
FinVis: Visualizing the
Complex Nature of
Financial Markets

Submitted in September 2020, in partial fulfilment of the degree MSc Computer

Science.

–

I hereby declare that this dissertation is all my own work, except as indicated in

the text:

James Williams - 10/09/2020

–

Supervisor: Dr Robert Laramee

1

Abstract
Investors are constantly looking for insights through comparisons on stock market data to

assist in the discovery of well-priced stocks. Modern stock market applications and research

allow for a range of visualizations to be produced whilst enabling the viewing of complete

datasets, however, these tools are often split, not providing queries and analysis in the same

view, therefore, limiting the potential of the proposed solution. Within this thesis, a new

system for performing analysis and comparison is proposed, a web-based application which

is able to assist in the exploratory visual analysis and visualization generation of financial

data. FinVis allows for over 500 stocks to be queried and 10,000 to be imported, before

displaying interactive and customizable visualizations to assist in the discovery of bargains

or good investments on the market. The application includes tools to save, store and load

queries alongside a visual analytic display to enable customization and more complex

individual views to be generated. A complete set of interactions are also provided to the

user, whilst enabling all of this exploration to take place with real-time and historical data

being provided through a financial API to the user’s web browser. The thesis enables future

work within the area of exploratory financial visualization to take place, providing core

concepts in a comparative nature to potential researchers and investors alike.

Keywords: Financial Visualization; Visual Analysis; Information Visualization; Financial

Data; Stock Markets; Finance Analytics.

Word Count: 19,998/20,000

1

Acknowledgements
I would like to thank my project supervisor Dr Robert Laramee for the support and advice

throughout the project, he has assisted me in improving my research ability and knowledge

within information visualization.

I would also like to thank my family for supporting me throughout the masters program.

Finally I would like to thank Amna Anwar for proofreading the document before submission.

2

Contents

1 Introduction 6

1.1 Motivation . 6

1.2 Research Problem . 6

1.3 Aims and Objectives . 6

1.4 Key Results . 7

1.5 Thesis Structure . 7

2 Related Work 9

2.1 Literature Review . 9

2.1.1 Survey Literature . 9

2.1.2 Financial Visualization Techniques . 13

2.1.3 Stock Portfolio Monitoring . 15

2.1.4 Exploratory Financial Visualization Techniques 16

2.2 Previous Systems . 17

2.2.1 Yahoo Finance . 18

2.2.2 Google Finance . 19

2.2.3 FinViz . 20

2.2.4 Seeking Alpha . 21

2.2.5 Morningstar . 22

2.3 Potential Contribution . 23

2.4 Data Characteristics . 23

2.4.1 Data Sources and Description . 24

2.4.2 Accessing Data . 25

3 Project Specification 26

3.1 Feature Specification . 26

3.1.1 Basic Features . 26

3.1.2 Enhancements . 27

3.2 Technology Choices . 28

3.2.1 Programming Languages . 28

3.2.2 Libraries . 29

3.2.2.1 User Interface . 29

3

3.2.2.2 Visualization . 30

3.2.3 Other Software . 31

3.2.3.1 Version Control . 31

3.2.3.2 Package Management . 31

3.2.3.3 Programming Environments 32

4 Project Plan and Timetable 33

4.1 Meeting Notes . 33

4.2 Project Plan . 33

4.3 Software Development Life Cycle . 35

5 Design 37

5.1 Visualization Pipeline . 37

5.2 Process Diagram . 38

5.3 System Diagrams . 39

5.4 Data Interaction Diagram . 41

6 Implementation 43

6.1 Basic Implementation and Relevant Enhancements 44

6.1.1 Data Import . 44

6.1.2 Web-Based UI . 46

6.1.3 Line Graph . 48

6.1.4 Queries . 50

6.1.5 Portfolios . 51

6.1.6 Colour Selection . 53

6.2 Other Enhancements . 54

6.2.1 Preset Options . 54

6.2.2 Line Graph Interactions . 54

6.2.3 Points Display . 56

6.3 Code Guidelines . 58

6.3.1 Code Commenting . 58

6.3.2 Coding Conventions . 58

7 Testing and Evaluation 60

4

7.1 Results . 60

7.1.1 Case Study A Bargain Stocks . 60

7.1.2 Case Study B Technology Portfolio 63

7.1.3 Case Study C COVID-19 . 64

7.2 Performance Analysis . 66

7.2.1 Data Retrieval Analysis . 66

7.2.2 Visual Performance . 67

8 Conclusion 68

9 Future Work 69

5

1 Introduction

This thesis explores the research, design, implementation and evaluation of a finance

visualization platform produced to assist in finding bargains on the stock market. Many tools

exist which allow for market data to be viewed or analyzed, but lack features relating to

custom searches and effective comparisons between different symbols. Throughout the

thesis, novel research will be shared assisting in the potential for future business and

research-oriented applications.

1.1 Motivation

When investigating stocks to buy, investors often use comparisons as a method of

analysis. Modern applications such as Google Finance [Goo20], Yahoo Finance [Yah20b]

and Seeking Alpha [Alp20] provide access to large datasets relating to the stock market,

however lack effective query-based tools and provide limited options in relation to

comparison of multiple stocks and their values. To assist investors in the discovery of

undervalued or potentially profitable stocks, a visualization and visual analysis platform was

produced which enabled exploratory investigation to take place into individual stocks in

comparison to one another.

1.2 Research Problem

Financial visualization and analysis platforms often host and present large amounts of

data and analysis tools, however limited tools and capabilities exist for comparing stocks

within the market. Therefore the problem being researched is to explore better and improved

methods of visualizing and querying large amounts of financial data and to discover if an

exploratory visualization tool has capabilities when compared to existing use cases such as

Google Finance and Seeking Alpha.

1.3 Aims and Objectives

The aim of the project is to produce a financial visualization and analysis system

capable of both producing queries on stock meta data and providing comparisons of stock

portfolios. The objectives of the project are:

6

• Develop a web-based system capable of visualizing large amounts of stock market

financial data.

• Enable users to create and run queries within the application, to assist in finding

specific stocks.

• Provide a large number of user options relating to the visual display of stock data, all

of which are customizable by the user.

• Enable the quick access of previous queries through data storage, and provide

analysis techniques to match.

1.4 Key Results

Through findings discovered within three case studies, the proposed solution is

effective at querying and producing visualizations of stock market data. The application can

effectively search and present analysis techniques specific to the users requirements. To

further test the proposed solution, access to larger amounts of meta-data is needed and

more focus on interaction with the line chart itself should be performed. In the future, work

should focus on ensuring more techniques are implemented to analyse data directly in

cases specific to real time and historical datasets.

1.5 Thesis Structure

The thesis is structured following the recommendations from Bob’s Project Guidelines

[Lar10b]. Following the introduction is a section on related work, which begins with an

in-depth literature review and comparison to existing systems before exploring the

characteristics of the chosen dataset. Section 3 introduces the project in the form of a

project specification, providing the core and enhancement features and the choices of

technology for implementation of the chosen functionality.

A complete project plan is presented in section 4, which explains how meeting notes

were used and the progress on each core function of the system. Succeeding the project

plan is section 5 which displays the design diagrams and design requirements of the

system.

7

Presented after the design and project plan is the implementation phase, which is in

chapter 6. The implementation initially focuses on showcasing the basic implementation and

relevant enhancements before explaining the programming conventions used throughout the

project. Following the implementation phase is the testing and evaluation which makes use

of case studies and a performance analysis to explore the potential impact of the work.

Finally the conclusion is displayed within section 8, which explains the potential impact

of the work and any key discoveries made throughout. This is followed by a short section on

the future work that could be completed as part of the system in section 9.

8

2 Related Work

The related work section introduces literature alongside current developments within

industry. The section aims to explore the existing developments within financial visualization,

to ensure the novelty and originality of the research project. Content from multiple sources

was gathered and compared, enabling a complete overview of existing systems to be

presented, before the characteristics of the proposed data is explored.

2.1 Literature Review

Financial visualizations have developed significantly in recent years, the majority of

visualization and financial analytic tools are used within business intelligence and market

analysis software which are produced to allow traders to better understand markets [ID17;

PM17]. Financial markets have relied heavily on technical innovation since the very start of

the industry, many traders and companies use the latest technology to gain advantages

against competitors. In modern cases this comes with an increase in usage of business

intelligence systems, dashboards and algorithms to assist in the understanding of

ever-increasing complexity of the data. These technological innovations are often

implemented closely and provide insights to one another to assist in performing more

successful trades. Financial systems in this regard can be directly judged against their

performance in real-world markets, allowing for effective analysis to be performed.

The scope of the literature review is that the final application will be limited to

companies floated on publicly available stock markets, whilst attempting to provide

understanding into comparative visualizations and if they can be an effective tool.

Throughout this section, research within the area of financial visualization will be explored to

ensure a synthesis of understanding in the subject area. The section begins with

understanding the content of financial visualization surveys, before moving into related

papers discovered through scholarly databases.

