Document Domain Randomization for Deep Learning
Document Layout Extraction

Meng Ling', Jian Chen', Torsten Méller?, Petra Isenberg?, Tobias Isenberg?, Michael
Sedlmair®, Robert S. Laramee’, Han-Wei Shen!, Jian Wu®, and C. Lee Giles’

! The Ohio State University, USA, {1ing.253 | chen.8028 | shen.94}@osu.edu
2 University of Vienna, Austria, torsten.moeller@univie.ac.at
3 Université Paris-Saclay, CNRS, Inria, LISN, France,
{petra.isenberg|tobias.isenberg}@inria.fr
4 University of Stuttgart, Germany, michael.sedlmair@visus.uni-stuttgart.de
5 University of Nottingham, UK, robert .laramee@nottingham.ac.uk
6 0Old Dominion University, USA, jwu@cs.odu.edu
7 The Pennsylvania State University, USA, c1g20@psu. edu

Abstract. We present document domain randomization (DDR), the first success-
ful transfer of CNNs trained only on graphically rendered pseudo-paper pages
to real-world document segmentation. DDR renders pseudo-document pages
by modeling randomized textual and non-textual contents of interest, with user-
defined layout and font styles to support joint learning of fine-grained classes. We
demonstrate competitive results using our DDR approach to extract nine document
classes from the benchmark CS-150 and papers published in two domains, namely
annual meetings of Association for Computational Linguistics (ACL) and IEEE
Visualization (VIS). We compare DDR to conditions of style mismatch, fewer or
more noisy samples that are more easily obtained in the real world. We show that
high-fidelity semantic information is not necessary to label semantic classes but
style mismatch between train and test can lower model accuracy. Using smaller
training samples had a slightly detrimental effect. Finally, network models still
achieved high test accuracy when correct labels are diluted towards confusing
labels; this behavior hold across several classes.

Keywords: Document domain randomization - Document layout - Deep neural
network - behavior analysis - evaluation.

1 Introduction

Fast, low-cost production of consistent and accurate training data enables us to use
deep convolutional neural networks (CNN) to downstream document understanding
[13,37,42,43]. However, carefully annotated data are difficult to obtain, especially for
document layout tasks with large numbers of labels (time-consuming annotation) or with
fine-grained classes (skilled annotation). In the scholarly document genre, a variety of
document formats may not be attainable at scale thus causing imbalanced samples, since
authors do not always follow section and format rules [10,28]. Different communities
(e. g., computational linguistics vs. machine learning, or computer science vs. biology)
use different structural and semantic organizations of sections and subsections. This
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Fig. 1: Tllustration of our document domain randomization (DDR) approach. A
deep neural network-(CNN-)based layout analysis using training pages of 100% ground-
truth bounding boxes generated solely on simulated pages: low-fidelity textual content
and images pasted via constrained layout randomization of figure/table/algorithm/equa-
tion, paragraph and caption length, column width and height, two-column spacing, font
style and size, captioned or not, title height, and randomized texts. Nine classes are
used in the real document layout analysis with no additional training data: abstract,
algorithm, author, body-text, caption, equation, figure, table, and title. Here the colored
texts illustrate the semantic information; all text in the training data is black.

diversity forces CNN paradigms (e. g., [36,43]) to use millions of training samples,
sometimes with significant amounts of noise and unreliable annotation.

To overcome these training data production challenges, instead of the time-consuming
manual annotating of real paper pages to curate training data, we generate pseudo-pages
by randomizing page appearance and semantic content to be the “surrogate” of training
data. We denote this as document domain randomization (DDR) (Fig. 1). DDR uses
simulation-based training document generation, akin to domain randomization (DR) in
robotics [20,34,40,41] and computer vision [15,29]. We randomize layout and font styles
and semantics through graphical depictions in our page generator. The idea is that with
enough page appearance randomization, the real page would appear to the model as just
another variant. Since we know the bounding-box locations while rendering the training
data, we can theoretically produce any number of highly accurate (100%) training sam-
ples following the test data styles. A key question is what styles and semantics can be
randomized to let the models learn the essential features of interest on pseudo-pages so
as to achieve comparable results for label detection in real article pages.

We address this question and study the behavior of DDR under numerous attribution
settings to help guide the training data preparation. Our contributions are that we:
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— Create DDR—a simple, fast, and effective training page preparation method
to significantly lower the cost of training data preparation. We demonstrate that
DDR achieves competitive performance on the commonly used benchmark CS-
150 [11], ACL300 of Association for Computational Linguistics (ACL), and VIS300
of IEEE visualization (VIS) on extracting nine classes.

— Cover real-world page styles using randomization to produce training samples
that infer real-world document structures. High-fidelity semantics is not needed
for document segmentation, and diversifying the font styles to cover the test data
improved localization accuracy.

— Show that limiting the number of available training samples can lower detec-
tion accuracy. We reduced the training samples by half each time and showed that
accuracy drops at about the same rate for all classes.

— Validated that CNN models remained reasonably accurate after training on
noisy class labels of composed paper pages. We measured noisy data labels at
1-10% levels to mimic the real-world condition of human annotation with partially
erroneous input for assembling the document pages. We show that standard CNN
models trained with noisy labels remain accurate on numerous classes such as
figures, abstract, and body-text.

2 Related Work

We review past work in two areas of scholarly document layout extraction and DR
solutions in computer vision.

