Flow Visualization with Integral Surfaces

Robert S. Laramee

Visual and Interactive Computing Group

Department of Computer Science

Swansea University

R.S.Laramee@swansea.ac.uk

Swansea University Prifysgol Abertawe

Robert S. Laramee r.s.laramee@swansea.ac.uk 1 http://cs.swan.ac.uk/~csbob/ Swansea University Prifysgol Abertawe

Overview

Robert S. Laramee

Flow Visualization with Integral Surfaces:

- Introduction to flow visualization
- Flow data and applications
- Stream, path, and streaklines
- Integral surface-based flow visualization

- Advantages of surfaces over curves
- Stream and path surfaces
- Stream and path surface construction
- Stream and path surface demo
- Streak surfaces and construction
- Streak surface demo
- **Conclusions and Acknowledgments**

What is Flow Visualization?

- A classic topic within scientific visualization
- The depiction of vector quantities (as opposed to scalar quantities)
- Applications include: aerodynamics, astronomy, automotive simulation, chemistry, computational fluid dynamics (CFD), engineering, medicine, meteorology, oceanography, **physics**, turbo-machinery design

Challenges:

- to effectively visualize both *magnitude* + *direction*, often simultaneously
- large data sets
- time-dependent data
- What should be visualized? (data filtering/feature extraction)

What is Flow Visualization?

Challenge: to effectively visualize both *magnitude* + *direction* often simultaneously

magnitude only

orientation only

Robert S. Laramee r.s.laramee@swansea.ac.uk

Note on Computational Fluid Dynamics

- We often visualize Computational Fluid Dynamics (CFD) simulation data
- CFD: discipline of predicting flow behavior, quantitatively
- data is (often) result of a simulation of flow through or around an object of interest
 - some characteristics of CFD data:
 - large, often gigabytes
 - unsteady, time-dependent
 - unstructured, adaptive resolution grids
 - smooth

crank angle: 380.0°

Comparison with Reality

Robert S. Laramee r.s.laramee@swansea.ac.uk

Flow Visualization Classification

- **1. direct:** overview of vector field, minimal computation, e.g. glyphs, color mapping
- **2. texture-based:** covers domain with a convolved texture, e.g., Spot Noise, LIC, ISA, IBFV(S)
- **3. geometric:** a discrete object(s) whose geometry reflects flow characteristics, e.g. streamlines
- **4. feature-based:** both automatic and interactive feature-based techniques, e.g. flow topology

Robert S. Laramee r.s.laramee@swansea.ac.uk

Steady vs. Time-dependent

Steady (time-independent) flows:

- flow itself constant over time
- v(x), e.g., laminar flows
- simpler case for visualization

Time-dependent (unsteady) flows:

- flow itself changes over time
- $\mathbf{v}(\mathbf{x},t)$, e.g., turbulent flow
- more complex case

Stream, Path, and Streaklines

Terminology:

- Streamline: a curve that is everywhere tangent to the flow (release 1 massless particle)
- Pathline: a curve that is everywhere tangent to an unsteady flow field (release 1 massless particle)
- Streakline: a curve traced by the continues release of particles in unsteady flow from the same position in space (release infinitely many massless particles)

Each is equivalent in steady-state flow

Characteristics of Integral Lines

Advantages:

- Implementation: various easy-to-implement streamline tracing algorithms (integration)
- Intuitive: interpretation is not difficult
- Applicability: generally applicable to all vector fields, also in three-dimensions

Disadvantages:

- Perception: too many lines can lead to clutter and visual complexity
- Perception: depth is difficult to perceive, no well-defined normal vector
- Seeding: optimal placement is very challenging (unsolved problem)

Stream Surfaces

Terminology:

- Stream surface: a surface that is everywhere tangent to flow
- Stream surface: the union of stream lines seeded at all points of a curve (the seed curve)
- Next higher dimensional equivalent to a streamline
- Unsteady flow can be visualized with a path surface or streak surface

Swansea University Prifysgol Abertawe Computer Science Gwyddor Cyfrifiadur

Stream Surfaces

First stream surface computation

- Introduced before SciVis existed
- Early use in flow visualization (Helman and Hesselink 1990) for flow separation

Robert S. Laramee r.s.laramee@swansea.ac.uk

Stream Surfaces: Advantages

Motivation:

- Separates (steady) flow: flow cannot cross surface (stream surfaces only)
- Perception: Less visual clutter and complexity than many lines/curves
- Perception: well-defined normal vectors make shading easy, improving depth perception
- Rendering: surfaces provide more rendering options than lines: e.g., shading and texturemapping etc.

Disadvantages:

- Construction/Implementation: more complicated algorithms are required to construct integral surfaces
- Occlusion: multiple surfaces hide one another
- Placement: placement of surfaces is still and unsolved problem

Stream Surfaces – Split / Merge

Robert S. Laramee r.s.laramee@swansea.ac.uk

Easy Integral Surfaces

- Relies on use of quad primitives
- Use of local operations (per quad).
- Simple data structure
- Implicit parameterization
- Formulated as a reconstructive sampling of the vector field
 - d_sample
 - d_advance
 - d_sep

Algorithm Overview

Seeding and Advancement

- Interactive seeding curve:
 - Position and orientation
 - Length
 - Prongs/number of seeds
- Integral surface front advance distance guided by
 - Nyquist rate
 - 0.5 d_sample