2.1.1 Survey Literature

Work such as the Survey of Surveys by Liam McNabb and Robert Laramee [ML17]

provides a synthesis of work within Information Visualization, included in this is a survey on

9

Visual Analysis Approaches for Financial Data by Sungahn Ko et al [Ko+16]. The survey by

Ko et al categorises 24 different stock visualization papers alongside exploring the

evaluation techniques and the interaction methods used in each. The papers focus ranges

between financial-based line graphs and candlestick charts [EBM07] which often use data

sources or statistical methods combining a wide range of multivariate data [Ko+16].

Figure 1: A screenshot of the user interface
and visualizations produced through interac-
tive Kohenen maps [Sch+09].

Figure 2: A screenshot of a mixed 2D/3D vi-
sualization for financial data, utilizing both
columns and line graphs for visualization
purposes [Mir+07].

The survey [Ko+16] combines papers from both industrial and research-based

backgrounds, with a significant majority of these being within stock and fund trading

paradigms. The paper presents sections relating to both methods of analysis and

visualization, with section 7.1 presenting visualization methods. Findings suggest a large

number of research elements focus on traditional 2D methods such as line graphs, pie

charts and similar [Ko+16]. One such example of line charts being used in a novel way is

proposed by Tobias Schreck et al [Sch+09], which explores the visualization of clustered

trajectory data using interactive Kohenen maps. The paper allows the user to visualize a

self-organizing map, whilst enabling control of the algorithm at a functional level of detail

[Sch+09]. The produced visualizations of the clustering tasks can then be selected and

compared such as seen in figure 1, allowing for a thorough analysis of the algorithms used

to be performed using the framework. Researchers such as Dao et al [Dao+08] present

methods of using wedges assigned to each stock to understand force indications within the

NASDAQ stock market.

Another focus of the survey [Ko+16] is three-dimensional (3D) visualization techniques

for financial analysis, the common method of visualizing such data as discovered in the

10

survey is focused on navigation-based 3D spaces with columns presenting the main view of

discoverable data. Analysis for stock markets is explored in the survey through a

visualization approach using point-of-view which was proposed by Lisa Strausfeld [Str95],

the paper presents opportunities relating to point-of-view stock market analysis and

investigates the usage of 3D space. Some of the 3D visualization papers surveyed focus on

using surfaces to display line graphs [Gre+99] in the correct format, however the survey

finds these often prevent the viewing of other line graphs through occlusion removing

usability potential for the user. The line graph approach is then extended to include the

presentation of price-time information [NB04], which did present finding supporting its usage

possibilities. A key method of preventing the blocking of different line graph views can be

seen in figure 2 produced by Barbara Mirel et al [Mir+07], through positioning core columns

in the center and line graphs on the wall, the core visualizations are present to the user at all

times whilst using the software, with a focus on exploring quick changes within commodity

markets. Many of the 3D visualizations presented in the survey suffer from poor usability

and have large amount of ambiguity in the method of which data is presented, making them

poor at comparison and user-defined functionality.

Figure 3: A screenshot of the financevis.net website, displaying query options and resulting
research [DML14].

In addition to the survey produced by Ko et al [Ko+16], Maxime Dumas alongside a

small team of researchers produced a visual survey of financial visualization and its

applications [DML14]. The website for the survey is accessible at financevis.net and was

produced alongside an extended abstract explaining the paper collection and categorization

process [DML14]. The web application presents 87 visualization methods used within

11

financial data, allowing the researchers to then query and present results using a number of

parameters. Upon changing the analytic task parameter on the web page, 61 papers are

identified as matching this. Figure 3 displays the output of the system, which enables the

rapid discovery of financial visualization techniques. In addition to the visual mappings, the

researcher is able to identify different variable, dimensions and meta-data to assist in the

discovery of literature.

A visual analytics system for financial time-series data by Lei and Zhang [LZ10] enables

the analysis of stock market data, through producing visual encodings of ring-based

visualizations seen in figure 4, the paper is able to provide investors a holistic view on

market data in comparison with one another. The ring visualization proposed in the paper

uses categorical variables to present arcs displaying the market cap size. Other elements of

the ring visualization include color showing market sector, and the radius being used to

display the performance of the stock. The paper additionally produces a stock price

clustering technique which is produced using k-means clustering [LZ10], using both

quantitative and time as variables, enabling a scatter plot of price changes in comparison to

the individual value of each stock to be displayed. The produced visualizations as part of the

paper were then evaluated through a user study, however this is out of scope for this project.

Figure 4: A screenshot of the ring visualiza-
tion proposed by Lei and Zhang using radius,
color and position to assist in stock market
understanding [LZ10].

Figure 5: A screenshot of the Market View
presented by Tobias Shreck et al using
trajectory-based analysis of financial data
[Sch+07].

Trajectory-based visual analysis of large financial time series data by Tobias Shreck et

12

al [Sch+07] is seen in figure 5, the paper aims to use visual analytics to enable automatic

data analysis for large financial datasets. The paper proposes three separate visualizations

including a market view, asset view and sequence view, seen in figure 5 is the market view,

which enables exploratory discovery of market data. For the market view, the visualization

uses a function of risk, enabling the analysis of 5,478 trajectories within the market; each of

these ’groups’ then being displayed in a grid. The asset view provides a similar view of

trajectories, however due to the limited nature of these a large selection of spaces within the

grid display no visual information. The sequence view also presented in the paper [Sch+07]

makes use of a pixel static display, with each pixel representing an asset or stock, in this

case as opposed to using trajectory line, the paper makes use of displaying trajectories in a

pixel-color use case.

Other visualizations displayed on the browser [DML14] including visualizing the

Ethiopian Commodity Market [Rog09], and NASDAQ Velocity and Forces [Dao+08]. Both

papers present methods of visualizing stock or commodities, however are limited in the

novel nature of the approach, using traditional polar area diagrams and line charts to

present analysis, and no interactive tools being accessible at present for these. Both papers

also present limited methods of visualizing stock market data, however the Ethiopian

Commodity Market paper [Rog09] does make use of stock market symbols, its comparison

techniques only enable limited future work as they are similar to existing applications and

online tools and the publication date of 2009 does not encourage further work at present.

Both surveys [Ko+16; DML14] present numerous novel attempts at enabling financial

visualizations to be more exploratory and analytical in nature. Within this section, each of

these surveys have had the most relative and related papers analyzed for compatibility with

the project, enabling various findings to be presented as part of this thesis. Following

sections will therefore explore other tools, and research discovered through scholarly

databases and online web platforms, enabling a greater comparison of potential work to

take place.

2.1.2 Financial Visualization Techniques

Visualization techniques for the purpose of analysing financial markets can take

multiple formats depending on the level of understanding needed, papers such as

13

“Visualizing the stock market” [Wat99] propose an improved treemap display for assisting in

the understanding of financial markets, however whilst this approach does provide “an

adequate overview over the financial market” [ZNK08] as explained by Ziegler et al this

approach as it does not assist in the comparison of individual stocks or finances in temporal

situations and “therefore cannot replace traditional line charts” [ZNK08]. The proposed

treemap method can be further improved using interactivity as a tool for showing smaller

stocks, however this once again suffers from a lack of comparison or temporal analysis

being involved.

Figure 6: A screenshot of the resulting visualization produced as part of the ClockMap pa-
per [FFM12].

Building upon research by Wattenberg [Wat99], the ClockMap [FFM12] as seen in

figure 6 proposes a solution which uses circular treemaps with temporal glyphs for usage

with time-series data. The method combines a large number of glyphs whilst using size and

colour to group these in a similar method to that of a treemap. Proposals do exist for this

method to be used within financial markets [Zha+16] with one implementation comparing

multiple temporal glyphs [Fuc+13], however this article removes the treemap setting and

uses a multiple coordinated view approach instead. Whilst this method was found to be

quite effective for a 24-hour timeframe it does make potential researchers aware of

performance changes when changing this period [Fuc+13]. The solution also requires a

larger amount of horizontal space in comparison to the ClockMap method due to the

coordinated view approach, therefore making it unsuitable for large datasets such as a stock

market due to the limited screen size on most monitors.

Candlestick, line and Opening, Highest, Lowest Closing (OHLC) graphs are commonly

used for the visualization of individual stocks, highlighted in the thesis by Rui Ma [Ma09].

14

The thesis explores interactivity for the use of stock market comparison, however, suffers

from the same issues as the majority of traditional mapping techniques due to the limited

nature of comparison which can be performed. Methods of interaction for these encoding

however are more developed than that of those seen in treemaps [Wat99] and similar

methods due to the more common nature of presented techniques.

2.1.3 Stock Portfolio Monitoring

FundExplorer [Csa+03] further develops the concept of treemaps [Wat99] for financial

analysis. FundExplorer is a visualization based majorly on the treemaps, where the

technique is used as a “query device” [Shn94]. The paper for FundExplorer confirms it is

mainly used as a method for investigation options, however only visualizes data relevant to

the stock portfolio and once again misses the key elements such as temporal information in

papers such as ClockMap [FFM12]. However, the paper proposes an interesting concept

which concluded the “experiences with the FundExplorer are promising, and we believe that

the concept of the Context Treemap can be applied to other domains as well” [Csa+03],

Suggesting that the visualization techniques could be implemented in not only other

financial systems but further interdisciplinary research too.

