
Vector Glyphs for Surfaces:
A Fast and Simple Glyph Placement Algorithm

for Adaptive Resolution Meshes

Zhenmin Peng, Robert S. Laramee

Department of Computer Science
Swansea University, Wales UK

Email: {cszp, r.s.laramee}@swansea.ac.uk

Abstract
Visualization of flow on boundary surfaces from
computational flow dynamics (CFD) is challeng-
ing due to the complex, adaptive resolution nature
of the meshes used in the modeling and simula-
tion process. This paper presents a fast and sim-
ple glyph placement algorithm in order to investi-
gate and visualize flow data based on unstructured,
adaptive resolution boundary meshes from CFD.
The algorithm has several advantages: (1) Glyphs
are automatically placed at evenly-spaced intervals.
(2) The user can interactively control the spatial res-
olution of the glyph placement and their precise lo-
cation. (3) The algorithm is fast and supports multi-
resolution visualization of the flow at surfaces. The
implementation supports multiple representations
of the flow–some optimized for speed others for ac-
curacy. Furthermore the approach doesn’t rely on
any pre-processing of the data or parameterization
of the surface and handles large meshes efficiently.
The result is a tool that provides engineers with a
fast and intuitive overview of their CFD simulation
results.

1 Introduction
Ever increasing attention is invested in order to find
reasonable and efficient solutions for analyzing and
visualizing the flow from computational fluid dy-
namics in last three decades. As the size of simu-
lation data sets increases, so does the need for ef-
fective visualizations that provide insight into the
data. A tremendous amount of time and money is
spent on simulation in order to speed up the manu-
facturing process. Constructing objects in software
should be faster than building their real hardware
counterparts.

Out of all the possible visualization techniques

Figure 1:The unstructured adaptive resolution boundary
grid of a cooling jacket from a CFD simulation. The up-
per image is an overview of the boundary mesh, and the
bottom is a close-up. These images illustrate how complex
a typical mesh from CFD can be.

that can be used to investigate the simulation results,
vector glyphs and color-coding are the most popular
tools used by engineers. Vector glyphs offer several
advantages. They are intuitive – the depiction of
the underlying flow is universally understood. Sec-
ondly, they do not accumulate error in the same way

VMV 2008 O. Deussen, D. Keim, D. Saupe (Editors)

that geometric techniques do. Integration-based vi-
sualizations such as streamlines have in an inherent
error associated with them stemming from the ap-
proximations made in the underlying computation.
Thirdly, glyphs are easy to implement. No com-
plicated algorithms or data structures are needed.
Thus they are featured in every software applica-
tion. However, glyphs also have their drawbacks.
Optimal vector field glyph placement is a challenge,
especially in the context of CFD applications. Fig-
ure 1 shows a typical, triangulated boundary mesh
produced from a CFD model. Its unstructured,
adaptive resolution characteristics make the place-
ment of vector glyphs difficult. If we naively place
a vector glyph at every sample point on the surface,
then the glyphs are either too small to see or so
large that they overlap and result in clutter. Another
drawback is that the density of glyphs corresponds
with the density of mesh polygons. This variation
is unrelated to the vector values themselves. Also,
the user has no control over the glyph placing. Fur-
thermore, rendering so many glyphs degrades per-
formance time greatly. Most of the glyphs would be
occluded.

While glyph-based visualization has been widely
applied to tensor field and medical visualiza-
tion [10] [12], glyphs for vector field visualization
have received relatively little attention. This may be
due to the difficulties in placing glyphs on unstruc-
tured, adaptive resolution boundary meshes from
the complex CFD data sets and perceptual problems
like visual complexity and occlusion. In order to ad-
dress these challenges, we present a fast and simple
glyph placement algorithm to investigate and visu-
alize flow data based on unstructured, adaptive reso-
lution boundary meshes from CFD yielding the fol-
lowing benefits:

• Glyphs are automatically placed at evenly-
spaced intervals, independent of how complex
or dense the underlying adaptive resolution
mesh is.

• The user can interactively and intuitively con-
trol the spatial resolution of the glyph place-
ment as well as their precise location.

• Multi-resolution visualization of the flow at
surfaces can be applied to increase detail in ar-
eas deemed interesting by the user.

• Glyphs are never generated for occluded or
otherwise invisible regions of the surfaces.