2.1 Document Parts and Layout Analysis

PDF documents dominate scholarly publications. Recognizing the layout of this unstruc-
tured digital form is crucial in down-stream document understanding tasks [6,13,18,28,37].
Pioneering work in training data production has accelerated CNN-based document
analysis and has achieved considerable real-world impact in digital libraries, such as
CiteSeer* [6], Microsoft Academic [37], Google Scholar [14], Semantic Scholar [27],
and IBM Science Summarizer [ 10]. In consequence, almost all existing solutions attempt
to produce high-fidelity realistic pages with the correct semantics and figures, typically
by annotating existing publications, notably using crowd-sourced [12] and smart anno-
tation [2 1] or decoding markup languages [3,12,23,28,35,36,43]. Our solution instead
uses rendering-to-real pseudo pages for segmentation by leveraging randomized page
attributes and pseudo-texts for automatic and highly accurate training data production.
Other techniques manipulate pixels to synthesize document pages. He et al. [19]
assumed that text styles and fonts within a document were similar or follow similar
rules. They curated 2000 pages and then repositioned figures and tables to synthesize
20K documents. Yang et al. [42] synthesized documents through an encoder-decoder
network itself to utilize both appearance (to distinguish text from figures, tables, and line
segments) and semantics (e. g., paragraphs and captions). Compared with Yang et al.,
our approach does not require another neural network for feature engineering. Ling and
Chen [25] also used a rendering solution and they randomized figure and table positions
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Fig. 2: DDR render-to-real workflow. Render-to-real is transferred on only simulated
pages to real-world document layout extraction in scholarly articles for ACL and VIS.

for extracting those two categories. Our work broadens this approach by randomizing
many document structural parts to acquire both structural and semantic labels.

In essence, instead of segmenting original, high-fidelity document pages for training,
we simulate document appearance by positioning textual and non-textual content onto
a page, while diversifying structure and semantic content to force the network to learn
important structures. Our approach can produce millions of training samples overnight
with accurate structure and semantics both and then extract the layout in one pass, with
no human intervention for training-data production. Our assumption is that, if models
utilize textures and shape for their decisions [17], these models may well be able to
distinguish among figures, tables, and text.

2.2 Bridging the Reality Gap in Domain Randomization

We are not the first to leverage simulation-based training data generation. Chatzimparm-
pas et al. [7] provided an excellent review of leveraging graphical methods to generate
simulated data for training-data generation in vision science. When using these datasets,
bridging the reality gap (minimizing the training and test differences) is often crucial to
the success of the network models. Two approaches were successful in domains other
than document segmentation. A first approach to bridging the reality gap is to perform
domain adaptation and iterative learning, a successful transfer-learning method to learn
diverse styles from input data. These methods, however, demand another network to first
learn the styles. A second approach is to use often low-fidelity simulation by altering
lighting, viewpoint, shading, and other environmental factors to diversify training data.
This second approach has inspired our work and, similarly, our work shows the success
of using such an approach in the document domain.

3 Document Domain Randomization

Given a document, our goal with DDR is to accurately recognize document parts by
making examples available at the training stage by diversifying a distinct set of ap-
pearance variables. We view synthetic datasets and training data generation from a
computer graphics perspective, and use a two-step procedure of modeling and rendering
by randomizing their input in the document space:
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We use modeling to create the semantic textual and non-textual content (Fig. 2).
o Algorithms, figures, tables, and equations. In the examples in this paper, we
rely on the VIS30K dataset [8,9] for this purpose.
e Textual content, such as authors, captions, section headings, title, body text,
and so on. We use randomized yet meaningful text [39] for this purpose.
With rendering we manage the visual look of the paper (Fig. 1). We use:
e a diverse set of other-than-body-text components (figures, tables, algorithms,
and equations) randomly chosen from the input images;
distances between captions and figures;
distances between two columns in double-column articles;
target-adjusted font style and size;
target-adjusted paper size and text alignment;
varying locations of graphical components (figures, tables) and textual content.

Modeling Choices. In the modeling phase, we had the option of using content from
publicly available datasets, e. g., Battle et al.’s [4] large Beagle collection of SVG figures,
Borkin et al.’s [5] infographics, He et al.’s [19] many charts, and Li and Chen’s scientific
visualization figures [24], not to mention many vision databases [22,38]. We did not
use these sources since each of them covers only a single facet of the rich scholarly
article genre and, since these images are often modern, they do not contain images from
scanned documents and thus could potentially bias CNN’s classification accuracy. Here,
we chose VIS30K [8,9], a comprehensive collection of images including tables, figures,
algorithms, and equations. The figures in VIS30K contain not only charts and tables
but also spatial data and photos. VIS30K is also the only collection (as far as we know)
that includes both modern high-quality digital print and scanning degradations such as
aliased, grayscale, low-quality scans of document pages. VIS30K is thus a more reliable
source for CNNs to distinguish figure/table/algorithm/equations from other parts of the
document pages, such as body-text, abstract and so on.

We used the semantically meaningful textual content of SciGen [39] to produce texts.
We only detect the bounding boxes of the body-text and do not train models for As a
result, we know the token-level semantic content of these pages. Sentences in paragraphs
are coherent. Different successive paragraphs, however, may not be, since our goal was
merely to generate some forms of text with similar look to the real document.