Another method of visualizing and discovering stock market portfolio data is through the

use of clustering which allowed for a self-organising map to be produced by Joel Joseph

and Indratmo [JI13]. This method assisted in exploratory finding for the SandP 100 stock

market data, however only focused on discovery of stock market data. Due to the limited

nature of the research, the research does not make note of the scalability the visualization is

able to perform at. In comparison to the treemaps [Wat99] and ClockMap [FFM12] seen

previously, the visualization groups stocks based on financial history as opposed to the

active market allowing for a more comparative approach which automates the whole

process whilst providing little to no user interaction throughout.

Tim Dwyer proposes a 3D visual model based upon movement in fund management

[DE02], which was then expanded with a more scalable method for portfolios the following

year [Dwy03] which can be seen in figure 7. The papers propose a “worm metaphor” [DE02]

as a visual tool in presenting movement and changes in financial data, along with lines

which are then formed to connect them. The author of the paper believes this was

15

Figure 7: A screenshot showcasing the scalable method for visualizing movement in fund
management by Tim Dwyer [Dwy03].

successful, however still had concerns regarding 3D visualization whilst a lack of clarity and

textual content in comparison to treemaps [Wat99] and FundExplorer [Csa+03] means the

visualization could potential lack clarity to the investor or researcher using the proposed

system. Future work within 3D financial visualization could therefore attempt to solve the

potential issues relating to the lack of understanding of the visualization, however these

papers were published in 2002-2003 and are no longer the most modern implementation.

sPortfolio [Yue+19] is potentially a more recent implementation of visualizing stock

portfolios and follows the findings regarding multiple coordinated views [Fuc+13] alongside

the stratified analysis performed by Dwyer et al [DE02] and Csallner et al [Csa+03]. The

research produced for sPortfolio is a successfull implementation of financial visualization

research which is worked directly alongside a corporate entity and therefore it can be

assumed the findings could be more “industry ready” and similar to the proposal of the

Previous Systems section of the paper. The paper produces an effective visualization tool

based upon the stratified analysis, whilst also removing the issues in regards to dimensions

from previous research [DE02; Dwy03]. Through a user evaluation study, the conclusion

was found that “sPortfolio performs efficiently” [Yue+19] in portfolio exploration and therefore

was considered to be further developed as part of this research project.

2.1.4 Exploratory Financial Visualization Techniques

Exploratory is the process of producing visualization to discover new content or insights

which would not be discoverable through methods such as traditional graphs. One such

16

method of this found in use of stock market is a narrative data visualization [Nai16], this

method linked events and stock market data to assist in providing news-oriented insights

and showing how these affected the market. This method is different to the treemaps

explored previously [Wat99; FFM12] whilst also building on the interactivity of the line

graphs seen in many interactive applications [Ma09]. The research did find the stocks were

sensitive to non-economic traits and that these methods can assist in the general

understanding of markets. However, further work is needed to explore larger and potentially

live datasets to investigate the findings in real time.

VMap [KY18] is a visual comparison tool built for the web using Flash, it is a simplified

tool built for comparison of stock market symbols implementing a grid-based structure.

Research on VMap however is limited with little empirical testing having taken place,

however the paper includes screenshots and reproducible code. However, the concept of

the research allows for a total of 5,126 symbols to be displayed with an interactive search

allowing for “Industries (that) are identified with the Sectors” [KY18]. The research aligns

closely to that of SandP Discovery research [JI13] however provides a much larger scale of

symbols and the relative values. The VMap concept is an illustration of work which could

require further research, and as such was considered when producing visualization

elements for individual stocks as part of the software.

2.2 Previous Systems

Financial visualizations appear in both a research and application-oriented formats,

throughout this section, various software’s relating to the visualization and comparison of

stocks will be explored and details of the systems and their architectures will be analysed.

Therefore, this section will allow for a better understanding of the existing investments

companies have within the subject area and what features are required and used in existing

customer-focused applications.

Existing tools were mainly discovered through online searches, recommendation

articles and scientific papers. Papers such as TechWare [ZK11] provide an overview tools

and their positions within the market, such as FinViz [Fin20] being a Start-Up Visualization

tool and Yahoo Finance [Yah20a] being an online financial data portal. Tools from a range of

categories were therefore chosen, however the application reviews was limited only to

17

applications which allowed some form of free public access. Due to this, tools from larger

companies such as Refinitiv [Ref20] and Bloomberg (which only provided delayed and

closed access) were not part of the review.

2.2.1 Yahoo Finance

Yahoo Finance [Yah20a], as defined within TechWare [ZK11] is an online financial data

portal produced by Yahoo, offered for free with a $349.99 annual subscription for in-depth

analysis and research [Yah20b; Dav19]. The application is a web-based portal providing

access to data from almost all large exchanges, such as those seen within figure 8. The

application is web-based and therefore runs on all modern web-browsers, additionally the

service used to provide a developer API which was used in large amounts of research such

as Real-time Analytics [SCR16] and the Quality of Interactive Data [BN13], however this has

since been deprecated.

Figure 8: A screenshot of the AAPL stock on the Yahoo finance website [Yah20a], showcas-
ing graphs, news and popular matches.

Yahoo Finance provides free, real time financial data from stocks through to

cryptocurrencies. The data for each stock, as seen in figure 8, is mainly text-based with one

singular temporal graph in the center, allowing for both in-depth and quick glances to be

performed by the user. The application allows users to select data and how to display it, but

does not provide any option to compare data away from organized lists and search queries.

This search data however is quite in-depth and would allow for further analysis should it be

imported into a different application.

18

The applications target audience is that of financial traders and people interested in

financial news, which is aggregated and displayed through Yahoo’s search results. The

website has an estimated 70 million unique visitors each month [Fuh19], the largest of the

financial web-based portals available on the market. The website is largely an analysis and

data portal, and only has limited real time data capabilities.

2.2.2 Google Finance

Google Finance [Goo20] is another online financial data portal, produced by Google as

part of their search engine offerings. The service is offered completely free, however is

supported by relevant advertisements across the Google platform. The service is supported

and used by searching a stock or ”finance” into a Google search supported client; this is

therefore supported by almost all platforms including Android, IoS and the Web. Figure 9

showcases a screenshot of the application, with related datasets and news sources being

presented to the user.

Figure 9: A screenshot of the GOOG stock on the Google Finance search page [Goo20],
which showcases temporal graphs and news stories.

Google Finance can be used as a ”at a glance” system, meaning a user would be able

to quickly type a stock or company they are interested in, and receive instant results relating

to this. The service is often used by more novice financial traders, or people who want to be

aware of the market due to the lack of in-depth data or analysis that has taken place through

the system. Google Finance, in comparison to Yahoo Finance emphasizes stock-charting

[Fuh19] and notification capabilities [Goo20], enhancing its focus on data aggregation as

opposed to exploring the market as a whole.

19

Google Finance has significant real time data offerings, whilst also providing historical

data up to a maximum of the markets history. In addition to this, beneath the line graph

shown the Market cap, previous close and 52 week high/low is provided in a textual format.

In addition to this, related news sources and information is shown on the company however

limited effort is made to compare symbols or to provide further research.

2.2.3 FinViz

FinViz [Fin20] is a start up financial market visualization and stock screening tool

available as a website such as the screenshot in figure 10. The application allows users to

visualize and produce charts about various datasets from different markets, stocks and

commodities. The website offers both a free and premium feature set costing $24.96 each

month. Premium features of the website include more advanced and interactive charts

alongside real time data and correlation mapping.

Figure 10: A screenshot of the NETE stock on FinViz [Fin20], which provides analysts with
access to large datasets and complex graphs.

The application markets its users as being from companies such as HSCB and

CreditSuisse and therefore it can be assumed it targets the professional and experience

traders with its premium subscription features. The platform allows for significant amounts of

data to be explored whilst also producing basic interactive visualizations, such as: line chart,

OHLC and Treemaps. The aim of the project is to allow better visualizations to be produced

quicker using the financial datasets available on the platform.

FinViz provides the most complex visualizations out of the applications explored as part

20

of the software review. The visualizations often combine multiple elements, whilst also

allowing for changes such as ’advanced’ graphs with notes and static visualizations to be

produced. However, apart from the previously mentioned treemaps showing the sectors of

the market, there is little comparison between the different stocks and portfolios a user is

able to make.

2.2.4 Seeking Alpha

Figure 11: A screenshot of the AAPL stock on Seeking Alpha [Alp20], a tool which allows
market traders to analyze and view large quantities of data.

Seeking Alpha [Alp20] is a stock market insights application, produced for the web. The

main purposes of the website is to provide insights and knowledge through the financial

data available to the company. The software has a free version with limited data, alongside

a $19.99 per month subscription to premium data and services. The software provides large

datasets to the users, whilst also allowing them to import stock portfolios and providing

news and suggestions through aggregated articles on the website.