• The algorithm is fast, enabling novel user in-

teraction such as zooming, translating and ro-
tation.

• Our approach enables various representations
of the flow, optimized for either speed or accu-
racy, in a natural way.

The algorithm relies neither on pre-processing of
the data nor on parameterization of the surface. It
also handles large numbers of polygons efficiently.
The key to the algorithms speed and simplicity is
transferring computation that would normally take
place in object space to image space. The approach
is especially useful because engineers often start
their investigation of simulation results by looking
at the surface for an overview.

The rest of the paper is organized as follows:
Section 2 provides an overview of related research
work. The placement algorithm and user options
are described in multiple stages in Section 3. Sec-
tion 4 gives the performance and visualization re-
sults. Conclusions and suggestions for future work
are presented in Section 5.

2 Related Work
Ward [12] states that glyph-based visualization has
been widely used to convey various information si-
multaneously by employing intuitive graphs to de-
pict corresponding various variables from abstract
data sets. Our work focuses on applying this intu-
itive depiction in image-space as well as develop-
ing an efficient and fast glyph placement algorithm
to illustrate the vector field accurately. Previously,
related techniques have been proposed in order to
improve glyph-based visualization. In this section
we describe these related techniques. We empha-
size the glyph placement related techniques in two
main categories: tensor field and vector field data.
Within each category, techniques are discussed with
respect to the dimensionality of the given data: 2D,
2.5D (for surfaces in 3D) and 3D.

2.1 Tensor Field Glyph Placement
The majority of related work has not focused on
vector field glyph placement but rather tensor field
glyph placement. Laidlaw et al. apply an elliptical
tensor field glyph placement algorithm for the visu-
alization of 2D Diffusion Tensor Image (DTI) data
from the spinal cord of a mouse [7]. The regular
array of ellipsoids are normalized by size for a vi-
sualization that is more easily deciphered. Instead
of placing tensor glyphs on a regular-Cartesian ar-
ray, Kindlmann and Westin present a glyph place-

ment algorithm that shapes and positions the glyphs
in a smooth and continuous fashion resulting in
a visualization free of holes and without overlap-
ping glyphs [5]. The artifacts of the underlying
grid structure then disappear. Hlawitschka et al. [2]
present an accelerated version of the tensor field
glyph packing algorithm. The goal of their algo-
rithm is to support interactive data exploration.

Additionally, a surface-based (2.5D) glyph place-
ment strategy for medical visualization is proposed
by Ropinski et al. [9]. The algorithm works in ob-
ject space and is based on isosurfaces. The volume
is searched voxel-by-voxel for locations through
which the chosen isosurface passes. Afterwards a
glyph is placed at every cell that encompass the
given isovalue such that it’s located on the speci-
fied isosurface. Axis aligned rays are cast into the
volume in order to detect visible portions of the iso-
surface. Then only visible portions remain in the
final rendering. An approach that requires volume
searching, isosurfacing, and ray casting is overly
complex and not optimized for speed. Sigfrids-
son et al. [11] present a hybrid volume rendering
and glyph-based visualization for 3D tensor data
based on interactive glyph placement. The glyphs
are placed manually with a 3D cursor.

2.2 Vector Field Glyph Placement
Vector field glyph placement has received com-
paratively little attention. A vector glyph place-
ment approach is described by Klassen and Har-
rington [6]. Three-dimensional glyphs are placed
at regularly-spaced intervals on a 2D plane. Shad-
ows on the plane are added to the glyphs to high-
light their orientation. In order to depict the vec-
tor fields on curvilinear and unstructured grids,
Dovey [1] presents a vector glyph placement algo-
rithm for slices through 3D curvilinear and unstruc-
tured grids. He describes two different object-space
approaches for resampling a vector field defined on
a 3D unstructured or curvilinear grid onto a regu-
lar planar slice. The most computationally expen-
sive part of the procedure for interpolating a simu-
lation result value onto an arbitrary new point is lo-
cating the cell that contains the point. This process
can be very costly in terms of processing time even
when spatial data structures are used to accelerate
the search. Hong et al [3] use volume rendered vec-
tor glyphs which are generated from pre-voxelized
icon templates to describe regular, structured vec-
tor fields in 3D space. Incremental image updates

which re-compute only those pixels on the image
plane affected by user input make visualization of
the scalar and vector field faster and more interac-
tive. Laramee describes an object-space approach
using resampling and vector glyph placement for
slices through unstructured, 3D CFD meshes [8].
The algorithm we describe here is conceptually sim-
ilar but raises the spatial dimensionality to surfaces
(as well as planar slices). Our algorithm is also
faster, simpler, and more efficient. In fact we are
surprised not to find any previous work that pro-
vides an elegant and fast solution to the basic prob-
lem we are addressing.

