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Abstract
In general, Natural Language Processing (NLP) algorithms exhibit black-box behavior. Users input text and output are
provided with no explanation of how the results are obtained. In order to increase understanding and trust, users value
transparent processing which may explain derived results and enable understanding of the underlying routines. Many
approaches take an opaque approach by default when designing NLP tools and do not incorporate a means to steer
and manipulate the intermediate NLP steps. We present an interactive, customizable, visual framework that enables
users to observe and participate in the NLP pipeline processes, explicitly manipulate the parameters of each step, and
explore the result visually based on user preferences. The visible NLP (VNLP) pipeline design is then applied to a text
similarity application to demonstrate the utility and advantages of a visible and transparent NLP pipeline in supporting
users to understand and justify both the process and results. We also report feedback on our framework from a modern
languages expert.

Introduction and Motivation

Visual computing approaches have been adapted in order
to understand and open up machine and deep learning
methods, and have been used as an educational means
to understand black-box machine learning techniques. For
example, TensorFlow Playground (1) is an interactive, web-
based tool that enables users to understand neural networks
via visualization. Also, Strobelt et al. (2) use visualization
techniques to analyze the hidden state dynamics of recurrent
neural networks (RNNs). Recently, Chatzimparmpas et al.
(3) present a survey of surveys on the use of visualization for
interpreting machine learning models.

However, there remains a lack of such approaches that
demonstrate visualization techniques which enable the user
to see the results of Natural Language Processing (NLP)
processes.

The black-box metaphor is defined by Cambridge
dictionary (4) as: “a system or process that uses information
to produce a particular set of results, but that works in a way
that is secret or difficult to understand.” Merriam-Webster
dictionary (5) also defines black-box as: “anything that has
mysterious or unknown internal functions or mechanisms.”
Guidotti et al. (6) in their survey describe black-box systems
as systems that hide their internal logic to the user (6). This
usually applies to machine learning and artificial intelligence
models as the user can not interpret their behaviour and
predictions. In the context of this paper, black-box is used
to refer to a system that lacks the explanation of how
the results are derived and does not enable the user to
observe intermediate results and fully understand every stage
of the process. For example, a common challenge with
standard NLP tools is that they produce results and do not
obviously relate to the original text such as in normalization.
Furthermore, many standard pre-processing steps involve

stop words removal and do not enable users to visually
moderate this list.

Additionally, the lack of transparency is considered a
challenge when developing interdisciplinary visual analyt-
ics tools. Visualization also tends to reduce informational
dimensions to produce a focus that shows certain perspec-
tives or interpretations of the data (7). As a result, intended
users struggle to trust such results until they understand how
they are derived, which is in most cases very challenging.
In this paper, we address this challenge by making the
NLP process visible, transparent, user-steerable, and under-
standable. To achieve that, our proposed tool leverages both
the machine’s computation power and human intelligence.
It enables users to set explicit parameters to interactively
guide the automation. Complete automation can accelerate
the process however that is not the goal of VNLP.

While previous related research is generally guided by
the well-established information visualization mantra (8):
“Overview first, zoom and filter, then details-on-demand”,
this paper presents an alternative approach that focuses on
the details first: in other words, the process that is used to
generate the overview in the first place. Our approach starts
with raw text input into the NLP pipeline before developing
visible layers of abstraction step-by-step to help the user
understand the underlying choices made at each stage of the
VNLP pipeline. Figure 2 illustrates the visible stages and the
corresponding visual encodings. Finally, the overall visible
result is explored based on the combined machine + user’s
parameter choices and intelligence.

Feldman (9) introduces seven process levels that NLP
systems use to understand spoken language or text: the
phonetic, morphological, syntactic, semantic, discourse and
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pragmatic levels. In this context, our design is concerned
with the presentation of the input data and the morphological
level where the smallest parts of the texts are transformed
into their base forms. Our novel design makes this
transformation fully visible.

This paper contributes the following:

• The introduction of the Visible NLP (VNLP) concept;
• A novel interactive design of a generic VNLP pipeline

that enables users to explicitly observe the NLP
pipeline processes and update the parameters at each
processing stage;

• A case study application to text similarity quantifica-
tion to demonstrate the usefulness and advantages of
our approach; and

• Feedback on our framework from a domain expert in
modern languages.

This paper’s main contribution is conceptual and exploring
every different implementation of tools and algorithms is
beyond the scope of a single paper.

The rest of this paper is organized as follows:
Section discusses previous work related to our approach.
Section defines the most important and domain-related
terminology. Section outlines the design requirements.
Section introduces the VNLP implementation and design.
Section is dedicated to the evaluation of our visible
framework. Section introduce the future work possibilities
of our research.

Related Work
We first review the text visualization surveys as they provide
a valuable overview of the field. Then, we include literature
that incorporates some visible NLP aspects within their
approaches before, finally summarizing the most common
and recent text visualization approaches to review the visual
design space used to represent text embeddings.