Seeking Alpha offer two payment modules, the premium features (as mentioned

previously) and a Pro model (at $199.99 per month). The website therefore aims to market

itself towards both a newcomer to the industry and a financial professional. Due to this the

website provides a 14 day trial period of both account types. Content on the website

promotes itself towards this target audience through in-depth analysis articles and more

basic investment strategies for beginners, thus making it a platform for almost any type of

investor.

21

Seeking Alpha does advertise its ability to compare data as part of its premium service,

this is simply a datatable with customizable columns and does not implement visualizations

at all. The website does provide data on individual stocks such as those seen in figure 11,

however limits this to atomic financial data to the company selected such as current stock

value, revenues and dividend growth history.

2.2.5 Morningstar

Figure 12: A screenshot of the AAPL stock as seen on the Morningstar Financial Research
website [Mor20], a visualization and analysis dashboard mainly based around first-hand
stock research.

Morningstar [Mor20] operates significantly as a stock market research company,

providing reports to investors and financial trading companies. Morningstar offers both a

free tier and premium subscription service costing 19 per month. Morningstar is mainly

aimed towards providing investors with news and analysis reports, therefore these can be

considered the target market. The application, as with all others discovered is web-based

and therefore can be accessed through any up-to-date browser.

As seen in figure 12, Morningstar also provides access to data relating to each stock,

mainly for the purposes of promoting the research charged for as part of the premium

license. The website, much like most of the software reviewed does not provide a method of

comparing multiple stocks and their growth. As Morningstar’s main purpose is to provide

research and analytics, these sections of content are pushed to the user throughout the

webpages.

Morningstar uses an analyst’s estimate to produce and communicate datasets relating

22

to markets, stocks and commodities trading. Due to this, a significant number of the

elements and downloadable content on the website comes in the formats of reports, the

website also contains a map-based visualization which can be used to compare the analysts

estimates of the markets from each country.

2.3 Potential Contribution

Through the literature review and previous systems sections, various methods of

visualizing the financial markets have been discovered. Whilst the research performed

explored the basics such as treemaps [Wat99] and interactive traditional graphs [Ma09] it

was found that these methods often lacked immediate clarity or were not able to cover the

entire spectrum of data (such as temporal, value and large-scale comparison). Whilst

modern web applications such as Google Finance [Goo20], Seeking Alpha [Alp20] or Yahoo

Finance [Yah20b] are able to effectively convey large amounts of information, they are not

capable and producing comparative stock market graphs and usually do not feature any

method of being able to produce and run queries on datasets. Therefore the focus on

research throughout the project was to follow and build upon existing visualization

approaches and develop them to include queries and assist in the visual understanding on

the large and readily available data.

Papers such as vMap [KY18], ClockMap [FFM12] and sPortfolio [Yue+19] provided a

purpose for the research area, assisting in understanding the potential of a financial

visualization system which can be further developed to aid the discovery of unknown or

undervalued stocks. Elements such as the size of results in vMap [KY18], glyph display

capabilities in ClockMap [FFM12] and the completeness of data presented using sPortfolio

[Yue+19] are able to aid understanding and promote the potential of visual analysis systems

for large scale queries and stock market research.

2.4 Data Characteristics

The proposed financial visualization platform will be capable of comparing and querying

data that is both up-to-date and historical in nature, to allow investors to investigate and

explore potential portfolios or investment options. Therefore a potential real-time API was

needed to allow the querying of such financial data, in both present and historical formats.

23

Options relating to only downloading historical data were therefore not viable as real time

pricing and market availability was needed to match the capabilities of applications such as

Seeking Alpha [Alp20] and Google Finance [Alp20].

2.4.1 Data Sources and Description

Figure 13: A feature comparison table was made comparing the differences and usage re-
quirements of each financial API discovered.

A comparison of the various financial APIs was performed, which can be seen in figure

13. The comparison table allowed for a complete synthesis of potential options to be found

whilst also allowing for it to be matched against the specifications of the application. Tools

such as the IEX Cloud [Clo20], Alpha Vantage and World Trading Data performed well when

matched against options and also provided free accounts. Upon further research of these

results, The IEX Cloud offered significantly more (50,000) free results than that of any

competitor such as Alpha Vantage’s 15,000 requests and World Trading Data’s 7,500 daily

API requests. Therefore combining this accessibility of data, and the fact it provides profiles,

historical and real time data the IEX Cloud was chosen as the API provider for the project.

The IEX Cloud is produced and offered by the IEX to provide financial data as a

service, the dataset covers all elements of the financial markets including profiles alongside

real time and historical stock pricing results. The dataset was produced by the IEX to allow

financial products and portfolio tools to be producing using their API and market services.

The resolution of the dataset matches that of the IEX’s current offerings within the market

space, of which a complete list can be found on the eligible symbols section of the main

website [Clo20]. Characteristics of the dataset vary depending on what is being queried,

however time-dependent abstract data is returned in the majority of cases, with the

corresponding values relating to a stocks symbol.

In some cases data as part of the IEX Cloud [Clo20] is prevented from being used due

to the limitations of a free account, should a developed want to integrate queries relating to

income details or other advanced meta-data a full paid account would be required for use.

24

FinVis therefore is not able to integrate advanced meta-data into search queries, but should

a full account be purchased, this data is available.

2.4.2 Accessing Data

The service is provided through an online cloud platform, which shows usage statistics

and provides access to change and modify application permissions. To query the data, the

company uses a REST-API which means a developer can use a URL followed by specific

parameters to return results. Due to this, a returned object does not have a specific size, but

can be presumed to be very lightweight due to each result needing a different query

alongside being returned in a JSON format.

Figure 14: An example of the JSON object which would be returned as part of the GET re-
quest.

The data can be returned using a GET request, such as: GET /stock/symbol/book.

The request would then return data in a JSON format such as that seen within figure 14.

More samples of the potential responses and the data which is returned in each can be

seen within the IEX Cloud documentation [Clo20]. The IEX Cloud documentation provides a

complete overview of all queries, parameters and returning data and can be referenced

when integrating the platform into a software development project.

Data can be returned in one of two formats from the IEX Cloud, one of which is as a

JSON object as seen in figure 14, the second is as a JSON array. Within a JSON array,

multiple objects are used and stored within one response, this is common for largely

temporal or historical queries, such as stock prices over a time period or intraday pricing.

The IEX Cloud also enables users to export data as CSV files, which is potentially useful for

long-term storage or creating a secondary data cache system for an application.

25

3 Project Specification

3.1 Feature Specification

Following from recommendations made within Bob’s Project Guidelines [Lar11], a

feature specification was generated to better understand the required features and potential

enhancements that could be made to the system. The system can therefore be broken

down into a list of feature requirements, which can assist in guiding the project to

completion.

3.1.1 Basic Features

The basic features are those which must be implemented to give core functionality to

the system, they are a requirement for completing the project successfully. The

requirements were gathered via the literature review which took place, whilst also involving

the analysis of previously completed applications. The basic features cover the scope of the

initial product and the planned application which was to be built.

1. Importing Data. The system should be able to import (load) a large number of

financial stocks and should be able to interact with such data through JSON.

2. Web-based UI. The system should be delivered through a web-based user interface.

3. Stock Selection. The system should allow individual stocks to be selected, through a

search query on the webpage.

4. Stock Collection. The system should be able to have multiple stocks be selected,

allowing for them to be stored within ’groups’ or portfolios.

5. Line Graph. The system should have a line graph as a core element on the page,

showcasing multiple stock lines.

6. Stock Queries. The system should allow meta-data such as market cap beta to be

searched, enabling these to then be displayed on the line graph.

7. Stock Query Groups. Queries should be developed allowing them to be combined for

the purposes of enhancing the potential analytics produced in the system.

26

8. Temporal Analysis. The user should be able to select a time span for which the data

is displayed.

9. Data Selection and Details. Upon hovering a point in the line graph, further data

should be displayed to the user.

10. Color Map Selections. The application should allow users to select from pre-defined

color maps, depending on personal preference.

3.1.2 Enhancements

Enhancements are elements of the work which extend and build upon the existing

features mentioned previously. Enhancements are defined by adding extra features to that

of the visualization or the overall application, thus increasing the potential for effective

results to generated. Enhancements are specifically mentioned in the papers produced by

Dr Robert Laramee [Lar11], similar to that of the core requirements. In some cases,

enhancements may be updated to existing work whilst in other this could be a complete new

feature being implemented.

1. Preset Options. A selection of presets should be made available to the user, to allow

for rapid examples to be displayed.

2. User Saved Stock Groups. The user should be able to save custom stock groups,

through queries or custom searches.

3. Merge Stock Groups. The system should be able to merge queries and/or stocks

with those from a different group.

4. Line Graph Interaction. The system should be able to pan, zoom and be selected by

the mouse.

5. Custom Color Maps. Color maps for individual companies should allow custom

overrides to be enabled through the UI.

6. Custom Query Manipulation. Saved queries should allow modification and deletion

after being created.

7. On Click Comparisons. Upon a data point being selected, a comparison of historical

to present pricing should be displayed.

27

8. Portfolios Save Queries. Alongside the previously mentioned stocks, queries should

be saved as part of portfolios, allowing the user to select a choice through the system.

9. Last Portfolio Date Displayed. A glyph should be displayed on the line graph of the

date the portfolio was last saved/created.