3 Intuitive Glyphs on Surfaces
This section presents the details of the algorithm
starting with a short discussion of why we chose an
image-based approach.

3.1 Object Space vs. Parameter Space vs.
Image Space

In order to construct a fast and simple glyph place-
ment algorithm on surfaces, we develop a reason-
able approach which can deal with large and com-
plex flow data sets from CFD efficiently and inter-
actively.

One possible solution to depict the flow data on
the surfaces is to render glyphs directly in object
space. Placing a glyph at each data sample point
constructs the well-known hedgehog visualization.
However, typical drawbacks are obvious. Most of
the glyphs may be occluded. This is especially
true of the example shown in Figure 1 (The cool-
ing jacket). Furthermore, glyphs will either be too
large, resulting in visual clutter or too small to per-
ceive.

Secondly, parameter space is another possible ap-
proach. If a global parameterization of the sur-
face can be computed then the challenges posed
by glyph placement are simplified. But the process
of parameterizing the surface globally is very com-
plex. CFD data sets contain a large number of poly-
gons. Some involve an especially complex topol-
ogy. Also parameterization may result in some dis-
tortion when the parameterized surface is mapped
back on to physical (3D) space.

Image space is a good alternative to address these
challenges. With the use of image space, a 3D
vector field can be projected onto the 2D image
plane to simplify the problem. That means only
visible polygons are sampled and no extra time is

spent on generating glyphs for the polygons hid-
den from the user’s view-point. The problem of
how to properly place glyphs to represent the vec-
tor field on the surfaces in 3D space is then greatly
simplified to finding the optimal placement in 2D
space. By exploiting this approach, user interaction
techniques, which would otherwise not be possible,
may be applied. However using an image-based ap-
proach does bring new challenges, both conceptual
and technical. We describe these challenges in de-
tail in the sections that follow.

3.2 Method Overview
First the vector field is projected from 3D object
space to 2D image space, this is done by exploiting
graphics hardware. The vector field on the bound-
ary surface from the CFD data set is encoded into
the frame buffer. This is followed by both flow re-
construction and glyph placement. The vector field
is reconstructed based on the user-defined resolu-
tion of an image-based Cartesian mesh. Then the
vector glyphs are rendered along with the original
surface geometry image overlay. An overview of
this process is depicted in Figure 2. Several en-
hancements can be added including various interac-
tion techniques as well as multi-resolution visual-
izations. Many different user options are available
following the reconstruction and glyph placement
phases in order to depict the vector field accurately
and interactively. It’s also worth mentioning that
if viewpoint is changed after the final glyph render-
ing, the next pass will start from the encoding phase.
Only a subset of the algorithm is required, starting
with decoding and reconstruction if the user-defined
resampling parameters are changed. More details
are given in the sub-sections that follow.

3.3 Vector Data Encoding and Projection
The vector field values of the boundary are stored at
the vertices of the polygonal CFD mesh. A key step
into our algorithm is to project the vector field de-
fined at the boundary surface to the image plane. In
order to realize this, we use the approach in which
thex, y, andzcomponent values of the vector stored
at each vertex of the boundary surface are encoded
into r, g, andb color values in framebuffer respec-
tively. The formula we use to encode the vector
components is the following:

cr,g,b =
vx,y,z − vmin(x),(y),(z)

vmax(x),(y),(z) − vmin(x),(y),(z)

(1)

CFD Simulation
Data

Vector Field
Encoding

Vector Field
Projection

Decoding and
Reconstruction

Glyph
Placement

Image Overlay
Application

Optional
Enhancements

Viewpoint
Changes?

User
Options

NoYes

Figure 2:An overview chart of our algorithm for the fast
generation and simple placement of vector field glyphs for
surfaces.

Encoding the vector component values in this
way yields the following benefits:

• Occluded or otherwise hidden portions of the
geometry are automatically culled and are thus
eliminated from any further processing.

• Linear interpolation of the vector field is per-
formed automatically by the graphics card
hardware.