Rendering Choices. As Clark and Divvala rightly point out, font style influences
prediction accuracy [ 2]. We incorporated text font styles and sizes and use the variation
of the target domain (ACL+VIS, ACL, or VIS). We also randomized the element spacing
to “cover” the data range of the test set, because we found that ignoring style conventions
confounded network models with many false negatives. We arranged a random number
of figures, tables, algorithms, and equations onto a paper page and used randomized text
for title, abstract, and figure and table captions (Fig. 2)

We show some selected results in Fig. 3. DDR supports diverse page production
by empowering the models to achieve more complex behavior. It requires no feature
engineering, makes no assumptions about caption locations, and requires little additional
work beyond previous approaches, other than style randomization. This approach also
allows us to create 100% accurate ground-truth labels quickly in any predefined random-
ization style, because, theoretically, users can modify pages to minimize the reality gap
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Fig. 3: Synthesized DDR pages in mixed ACL and VIS formats. Ground-truth labels
and bounding boxes are produced automatically. Left: single-column abstract in italics,
with keywords; subsection title centered. Middle: wide abstract, no keywords, no italic,
subsection title left-aligned, Right: page with teaser image, without affiliations.
Our program can couple the variables arbitrarily to generate document pages.

between DDR pages and the target domain of use. DDR also requires neither decoding
of markup languages, e. g., XML, or managing of document generation engines, e. g.,
I&TEX, nor curation.

4 Evaluation of DDR

In this section we outline the core elements of our empirical setup and procedure to study
DDR behaviors. Extensive details to facilitate replication are provided in the Supple-
mental Materials online. We also release all prediction results (see our Reproducibility
statement in Sec. 5)

— Goal 1. Benchmark and page style (Sec. 4.1): We benchmark DDR on the classical
CS-150 dataset, and two new datasets of different domains: computational linguistics
(ACL300) and visualization (VIS300). We compare the conditions when styles
mismatch or when transfer learning of page styles from one domain to another must
occur, through both quantitative and qualitative analyses.

— Goal 2. Label noise and training sample reduction (Sec. 4.2): In two experiments,
we assess the sensitivity of the CNNs to DDR data. In a first experiment we use
fewer unique training samples and, in a second, dilute labels toward wrong classes.

Synthetic Data Format All training images for this research were generated syntheti-
cally. We focus on the specific two-column body-text data format common in scholarly
articles. This focus does not limit our work since DDR enables us to produce data
from any paper style. Limiting the style, however, allows us to focus on the specific
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parametric space in our appearance randomization. By including semantic information,
we showcase DDR’s ability to localize token-level semantics as a stepping-stone to
general-purpose training data production, covering both semantics and structure.

CNN Architecture In all experiments, we use the Faster-RCNN architecture [32]
implemented in tensorpack [ ] due to its success in structural analyses for table detection
in PubLayNet [43]. The input is images of the DDR generated paper pages. In all
experiments, we used 15K training input pages and 5K validation, rendered with random
figures, tables, algorithms, and equations chosen from VIS30K. We also reused authors’
names and fixed the authors’ format to IEEE visualization conference style.

Input, Output, and Measurement Metric Our detection task seeks CNNs to output
the bounding box locations and class labels of nine types: abstract, algorithm, author,
body-text, caption, equation, figure, table, and title. To measure model performance,
we followed Clark and Divvala’s [12] evaluation metrics. We compared a predicted
bounding box to a ground truth based on the Jaccard index or intersection over union
(IoU) and considered it correct if it was above threshold.

We used four metrics (accuracy, recall, F1, and mean average precision (mAP))
to evaluate CNNs’ performance in model comparisons, and the preferred ones are
often chosen based on the object categories and goals of the experiment. For example,
precision and recall. Precision = true positives | (true positives + false positives)) and
Recall = true positives / true positives + false negatives. Precision helps when the cost
of the false positives is high. Recall is often useful when the cost of false negatives is
high. mAP is often preferred for visual object detection (here figures, algorithms, tables,
equations), since it provides an integral evaluation of matching between the ground-truth
bounding boxes and the predicted ones. The higher the score, the more accurate the
model is for its task. F1 is more frequently used in text detection. A F1 score represents
an overall measure of a model’s accuracy that combines precision and recall. A higher
F1 means that the model generates few false positives and few false negatives, and can
identify real class while keeping distraction low. Here, FI = 2 X (precision x recall) / (
precision + recall).

We report mAP scores in the main text because they are comprehensive measures
suitable. to visual components of interest. In making comparisons with other studies for
test on CS-150x, we show three scores precision, recall, and F1 because other studies [ 1]
did so. All scores are released for all study conditions in this work.

4.1 Study I: Benchmark Performance in a Broad and Two Specialized Domains

Preparation of Test Data We evaluated our DDR-based approach by training CNNs to
detect nine classes of textual and non-textual content. We had two hypotheses:

— HI1. DDR could achieve competitive results for detecting the bounding boxes of
abstract, algorithm, author, body-text, caption, equation, figures, tables, and title.

— H2. Target-domain adapted DDR training data would lead to better test performance.
In other words, train-test discrepancies would lower the performance.
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Table 2: Precision (P), recall (R), and F1 scores on figure (f) and table () extractions.
All extractors extracted two class labels (figure and table) except the two models in
Katona [21], which were trained on eight classes.

Extractor |Pr Ry Fly | R FlL

PDFFigures [11] 0.957 0.915 0.936|0.952 0.927 0.939
Praczyk and Nogueras-Iso [31]]0.624 0.500 0.555]0.429 0.363 0.393
Katona [21] U-Net* 0.718 0.412 0.276|0.610 0.439 0.510
Katona [21] SegNet* 0.766 0.706 0.735|0.774 0.512 0.616
DDR-(CS-150x) (ours) 0.893 0.941 0.916|0.933 0.952 0.943

Table 1: Three Test Datasets.