10. Points as Volume. Individual data points should be able to be selected to display the

volume of the present time scale.

11. Point Glyphs as Company Logos. The logos of the stock companies should be

displayed as points on the graph.

12. Complete User Options. Each core element and enhancement should be assigned

relevant user options on the User Interface. Note: In some cases, this requirement is

linked with previous sections (such as enabling logo glyphs through user options),

however this assumes more options are necessary for line graph or other display

settings.

3.2 Technology Choices

Technology choices refers to the software, tools and methods used to produce the final

product. Significant thought should be placed on which technology is chosen, such as

whether it is open source, standard of its community and the accessibility of the product.

Many technology choices can vary depending on developer choice [PAN18], system

requirements or subject knowledge [PAN18]. Open source refers to projects of which source

code is public [VV06], additionally in some cases this software is licensed as re-usable such

as public domain or works licensed under MIT [MUS12; VV06].

3.2.1 Programming Languages

The programming language is a significant choice to make when producing

visualizations, each deliverable must be considered against the positives and negatives of

the selected programming languages. Bob’s project guidelines [Lar11] suggests using tools

such as the Java Swing Library, which relies on using Java to integrate and produce

visualizations, however as the project is based towards a more application-oriented

approach this is not as suitable within this use case.

28

Other implementation options for programming languages would be Python and R, both

heavily statistical in nature [Ozg+17] whilst focusing less on interactivity. Python has

interface libraries such as Qt, however this must be installed as an executable on the end

users desktop and therefore is not practical for a financial analysis software. The main focus

of R to to process and analyze data, however this is often static despite libraries such as

Plotly existing. Therefore to assist in determining which software to implement, previous

systems were investigated [Yah20b; Goo20; Fin20] all of which were web-based and

implemented mainly in JavaScript and other web-based technologies which was therefore

chosen for this project.

Hypertext Markup Language and Cascading Stylesheets will provide structure and style

the website, whilst JavaScript will be used to interact with the elements and server-side

systems. For data storage the project will make REST-API calls, and will store these within a

SQL database through PHP scripts as these can be easily queried through AJAX based

requests. This was chosen above JSON-based tools such as MongoDB due to the simplicity

of implementation and availability of locally-hosted server software such as PHPMyAdmin.

3.2.2 Libraries

3.2.2.1 User Interface

CSS Framework Alternatives [ASP] explores Graphical User Interface (GUI) libraries

and CSS Frameworks with relevant project examples. The article defines Bootstrap,

Materialize and Foundation as the largest modern web development frameworks [ASP],

however provides lightweight alternatives in the form of Milligram [SP18b], Skeleton [SP18a]

and UIkit [SP18c]. Figures 15 and 16 provide examples of the Materialize and Skeleton

project example pages, showcasing the different stylistic guidelines between a GUI and

boilerplate CSS framework.

Due to the nature of the application, and the time limit assigned the project will use a

complete GUI library meaning the three main choices would be Bootstrap, Materialize or

Foundation. Materialize integrates Google’s Material Design Language, and the majority of

elements have been developed from these guidelines [PS16]. Bootstrap is produced by

Twitter and provides a large amount of initial elements for developers to work from.

Foundation is a mobile-first platform, meaning that it scales from mobile to desktop.

29

Figure 15: A screenshot of the homepage
of Materialize, showcasing the elements
included in the framework. Taken from:
https://materializecss.com/

Figure 16: A screenshot of the homepage
of the Skeleton website, showcasing the
elements of a boilerplate. Taken from:
http://getskeleton.com/

All three projects are open source, and are freely available to download from Github.

Each library provides a responsive grid, meaning websites can be scaled between desktop,

tablet and mobile devices. Bootstrap has the largest community out of the software

packages, however has recently transitioned to the fourth iteration of its development

versions meaning a large amount of documentation is no longer accurate. For the purposes

of the project, Materialize 1.0 will be selected due to the inclusion of sortable data tables

and interactive elements being packaged within the project.

3.2.2.2 Visualization

There is a number of visualization libraries produced using JavaScript, the most popular

of which is D3.js. Data Driven Documents (D3) uses a custom syntax to produce complex

charts built using JavaScript. The library offers functionality for the production of custom

visualizations but does come with a significant overhead. D3 has a significant learning

curve, but does support completely customizable visualization tools.

Chart.js and Google Charts are more lightweight and simplified libaries, both providing

developers with tools that allow for the rapid production of graphs. Chart.js in comparison to

D3.js and Google Charts supports the use of Canvas elements, which can significantly

reduce the number of elements being loaded into the document therefore decreasing load

times. Due to the nature of this project, Chart.js was used as it provided customizable

functions, canvas support and has a large open source community supporting it.

30

Figure 17: A screenshot of the Github repos-
itory for the project.

Figure 18: A screenshot of Visual Studio
Code alongside plugins.

3.2.3 Other Software

3.2.3.1 Version Control

Version control applications allow for code to be placed within an accessible repository,

Git is the most popular example of this. Git is a command line executable for managing

versions, code and errors throughout the lifespan of a project. Various applications exist for

interacting and storing code in a Git format, the most popular of which is Github as seen in

figure 17. Github enables the online storage of programming resources, such as files and

package management data alongside allowing historical versions to be saved and stored

permanently and changes being labelled.

Throughout the project, the Github student license was used to produce, create and

store data within a private repository. Backup’s could therefore occur when needed, and the

project could be effectively managed for dependency errors and security flaws through

recent integration of package.json scanning.

3.2.3.2 Package Management

Package management has traditionally been completed by installing packages through

content delivery networks (CDNs) or downloading them locally. This method has significant

issues in keeping up to date with security flaws and overall project management. Node

Package Manager (NPM) 6.13 will therefore be used to install, update and monitor

packages used with the project. NPM has a significant number of packages available, all of

which can be installed through the command line interface provided. As an example, should

a user want to install Materialize they could just type: npm i materialize and the package

would be installed to the workspace.

31

3.2.3.3 Programming Environments

The list of web-based IDE’s is extensive, and significantly based upon user opinion.

Tools such as VIM, Notepad++ and Brackets offer simplicity and accessibility throughout,

however lack plugins built-in features available with improved applications. Environments

such as Atom, Visual Studio Code and Sublime Text all have large communities and

community-driven content and therefore it is the option of the individual developer as to what

they want to use.

For the FinVis project, Visual Studio Code was used as seen in figure 18. The platform

has built in functionality for supporting the majority of web-based languages, with

downloadable content being supported for extensions. In addition to this, the platform has

built in Git and console support, meaning it can be used in conjunction with the previously

mentioned project and package management tools.

32

4 Project Plan and Timetable

As part of the project, a plan, software development life cycle and tracking mechanism

was produced to ensure that each element of the work was successfully completed.

Meeting notes are first presented, providing details of the format and examples of what

these look like. This is followed by the project planning chart, which follows Bob’s Project

Guidelines [Lar11], however have been modified to better suit the nature of the project.

4.1 Meeting Notes

A comprehensive set of meeting notes were completed as part of the project, these

were noted by the project supervisor, before being re-written in a digital format to be placed

within the portfolio document. The minutes of Meeting Protocol [Lar10b] presents the format

of the meeting notes, alongside advising of the importance of correct notes for future

reference and work.

4.2 Project Plan

As defined within Bob’s Project Guidelines [Lar11], the project was planned to ensure

all core elements could be added within the defined time frame. The project took place over

3 months, and therefore each task was provided with a corresponding completion date.

Seen in table 1, is a complete list of expected completion dates (each aligned to a meeting

for the project) alongside the actual date of completion. The table presents details relating to

both enhancements and core features of the application.

33

Ta
sk

E
xp

ec
te

d
C

om
pl

et
io

n
A

ct
ua

lC
om

pl
et

io
n

A
dd

iti
on

al
N

ot
es

1.
Im

po
rt

in
g

D
at

a
Ju

ne
4t

h
Ju

ne
4t

h
D

at
a

w
as

im
po

rt
ed

th
ro

ug
h

th
e

IE
X

C
lo

ud
2.

W
eb

-b
as

ed
U

I
Ju

ne
11

th
Ju

ne
11

th
Th

e
w

eb
-b

as
ed

U
Iw

as
im

pl
em

en
te

d
us

in
g

M
at

er
ia

liz
e

3.
S

to
ck

S
el

ec
tio

n
Ju

ly
2n

d
Ju

ly
2n

d
4.

S
to

ck
C

ol
le

ct
io

n
Ju

ly
2n

d
Ju

ly
2n

d
5.

Li
ne

G
ra

ph
Ju

ne
25

th
Ju

ne
25

th
Li

ne
gr

ap
h

in
iti

al
im

pl
em

en
ta

tio
n

th
ro

ug
h

C
ha

rt
.js

6.
S

to
ck

Q
ue

rie
s

Ju
ly

9t
h

Ju
ly

9t
h

7.
S

to
ck

Q
ue

ry
G

ro
up

s
Ju

ly
16

th
Ju

ly
16

th
8.

Te
m

po
ra

lA
na

ly
si

s
Ju

ly
23

rd
Ju

ly
23

rd
9.