• No further computation time is spent on poly-
gons whose size is less than one pixel, the oc-
currence of which is high for CFD meshes (see
Figure 1).

• The complexity of placing glyphs in object
space is reduced to a much simpler problem
in image space.

After the component-wise encoding of the vector
values, a velocity image is generated. And it’s also
worth pointing out that the interpolation of veloc-
ity image is necessary for vector field reconstruc-
tion. With the help of hardware-assisted interpola-
tion, we are able to decode the vector field values
within the original boundary mesh polygons in ad-
dition to the vertices. Transferring the velocity im-
age to the main memory completes the vector field
projection process.

3.4 Decoding
Following the projection of the vector field defined
at the surface, reconstruction for the vector field is
an essential stage for developing an optimal glyph
placement algorithm. Before discussing the de-

tails of the reconstruction, we describe the decoding
phase for the reconstruction. The process of decod-
ing the velocity vector valuesx from the velocity
image is performed according to the following:

vx = cr · (vmax(x) − vmin(x)) + vmin(x) (2)

Vector values ofy andz can be achieved in the
same way like equation (2). The decoded vector
field values used to reconstruct the flow and ren-
der the glyphs are then projected onto the image
plane. Technically, the velocity at the boundary sur-
face is defined to be zero (no slip boundary condi-
tion). What we see here is an extrapolation of the
vector field just under the surface to the boundary.

3.5 Vector Field Reconstruction
After the vector field has been projected to the im-
age plane we perform flow reconstruction. There
are many different options when considering the
best approach to representing the vector field in-
cluding sub-sampling, using first-order or bilinear
interpolation, and using box, linear and Gaussian
interpolation filter functions. Representations may
be optimized for speed or for accuracy. In our im-
plementation, we offer options optimized for both.
We describe the reconstruction options in more de-
tails in the sub-sections that follow.

3.5.1 Sub-sampling
The fastest and simplest way to represent the vector
field with glyphs is to use sub-sampling. A rectilin-
ear grid, the resolution of which is defined by the
user, is placed in image space. The vector field is
then sampled at the center of each grid cell using the
decoding described in the previous section. A vec-
tor glyph is rendered at the center of each grid cell
based on the sample. In the implementation, some
measure must be taken to ensure that no glyphs are
rendered at cell centers with the background color.
This can be handled either by an explicit test for
background color or by testing the depth buffer for
its maximum value. We chose the option of testing
the z-buffer value. No glyphs are rendered for cell
centers wherezdepth = 1.0.

The advantage of this approach is speed. The
user may sample the vector field at several frames
per second, rotating the resampling grid, changing
its resolution and sliding the grid in image space in
order to place the glyphs precisely where the user
chooses. We note that these user options of spec-
ifying the resampling grid resolution, translating
and rotating the grid are not arbitrary. They were

Figure 3:Glyphs are rendered at the resampling grid cell
centers for visible portions of the boundary geometry and
its associated vector field. This example shows a simple
ring geometry with a202 resampling grid.

specifically requested by fluid engineers we talked
to when developing an earlier tool [8]. Fluid en-
gineers want precise control over glyph placement
and resampling parameters.

3.5.2 Average-based representation
Although the above sub-sampling approach pro-
vides the desired speed to investigate the simulation
result, it does not construct the most accurate repre-
sentation of the flow since only a sub-set of samples
are taken into account. Therefore we also provide
the option of rendering glyphs based on the average
vector field value of each user-defined resampling
grid cell. Instead of sampling the vector field only
at the center point of each cell, this approach sam-
ples the vector field pixel-by-pixel over the whole
cell. However, a complication can arise with this
approach due to discontinuities on the surface. If we
do not take edges in the geometry into account then
we may end up including undesired velocity val-
ues into the final average. To address this problem,
we also sample the depth value at each pixel during
the average computation. If the depth values of the
center grid cell point,pcenter, and another sample
within the same cell,psample, differ by more than a
threshold value,εdepth, then the pixel withpsample

is not included in the final average. This approach
separates the image into distinct regions for accu-
rate flow reconstruction. We emphasize that, in all
of our filters, any pixels beyond edge discontinuities
are left out of the final result. We do so in order to
separate different regions of the geometry that may
be at the same depth.

The averaging approach provides high accuracy
for representing the flow. The user can gain a

precise overview of the vector field based on the
boundary surface via the intuitive center glyph
without missing any potentially interesting values.
One drawback with this approach however is its cost
in computing time.