Divergence

- Leads to undersampling
- Depicted by surface widening
- **Detected**: ($\alpha > 90$ AND $\beta > 90$) AND d_sep > d_sample.
- Solution: Introduce new vertices into surface.
- Split quad in two

Convergence

- Results in oversampling.
- Surface narrows
- Detected: (α < 90 AND β < 90) AND edge length < 0.5 d_sample
- Solution: Remove vertices from surface
- Merge two quads into a single one

Curvature

- Produces irregular quads.
- **Detected**: ($\alpha < 90$ AND $\beta < 90$) OR ($\alpha > 90$ AND $\beta < 90$).
- Solution: Adjust step-size according to angle between segments
- Groups of quads may have to be processed together

Splitting and Termination

- Surface may split when object boundary encountered
- Separate portions computed independently
- Terminating Conditions:
 - Critical Point (Zero Velocity)
 - Object Intersection
 - Leave Domain
 - Desired geodesic length reached

Enhancements

- Surface Painter
 - Helps reduce occlusion
 - User controls the length of surface
- Timelines and Timeribbons
 - Formed from the surface front
 - Turn off the shear operation
 - Velocity magnitude is required

Enhancements

- Stream and Path Arrows
 - Provide information on internal surface structure.
 - Clearly show downstream direction.
- Evenly-spaced flow lines.
 - Stems naturally from convergence and divergence operations.
 - Render flow lines on top of surface.

Stream and Path Surface Results: Video(s)

Constructing Streak Surfaces in 3D Unsteady Vector Fields

3D, Unsteady Vector Fields

Discrete locations in 3D space

- 4-tuple (4D vector) for each sample
- x-, y-, z-, t- components
- Direction
- Magnitude
- Velocity field when describing the motion of a fluid
- Obtained from CFD simulations or constructed from empirical data
- Unsteady vector fields vary over time

What are Streak Surfaces? Recall:

Terminology

- Streaklines: curved formed by joining all particles passing through same point in space (at different times)
- Strong relation to smoke/dye injection from experimental flow visualization.
- Streak surfaces are an extension of streak lines (next higher dimension)

Robert S. Laramee r.s.laramee@swansea.ac.uk

Streak Surfaces: Challenges

Challenges:

- Computational cost: surface advection is very expensive
- Surface completely dynamic: entire surface (all vertices) advect at each time-step
- Mesh quality and maintaining an adequate sampling of the field.
 - Divergence
 - Convergence
 - Shear
- Objects in domain and critical points
- Large size of time-dependent (unsteady) vector field data, out-of-core techniques

Our Method

Properties:

- Surface constructed using quad primitives (as opposed to triangles)
- Local operations for surface refinement performed on
- a quad-by-quad basis
- No global optimization required
- Allows the construction of large surfaces
- CPU-based for easier implementation
- Fills the gap between methods of Burger et al. [2009]
- and Krishnan et al. [2009] Not as fast as GPU but interactive
 - Less constraints than GPU implementation -
 - does not need to fit into GPU memory
- Good quality surfaces

Algorithm Data Structures

Data Structures:

- Maintain list of particles
- Particles form vertices that create mesh
- Maintain list of quads
 - Store pointers to vertices
 - Store pointers to all (Quad) neighbors
 - Store T-Junction objects
- Test edge lengths after each integration
- T-junction objects store extra vertex and neighbor information
- Only one T-junction allowed per edge

Robert S. Laramee r.s.laramee@swansea.ac.uk

Streak Surface Algorithm Overview

Do:

Position seed with interactive rake

- Iteratively construct surface:
 - Advect surface
 - Refine Surface
 - Test for boundary conditions
 - Update
 - Test for termination criteria
- Final rendering

Divergence

Quad Splitting:

- Occurs when distance between neighbouring particles increases.
- Reduces the sampling of the vector field may miss features.
- Introduce new particles divide the quad.

Robert S. Laramee r.s.laramee@swansea.ac.uk

Convergence

Quad Collapse:

- Occurs when neighbouring particles move closer together.
- Leads to over-sampling, redundant particles and extra computation.
- Test distance between neighboring particles
- Remove particles from the surface merge the quad with neighbor.

Robert S. Laramee r.s.laramee@swansea.ac.uk

Shear

Shear Update:

- Can lead to heavily deformed quads
- May lead to errors in checking sampling frequency
- Test the ratio between the quad diagonals
- Update the mesh connectivity

Robert S. Laramee r.s.laramee@swansea.ac.uk

T-Junctions and Surface Discontinuities

Create Temporary Triangle Fan:

- Store T-Junction object explicitly
- T-junction vertices may not necessarily lie on neighboring quads edge
- If ignored cracks can form in the surface
- Render the quad using a triangle fan
 - Ensures whole surface is tesselated

Streak Surface Results: Video

Summary and Conclusions

- We claim surfaces offer advantages over traditional curves when visualizing 3D and 4D flow
- We present interactive algorithms for construction of stream, path and streak surfaces
- Algorithms are based on local operations performed on quads for mesh refinement
- Technique handles divergence, convergence and shear flow
- Splitting of surface to adapt to flow around object boundaries
- Demonstrated on a variety of data sets

Acknowledgements

Thank you for your attention! Any questions?

We thank the following for material used in this lecture:

- Christoph Garth
- Helwig Hauser
- Tony McLoughlin
- Ronny Peikert
- Juergen Schneider
- Eugene Zhang

This work was partially funded by EPSRC Grant EP/F002335/1