Text visualization surveys: Multiple surveys focus on text
visualization approaches. Kucher and Kerren (27) provide an
interactive visual survey of text visualization techniques. Cau
and Cui present a review of text visualization research(28).
Federico et al. (29) survey visual analytics approaches that
focus on scientific literature and patents, while Heimerl and
Gleicher (30) survey the visual approaches that facilitate
word embeddings. In addition to these, Alharbi and Laramee
(31; 32) present the first survey of text visualization surveys,
describing 14 survey papers that focus on text visualization
techniques. They classify the text visualization approaches
into five categories based on the classification each survey
proposes. Most early text surveys categorize their literature
based on the target input (single or multiple documents) such
as (33), but recent surveys (34; 27; 35) propose multi-faceted
classifications that map visual approaches into multiple
dimensions, such as tasks, interaction and presentation.
Alharbi and Laramee also include surveys that support digital
humanities tasks, such as Jänicke et al (36). Jänicke et al.
provide an overview of applied visual encoding techniques
to visualize text content in the digital humanities. Their
review also includes a taxonomy of the text analysis tasks
in this domain. Alharbi and Laramee report that a common
challenge described in the surveys is the lack of user

interaction to support analysis (32). Culy (37) compiles a
list of visualization tools that he implemented which serve
a variety of applications, such as concordance views and
dependency trees.

Explainable machine and deep learning models:
Several solutions are proposed to solve the lack of
transparency in machine and deep learning models. They are
often referred to as explainable artificial intelligence (XAI)
(38; 39; 40). Hohman et al. (41) present the state-of-the-art of
deep learning visualization using an interrogative framework
which includes: Why, Who, What, How, When, and Where.
Chatzimparmpas et al. (3) introduce a survey of surveys on
the use of visualization for interpreting machine learning
models that are designed to clarify and help understanding
of the intermediate process and layers of such techniques.
Multiple surveys focus on the interpretation of ML models
with the use of visualization, such as (42; 43) Some of these
designs are implemented for educational purposes, such as
TensorFlow Playground (1), while others are implemented
to cluster, classify and understand reduced-dimensionality
vector space, such as (44; 45). Other approaches incorporate
visualization to understand and interpret machine learning
models, such as (46; 47; 48; 49; 50). Zhang et al. (51)
propose a visual and interactive framework for interpreting,
comparing and debugging machine learning models. Ribeiro
et al. (52) present a methodology and visual tool that tests
individual capabilities of NLP models using different test
types. However, most of these advanced techniques are
difficult to implement and understand for domain scholars.

The following section first reviews the related visual
approaches that visually integrate and facilitate NLP
functions and enable user interference in order to update
the analysis process. Then, we review the research space for
the most common visual representations used to depict text
embeddings.

Related visible NLP: Some text visualization approaches
incorporate NLP functions to pre-process text data and
produce embeddings that are used in visual interfaces.

Abdul-Rahman et al. (22) incorporate tools that enable the
user to segment and tokenize text based on multiple presets.
They illustrate the results with a dot plot graph to depict text
re-use patterns.

Jänicke and Wrisley (23) propose a visual alignment
approach to align versions of medieval poetry, providing an
overview alignment using a bipartite graph. The user can
investigate an alignment from the bipartite graph using an
intermediate level they call “meso reading”, which illustrates
the aligned pairs of lines between two text versions and
provides a preview that annotates stopwords and encodes the
frequency of reused words using saturation.

AlignVis (26) enables the user to manipulate the alignment
process via multiple options such as stopword removal
and normalization. AlignVis visually encodes the alignment
between the source and target text using a bipartite
graph, and encodes the confidence value of the similarity
measurement using the color of the text segments and edges.

In contrast to our work, very few previous approaches
explicitly demonstrate the processes they undertake and

Prepared using sagej.cls



Alharbi et al. 3

Reference Derived Data Visual Pipeline Encoding
Vocabulary meas. Statistical meas. Syntax meas. Visible Segmentation Visible Tokenization Visible Stopwords Visible Normalization Visible Embeddings

Church and Helfman (10) ×
Wattenberg (11) ×

Keim and Oelke (12) × × × ×
Wattenberg and Viégas (13) × ×

Collins et al. (Parallel Tag Clouds) (14) × × ×
Collins et al. (DocuBurst) (15) × × × ×

Van Ham et al. (16) × × × ×
Jänicke et al. (17) × × ×
Oelke et al. (18) × × ×
Jänicke et al.(19) × × ×
Geng et al. (20) × × ×

Riehmann et al. (21) × ×
Abdul-Rahman et al. (22) × × × × ×
Jänicke and Wrisley (23) × × × ×

Hu et al. (24) × × ×
TransVis (25) × × × ×
AlignVis (26) × × × × ×

Table 1. A summary of related work. Each paper is characterized by a two-level hierarchy (12): the derived data that each
approach generates and represents and the supported visual encodings in the NLP pipeline. Our approach makes the entire NLP
pipeline visible.

enable the user to explicitly manipulate intermediate NLP
steps to observe the effects of changes.

Visual design space: we summarize some of the
most common and recent text visualization approaches to
represent the visual encodings to depict text embeddings.

Dot plot graph: The dot plot (53) is a 2D matrix
plot used to detect similarities and reuse between two
sequences. Abdul-Rahman et al. (22) incorporate tools that
enable the user to segment and tokenize the text based on
multiple presets, integrating a dot plot to illustrate different
text alignments patterns. Schätzle et al. (54) incorporates
standard visualizations and interaction to analyse historical
linguistic data. They exploit a 2D matrix plot to compare
between selected dimensions across given time periods.
Other approaches utilize dot plot and facilitate colors to
encode the embeddings (10; 17).