3.5.3 Reconstruction using filters
In order to construct an optimal approach which
combines the speed of sub-sampling and the accu-
racy of an averaging-based representation, we use
footprint functions with various interpolation filters.
We can use various filters (or filter kernels) to re-
construct the flow at the boundary surface. There
are many possible interpolation functions, namely
nth order filters wheren = 0,1,2,. . . all with rela-
tive advantages and disadvantages (see [4] for an
overview). We have implemented linear (or first or-
der) and Gaussian filters in our framework. In or-
der to accelerate the computation, we have imple-
mented these filters as footprint functions similar
to Westover [13]. Our image-based resampling ap-
proach makes this a natural choice for simple, sym-
metric 2D footprint functions. Using a 2D footprint
function with an elliptical extent, vector field recon-
struction is accelerated by pre-computing the con-
tribution of each sample in the footprint’s extent and
storing it in a look-up table. The extent of each foot-
print simply encompasses one grid cell in the user-
defined resampling grid as shown in Figure 4. Fur-
thermore, the footprint represented by each glyph
is the same except for a screen space offset. An il-
lustration showing an example footprint and filter
kernel is shown in Figure 4.

While we believe the use of filter functions im-
plemented using footprint tables represents a bal-
anced trade-off between accuracy and speed, com-
plications arise due to discontinuities in the vector
field stemming from mesh boundaries and edges.

Center Point Sampling PointResampler Cell

Circular footprint function

pcenter psample

Figure 4:Left is the circular footprint function using82

sized footprint-grid. On the right side, an82 footprint
look-up table with a Gaussian filter kernel.

Resampling Grid Footprint Extent

Center Point pcenter
Surrounding
Points p(i,j)

Figure 5: The circular footprint function with Gaussian
filter kernel is applied at the surface of the ring which has
edges as shown. The blue point is the center point of the
resampling cell. Green and red points are sample points
defined by the footprint function. Green contribute to the
final representation whilst red have been filtered out by
equation (3).

If we simply contribute each sample’s vector val-
ues to the filter function we may not get an accu-
rate visualization of the flow at each resampling
grid cell center. This is because the center points
may lie on a different portion of the mesh than sur-
rounding sample points. Figure 5 shows a center-
point pcenter where a glyph representing the flow
is rendered. Also shown is the extent of the foot-
print function surroundingpcenter. The extent of
the footprint encompasses more samples includ-
ing undesired ones likepi,j (shown in red) around
pcenter. Thus we must introduce an additional fil-
tering operation to disregard the contribution of red
points pi,j to pcenter. We achieve this by taking
the depth gradient betweenpcenter andpi,j into ac-
count. If

εdepth > |depth(pcenter) − depth(pi,j)| (3)

then samplespi,j contribution is not added to the
final value atpcenter. Hereεdepth is a user-defined
threshold. In practice, we have found a value of
0.003 to be a good threshold value.

In order to implement the filtering operation,
we use a neighbor-based selection method to se-
lect sampling pointspi,jaccurately and efficiently.
Equation (3) helps us detect relevant portions of the
boundary geometry to sample and which samples
to filter out. We test each sample within the extent
of the center point’s footprint kernel. We start at

Pcenter

P(i,j+1)

Figure 6: Candidate samples are found by searching
the kernel extent in a looping fashion starting atpcenter .
Sample pointspi,j do not contribute if equation (3) is true.

pcenter and test each adjacent neighbors in a loop-
ing fashion. If we find contributing pointspi,j in
the first loop of neighbors surroundingpcenter then
we increase the radius of the loop by one unit and
repeat the process. If a discontinuity is found, all
neighbors beyond the discontinuity are filtered out.
This iterative process stops when either (1) a loop
with no contributing samples is found or (2) the
extent of the footprint is reached. An illustration
is shown in Figure 6.pi,j+1 is a neighbor from
pi,j . Oncepi,j+1 is rejected, the unvisited neigh-
bor points beyondpi,j+1 are not needed.

We point out that we have implemented a sub-set
of possible filters. Our framework however offers
any number of filters to be plugged in and used in a
natural and easy way.