D
at

a
S

el
ec

tio
n

Ju
ly

30
th

Ju
ly

30
th

10
.

C
ol

or
M

ap
S

el
ec

tio
ns

A
ug

us
t6

th
A

ug
us

t6
th

C
ol

or
m

ap
s

ge
ne

ra
te

d
th

ro
ug

h
C

ol
or

go
ric

al
.

1.
P

re
se

tO
pt

io
ns

A
ug

us
t6

th
S

ep
te

m
be

r3
rd

P
re

se
ts

w
er

e
ad

de
d

at
th

e
en

d
to

en
su

re
al

lf
un

ct
io

ns
us

ed
.

2.
U

se
rS

av
ed

S
to

ck
G

ro
up

s
A

ug
us

t1
3t

h
A

ug
us

t1
3t

h
3.

M
er

ge
S

to
ck

G
ro

up
s

A
ug

us
t2

7t
h

A
ug

us
t2

7t
h

4.
Li

ne
G

ra
ph

In
te

ra
ct

io
n

Ju
ly

30
th

Ju
ly

30
th

P
an

an
d

zo
om

.
5.

C
us

to
m

C
ol

or
M

ap
s

A
ug

us
t6

th
A

ug
us

t6
th

A
dd

ed
at

th
e

sa
m

e
tim

e.
6.

C
us

to
m

Q
ue

ry
M

an
ip

ul
at

io
n

A
ug

us
t1

3t
h

A
ug

us
t2

7t
h

7.
O

n
C

lic
k

C
om

pa
ris

on
s

A
ug

us
t1

3t
h

A
ug

us
t1

3t
h

8.
Po

rt
fo

lio
s

S
av

e
Q

ue
rie

s
A

ug
us

t1
3t

h
A

ug
us

t2
0t

h
9.

La
st

Po
rt

fo
lio

D
at

e
A

ug
us

t2
7t

h
A

ug
us

t2
7t

h
10

.
Po

in
ts

as
Vo

lu
m

e
A

ug
us

t2
7t

h
A

ug
us

t2
7t

h
11

.
Po

in
tG

ly
ph

s
as

Lo
go

s
A

ug
us

t2
7t

h
A

ug
us

t2
7t

h
12

.
C

om
pl

et
e

U
se

rO
pt

io
ns

A
ug

us
t6

th
A

ug
us

t1
3t

h

Ta
bl

e
1:

Th
e

ex
pe

ct
ed

co
m

pl
et

io
n

da
te

s
fo

rt
he

co
re

fu
nc

tio
na

lit
y

of
th

e
ap

pl
ic

at
io

n,
fo

llo
w

ed
by

th
e

tim
e

fra
m

es
pr

op
os

ed
fo

rt
he

po
ss

ib
le

en
ha

nc
e-

m
en

ts
.

34

4.3 Software Development Life Cycle

The project progressed similar to that of a software development application, meaning

that throughout the project a Software Development Life Cycle (SDLC) needed to be

chosen, to ensure that development was efficient and effective. Software Development

Lifecycle Models by Nayan Ruparelia [Rup10] explores the potential methodologies which

could be followed throughout a project. The paper [Rup10] presents methods such as Agile,

Waterfall and Lean Development. For the focus of the project, an Agile development

methodology was followed, which enabled a rapid prototyping stage to then gain feedback

from the project supervisor. The iterative nature of Agile development meant meetings with

the project tutor could be used to then revise or change existing features from the set of

core requirements in the application. Developing the software through this methodology

allowed for features to be partially implemented before receiving feedback for future

development and changes that needed to be tested or made.

Agile is often positioned within software development as a team-focused task [CH01],

however this significantly limits the potential capabilities when using it for a independent

research project, as advisors and other students are also present to provide feedback and

comments of functionality and work. Agile is heavily showcased within the book by James

Shore [Sho+07], and was used for the project management as it allowed for rapid

prototyping to implemented to then encourage feedback. Agile is seen as useful for projects

where scope changes [Rup10], in the case of FinVis, features and functionality were

constantly changing in requirements and therefore using the methodology enabled these to

assist in the future development of the project as opposed to slowing the process.

Figure 19: A screenshot displaying the project as a set of cards on a Trello board [Atl].

In addition to the advantages mentioned previously, a Trello board was implemented to

monitor and measure how far each feature was to completion. Trello is a project

35

management tool which assists in the organization of large applications and other team

tasks. Figure 19 displays the project as a set of cards on the Trello website [Atl]. Trello

worked well as part of the Agile methodology as the progress of each individual component

or feature can be monitored through this, it also enabled quicker responses when

screenshots of specific features or functionality of the application is requested as this can be

connected as a file through the UI.

36

5 Design

Before building the visualization platform, designs in regards to the system and its

capabilities were produced. Due to the iterative nature of the Agile methodology, designs

were re-designed and changed throughout the project, enabling changes to be made to both

design and implementation depending on the functionality required. The designed system is

capable of implementing the features mentioned within the project specification and

therefore enabled the enhancement features to also be included.

The section initially introduces the visualization pipeline, before focusing on the

individual designs produced as part of the project. Designs for the project include the API

and the web-based platform with the external API being referenced as an external source of

data (where necessary). The diagrams produced build upon those suggested as part of

Bob’s Project Guidelines [Lar11] and are presented alongside a short explanation of how

the system or function works.

5.1 Visualization Pipeline

The visualization pipeline can be seen in figure 20 [End+17], it describes the process of

creating visual representations of data and begins with the source data to the final views.

The visualization pipeline can be used to based custom pipelines relating to visualizations of

domain-specific data. In the case of FinVis, the visualization pipeline displayed by Endert et

al [End+17] matches quite well and further diagrams and understanding can be gained from

it.

Figure 20: The visualization pipeline describing the process of creating visual representa-
tions of data as displayed by Endert et al [End+17].

37

5.2 Process Diagram

Bob’s Project Guidelines [Lar11] suggests using a process diagram within the design

stage of the visualization. The diagram in figure 21 presents a schema of a basic overview

of the visualization process, which allows a custom diagram to be produced based upon this

understanding presented by Ware et al [War19]. The schema presented in figure 21 mainly

displays how a human is able to interact with the system through data exploration, and

through the manipulation of data with this being linked to a data source and preprocessing

of the data and transforming to match the desired format.

Figure 21: A schema describing a basic overview of the visualization process presented by
Ware et al [War19].

Figure 22: A process diagram produced for the software, displaying how the iterative nature
of interaction can allow multiple visualization generations.

Displayed in figure 22 is the process diagram for the application, it begins with the initial

data, before allowing data modifications, formatting and chart and stock data to be

38

displayed. The process only generates an output at the end which is when it reaches the

visualization process before then allowing user modifications and data filtering to take place.

Initial data refers to the data gathered and returned from the IEX Cloud API, whilst data

modifications includes the changes made to labels to format them as dates and changes

made to the order of symbols should none be returned. The data format section re-writes

the data as a new object, allowing it to then be parsed within the lineChart namespace. The

chart and stock data is then the final lineChart ready to be displayed, combined with the

stock data being generated within a categorical line chart.

Upon the visualization being displayed to the user, they are able to make modifications

relating initially to pan/zoom selection which simply updates the x,y coordinates of the chart.

The user is also able to modify user options relating to data such as the color selection,

which simply changes the format of the data to match the new color scheme. Finally, the

user is able to write and edit queries relating to the dataset, which changes the initial data

being returned to the application. Therefore the process diagram, presents the entire

process a potential investor would have whilst interacting with the system, there is obviously

a much larger set of subsystem (or in the case of JavaScript namespaces) and these will be

displayed in ’System Diagrams’ below.

5.3 System Diagrams

Figure 23 presents the system diagram produced as part of the design of the

application, the diagram showcases the various subsystems in use and how they interact

with one another. It should be notes that smaller and less important systems are not

displayed on the diagram (such as user options etc). The software subsystem diagram

enables a schematic display of the overall architecture of the system to be presented,

enabling potential developers to understand how the different components of the application

work together. Within each subsystem, key attributes and functionality is also shown, which

assists in the understanding of the different elements and the planned location within the

code.

The systems displayed in figure 23 begins with the user interface, which links to the

query manager, portfolio manager and the line chart itself. The user interface is made up of

components allowing interaction with the software from the end user. The portfolio manager

39

Figure 23: A schematic display of the software systems displaying the key subsystems and
how they interact with each other.

enables the user to create, load, save and merge stock portfolios within the system, the user

is able to activate the portfolio manager from the user interface and it does not have any

interactions other than accessing the current stock list (before being saved to local storage).

The query manager enables the user to create queries based around the different types of

meta data available within the system, it first combines the various parameters the user has

selected before sending this as a request to the REST API system. The line chart system

enables the display and interaction of the line chart by the user, which is why it has a

two-way arrow. The line chart system interacts with almost all the user options and receives

data from the rest API.