Storylines and stream graph: Storylines and stream
graphs are another common visual design to depict
interrelationships between text entities and detect patterns
above the level of individual terms (55). TRAViz (19)
facilitates a stream graph to enable the user to investigate
the variation between texts, with the number of lines and
the size of the font indicating the frequency of word reuse.
Silvia et al. (55) adopt a storyline design to illustrate
interactions between entities in a story and explore how
entity relationships evolve over time. The word tree (13) is
another kind of directed stream graph used to illustrate the
occurrence of terms in a text. Alharbi et al. (25) similarly
propose an overview of translations that connects aligned
segments using curved lines.

Bipartite graph: A number of approaches incorporate
bipartite graphs to illustrate text alignment and communicate
the comparison task. Riehmann et al. (21), for example,
combine bipartite graph and pixel-based representations to
detect plagiarized text passages in PhD theses. Jänicke
and Wrisley (23) provide an overview alignment using a
bipartite graph. Abdul-Rahman et al. (22) also incorporate
an interactive bipartite graph in which the user can define a
subset to examine using a dot plot design, and Alharbi et al.
(26) adapt a bipartite graph to illustrate the alignment results
and color each edge based on the confidence value to guide
the domain scholar in refining the alignment.

Heatmap and pixel-based graphs: Geng et al. (20)
implement the vector space model to explore patterns of

variation between different translations of Shakespeare’s
Othello, with the term-document matrix visualized using a
heatmap where the color encodes the term frequency. Keim
and Oelke (12) extract different statistics, such as average
word and sentence length, and vocabulary measures, such as
word frequency and lexical diversity, and encode them using
a pixel-based graph.

Parallel coordinates: A parallel coordinates design is
considered a useful technique to explore multi-variate data
(56). The embeddings are translated into each dimension
and polylines connect the corresponding entities. Parallel
Tag Clouds (14) integrate the font size and color to visually
encode embeddings. Geng et al. (20) implement parallel
coordinates of the similarity measures in order to depict the
variation between translations. Alharbi et al. (25) incorporate
parallel line charts to illustrate the terms embeddings that are
generated to convey the variation between different texts.

Word Clouds: Word clouds depict tokens that occur
frequently in the source text (57; 58; 59). VarifocalReader
(60) integrates word clouds to summarize the numbers and
topics segments to serve as a starting point for further
analysis. Parallel Tag Clouds (14) use the font size mapped
to word significance in a document collection which is
arranged vertically. Oelke et al. (18) propose a glyph-based
visualization to illustrate multivariate properties, integrating
a word cloud approach to show the most descriptive terms of
each topic cluster, and integrating encodings to visualize the
relevancy of each topic to a specific class and determine the
extent to which a topic is discriminative for a class.

Network graphs: Several approaches attempt to present
the word relations in a text, with embeddings usually
encoded using color, edge thickness and font size. DocuBurst
(15) integrates WordNet (61) to generate vocabulary
measures, depicting the word relations using radial graph
layouts. Phrase Nets (16) and SentenTree (24) use a directed
node-link graph. The edges encode the strength of the
relation between the connected words and the size of
the words represents the word frequency. Wattenberg (11)
propose the arc diagram which visually connects repeated
substrings using translucent arcs.

Beck et al. (62) present and discuss five sources
of representation and annotation challenges: ambiguity,
variation, uncertainty, error and bias. They outline the proper
approaches to address these challenges and the consequences
when applying insufficient treatments.
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Table 1 summarizes the representative approaches
classified into a two-level hierarchy. The first level classifies
the approaches based on the derived data. We adopt the Keim
and Oelke (12) literary analysis classification: statistical
measures, vocabulary measures, and syntax measures.
Vocabulary measures include word frequency and word co-
occurrence. Statistical measures include global aggregation
such as average word length and occurrence proportion.
Syntax measures comprise the utilization of a syntax tree
of the texts. The second level summarizes the work based
on the supported visual encoding of our adapted pipeline.
We categorize the documents based on the existence of
interactive means to explicitly modify the task by the
user. The representative approaches include common visual
designs for texts and designs that support parallel texts. The
visible embeddings refers to the support of visual encoding
of feature extraction phase results.

Our approach is different from a fundamental perspective
as it enables the user to explicitly manipulate the parameters
of the NLP pipeline process. At each stage, the user can
explicitly observe the effect of their changes in each process.
The design is applied to a text similarity application to
explore the effect on the embeddings that are controlled by
user preferences.

Definitions and Terminology
This section defines the most important and domain-related
terminology required for developing a visible NLP pipeline.

Segmentation includes methods that break a document
down into independent and minimal textual components
which are usually called segments or tokens (63). A text
segment is defined as a contiguous piece of text that is linked
to itself but largely disconnected from the adjacent text (64).

Tokenization is the process of dividing a segment into
individual tokens. A token is an instance of a sequence of
characters that are semantically grouped together (65). Some
literature, such as Pak and Teh (63), considers tokenization
as a sub function of segmentation. To some extent, we agree
they overlap and could be used interchangeably, however
in the context of this paper, we refer to tokenization and
segmentation as two stages, as defined here.

Stopwords also called function words (as opposed to
content words) are defined as commonly used words that
are omitted in the process of generating a concordance
(66). Stopwords can include very common terms such as
definite and indefinite articles, auxiliary verbs, prepositions
and conjunctions, as well as common corpus-related words
with no discriminant value within a given domain or corpus.
An example of the latter is the word learning, which can
be a stopword for the domain of education and a content
word in the domain of computer science (67). Stopwords
have grammatical functions and can be defined subjectively
or objectively. There are multiple studies that focus on
the significance of stopword removal as a pre-processing
step(68; 69; 70).