3.6 Image Overlay Application
Along with the glyph placement, an optional im-
age overlay is used for the resulting visualization of
the vector field on surfaces by applying color, shad-
ing, or any attribute mapped to color. In the imple-
mentation, we generate the image overlay following
the construction of the velocity image once for each
static scene. Once the view-point is changed, im-
age overlay needs to be regenerated. By exploit-
ing OpenGL’s glDrawPixels() function, rendering
an image is much faster than rendering the com-
plex triangulated object each time a user parameter
is changed.

3.7 Glyph Placement, User Options and
Enhancements

Many user options can be applied to enhance the
usability and flexibility of glyph placement. The

Figure 7: A close-up view of the vector field on the sur-
face of an 79K polygonal gas engine simulation mesh.
Here we illustrate a comparison of various vector field re-
construction options: (top, left) Sub-sampling, (top, right)
Averaging, (bottom, left) Linear filtering and (bottom,
right) Gaussian filtering on red color circulated area. It’s
worth pointing out that accuracy of depicting vector field
around the edge between the cap and the cylinder via Lin-
ear and Gaussian filter is quite similar to the result from
the averaging, but with much less computational cost than
averaging.

user options enable engineers to gain more insight
of the flow on boundary surfaces. We describe these
user options in more detail individually. Many of
the user-interaction techniques we describe would
not be possible with an object space approach.

• User-Defined Resampling Grid Resolution:
The user may interactively specify the reso-
lution of the resampling grid in image space.
The higher the resolution, the more accurate
the linear and Gaussian filter kernels become.
The lower the resolution, the faster the interac-
tion becomes. Users desire faster speed for in-
teraction and higher accuracy for analysis and
presentation.

• Grid Translation and Rotation: In order to pre-
cisely place the vector field glyphs at user de-
fined points, we provide the option of moving
the resampling grid around as well as rotating
the grid around the center point. These options
were specifically requested by CFD engineers,
as well as control of the resampling grid reso-
lution.

• Glyph Scaling: This user option adjusts the
size of each glyph in order to avoid overlap-

Figure 8:A colored multi-resolution visualization of low
resolution and high resolution glyphs applied with Gaus-
sian filter is rendered to visualize the flow at the surface
of a gas engine simulation. Color is mapped to velocity
magnitude.

ping and occlusion of glyphs. With the help
of glyph scaling, glyphs can be rendered in
proper size to make the vector field easily per-
ceived.

• Multi-Resolution Flow visualization: Our tool
also offers a multi-resolution representation of
the flow. The user may define a sub-grid, with
its own higher (or lower) grid resolution. The
user can then position this sub-grid over any
area of interest interactively. All of the options
built into our framework can be applied to the
sub-grid as well: different reconstruction op-
tions, as well as grid scaling and rotation (see
Figure 8).

Data Set Resampling Rate (FPS)
Sub-sampling Average Linear Gaussian

Ring
(10K)

59(29) 2.5(2.0) 30(17) 30(16)

Combustion
Chamber (79K)

59(20) 1.9(1.8) 29(11) 29(12)

Intake Port
(221K)

59(11) 2(1.5) 29(8) 30(7.5)

Cooling Jacket
(228K)

59(9.5) 1.9(1.7) 29(8.2) 29(7.8)

Table 1: Sample frame rates for the visualization algo-
rithm applied with152 fixed resolution of user-defined re-
sampling grid with about 75% image space area covered.
An image of5122 pixels is used.

We also point out that the accuracy of the vector
field representation increases automatically when

Data Set Resampling Rate (FPS)
52 102 202 502

SS Gaussian SS Gaussian SS Gaussian SS Gaussian

Ring
(10K)

59(29) 59(28) 59(29) 59(20) 59(29) 15(11) 58(23) 2.5(2.4)

Combustion
Chamber

(79K)

59(20) 59(19) 59(20) 58(20) 59(20) 13(9.5) 58(20) 2.3(2)

Intake Port
(221K)

59(11) 59(10) 59(11) 58(8.5) 59(9.7) 15(6.2) 58(10) 2.4(1.7)

Cooling
Jacket
(228K)

59(10) 58(9.4) 59(9.5) 58(7.4) 59(10) 14(6.5) 59(9.4) 2.4(1.9)

Table 2: Sample frame rates for the visualization al-
gorithm applied with sub-sampling (SS), a Gaussian fil-
ter function (Gaussian), varying the resolution of user-
defined resampling grid and about 75% image space area
covered.

the user zooms in on a boundary. The higher sam-
pling frequency is a natural benefit of the approach.
One of the consequences of using an image-based
approach is that the glyphs remain fixed in their po-
sitions as the object moves under rotation or transla-
tion. This can be handled by unprojecting the vector
glyphs back to the object-space surface. However
glyphs are not generated for portions of the geom-
etry that are occluded or outside the current view.
Finding a perfect solution to this problem is a part
of our future work.