The REST API system enables interaction between the users computer and the

databases which are storing the financial data, which includes the IEX cloud and the

phpmyadmin SQL databases. The REST API receives this data before then sending it to the

users line chart, and storing a list of resulting symbols within the stock list. The stock list

enables a set of stock symbols to be stored without having to query data again or store it in

a format related to the line chart. The Line Chart system also interacts with the user options,

which in the diagram shown are the utils and colors systems (however, depending on

enhancements required this can be extended). The systems interacting with the line chart

40

enable various user options to be changed and then displayed to the user.

The diagram in figure 23 presents the novel implementation design of the FinVis

system, displaying how the user interacts with each system through the user interface and

how each system is designed to interact with one another. The design produced may be

further improved and expanded through adding other user options or other modifications,

such as the enhancement ’points as volume’ which would require extra point display

modifications to take place before being returned to the user. Other modifications such as

hover events and functionality would occur within the user interface itself, and therefore have

also been left off the diagram.

5.4 Data Interaction Diagram

Figure 24 presents the data interaction diagram used to plan how data is queried and

returned from the data source (IEX Cloud) and then modified through a REST API before

being returned to the user. The diagram presented showcases this data from the user

interface to the REST API before displaying the two separate storage systems used to keep

stock and meta data. The IEX Cloud API will be used to return stock prices and historical

prices relating to the core data of the system, whilst the SQL database will be used to store

meta data relating to the user customized parameters available within the application.

Figure 24: A schematic flow chart displaying how the users interactions change the data
which is being queried and returned from the database.

The user interface is first to be interacted with by the end user, in which they have

multiple options relating to user options: time frame, stock symbols and query types (other

user options only change visual elements and therefore do not require a connection to the

server to be made). The time frame data flow describes the time selected for the data being

returned in a string format such as ”1d” for one day or ”6m” for six months. The stock

symbol is the stock type required for the server to search for, in this case it will always be a

41

string and would be formatted in a similar way to ”APPL”. Finally the query type is an SQL

statement which is sent to the server, which can be defined through its requirements of

having to be sent to the SQL database instead.

The REST API then decides where each query will be sent, and whether any other

server side interaction is needed. In the majoirty of cases (such as real time and historical

prices) data is sent to the IEX Cloud and returned directly to the user, however in the case

of the meta-data or user defined queries data is first returned from the IEX Cloud before

being stored in the database (should it not exist) and should an existing copy be found, this

is instead sent to the user to prevent rate limiting on the IEX Cloud.

The data interaction diagram presents a key concept that should be considered when

interacting with the various databases used in financial data, specifically data should be

managed with potential caching built-in, which is what the proposed REST API enables.

42

6 Implementation

The implementation phase was completed using web-based technologies and the tools

defined within the technology choices section. As defined within Bob’s Project Guidelines

[Lar11], this section outlines the core knowledge needed to re-create the visualization

platform. The implementation section covers all elements mentioned as complete within

table 1, however in some cases these have been combined to present the implementation in

a more understandable format. Each sub section will explore the features and functionality,

data structures and any issues discovered throughout the projects development.

Figure 25: A screenshot of the completed application, with the visual options tab selected.

Figure 25 presents a completed screenshot of the application, with a previous query

loaded. The implementation of the project enabled for an advanced financial visualization

system to be produced. Within the following section, individual elements of the applications

development will be focused on enabling for a complex understanding of how the systems

components work. The presented screenshot is an example query of companies which

match the parameters of recent growth and a stock price of between 200-400 (at the initial

time of query). The completed system therefore combines functionality and requirements

from both the basic and enhancement implementations.

43

6.1 Basic Implementation and Relevant Enhancements

The basic implementation section covers the core functionality produced as part of the

project, each element is key to enable succeeding in meeting the projects initial goals. The

application is accessible through any locally hosted web server, should all the files be

installed correctly. In addition to this, a valid API key for the IEX Cloud is required for

enabling access to both real-time and historical data. However, throughout the development

of the project a sandbox key was discovered which enabled unlimited API requests for

slightly randomised data, using this allowed for significantly more testing to take place as the

rate limit no longer applied.

6.1.1 Data Import

The initial step in producing the visualization platform was to create a method of

receiving real time and historical data from the IEX Cloud API. For this, an ajax request was

used which allows for PHP pages to be called using JavaScript. Within the PHP page is a

query relating to the symbol required and the time frame of which the data should cover.

Displayed in figure 26 is the code used to perform this task. Data can therefore be imported

for any stock on the IEX cloud and any time frame (up to 5 years) can be selected to be

displayed.

Figure 26: The GET request implemented to return data from the web server which handles
both historical and real time data.

Figure 26 makes use of a REST API call, which has two main callbacks: success and

failure. Making use of the callbacks enables the platform to detect if data has been returned

or similar opportunities relating to this. However, issues were found when stocks did not

exist as they would return empty JSON objects, meaning the application would display a

44

results that was not valid. The method implemented to prevent this was to check if there was

an error whilst parsing the object using a catch() statement, as a null result could then

cancel the entire function and add one to the completed count of symbols.

Figure 27: The format of the data stored for the line chart, which is part of the get-
Data.generateObject() function.

Within the getData.runLoop function (which activates the previously mentioned GET

API call), data is returned, parsed and then re-stored in a format which matches that

required for the line chart. Figure 27 displays the JavaScript object format used to store data

in the format needed. Each variable (such as label or data) is a specific requirement of the

line chart and is passed as a parameter into the getData.generateObject() function. As part

of this, any parameters which the user has stored can also be automatically updated such

as the pointStyle being set as the point variable.

The functionality of the getData namespace is to request and parse the data that is

returned from the API, presented within figure 28 are both the public variables and JSDoc

comments for the section. Storing the core data such as symbols, time or labels enables

other namespaces to interact and receive such elements enabling easier and more

accessible programming. As the data was being returned and parsed correctly, the data

import functionality was complete.

45

Figure 28: The code used to request data from the web server and API in real time.

Figure 29: A group of HTML elements for interacting with the line chart. The screenshot
only shows a subset of those available in the application.

6.1.2 Web-Based UI

A significant requirement of the project was that it was accessible via the internet,

through any modern web browser. Whilst this functionality was defined within the technical

specifications, an enhancement feature was also included to provide an extensive list of

user options for modifying the produced visualizations within runtime. To display the

complex set of options a two panel UI was produced, positioning the line chart to the left and

panel of controls to the right. Additionally other options were displayed including a user

interaction bar along the bottom, and a list of stocks at the top of the screen. Displayed in

46

figure 29 is a short example of tooltips alongside the information stored as part of the

display of options and the application layout.

Figure 30: A screenshot of the Web-Based UI as seen on a 1920x1080 Google Chrome
window.

Displayed in figure 30 is a screenshot of the final UI, with the five tabs displayed on the

right side of the page. The name, count of results and temporal setting are permanent

between views whilst the tabs themselves switch between data, query, portfolio, visual and

display. This display had been iterated and improved multiple times, with the initial

functionality all being displayed on one panel before being deemed that this was too little

space to display the complex set of user options available to the user. Therefore, each tab

was organised relating to the content and visualization settings available in the application.

The grouping of options for the tabs are defined as follows:

• Data. The data tab displays options and information relating to the currently selected

data or dataset.

• Query. The query tab presents options relating to the execution of queries within the

system.

• Portfolio. The portfolio tab presents the currently saved portfolios alongside options to

save the current data.

• Visual. The visual tab presents options such as color selection and point display

options (e.g. points as volume and points as company logos).

47

• Display. The display tab presents options relating to the line chart and other glyphs

displayed within view.

Figure 31: A screenshot of the utils.performance options which are stored within the
browsers cache.

Options have been provided for almost all use cases of the system, through using the

tabs at the top of the right panel options such as: point size, color map selection, display

lines and animation can be changed and customised to the users needs. Options are

presented as HTML form elements, meaning that each element is displayed as either a drop

down menu, number input, switch or range slider. Upon completion of selecting the

dropdown elements, the selected data is stored in the utils namespace such as the

performance options seen in figure 31 of which it can be included upon the next

re-generation of the line graph (which in normal cases occurs immediately after the storing

of the new options).

6.1.3 Line Graph

The line graph was mainly implemented using a library Chart.js, which enables a

canvas-based element to be displayed and interacted with by the user. The data being

displayed was temporal (time) in comparison with stock price. Each line chart had multiple

categorical groups, each of which was a stock, which is also to be displayed on the line

chart. Each dataset is stored as a JavaScript object which includes strings and arrays (for

data and labels), upon being loaded into the Chart.js element, the features are iterated

48

through and displayed on screen to the user.

Figure 32: A screenshot of the code used to generate and display a chart to the user
through Chart.js.

In figure 32 the object and code for producing and updating the settings of the chart is

displayed. As previously seen, the figure includes options relating to whether lines are

visible and similar performance-based settings are controlled through this function within

lineChart.generateChart(). Upon requesting the generateChart() function, data received

within getData.runLoop is included within the data object, which beigns to process the and

display the selected visualization.

Figure 33: A screenshot of line chart visualization within the web browser, displaying all con-
tent within the canvas element.