We collected three test datasets (Table 1). The Name Source Page count
first CS-150x used all 716 double-column pages
from the 1176 CS-150 pages [11]. CS-150 had
diverse styles collected from several computer sci- ACL300 ACL anthology 2508
ence conferences. Two additional domain-specific  viS300 IEEE 2619
sets were chosen based on our own interests and
familiarity: ACL300 had 300 randomly sampled articles (or 2508 pages) from the 55,759
papers scraped from the ACL anthology website; VIS300 contains about 10% (or 2619
pages) of the document pages in randomly partitioned articles from 26,350 VIS paper
pages of the past 30 years in Chen et al. [9]. Using these two specialized domains lets us
test H2 to measure the effect of using images generated in one domain to test on another
when the reality gap could be large. Ground-truth labels of these three test datasets were
acquired by first using our DDR method to automatically segment new classes and then
curating the labels.

CS-150x CS-150 716

DDR-Based CS-150 Stylized Train and Tested on CS-150x. We generated CS-150x-
style using DDR and tested it using CS-150x of two document classes, figure and table.
While we could have trained and tested on all nine classes, we think any comparisons
would need to be fair [16]. Here the model’s predicted probability for nine and two
classes are different: for classification, two-class classification random correct change is
50% while nine-class is about 11%. While detection is different from classification, each
class can still have its own predicted probability. We thus followed the original CS-150
work of Clark and Divvala [1 1] in detecting figures and tables.

Table 2 shows the evaluation results for localizing figures and tables, demonstrating
that our results from synthetic papers are compatible to those trained to detect figure
and table classes. Compared to Clark and Divvala’s PDFFigures [ |], our method had
a slightly lower precision (false-positives) but increased recall (false negatives) for
both figure and table detection. Our F1 score for table detection is higher and remains
competitive for figure detection.

Understanding Style Mismatch in DDR-Based Simulated Training Data. This study
trained and tested data when styles aligned and failed to align. The test data were real-
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document pages of ACL300 and VIS300 with nine document class labels shown in Fig. 2.
Three DDR-stylized training cohorts were:

— DDR-(ACL+VIS): DDR randomized to both ACL and VIS rendering style.
— DDR-(ACL): DDR randomized to ACL rendering style.
— DDR-(VIS): DDR randomized to VIS rendering style.

These three training and two test data yielded six train-test pairs: training CNNs on
DDR-(ACL+VIS), DDR-ACL, and DDL-VIS and testing on ACL300 and VIS300, for
the task of locating bounding boxes for the nine categories from each real-paper page in
two test sets. Transfer learning then must occur when train and test styles do not match,
such as models tested on VIS300 for ACL-styled training (DDR-(ACL)), and vice versa.

Real Document Detection Accuracy. Fig. 4 summarizes the performance results of
our models in six experiments of all pairs of training CNNs on DDR-(ACL+VIS), DDR-
ACL, and DDL-VIS and testing on ACL300 and VIS300 to locate bounding boxes from
each paper page in the nine categories.
Both hypotheses H1 and H2 were
supported. Our approach achieved com-
petitive mAP scores on each dataset for
both figures and tables (average 89% on
ACL300 and 98% on VIS300 for figures
and 94% on both ACL300 and VIS300
for tables). We also see high mAP scores
on the textual information such as ab-
stract, author, caption, equation, and ti- &
tle. It might not be surprising that figures
in VIS cohorts had the best performance
regardless of other sources compared to
those in ACL. This supports the idea that
figure style influences the results. Also,

100%
90% N\
80%
70%
60%
50%
40%
30%
20%
10%

0%

Train . Test

— DDR-(ACL+VIS) . ACL300
DDR-(ACL) . ACL300

— DDR-(VIS) . ACL300

- - DDR-(ACL+VIS) . VIS300

- - DDR-(ACL) . VIS300

-~ DDR-(VIS) . VIS300

Fig.4: Benchmark performance of DDR
in six experiments. Three DDR training data
(DDR customized to be inclusive (ACL+
VIS), target-adapted to ACL or VIS, or not)

models trained on mismatched styles
(train on DDR-ACL and test on VIS, or
train on DDR-VIS and test on ACL) in
general are less accurate (the gray lines)
in Fig. 4 compared to the matched (the
blue lines) or more diverse ones (the red
lines).

and two test datasets (ACL300 or VIS300)
for extracting bounding boxes of nine classes.
Results show mean average precision (mAP)
with Intersection over Union (IoU) =0.8. In
general, DDRs that are more inclusive (ACL+
VIS) or target-adapted were more accurate
than those not.

Error Analysis of Text Labels. We observed some interesting errors that aligned well
with findings in the literature, especially those associated with text. Text extraction
was often considered a significant source of error [12] and appeared so in our predic-
tion results compared to other graphical forms in our study (Fig. 5). We tried to use
GROBID [28], ParsCit, and Poppler [30] and all three tools failed to parse our cohorts,
implying that these errors stemmed from text formats unsupported by these popular
tools.
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Fig. 5: Error Distribution by Categories: algorithm and figure. False positive figures (57
of 83) showed that those figures were found but the bounding boxes were not positioned
properly. 974 among 1,105 false positive algorithms were mostly text (88%).

As we remarked that more accurate font-style matching would be important to
localize bounding boxes accurately, especially when some of the classes may share
similar textures and shapes crucial to CNNs’ decisions [17]. The first evidence is that
algorithm is lowest accuracy text category (ACL300: 34% and VIS300: 42%). Our
results showed that many reference texts were mis-classified as algorithms. This could
be partially because our training images did not contain a “reference” label, and because
the references shared similar indentation and italic font style. This is also evidenced by
additional qualitative error analysis of text display in Fig. 6. Some classes can easily fool
CNNs when they shared fonts. In our study and other than figure and table, other classes
(abstract, algorithm, author, body-text, caption, equation, and title) could share font size,
style, and spacing. Many ACL300 papers had the same title and subsection font and this
introduced errors in title detection. Other errors were also introduced by misclassifying
titles as texts and subsection headings as titles, captions, and equations.