4 Performance and Results
As our glyph-based visualization is focused on un-
structured, adaptive resolution boundary meshes
from the complex CFD data sets, we evaluate our
visualization on simulation data sets with these
characteristics. Figure 9 shows a comparison of
brute-force hedgehog placement and our glyph-
based method applied on a surface of an intake port
mesh composed of 221K polygons. The intake port
has highly adaptive resolution boundary surface and
for which no global parameterization is easily com-
puted. As we can see from the top picture, most
glyphs overlap or are occluded. Using a hedgehog
approach 664k glyphs are rendered. However, our
approach renders only about 400 glyphs. Also, the
distribution of glyphs is uneven. These artifacts are
a result of the underlying mesh and have no rela-
tion to the flow itself. In the bottom, our method
places glyphs in an intuitive and efficient fashion
enabling engineers to get a fast and clear overview
of the flow on the surface. At the same time, with
the help of a multi-resolution option, more details
on the interesting areas can be obtained. The vec-
tor field on the complex cooling jacket boundary
meshes (from Figure 1) can be also efficiently vi-
sualized by our intuitive glyph-based method (Fig-
ure 10), especially compared to a hedgehog visu-

Figure 9: The comparison of brute-force hedgehog vi-
sualization (top) and our multi-resolution glyph-based vi-
sualization which is powered by Gaussian filter (bottom)
applied in order to depict the flow at a surface of an intake
port mesh composed of unstructured, adaptive-resolution
221K polygons. Notice how the glyphs are cluttered us-
ing the hedgehog approach (top). Also notice that arti-
facts appear resulting from the underlying mesh that have
nothing to do with the actual flow. Glyphs are color-coded
according to velocity magnitude.

alization. Because of the fast speed of our method
this glyph-based visualization allows users to trans-
late, rotate and zoom in the object interactively to
get better insight of the CFD data sets. We encour-
age the reader to view the supplementary video for
more results.

In order to compare the various reconstruction
options implemented in our framework, we evalu-
ated sub-sampling, averaging, the linear filter func-
tion and the Gaussian filter function on a PC with
an Nvidia Geforce 8600GT graphics card, a 2.66
GHz dual-processor and 4 GB of RAM. The per-
formance times reported in Table 1 were obtained
using a fixed152 resolution resampling grid with
about 75% image space coverage. The first times

Figure 10:Another comparison of brute-force hedgehog
flow visualization (top) and glyph-based flow visualization
which is powered by Gaussian filter and multi-resolution
(bottom) applied at the surface of a cooling jacket - a com-
posite of 228K unstructured, adaptive-resolution poly-
gons.

illustrated in the FPS column are for the static
case of (no change to the view point) only changes
to the user options from section 3.7. The times
shown within parenthesis depict the dynamic case
of changes to the viewpoint. In terms of the
overview chart presented in Figure 2, the construc-
tion of a velocity image, image overlay, reconstruc-
tion of vector field, as well as glyph placement need
to be computed in the dynamic case. From Table 1,
we can see that sub-sampling is the fastest while
averaging is the slowest. Linear and Gaussian fil-
ter functions are in the middle as a balance between
computation speed and high accuracy.

Table 2 shows performance times in order to
compare sub-sampling and a Gaussian filter func-
tion with various resolutions of the user-defined re-
sampling grid. The performance time of our al-
gorithm depends on the resolution of the user de-

fined resampling grid used to place relevant glyphs
and the number of polygons in the original surface
mesh. But in the static case, the algorithm depends
mostly on the coverage of the area in image space
(75% is covered in our cases) rather than the num-
ber of polygons in the original surface mesh. Table
2 indicates that the higher the resolution of the re-
sampling grid, the lower the performance. When
the resolution is higher than202, the performance
speed drops off. Hence we use a202 default res-
olution like in Figures 9 and 10 of the resampling
grid for good performance and high accuracy. In
general, our goal is to provide users for fast per-
formance times for interaction and exploration. For
presentation and analysis, users then have the op-
tion of increasing the accuracy.