Normalization includes techniques that are applied to
reduce the dimensionality of feature space (71). It involves
applying linguistic models to to restore words to their

canonical forms in a standard language (72). Stemming and
lemmatization are examples of normalization.

Stemming is the procedure that standardizes and gener-
ally truncates all words with the same root to a common
base form called a stem irrespective of their inflections (73).
For example: amusing and amusement have the same stem as
amus (74).

Lemmatization is similar to stemming in terms of
function. Lemmatization functions produce lemmas which
are dictionary-based words which, unlike stems, are not
truncated or ambiguous (75). For example: amusing and
amusement have the same lemma as amuse (74).

Word embeddings are semantically meaningful vector
representations of words in a high-dimensional space (76).
Word embeddings can also capture linguistic regulari-
ties, for example vector operations vector(‘Paris’) − vec-
tor(‘France’) + vector(‘Italy’) results in a vector that is
very close to vector(‘Rome’), and vector(‘king’) - vec-
tor(‘man’) + vector(‘woman’) is close to vector(‘queen’)
(77). BERT (Bidirectional Encoder Representations from
Transformers) (78) produce (Pre-trained) contextualized
word embeddings. As opposed to word2vec (79) and GloVe
(80), BERT can generate multiple word vectors for one word
based on the context. Word2vec and Glove produce only a
single word representation of each word.

Document embeddings, or so-called document represen-
tations (79), are the mapping of documents to numerical vec-
tor spaces. There are different approaches used to generate
document embeddings such as TF-IDF (81) and BM25 (82).
Contextual word embeddings can also be used to vectorize
documents (83; 79).

Feature is an individual measurable property, character-
istic, or behavior observed (84). In the context of document
embeddings, a feature is a unique or unusual term, phrase, or
sentence that can characterize a document.

Requirement Analysis
Throughout our collaboration with domain experts in the
digital humanities (DH), there was consistent interest in a
transparent design that reveals how the results are derived
rather than just presenting the end results. The experts
also expressed appreciation of an informative framework
that explains intermediate steps and makes them visible.
Therefore, we established and incrementally refined the
following requirements based on our discussions with the
DH expert:

R1 Provide information about each pipeline stage that
includes an explanation of the corresponding stage,
what it outputs, and how it affects the intermediate
results.
R2 Show explicit results at each stage and enable the
user to adjust the parameters to observe the effect at
the individual stage level.
R3 Provide a dynamic layout that customizes the
pipeline and scales up and down in line with user
preferences.
R4 Demonstrate the usefulness and advantages of the
design through an NLP application.

Prepared using sagej.cls



Alharbi et al. 5

Data Acquisition

Visible Segmenation

Segment length
Delimiters

Regular expression

Visible Tokenization

Delimiters
Regular expression

Visible Stopword

Define stopwords
Add/remove

Visible Normalization

Non-normalization
Stemming

Lemmatization

Visible Embedding

Embedding method
TF calculation

methods

Visible Sim Meas.

Euclidean
Cosine

Helinger
BM25

Visible NLP pipeline

Token Token Token
Token

.

Token Token Token

. ; -

Token Token
SW SW

Token
Tok

Token
Token

Token Token
Tok

Token

Vi
su

al
En

co
di

ng

text + glyphs text + glyphs text + glyphs 
+ position

text + color 
+ position

text + color 
+ position

Bar charts +
color

Token

Figure 1. Our VNLP pipeline illustrates five main NLP stages: text segmentation, tokenization, stop word removal, normalization,
and embeddings. We integrate an application to text similarity quantification to demonstrate the usefulness and advantages of our
approach. In the lower half, we show the corresponding visual encodings of the VNLP pipeline stages.
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Figure 2. A summary of the visual encodings that are implemented to support the generic VNLP pipeline stages.
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The requirements are coupled to the discussion of our design
in the following section.

Implementation and Design of Visible NLP
pipeline

Overview of the Visible NLP Pipeline: Our VNLP
pipeline illustrated in Figure 1 shows the NLP sub-
processes that play a major role in NLP results, quality,
and correctness. In Figure 2, we illustrate the visual
mappings that are implemented to support the VNLP
pipeline stages. Apart from the raw input data and the
end results, the user cannot normally observe the behavior,
intermediate results and parameters of the NLP algorithms.
The visible NLP pipeline contains the primary stages:
visible text segmentation, visible text tokenization, visible
stopword removal, visible text normalization, and visible
embeddings generation. In the last phase, visible similarity
measurements may be applied to derive alignments. This
phase includes a selection of popular, state-of-the-art
distance and similarity measurements. Cosine, Hellinger, and
Okapi BM25 measurements support the TF and TF-IDF
embeddings (85). Word Mover’s Distance, on the other hand,
is hypothesized to be the best that utilizes the quality of
word2vec embeddings (79).

The implementation of the VNLP pipeline consists
of four main components. The first is a window which
accommodates options to customize the focus and target
texts (Figure 3 (A)) and enables the user to set their preferred
font size to make the layout more accessible (R3). It also
provides an option that shows the similarity results in
the other texts in the collection. The user options include
multiple preset color schemes which can be applied to visible
embeddings and a similarity histogram graph (86; 87). This
window appears only on demand as it incorporates functions
related to the VNLP application process (R3).