Error Correction. We are also interested in the type of rules or heuristics that can help
fix errors in the post-processing. Here we summarize data using two modes of prediction
errors on all data points of the nine categories in ACL300 and VIS300. The first kind
of heuristics is rules that are almost impossible to violate: e. g., there will always be an
abstract on the first page with title and authors (page order heuristic). Title will always
appear in the top 30% of the first page, at least in our test corpus (positioning heuristic).
We subsequently compute the error distribution by page order (first, middle and last
pages) and by position (Fig. 7). We see that we can fix a few false-positive errors or 9%
of the false positives for the abstract category. Similarly, we found that a few abstracts
could be fixed by page order (i. e., appeared on the first page) and about another 30%
fixed by position (i. e., appeared on the top half of the page.) Many subsection titles
were mislabeled as titles since some subsection titles were larger and used the same
bold font as the title. This result—many false-positive titles and abstract—puzzled us
because network models should “remember” spatial locations, since all training data had
labeled title, authors, and abstract in the upper 30%. One explanation is that within the
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Fig. 7: DDR Errors in Abstract (Train: DDR-(ACL), test: ACL300).

text categories, our models may not be able to identify text labeling in a large font as a
title or section heading as explained in Yang et al. [42].
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Fig. 8: DDR Robustness (Train: DDR-(ACL+VIS); Test: ACL300 and VIS300). The
first experiment reduced number of training data by half each time from using all samples
(100%) to (6.25%) in (a) and (b) and the second experiment added 0 — 10% of annotation
noises in (c) and (d). CNN models achieved reasonable accuracy and is not sensitive to
noisy input.

4.2 Study II: Labeling Noises and Training Sample Reduction

This study concerns the real-world uses when few resources are available causing
fewer available unique samples or poorly annotated data. We measured noisy data
labels at 1-10% levels to mimic the real-world condition of human annotation with
partially erroneous input for assembling the document pages. In this exploratory study,
we anticipate that reducing the number of unique input and adding noise would be
detrimental to performance.

Training Sample Reduction. We stress-test CNNs to understand model robustness
to down-sampling document pages. Our DDR modeling attempts to cover the data
range appearing in test. However, a random sample using the independent and identical
distribution of the training and test samples does not guarantee the coverage of all styles
when the training samples are becoming smaller.

Here, we reduced the number of samples from DDR-(ACL+VIS) by half each time,
at 50% (7500 pages), 25% (3750 pages), 12.5% (1875 pages), and 6.25% (938 pages)
downsampling levels, and tested on ACL300 and VIS300. Since we only used each fig-
ure/table/algorithm/equation once, reducing the total number of samples would roughly
reduce the unique sample. Fig. 8 (a)—(b) showed the CNN accuracy by the number of
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unique training samples. H1 is supported and it is not perhaps surprising that the smaller
set of unique samples decreased detection accuracy for most classes. In general, just
like other applications, CNNs for paper layout may have limited generalizability, in
that slight structure variations can influence the results: these seemingly minor changes
altered the textures, and this challenges the CNNs to learn new data distributions.

Labeling Noise. This study involves observing the performance of DDR training sam-
ples on CNN on random 0-10% noise to the eight of the nine classes other than body-text.
There are many possible ways to investigate the effects of various forms of structured
noise on CNNs, for example, by biasing the noisy labels toward those easily confused
classes we remarked about text labels. Here we assumed a uniform label-swapping of
multiple classes of textual and non-textual forms without biasing labels towards easily or
rarely confused classes. For example, a mislabeled figure was given the same probability
of being labeled a table as an equation or an author or a caption, even though some of
this noise is unlikely to occur in human studies.

Fig. 8 (c)—(d) show performance results when labels were diluted in the training
sets of DDR-(ACLA+VIS). H2 is supported. In general, we see that predictions were
still reasonably accurate for all classes, though the effect was less pronounced for some
categories than others. Also, models trained with DDR have demonstrated relatively
robust to noises. Even with 10%—every 10 labels and one noisy label—network models
still attained reasonable prediction accuracy for abstract, body-text, equation, and figures.
Our result partially align with findings of Rolnick et al. [33], in that models were
reasonably accurate (>80% prediction accuracy) to sampling noise. Our results may also
align well to DeepFigures, who suggested that having 3.2% errors of their 5.5-million
labels might not affect performance.

5 Conclusion and Future Work

We addressed the challenging problem of scalable trainable data production of text that
would be robust enough for use in many application domains. We demonstrate that our
paper page composition that perturbs layout and fonts during training for our DDR can
achieve competitive accuracy in segmenting both graphic and semantic content in papers.
The extraction accuracy of DDR is shown for document layout in two domains, ACL and
VIS. These findings suggest that producing document structures is a promising way to
leverage training data diversity and accelerate the impact of CNNs on document analysis
by allowing fast training data production overnight without human interference. Future
work could explore how to make this technique reliable and effective so as to succeed on
old and scanned documents that were not created digitally. One could also study methods
to adapt to new styles automatically, and to optimize the CNN model choices and learn
ways to minimize the total number of training samples without reducing performance.
Finally, we suggest that DDR seems to be a promising research direction toward bridging
the reality gaps between training and test data for understanding document text in
segmentation tasks.

