200 streamlines. The middle image shows
the results using our filtering method. Using filtering the
expert reduced this number of streamlines down to just
12. Using only 12 streamlines they note our method still
preserves the interesting flow characteristics – in particular
the two regions of vortex behavior. The reduced number
of streamlines produces a visualization that suffers from
occlusion and visual complexity to a much lesser extent.
Note that the controls are easy to use and we are able
to produce the result in a matter of seconds. We were
particularly interested in variable inter-seed distance along
the rake, stating it allows the visualization to express more
with less, and that is reduces visual information overload.
The right image provides a comparison using equidistantly
seeded streamlines. Note that the second vortex region is
not visualized and that the separation regions are not as
clearly defined.

5.2.3 Interaction
A high level of interactivity with the visualization is de-
sirable. The parameter space should be kept as small as
possible. It should also be simple and intuitive to navigate.
To this end, our algorithm relies on only a few parameters:
• The number of clusters
• The weighting of the χ2 term
• The number of streamlines to be filtered from a cluster

(this is set on a per-cluster basis).
We utilize GUI slider widgets to control these parameters.
As shown in Section 6 our algorithm provides interactive
rates and changes to these parameters are displayed in real-
time to the user. Fast response from parameter updates also
aids the user in navigation, allowing them to quickly find
a good set of values for the parameters.

All similarity and clustering algorithms have failure cases
in which the end result may not match what a user expects
with a fully manual clustering scheme. When using a
scheme that has no input parameters such as the one by
Corouge et al. [3], the user has no control over the final
result. If the clustering proves inadequate the user cannot
customize the visualization or has to resort to a different
algorithm. In contrast, the algorithm of Chen et al. [2]
does provide user-modifiable parameters. However, their
algorithm is computationally expensive (see Section 6) and
some parameters, such as window size, result in a complete
re-computation – meaning the user has to wait for feedback
from the application. Also the effect that a change in the
user-parameters produces is unintuitive. This means that
the user will have to perform a slow search through this
parameter space using trial and error. The method of Zhang
et al. [29] also requires a re-computation of all similarity
distances when there is a change in the minimum distance
threshold.

5.3 Unsteady Flow
Our method can be extended to unsteady flow. We compute
the torsion and curvature fields for every time-step of the
simulation. The algorithm then proceeds as outlined in the
method overview (Figure 1). However, instead of stream-
lines, we trace pathlines. When the pathline attributes are
computed, we use the field that matches the corresponding
time of the pathline point. Where a pathline point does
not lie exactly on a time-step we interpolate between the
two closest fields. Figure 11 shows clustering results using
our algorithm. In this figure the pathlines have been seeded
using a seeding plane and are traced in the simulation of
Hurricane Isabel.

6 PEFORMANCE ANALYSIS

Our approach is intended to give fast computation, good
selection of similarity, leading to interactive and intuitive
rake control. Streamline similarity is a mature research
topic, but as mentioned in the related work section, all the
measures involve performing a great number of distance
tests between streamlines. In this section we compare our
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Fig. 7. Focus+context visualization of streamline clusters created using our method on the smoke plume simulation. Each
row represents a different seeding configuration. Images in the left column show the set of streamlines colored according to
velocity magnitude. The middle and right columns show the focus+context views, both setting different clusters as the focus.
The selected cluster (the focus) is shown with a high opacity. The remaining clusters (context) are assigned a lower opacity.
This allows the user to analyze each cluster more easily while retaining the context of the cluster in regards to the entire rake.
This reduces visual complexity and reduces the effects of occlusion. The focus+context view allows the user to analyze the
interactions between the streamlines in more detail.

Fig. 8. Our filtering technique allows the user to filter out streamlines based on our similarity measures. The streamline
that is most similar to the current set is iteratively removed – leaving the most dissimilar (and, hence, the most illustrative)
streamlines. The top-left image shows the original dense set of 200 streamlines. The top-right image shows the our method
filtering out approximately 75% of the initial streamlines. The bottom-left image shows filtering using our strategy to leave
just 13 streamlines. Using our approach the few streamlines that remain depict the main characteristics of the superset.
The bottom-right image shows the 13 remaining streamline using filtering to leave a more uniform distribution of the seeds.
Important detail is lost when streamline similarity is not taken into account as shown in the bottom-right image.
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Fig. 9. Our filtering strategy applied to the simulation of Hurricane Isabel. 4 clusters are selected and streamlines are filtered
on a per-cluster basis. 200 streamlines in the left image are filtered down to 12. The middle image uses filtering based on
similarity. The right image shows equidistant seeding of the streamlines. Our method better represents the saddle regions and
preserves the second (smaller) vortex structure. The second vortex structure is entirely lost in the right image. Our preserves
the overall structure represented through the rake and the most important characteristics.

Fig. 10. Three sets of four clusters for the same set of streamlines. (Left) The clustering produced using the similarity metric
from [3]. This method produces good quality clustering. However, a user may wish that the gold cluster contains only the
streamlines that pass through the vortex region. This method provides no user-parameters for the user to tailor the result to
their requirements. (Middle) The set of clusters resulting from our algorithm. Once again, the gold cluster contains streamlines
that don’t enter the vortex region. However, the user can very quickly fine tune the clustering and ensure that the cluster is
constrained only to the streamlines that enter the vortex region (Right). Note that the clustering in the left image took just
over 24s to produce. Our method produced the streamlines in just over 0.07s. Our weighting parameter space can be fully
explored in just a few seconds. Therefore, the user can easily tailor the visualization to their needs.