The second component is the GUI pipeline where the
user interaction is applied in order to modify and steer the
underlying visible pipeline stages (Figure 3 (B)). All of
the visible pipeline processes are computed interactively at
the same time the user changes the parameters. The GUI
components are ordered based on the pipeline overview
discussed in Section and shown in Figure 1. Each
GUI component integrates an information icon which,
when clicked, presents detailed information about the
corresponding stage, as shown in Figure 4 (R1). Each GUI
component can be toggled on or off and the corresponding
stage in the visible result pipeline is then updated in the other
view below (R4). This is to help the user focus on any stage
and display the space efficiently.

The third component is the current visible results pipeline
which renders the results and responds to the user’s
interaction in the GUI pipeline (Figure 3 (D)). Each result
integrates a graph that provides a metadata analysis related
to the corresponding stage. The user can magnify a given
stage for closer analysis (R3). In the following sections, each
stage is discussed in detail as well as the correspondence
between the visible results and the GUI components (R2).

The visible results pipeline view includes the current user-
chosen segment and context segments (Figure 3 (E)), where
the user can navigate to the previous or next segment in
the same window. The current segment is indicated by a
red font color. Next to the visible embeddings result, the
window provides a green button (magnified in Figure 3 (D))
which leads to the embedding map to illustrate the overlap
between the focus and target segment (R4). This application
is discussed further in Section . The final item in this
view, called the “similarity results”, demonstrates the VNLP
application and is discussed further in Section (R4).

The fourth component shows the focus text which is
segmented based on the user’s choice (Figure 3 (C)). The
segments are illustrated top-down as they appear in the
original text in order to facilitate the reading task. In this
view, the tokenization and segmentation separators are
illustrated next to the individual segments to show the
position of the separators in each segment.

Table 2 presents some exceptional cases that can produce
undesired results when applying standard NLP algorithms.

Visible Segmentation and Tokenization
Segmenting the text into tokens or sentences might sound
like a trivial task, but various implicit decisions and different
languages can affect the results. Most default segmentation
tools do not necessarily provide similar results and each
implementation incorporates implicit decisions of which the
user may not be aware.

For example, the NLTK function
(sent\_tokenize()) (88) distinguishes between
full stops and periods that are part of a sentence such as
“Mr.”, “U.S.A”, while other default implementations do not
consider such cases. Cases in which a period is followed
by a capital letter are not considered in these default
implementations. Other punctuation such as ‘?’, ‘!’ and ‘;’
are usually ignored in default implementations. Although
we cite the NLTK in this example and other examples, our
system does not depend on any specific NLP library.

Our design enables the user to explicitly define how to
segment and tokenize the text using specific separators or
regular expressions. The user-specified delimiters are shown
in the GUI component as the user enters them, as can be seen
in Figure 5. It also incorporates a segmentation threshold
to avoid segments that are too short. The visible result is
illustrated in Figure 5. Our implementation offers a metadata
analysis of the segments and tokens in the focus text in
order to provide an overview of the results. In Figure 5 (a),
the vertical bar indicates the relative position of the user-
selected segment and shows the total number of segments
in the focus text. The horizontal bar illustrates the length
of the current segment and how it compares relative to the
other segment lengths. In Figure 5 (b), the metadata indicates
the lexical diversity of the selected segment, which measures
the number of lexical tokens in the segment, and shows the
number of tokens the segment includes compared to other
segments in the focus text.

Using the visible framework, the user can observe the
segments and how they are derived, as well as identify
unwanted behavior that is difficult to discover without a
transparent system. For example, Figure 6 (a) shows a case
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A

B

C

D

E

Figure 3. An overview of the VNLP pipeline. (A) A dialogue that accommodates options to customize the text, update the font size
for accessibility, and the color options. (B) The VNLP pipeline GUI where the user controls the parameters of each stage. (C) The
user-chosen focus text. (E) The context of the user-selected segment. (D) The visible results pipeline with each result reflecting the
parameters chosen in the corresponding GUI component.

VNLP pipeline stage Case Example

Visible Segmentation
+ Tokenization

full stops vs. periods used in abbreviations St. Romain, Mr., U.S.A
compound words (hyphenated) ambiguity well-to-do, drab-coloured, forty-year-old
different punctuation conventions “... helmet,”, “... name.”
contractions and words with apostrophes wife’s money, o’clock, don’t, couldn’t

Visible Stopwords
wrong entries in stopword list

“However”, “whose”, and “like” were not included in
the NLTK stopword list.

dominating use of stopwords in sentence
“So kann’s nicht sein” and “Ich will mich nicht im
Irrtum sicherschätzen”

common corpus-related words with no discriminant
value within a given domain or corpus

the word “learning” can be a stopword for the domain
of education and a content word in the domain of
computer science

Visible Normalization
undesired truncated results

“illegal” to “illeg”, “ugliness” to “aguli”, “hundred”
to “hundr” (stem)

overstemming
“universal”, “university”, and “universe” might be
stemmed as “univers”

understemming
“data” and “datum” might be stemmed differently as
“dat” and “datu” respectively

Visible Embeddings different results with different calculations
global common words are made locally distinctive
in some calculation

Table 2. Exceptional cases with corresponding representative examples that can be misinterpreted by standard NLP processes.