Reproducibility. We released additional materials to provide exhaustive experimen-
tal details, randomized paper style variables we have controlled, the source code, our
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CNN models, and their prediction errors (http://bit.ly/3qQ7k2A). The data collections
(ACL300, VIS300, CS-150x, and their meta-data containing nine classes) is on IEEE
dataport [26].
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Additional material

Our main paper document contains the primary aspects of our employed procedure and
our observations; in this supplemental material we provide exhaustive experimental
details to ensure the reproducibility of our work.

A Paper Styles and DDR-based Paper Page Samples

ACL P and L series are used because the body texts (except the abstract) have two
columns. Fig. 9 shows detailed measurements of the paper page configuration and
relationships between the document parts of the three benchmark datasets. ?? shows
all the font styles. Fig. 10-13 show four examples of DDR generated paper pages with
various spacing and font styles. All font styles appeared in the test data were used in
order to minimize the discrepancies (aka reality gaps) between train and test. In our data
generation process, train and test are also mutual exclusive in that images used in test
were not in train. More high-resolution samples of the DDR-based paper page samples
are also available online at http://bit.1y/3qQ7k2A.

B DDR data sampling distribution

Fig. 14 shows the centroid locations of VIS300, ACL300, and one of the synthesized
DDR samples. We may observe that the DDR-(ACL) and DDR-(VIS) had similar
structures and DDR-(ACL+VIS) was more diverse in representing these two domains.

C Deep Neural Network Models

We used the tensorflow-version Tensorpack implementation [ 1] of Faster-RCNN [32]
for our experiments and programmed in Python for machine learning [2]. All hyper-
parameters are kept at default. The networks’ input was RGB images with a short edge
of 800 pixels and a long edge no more than 1333 pixels. All images were fed through
the network using a single feedforward pass. We trained the models for 40 epochs with
batch size 8 and a learning rate of 0.01 that did not decay as learning progressed. All
metrics, such as precision, recall, F1 scores, and mAP, if not stated otherwise, were
derived from this tensorflow-version of the Faster-RCNN [32]. All models were executed
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relative to the paper page. Each dot on a page represents the center of the bounding box
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Table 3: Benchmark performance of DDR predictions in six experiments (3 training x
2 test data). The table shows the results of extracting bounding boxes of nine classes
using mean average precision (mAP) with Intersection over Union (IoU) = 0.8. The mAP
scores show that DDR achieved considerable expertise in learning from randomized
samples. Here, the column “Same Tr.-Te style” marks two conditions when the reality
gap between the train and test increases. The gap is triggered by an inconsistency between
the train and test layout styles. The data are corresponding to Fig. 4 in the main text.

Ql':i% 5 E o g g
od & T g & £ ¢ T
. 5 2 5 = 2 2 5 % % o2

Train Test ©vEH < = s 13} b5 =) s 9 = Avg
DDR-(ACL+VIS) ACL300 0.97 0.55 0.94 0.90 0.87 0.90 0.89 0.95 0.94 0.90
DDR-(ACL) ACL300 0.92 0.34 0.96 0.86 0.87 0.88 0.97 0.74 0.83 0.82
DDR-(VIS) ACL300 N 0.89 0.42 096 0.85 0.84 0.89 0.96 0.65 0.81 0.81
DDR-(ACL+VIS) VIS300 0.99 0.70 0.78 0.90 0.84 0.98 0.90 0.98 0.92 0.88
DDR-(VIS) VIS300 0.92 0.82 0.72 0.93 092 0.99 096 0.85 0.93 0.89
DDR-(ACL) VIS300 N 0.76 0.63 0.78 0.91 0.94 097 0.96 0.82 0.79 0.84

on a single nvipia GeForce RTX 2080, with 11 GB memory. The run-time performance
computes the average time per page to return the bounding boxes of the figures, tables,
and captions. Faster-RCNN used 0.23 seconds’ processing on average per page to obtain
the prediction.

D Experiments

In total, we conducted ten different experiments. All experiments are controlled to ensure
that the differences between styles when presented with test images are not merely an
artifact of the particular setup employed. We show some examples in Fig. 10—13.

E Results

Table 3 shows the numerical values of Fig. 4 in the main text for IoU of 0.8 for the six
DDR experiments (trained on three styles and tested on ACL300 and VIS300). Fig. 15
presents the detection results for these experiments for all IoUs of 0.7, 0.8, and 0.9,
respectively. Fig. 16—-18 show some of the prediction results.

We used four metrics (accuracy, recall, F1, and mean average precision (mAP)) to
evaluate CNNs’ performance in model comparisons, and the preferred ones are often
chosen based on the object categories and goals of the experiment. For example,

— Precision and recall. Precision = true positives / (true positives + false positives))
and Recall = true positives / true positives + false negatives. Precision helps when
the cost of the false positives is high and is computed. Recall is often useful when
the cost of false negatives is high.
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— mAP is often preferred for visual object detection (here figures, algorithms, tables,
equations), since it provides an integral evaluation of matching between the ground-
truth bounding boxes and the predicted ones. The higher the score, the more accurate
the model is for its task.

— F1 is more frequently used in text detection. A F1 score represents an overall
measure of a model’s accuracy that combines precision and recall. A higher F1
means that the model generates few false positives and few false negatives, and can
identify real class while keeping distraction low. Here, FI = 2 X (precision X recall)
/ ( precision + recall).