Fig. 11. Our method can be applied to unsteady flow. Torsion and curvature fields are generated for every time-step.
Pathlines are then traced and the clustering algorithm is performed. This set of pathlines was generated on the simulation
of Hurricane Isabel and seeded from a seeding plane. The left image shows the pathlines with color mapped to velocity
magnitude. The middle and right images show the pathlines clustered in 2 and 3 clusters respectively.
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Similarity &
Algorithm Integration Clustering Total Factor

Our Method 0.017s 0.021s 0.048s 1.0x
Our Method (hierarchical) 0.017s 0.112s 0.129s 2.69x

Chen et al. [2] 0.017s 6.103s 6.120s 127.5x
Corouge et al. [3] 0.017s 5.260s 5.277s 109.94x
Zhang et al. [29] 0.017s 5.450s 5.467s 113.90x

Our Method 0.031s 0.042s 0.073s 1.0x
Our Method (hierarchical) 0.031s 0.267s 0.298s 4.08x

Chen et al. [2] 0.031s 22.400s 22.431s 307.27x
Corouge et al. [3] 0.031s 20.150s 20.181s 276.45x
Zhang et al. [29] 0.031s 20.210s 20.241s 227.27x

Our Method 0.062s 0.165s 0.227s 1.0x
Our Method (hierarchical) 0.062s 1.451s 0.102s 6.39x

Chen et al. [2] 0.062s 97.300s 97.362s 428.91x
Corouge et al. [3] 0.062s 82.050s 80.112s 352.92
Zhang et al. [29] 0.062s 84.010s 84.072s 370.36x

TABLE 2
Performance times of our algorithm in comparison with [2],
[3] and [29]. The first column identifies the algorithm used.

The second column shows the integration time for the
streamlines. The similarity computation and clustering times

are combined in the third column and the fourth column
shows the total computation time. The final column shows

the total computation times as a factor of our algorithm. The
top, middle and bottom results were generated using 100,

200 and 400 streamlines respectively.

approach to state-of-the-art approaches for detecting similar
integral curves. The distance measures we compare against
are Corouge et al. [3] (equation 2), Zhang et al. [29]
(Section 3.2) and Chen et al. [2] (Section 3).

Table 2 reports the performance times of our algorithm
tested on a 2.4Ghz Intel Core 2 Quad CPU with 4GB
RAM using a single thread. We compare our running times
against algorithms by Chen et al. [2], Corouge et al. [3] and
Zhang et al. [29]. The results in Table 2 are generated using
100, 200 and 400 streamlines, each consisting of up to 1000
points. We report streamline integration times in order to
provide a context which to compare the clustering phase.
The last column in the table gives the performance times
as a factor of our method. In this scenario our algorithm
takes 0.073 seconds to complete for 200 streamlines –
providing interactive results. In contrast, the techniques of
Chen et al. [2], Corouge et al. [3] and Zhang et al. [29]
take more than 20 seconds to complete and are thus,
prohibitively expensive for use as an interactive technique.
As highlighted in the final column of the table, these algo-
rithms can take over 300 times as long as our algorithm to
compute. Figure 10 demonstrates that our method produces
comparable results against the state-of-the-art. Importantly,
our method affords the user the flexibility to modify the
clustering results.

The vast majority of the computational workload in these
algorithms stems from the large number of distance cal-
culations to compute similarities. Our algorithm alleviates
this by greatly reducing the number of distance tests. The
small number of distance tests, coupled with our (less
computationally expensive) χ2 test on the binned streamline
signatures, produces good clustering results at a fraction of
the expense of pure distance-based similarity metrics. The
seeding object type has very little effect on the performance
times. The main influence is the number of streamlines
used.

7 CONCLUSION
We present a tool for enhancing the user experience
while interactively seeding streamlines. Streamlines can
be clustered together and visualized using focus+context
methods giving the user the opportunity to reduce visual
complexity and target distinct flow behavior that they wish
to investigate. The method also provides a filtering scheme
to produce streamlines that are seeded at non-equidistant
positions along the seeding object. This technique produces
a set of streamlines that preserve the detail of the visualiza-
tion while greatly reducing the number of streamlines. This
is achieved by filtering out the most similar streamlines and
preserving the least similar and hence most illustrative set
for a given rake.

From domain expert interviews it was found that experts
prefer intuitive tools that they can modify to meet their
requirements. We reviewed previous similarity metrics and
found that they were too computationally expensive to meet
these requirements. Thus, we introduce the novel concept
of the streamline signature. The streamline signature is
produced from binned data that provides a distinct pattern
for each streamline. We also employ the χ2 test on the
streamline signatures as a similarity measure. To the au-
thors’ knowledge this is the first time the χ2 test has been
used in this context. We also present an extension to our
algorithm based on hierarchical signatures. This addresses
limitations in the handling of shifted signatures when using
a single signature. It also removes the burden of setting
bin sizes on the user. We also provide a set of attributes
that we found useful for the computation of the streamline
signature. This is by no means an exhaustive list and further
options are available for further research.

We demonstrate the performance of our algorithm com-
pared to other similarity metrics and show that we can
provide similar results one to two orders of magnitude
faster. Finally, our tool allows the user to fine tune the end
visualization quickly and easily in real-time – reducing the
blackbox effect of an automatic algorithm and allowing for
the user to correct fail cases should they arise.

The method, as it is presented here, is limited to the
situation where we are seeding streamlines using rakes and
planar objects. In the future we would like to investigate 2D
attribute parameter spaces, allowing the user to investigate
how one flow attribute changes with another attribute. We
would also like to apply this method to DTI fiber bundling
and further investigate the possibility of using our method
as a fast 3D, full domain streamline seeding strategy.
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