Figure 4. An information dialog view that shows a detailed
explanation of the corresponding VNLP pipeline stage.

where a segmentation delimiter, a period in this case, is
placed in the middle of a quote. Also, due to different writing

(a) (b)

Figure 5. Top: the visible tokenization and segmentation GUI
components. Bottom: the visible tokenization and segmentation
results. In each result, metadata analysis is provided for an
overview of the results.

standards, the closing quotation mark is placed after the
period in the middle segment, which causes the quotation
mark to be pushed to the following segment. Another
example is shown in Figure 6 (b), where the period in the
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(a) (b)

Figure 6. Two examples of ambiguous segmentation cases. (a)
A period placement in a quote (annotated by arrows) results in
a new segment. (b) The second segment was generated due to
the period in the word “St. Romain”.

(a) (b)

Figure 7. Two examples of erroneous tokenization cases. (a) A
inaccurate tokenization of the word “o’clock”. (b) The compound
word “well-to-do” is divided into three tokens which are
considered stopwords and consequently removed in the
following NLP stage.

word “St. Romain” causes the main segment to be divided
into two.

In the case of tokenization, the user can transparently
observe and examine the derived tokens. There are many
ways in which tokenization implementations can derive
undesired results. For instance, in Figure 7 a the word
“o’clock” is divided into two tokens, “o” and “clock”, when
using the punctuation-based tokenizer. This can affect the
results in different NLP applications. Figure 7 (b) shows
an example of an interesting tokenization choice where the
compound word “well-to-do” is divided into three tokens
which all could be stopwords and consequently the phrase
is removed in the next NLP stage.

Visible Stopwords
Stopword removal is a common practice in text pre-
processing and information retrieval applications. However,
other approaches claim that the removal of stopwords
may lead to an increase in false alignments (23; 22).
Research indicates that stopwords can be useful in some

(a) (b)

Figure 8. (a) in the stopword GUI window, the user can include
or remove stopwords. The GUI provides a list of the stopwords
where the user can add or remove them. (b) From the visible
results of both the stopwords and normalization, the user can
observe stopwords and add words from the normalization
results to the stopwords list and vice versa.

Figure 9. Two cases of visible stopwords. The top shows a
case where the entire segment is composed of stopwords. The
bottom shows a segment with five sequential stopwords. The
glyphs that accompany each segment illustrate the tokenization
delimiters chosen by the user.

applications such as authorship attribution as stopwords
tend to be included by the author subconsciously (12).
Most approaches facilitate and integrate a fixed set of
stopwords and do not incorporate means for the user to
explore and manipulate the stopwords list. By contrast,
our design enables the user to observe the stopwords in
the focus text by annotating them, as shown in Figure 9.
We also implement interactive means to add or remove
stopwords and observe the effect on the results accordingly.
As shown in Figure 8 (a), the user can include the stopword
removal function in the visible NLP process, see the current
stopwords list and add or remove stopwords. The user
can also interactively add or remove stopwords from the
visible results of stopwords and normalization stage by
right-clicking on the word, as can be seen in Figure 8 (b). In
this case, for example, the word “however” is not included
in the NLTK stopword list (88). Another example is shown
in Figure 10 (b). The user observes that multiple words
could be considered stopwords, such as “whose”, and “like”
which are not included in the NLTK stopword list, and so
can right-click on these words and add them to the stopword
list, as shown in Figure 10 (a).

When applying our design to Shakespeare’s play Othello
(89), some special cases can be observed. There are cases
in which a segment consists only of stopwords, such as
the segment “So kann’s nicht sein”, or is dominated by
stopwords such as the segment “Ich will mich nicht im
Irrtum sicher schätzen”, as shown in Figure 9. The choice
of removing the stopwords is not necessarily constructive in
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(a) (b)

Figure 10. An example of stopword exploration. (a) In the
visible stopword window, the user can explore the stopwords
included in the selected segment. (b) In the visible
normalization result the user can identify candidate words and
add them to the stopword list.

such cases. In another ambiguous case, in our tool the word
“sei” is not included in our list while other similar words
are, such as “sein”, “es” and “ist”. Therefore, a transparent
design that explicitly shows the results and enables user
intervention can be useful.

Visible Normalization
Most of the approaches in our collection do not offer
any means for the user to normalize, verify, or explore
the result of normalization. In our collaboration with
the modern languages expert (e.g. (20)), we experienced
frequent unsatisfactory results from the normalization
implementations provided by GermaLemma (90) and
TreeTagger (91). Although this might be influenced by the
nature of our data, we believe the normalization results need
to be shown and verified for the user to understand and trust
the analytical results. Our design enables users to choose raw
text, stemmed text, or lemmatized text to be embedded in the
next phase.

Visualizing the results of the normalization process can
reveal interesting results for the domain experts that they
may not expect or desire. For example, stemming can
produce undesirably truncated results, such as the words
“forty, hundred” stemmed to “forti, hundr”. While this is the
underlying function of stemming, the domain expert may not
appreciate such decisions. Another visible example is shown
in Figure 10 (b). The user can see the normalized form on
top of each word if it is different from the current form.
For example, the word “ugliness” is transformed to “ugli”
which leads to understanding the method used to produce
the normalized form.