For simplicity, we used mAP scores in our own reports because they are comprehen-
sive measures suitable to visual components of interest. However, in making comparisons
with other studies for test on CS-150, we used the three other scores of precision, recall,
and F1 because other studies did so. All scores are released for all study conditions in
this work.

F Image Rights and Attribution

The VIS30K [©] dataset comprises all the images published at IEEE visualization
conferences in each year, rather than just a few samples. All image files are copyrighted
and for most the copyright is owned by IEEE. The dataset was released on IEEE Data
Port. We thank IEEE for dedicating tools like this to support the Open Science Movement.
All ACL papers are from the ACL Anthology website.



26

Ling et al.

Table 4: Study II: DDR sensitivity to down-sampling unique inputs.

g é IS i.j g é o]
g ?n = =3 I E = = ©
Train  Test Metric & = 2 £ 8 g & 3 T Avg
100% 0.938 0.605 0.930 0.937 0.848 0.902 0.875 0.935 0.823 0.866
50% 0.956 0.500 0.825 0.937 0.893 0.864 0.875 0.918 0.873 0.849
25% ACL300 mAP 0.936 0.400 0.755 0.904 0.863 0.840 0.837 0.905 0.870 0.812
12.5% 0.912 0.413 0.720 0910 0.818 0.815 0.829 0.897 0.855 0.797
6.25% 0.882 0.316 0.678 0.888 0.757 0.798 0.814 0.872 0.807 0.757
100% 0.983 0.745 0.702 0.976 0.868 0.863 0.989 0.943 0.895 0.885
50% 0.979 0.614 0.810 0.971 0.898 0.840 0.966 0.886 0.916 0.875
25%  VIS300 mAP  0.976 0.583 0.760 0.966 0.886 0.815 0.948 0.858 0.934 0.858
12.5% 0.965 0.527 0.727 0.956 0.862 0.798 0.938 0.856 0.896 0.836
6.25% 0.950 0.464 0.681 0.947 0.826 0.777 0.921 0.823 0.877 0.807
100% 0.950 0.368 0.883 0.894 0.959 0.834 0.932 0.946 0.930 0.855
50% 0.937 0.361 0.823 0.899 0.952 0.770 0.892 0.953 0.908 0.833
25%  ACL300 Precision 0.904 0.317 0.739 0.866 0.926 0.734 0.847 0.938 0.865 0.793
12.5% 0.915 0.387 0.735 0.903 0.887 0.738 0.839 0.930 0.892 0.803
6.25% 0.894 0.366 0.731 0.880 0.893 0.764 0.815 0.933 0.872 0.794
100% 0.990 0.761 0.962 0.975 0.931 0.839 0.960 0.952 0.953 0.925
50% 0.990 0.733 0.930 0.967 0.925 0.856 0.943 0.901 0.946 0.910
25%  VIS300 Precision 0.984 0.649 0.906 0.960 0.905 0.838 0.924 0.894 0.944 0.889
12.5% 0.983 0.682 0.884 0.965 0.896 0.828 0.918 0.888 0.944 0.887
6.25% 0.974 0.642 0.839 0.956 0.882 0.831 0.905 0.891 0.935 0.873
100% 0.942 0.825 0.945 0.951 0.854 0.929 0.883 0.941 0.850 0.902
50% 0.961 0.697 0.873 0.953 0.900 0.912 0.891 0.930 0.915 0.892
25%  ACL300 Recall 0.941 0.658 0.833 0.937 0.876 0.901 0.864 0.917 0.927 0.872
12.5% 0.919 0.600 0.804 0.934 0.843 0.868 0.858 0.914 0.902 0.849
6.25% 0.891 0.520 0.791 0.922 0.788 0.853 0.853 0.890 0.853 0.818
100% 0.986 0.819 0.711 0.979 0.877 0.900 0.992 0.955 0.916 0.904
50% 0.983 0.699 0.837 0.976 0.912 0.886 0.977 0.913 0.939 0.902
25%  VIS300 Recall 0.981 0.686 0.796 0.974 0.905 0.872 0.968 0.886 0.957 0.892
12.5% 0.971 0.597 0.765 0.965 0.884 0.858 0.963 0.887 0.920 0.868
6.25% 0.956 0.542 0.732 0.959 0.859 0.845 0.951 0.852 0.904 0.844
100% 0.946 0.509 0.913 0.922 0.904 0.879 0.906 0.943 0.888 0.868
50% 0.949 0.475 0.846 0.925 0.925 0.835 0.891 0.941 0.909 0.855
25%  ACL300 F1 0.922 0.417 0.782 0.900 0.900 0.807 0.854 0.926 0.895 0.823
12.5% 0.917 0.469 0.767 0918 0.864 0.795 0.848 0.922 0.897 0.822
6.25% 0.891 0.427 0.759 0.900 0.836 0.806 0.834 0.910 0.860 0.803
100% 0.988 0.789 0.818 0.977 0.903 0.868 0.976 0.953 0.934 0.912
50% 0.986 0.714 0.881 0.971 0.919 0.871 0.960 0.907 0.942 0.906
25%  VIS300 F1 0.982 0.661 0.846 0.967 0.905 0.854 0.946 0.888 0.950 0.889
12.5% 0.977 0.636 0.819 0.965 0.890 0.842 0.940 0.887 0.931 0.876
6.25% 0.965 0.586 0.781 0.958 0.869 0.838 0.927 0.869 0.919 0.857