5 Conclusion and Future Work
In this paper we propose a fast and simple glyph
placement algorithm for investigating and visual-
izing boundary flow data based on unstructured,
adaptive resolution boundary meshes from CFD.
We show that the algorithm effectively and auto-
matically places glyphs at evenly-spaced intervals,
independent of geometric and topological complex-
ity of the underlying adaptive resolution mesh. We
have also demonstrated that the spatial resolution
and precise location of the glyph placement can be
interactively and intuitively adjusted by the user in
order to gain better visualization results. In addi-
tion, multi-resolution visualization can be applied
to highlight details in areas deemed interesting by
the user. Furthermore, the efficiency of our algo-
rithm is reinforced by the fact that no computation
time is wasted on occluded polygons or polygons
covering less than one pixel. Due to the efficiency
and speed of the algorithm user interaction such as
zooming, translating and rotation is enabled. The
framework supports various representations of the
flow optimized for both speed and accuracy. No
pre-processing of the data or parameterization is re-
quired.

We would like to extend the work to visualization
of unsteady 3D flow. Challenges stem from both the
resampling performance time and perceptual issues.
Future work also includes using floating-point tex-
ture in order to encode and decode the vector field.

6 Acknowledgements
This work was supported by EPSRC research grant
EP/F002335/1. The authors would like to thank

Tony McLoughlin for his help in proofreading the
manuscript.

References

[1] D. Dovey. Vector Plots for Irregular Grids. pages
248–253. IEEE Visualization, 1995.

[2] M. Hlawitschka, G. Scheuermann, and B. Hamann.
Interactive Glyph Placement for Tensor Fields. In
ISVC07, pages I: 331–340, 2007.

[3] L. Hong, X. Mao, and A. E. Kaufman. Interactive
Visualization of Mixed Scalar and Vector Fields. In
IEEE Visualization, pages 240–247, 1995.

[4] A. Kaufman and K. Mueller. Overview of Vol-
ume Rendering, chapter 1. Visualization Handbook.
2005.

[5] G. Kindlmann and C. Westin. Diffusion Tensor
Visualization with Glyph Packing. IEEE Trans-
actions on Visualization and Computer Graphics
(Proceedings Visualization 2006), 12(5):1329–1335,
September-October 2006.

[6] R.V. Klassen and S.J. Harrington. Shadowed Hedge-
hogs: A Technique for Visualizing 2D Slices of 3D
Vector Fields.Visualization, 1991. Visualization ’91,
Proceedings., IEEE Conference on, pages 148–153,
22-25 Oct 1991.

[7] D.H. Laidlaw, E.T. Ahrens, D. Kremers, M.J. Ava-
los, R.E. Jacobs, and C. Readhead. Visualizing Dif-
fusion Tensor Images of the Mouse Spinal Cord. In
IEEE Visualization ’98, pages 127–134, 1998.

[8] R. S. Laramee. FIRST: A Flexible and Interactive
Resampling Tool for CFD Simulation Data.Com-
puters & Graphics, 27(6):905–916, 2003.

[9] T. Ropinski, J. Meyer-Spradow, M. Specht, K.H.
Hinrichs, and B. Preim. Surface Glyphs for Visu-
alizing Multimodal Volume Data. InProceedings
of the 12th International Fall Workshop on Vision,
Modeling, and Visualization (VMV07), pages 3–12,
nov 2007.

[10] T. Ropinski and B. Preim. Taxonomy and Usage
Guidelines for Glyph-based Medical Visualization.
In Proceedings of the 19th Conference on Simulation
and Visualization (SimVis08), 2008.

[11] A. Sigfridsson, T. Ebbers, E. Heiberg, and
L. Wigstrom. Tensor Field Visualisation Using
Adaptive Filtering of Noise Fields Combined with
Glyph Rendering. Visualization, 2002. VIS 2002.
IEEE, pages 371–378, 1-1 Nov. 2002.

[12] M.O. Ward. A Taxonomy of Glyph Placement
Strategies for Multidimentional Data Visualization.
Information Visualization, 1(3/4):(194-210), 2002.

[13] L. Westover. Footprint Evaluation for Volume Ren-
dering. InSIGGRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics and inter-
active techniques, pages 367–376, New York, NY,
USA, 1990. ACM.