Visible Embeddings
The visible embedding section offers multiple options
to manipulate and steer the feature extraction phase. As
shown in Figure 11, the interactive options in the GUI

(a) (b)

Figure 11. An example of the exploration of user modifications
to the visible embedding generation process. (a) The default
embedding generation implementation results in common
words such as, “one” and “cap” to become distinctive words. (b)
After the user changes the TF calculation method, the words
“one” and “cap” are considered non-distinctive and other more
important words appear.

window enable the user to specify the statistical quantifying
approach. The terms frequency (TF) and term frequency-
inverse document frequency (TF-IDF) are used to produce
fixed-length vectors of word weights. Since the TF-IDF
implementations have different definitions of TF (92),
this phase enables the user to experiment with three
different formulas for deriving the TF values in the TF-
IDF function. This stage also enables the user to project
different embedding values in the visible result as shown
in Figure 11. The projected values can be changed to help
the user understand the derived embedding results. The
user can choose to view the current embedding values,
the local term frequency, the global term frequency, or
the inverse document frequency. These choices affect the
implementation of the TF-IDF and can produce different
results accordingly. When the user hovers the cursor over
each word, these values can be seen explicitly, as shown
in Figure 12 (a), and we also provide a breakdown of the
formula if the user chooses, shown in Figure 12 (b). The
formulas were explicitly illustrated to help the domain user
understand the different derived outcomes and explain the
different embedding values that each calculation produces.

Showing these values explicitly communicates to the user
some of the differences between formulations and how they
perform. For example, when the user examines the segment
in Figure 11 (a), the words “one” and “cap” are considered
the most distinctive words. This does not align with the
domain user’s knowledge as these words are common in the
current texts as indicated in the projected values on top of
each word. In Figure 11 (b), the user changes the embedding
generation parameters to use the boolean calculation for TF
and observes improved results that correspond with their
assumption.
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(a) (b)

Figure 12. The two views that are shown when the user hovers
over a word in the visible embedding result. (a) A summary of
the embeddings values that are derived for this word. (b) A
breakdown of the formula that is used to derive the current
embeddings.

Evaluation
We evaluate our design by utilizing its features to
demonstrate the application of similarity quantification to
support and analyze aligned translations in the target text.
Following the application, we report feedback from a domain
expert in modern languages and translation studies. The
case-study evaluation is conducted in the context of higher
education with a professor in modern languages that uses
NLP tools in his lectures and labs.

Case Study: Visible Text Similarity Application
The visible similarity GUI, shown in 3 (B), provides a list
of similarity measurements from which the user can choose.
The visible embedding result incorporates a similarity
histogram and shows the most similar segment text at the
bottom of the visible result. The x-axis in the histogram
depicts the similarity value and the y-axis shows the number
of results in each similarity value. The rationale behind this
design is to illustrate the notion of the confidence value
presented by Alharbi et al. (26). For example, Figure 13 (a)
shows the similarity results along the x-axis. The distance
between the first value and the second value along the x-axis
is short when compared with the distance between the first
and second results in the histogram in Figure 13 (b). The
histogram includes a user option to remove the last value
column (usually the zero results) as it appears to skew the
histogram distribution, as illustrated in Figure 13 (c). The
user can also observe the similarity results in the other texts
in the collection.

The embeddings map is implemented to help the user
investigate the shared embeddings between the chosen focus
segment and the segments in the target text. The embeddings
map window, as shown in Figure 14, provides the user
with multiple options by which to sort the embeddings,
such as by alphabetical order, by focus or targe embeddings
values, or by the focus text word order. It also includes a
navigation option to move to the next result based on the
similarity results derived by the selected measurement. The
map includes two bar charts where the x-axis is mapped to
the common words of both segments and the y-axis depicts
the embedding results.

Here, we demonstrate the usefulness of the VNLP in
investigating the embeddings and understanding the process
undertaken. When the user selects the segment starting
with “We could see him working... ”, the framework

(a) (b)

(c)

Figure 13. Three similarity histograms that show the similarity
results along the x-axis. The y-axis indicates the number of
results for each similarity value. The histogram in (a) indicates
that the distance between the first value and the second value
along the x-axis is small while it is relatively greater in the other
histogram (b). The histogram in (c) shows the effect of showing
the similarity values that equate to zero.

Figure 14. The embeddings map window that illustrates the
embeddings values in both the focus and target texts. It
integrates user options where the user sets the sorting of the
embeddings values and navigates to other target segments.
The two bar charts represent the embeddings in the focus and
target text.

correctly shows the aligned segment from the target text.
When the user examines the embeddings map as shown in
Figure15 (a), the user clearly observes that the words “work”
and “working”, and the words “look” and “looking” are
not combined. The user can also observe that the word
“dictionary” appears twice due to the period in one of
the occurrences. The similarity measurement, Cosine in
this case, assigns a value of 0.20 to the result. The user
chooses the stemming from the visible normalization options
and changes the tokenization delimiters to consider other
punctuation. The embeddings map interactively updates
based on the user choices, as shown in Figure15 (b). The user
observes in the updated embeddings map that there is one
word (stem) that combines both “work” and “working”, and
“look” and “looking”. As well as this, the map only contains
one stem for the word of “dictionary” (“dictionari”) after
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(a)

(b)

Figure 15. Two examples of the embeddings map which
demonstrates the effect of the user interaction in the VNLP GUI.
The map in (a) shows the default settings for both the
tokenization and normalization. The map in (b) shows the
reduction of features after applying more delimiters to the
tokenization and stemming.

handling the punctuation issue. The updated similarity result
value is considerably higher due to the changes (0.51). It
shows that the word “working” is highly distinctive, but
not when it is returned to its base form. This helps the
user understand the basic notion of weighted terms and the
TF-IDF principles. This visibly demonstrates to the user
that the features quantity decreases from the map in Figure
15 (a) which facilitates understanding the idea of features
and dimensionality reduction. It also shows that the user
can observe the inner features (words) and enhance the
embeddings by editing the VNLP GUI options. Users are
informed on the different stages of the VNLP and how they
collectively influence the end result.