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Table 5: Study II: DDR sensitivity to noisy input.
g % i) E g '§ ]
Train Test Metric < < = 8 131 b5 = s B=] Avg
Null 0.975 0.529 0.882 0.932 0.934 0.892 0.895 0.945 0.855 0.871
2% 0.954 0.531 0.878 0.935 0.870 0.875 0.884 0.942 0.865 0.859
4% ACL300 mAP 0.949 0.463 0.906 0.925 0.848 0.843 0.886 0.899 0.905 0.847
6% 0.936 0.505 0.886 0.935 0.851 0.867 0.871 0.909 0.898 0.851
8% 0.952 0.458 0.852 0.935 0.868 0.826 0.878 0.876 0.795 0.827
10% 0.938 0.401 0.853 0.923 0.861 0.851 0.874 0.852 0.847 0.822
Null 0.987 0.620 0.758 0.981 0.899 0.843 0.984 0.928 0.897 0.877
2% 0.976 0.738 0.697 0.977 0.851 0.847 0.978 0.924 0.908 0.877
4%  VIS300 mAP  0.984 0.730 0.758 0.977 0.879 0.842 0.980 0.903 0.918 0.886
6% 0.983 0.692 0.754 0.978 0.882 0.840 0.976 0.930 0.920 0.884
8% 0.977 0.690 0.699 0.978 0.865 0.840 0.976 0.904 0.899 0.870
10% 0.983 0.698 0.683 0.976 0.868 0.843 0.978 0.899 0.893 0.869
Null 0.974 0.201 0.832 0.790 0.955 0.680 0.854 0.953 0.962 0.800
2% 0.904 0.380 0.836 0.868 0.930 0.767 0.903 0.946 0.873 0.823
4%  ACL300 Precision 0.948 0.389 0.898 0.874 0.957 0.778 0.850 0.938 0.884 0.835
6% 0.932 0.446 0.875 0.885 0.933 0.739 0.891 0.952 0.907 0.840
8% 0.962 0.437 0.894 0.893 0.948 0.789 0.828 0.955 0.925 0.848
10% 0.969 0.386 0.883 0.882 0.945 0.783 0.835 0.956 0.900 0.838
Null 0.993 0.571 0.932 0.952 0.932 0.841 0.946 0.942 0.953 0.896
2% 0.963 0.746 0.912 0.966 0.926 0.859 0.945 0.921 0.933 0.908
4%  VIS300 Precision 0.990 0.739 0.926 0.966 0.940 0.863 0.954 0.908 0.926 0.913
6% 0.984 0.761 0.945 0.967 0.932 0.859 0.957 0.931 0.945 0.920
8% 0.985 0.788 0.930 0.965 0.928 0.867 0.951 0.924 0.948 0.921
10% 0.990 0.768 0.949 0.965 0.944 0.864 0.960 0.945 0.939 0.925
Null 0.977 0.792 0.919 0.954 0.939 0.946 0.906 0.952 0.873 0.918
2% 0.959 0.724 0.919 0.951 0.878 0.919 0.895 0.952 0.917 0.901
4%  ACL300 Recall 0.952 0.677 0.931 0.943 0.858 0.901 0.901 0.912 0.945 0.891
6% 0.941 0.667 0.922 0.952 0.861 0.911 0.889 0.918 0.936 0.888
8% 0.956 0.625 0.893 0.951 0.879 0.889 0.906 0.888 0.825 0.868
10% 0.941 0.587 0.909 0.942 0.873 0.904 0.904 0.865 0.890 0.868
Null 0.990 0.722 0.775 0.984 0.909 0.888 0.987 0.942 0.913 0.901
2% 0.983 0.792 0.715 0.981 0.864 0.891 0.985 0.940 0.934 0.898
4%  VIS300  Recall 0.988 0.793 0.779 0.980 0.894 0.892 0.987 0.922 0.946 0.909
6% 0.988 0.756 0.769 0.981 0.898 0.892 0.984 0.943 0.946 0.906
8% 0.982 0.747 0.718 0.981 0.884 0.894 0.985 0.921 0.923 0.893
10% 0.986 0.774 0.696 0.980 0.885 0.892 0.986 0.916 0.918 0.892
Null 0.975 0.321 0.873 0.864 0.947 0.791 0.879 0.953 0.915 0.835
2% 0.929 0.498 0.875 0.908 0.902 0.834 0.899 0.949 0.894 0.854
4%  ACL300 F1 0.950 0.468 0.914 0.907 0.904 0.834 0.874 0.924 0.910 0.854
6% 0.934 0.518 0.897 0.917 0.892 0.808 0.887 0.934 0.921 0.856
8% 0.959 0.505 0.891 0.921 0.912 0.833 0.862 0.919 0.862 0.851
10% 0.953 0.456 0.896 0.911 0.907 0.836 0.864 0.901 0.894 0.846
Null 0.991 0.638 0.846 0.967 0.921 0.864 0.966 0.942 0.932 0.896
2% 0.972 0.767 0.800 0.973 0.893 0.875 0.965 0.930 0.933 0.901
4%  VIS300 F1 0.989 0.752 0.844 0.973 0.916 0.877 0.970 0.913 0.935 0.908
6% 0.986 0.757 0.845 0.974 0.915 0.875 0.970 0.937 0.945 0.912
8% 0.983 0.765 0.808 0.973 0.906 0.880 0.968 0.922 0.935 0.904
10% 0.988 0.768 0.801 0.972 0.913 0.878 0.973 0.930 0.928 0.906
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Fig. 18: Result sample: partially incorrectly labeled image: DRR recognized the small

figure and its caption but labeled a bullet list as an algorithm and another as an equation.

One caption is also missing. This result suggests that we may need to explicitly add

‘bullet list’ class to our training data.
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