Domain Expert Feedback
To evaluate our framework, we sought feedback from a
Modern Languages and Translation expert with experience
of collaborating on computational text analysis projects
involving NLP. This project benefits from more than
three years of collaboration with the same domain expert.
Approximately 16 hours of meetings and brainstorming
sessions contributed to the implementation of this design.
For the evaluation of VNLP, three feedback sessions over

a 2-month period were conducted and video-recorded for
post-analysis and archiving. Our semi-structured interview
questions were guided by Hogan et al. (93).

Collaboration Overview and Domain Expertise: This
work is carried out in close collaboration with the
College of Arts and Humanities in Swansea University
under a collaborative project scheme founded in 2011
called “Translation Arrays: Version Variation Visualisation
(VVV)” (94). The project is responsible for collecting,
aligning, and warehousing the dataset under examination
along with other ‘multi-retranslation’ datasets. The team
has developed prototype online tools (95) for managing
such datasets and developing visualization to explore and
analyze them. Professor Tom Cheesman is the principal
investigator of the VVV project. He is a specialist in
modern and contemporary German literature and culture.
He has been researching German culture and translating
German literature since the early 1980s. Professor Cheesman
has been investigating the history of German translations
of Shakespeare’s Othello since 2009, using traditional
qualitative methods (contextualised close reading) and
experimental, quantitative, digital methods. Relevant online
outputs, presentations, and published articles by him and his
collaborators are listed on the project’s website (95). The
articles include publications in Digital Scholarship in the
Humanities (96) and Journal of Data Mining and Digital
Humanities (97).

When we first demonstrated the framework to the expert,
he appreciated the idea of making the NLP pipeline visible,
stating: “This is very interesting and has a lot of potential
for introducing NLP to students. I’m pretty sure it’s a
unique idea.”. When we presented the segmentation and
tokenization options, he liked the visible options and the
glyphs of the separators: “That is really valuable. It is
underestimated, but handling punctuation in text preparation
and normalization is very difficult. There are lots of different
approaches to use and the decisions you make have massive
impacts on subsequent analyses. This is great! I think I could
have a lot of fun playing with this.”.

In the case of the visible stopwords and their correspon-
dence with the visible normalization, the expert stated: “I
like that. It’s a perfect demonstration of the value of making
the process visible, and giving me visible feedback if I make
different choices. We normally present stopwords as one long
list. Showing them in the text segments like this makes more
immediate sense to users. It helps make the concept clear,
and the implications of defining stopwords in different ways.
The result is kind of poetic, too. I think a lot of people
who are interested in literature will respond to this very
well. It’s like a kind of concrete poetry.” Furthermore, he
suggested interacting with both windows in order to add or
remove stopwords to make it easier for the user to experiment
with the effects of altered lists, and so this feature was
implemented.

The visible embedding window was challenging for
the expert and this feature evolved most in response to
his successive feedback sessions. At the early stages, the
framework did not provide information about the different
values used to calculate the embeddings and the different
calculations. At one point, whilst investigating a case, the
expert interrupted: “Hang on! I’m trying to figure out
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how these values are derived.” Making these values and
calculations clear and transparent answered his questions and
increased his trust in the framework. He stated: “This is
really informative and takes you through the steps, telling
you what you need to know.”

The final discussion with the expert focused on evaluating
how useful this framework can be in teaching basic NLP
principles. As a closing remark, the expert stated: “I think it
could be a really useful framework precisely in educational
contexts, introducing NLP principles and processes to the
kind of students we have in languages and translation or
linguistics, who usually have limited computational skills
and are nervous about NLP interfaces which assume a huge
amount of knowledge. This lets them learn a lot by playing
around with options which produce different results.”

Future Work

This research opens up many varied directions of future
work. We believe it opens up a new theme of research that
is analogous to explainable machine learning.

• This research serves as a starting point for a wider
subject. We aim to extend it to include more NLP
functions and advanced techniques such as part-of-
speech tags (POS).

• While this project is limited to one case study,
adding different applications such as, visible sentiment
analysis or visible text classification to increase the
usability of the framework is valuable.

• Contextual word embeddings, such as BERT, can also
open up different applications such as visible word
relations and translation variations.

• Supporting the comparison of two or more parameter-
izations side-by-side is a possible future direction.

• With respect to the evaluation, due to the scope
limitation, we evaluated our approach using a text
similarity application and domain expert feedback.
However, an in-depth user study to evaluate the
generalizability and usability of the approach is
valuable and would make a paper in itself, e.g., Firat
et al (98). Also, evaluations in other contexts such as
legal and health documentation are encouraged.

• More glyph optimization, variations, and novel
designs for the embeddings map and VNLP stages are
also future work directions for this research.

Conclusion

In this paper, we present VNLP, a framework that enables
users to observe and participate in the NLP pipeline
processes, explicitly interact with the parameters of each
step, and observe the effects on the visible VNLP result.
The aim of this research is to implement an educational and
transparent process of the NLP pipeline. We support this with
an application of text similarity to demonstrate the usefulness
of the VNLP. This work is a result of a close collaboration
with an expert in modern languages and translation studies
and evaluated through domain expert feedback.
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