49

Figure 33 displays the output visualization within the canvas element, the x axis

displays dates through the ISO 8601 format, which enables the visualization to dynamically

change dates - specifically useful when changing between day and month formats. The y

axis displays the price of stocks using a decimal format, before appending a dollar sign to

the start of the number. Upon completion of processing for the lineChart instance, the

linechart.createLegend() function is ran, which iterates through all valid stocks and displays

them to the user (allowing them to hide/show specific stock choices).

6.1.4 Queries

Figure 34: A screenshot displaying the rows and columns of the meta data table within php-
myadmin.

The screenshot displayed within figure 34 is of the tool phpmyadmin, which was used

within the project to store data relating to key statistics and meta data (for use with the core

queries within the application). Meta data was stored in this way as rate limits for the IEX

Cloud API would not allow multiple requests for stocks and the key statistics relating to

them. The solution was to produce a iterative code element which could be ran using a

server function every morning/night (depending on the future requirements of the

application). In addition to this, storing the data within an SQL database allowed more

complex queries to be formed, enabling the view seen in figure 35.

Figure 35 displays the various user options enabled through the SQL database, which

upon implementation can combine, merge and join multiple queries. Using the SQL-based

database for this task enables users to query any data stored in the database in the format

matching the parameters required. Upon selecting or choosing a meta-data group the user

is also presented with options relating to removing or changing the current queries.

50

Figure 35: A screenshot of the query tab, displaying the relevant meta data options and the
user selectable parameters.

6.1.5 Portfolios

Figure 36: A screenshot of the application tab within the Chrome Developer tools, displaying
the currently saved portfolios.

Figure 36 displays how and the format of which local storage data objects are used to

store the users selected portfolios of stocks and queries. Storing the data within HTML5

local storage enables for quick access within the code without the need for an external

service to be made write-able by the user. Each object is then iterated through and

displayed to the user in the format seen in figure 37. Issues relating to having no queries or

stocks were solved through only displaying an arrays contents should it actually contain a

result or query.

51

Figure 37: A screenshot of the portfolios tab on the website, presenting the users current
portfolios.

Portfolios can be loaded into the visualization platform dynamically, using either stocks

or the query parameters chosen. Portfolios may also be merged, enabling novel visual

analytics approaches such as comparing high/low stock groups against one another. The

portfolio save option also stored the last access time of the query, meaning that a

time-based glyph as seen in figure 38 can be displayed to the user enabling them to

understand what has changed since the last time they had opened the platform.

Figure 38: A screenshot of historical time glyph being displayed within the line graph can-
vas.

52

6.1.6 Colour Selection

Figure 39: A screenshot of the color map selection tool, which can be used alongside com-
pletely custom colors.

Figure 40: Individual screenshots of the four color palettes produced using Colorgorical, dis-
played left to right as a, b, c and d.

Colorgorical by Gramazio et al [GLS17] is able to produce aesthetically preferable

categorical color palettes [GLS17]. Each color is assigned a weight, and through using the

web-based tool the perceptual difference, name difference, pair preference and name

uniqueness was able to be changed. Figure 40 showcases the variety of palettes produced

for the system whilst figure 39 presents how the user is able to select them, which

implements both colorgorical [GLS17] and color brewer [HB03]. A limitation with both tools

is that is requires the outputting system to have a limited number of potential categories.

Therefore a user option is embedded within the drop down menu, to allow settings relating

to constant coloring or the predefined palettes to be used. Constant coloring allows for

colors to be constant across different generations of the graph, however limits the potential

aesthetic quality of the overall web application.

53

6.2 Other Enhancements

Enhancements have been spoken about as part of 6.1 (in each case where an

enhancement builds upon existing work), however in cases where no existing functionality

exists for the enhancement, the extended work will be mentioned within the following

section.

6.2.1 Preset Options

Figure 41: A screenshot of the presets displayed as part of the system, which make it easier
to run initial queries.

Figure 41 displays a set of presets which the user can immediately access within the

application. The idea behind the concept is to enable quick exploration should a user only

want to view the visualizations for a couple of minutes. The presets enable rapid exploration

to be performed, whilst also allowing the full functionality of the application to be displayed in

a quick and understandable format.

Some of the presets are displayed as case studies within the testing and evaluation

section of this thesis.

6.2.2 Line Graph Interactions

Adding interactivity to the line graph was a key element of the application, as

movement, panning and zooming would enable greater exploratory capabilities of the

platform to be used. Displayed in figure 42 is a screenshot of all the interaction and display

user options available through the system. The line graph interactivity initially had issues

relating to zoom and panning boundaries, as constraining both edges resulted in zoom and

54

panning to not work correctly. Therefore, the right side of the graph was left without

constraints resulting in the visualization being easier to use and move around.

Figure 42: A screenshot of the interaction toolbar placed at the bottom on the line chart.

The visualization interaction options enabled: tool tips, pan and zooming to be

implemented into the chart. Each option was enabled by the user options visible beneath

the graph. Users could select whether to lock movement horizontally or vertically and could

also use an area selection tool to zoom into a specific area of the visualization results. The

interaction options overall enabled a variety of exploratory techniques to be implemented,

and combined with the on click and on hover event comparisons investors are able to

explore large areas and small areas of the market concurrently. The image in figure 43

displays a user selecting a group of stocks to discover more information. In addition to the

interaction improving accessibility, the chart axes are able to scale meaning results can be

instantly compared to the hover line and other stocks visible.

Figure 43: A screenshot of the user selection box being dragged around a group of stocks
for further analysis.

55

6.2.3 Points Display

Individual data points are able to convey a large amount of information, in addition to

the position on the graph; size, color and other visual variables are able to share information

about specific points and elements. For the purposes of FinVis, the visual variables include;

shape, size, color and pattern (in the sense of a company logo). These options were

implemented as they assisted greatly in the exploratory capabilities of the systems whilst

also using data which was already available and stored through the getData namespace.

The changing values of points is performed before the final object is generated and the code

for such actions can be seen in figure 44.

Figure 44: A screenshot of the user selection box being dragged around a group of stocks
for further analysis.

The code enabling the changing of points can be accessed through the ’visual’ tab on

the user interface. The displayed user options are able to change the decimal size of points,

alongside activating options such as ’points as volume’ and ’points as logo’ which both

change the visual appearance of the points to integrate other data about the presented

companies. Point initially were not as complex, however to enable the application to contain

more data at a glance, the points as volume option was produced - which changes the size

of a point into a volume. However this volume setting is constrained to be capable of a max

size of 34 pixels as in some case point would overload and occlude other elements on the

chart. Occlusion is a significant issue within the application as in some cases points may

overlap and prevent other information from being displayed. Through comprehensive testing

of the system, it was found that a maximum size of 34px enabled visualization to present the

data without overwriting other information on the screen.

56

Figure 45: A screenshot displaying the user option of ’points as volume’ which changes size
of data points depending on the volume of the stock in the specified time frame.

Figure 46: A screenshot of the user option ’points as company logos’ which presents the
individual data points as a company logo.

The results relating to the points as volume user option are displayed in figure 45 whilst

the individual stock logos are presented in figure 46. Both user options enable other

exploratory methods to be used by investors when interacting with the application. Point as

57

volume uses the attached volume array which is returned within the getData namespace,

and then modified to match sizing requirements through the lineChart namespace.

6.3 Code Guidelines

6.3.1 Code Commenting

As defined within Bob’s Project Guidelines [Lar10b], JSDoc was included. Installed

through NPM using the npm i jsdoc command, documentation can be rapidly produced

and created for each JavaScript element of the website. Whilst the guideline document

suggests using a Java documentation or C documentation library [Lar10b] an equivalent

was found for the JavasScript language and therefore was implemented throughout.

Potential usages of comments included each individual namespace, function and parameter

however full documentation on how to use the tool is available on the JSDoc website.

Presented as part of the portfolio submitted alongside this document is a HTML website

in the out folder of the submission. The website generated through JSDoc enables potential

future researchers or other developers to understand the parameters, namespaces and

functions used within the development of the project. The output website enables

exploration of the code base through interactive means, and was updated continuously

throughout the project.

6.3.2 Coding Conventions

Bob’s Project Guidelines [Lar11] suggests using the coding guidelines mentioned in

Bob’s Concise Coding Conventions (C3) [Lar10a]. The guidelines mentioned [Lar10a] were

followed throughout the production of the code where possible, however due to the nature of

JavaScript additional guidelines were followed. The book JavaScript Patterns [Ste10] was

followed as a key reference throughout the project, which aligns closely to the guidelines

suggested within the C3 paper [Lar10a], however focuses on JavaScript implementation.

Notable conventions followed throughout the programming focused on ensuring

methods were short and concise [Lar10a], methods should not take more than five

parameters [Lar10a] and the implementation of camelcase [Bin+09] (with a notable

exception being the imported functions from external packages). Through using the coding

58

conventions mentioned throughout the documentation [Lar10a; Bin+09; Ste10] an

application in which another developer or researcher is able to build upon has been

produced.

59

7 Testing and Evaluation

The testing and evaluation section presents the results of both a case studies and a

performance analysis. Comprehensive testing of each element took place throughout

implementation of the project, and the results of these tests can be seen through the usable

and resulting visualizations produced. The case studies presented are also available as

presets within the application, whilst the performance analysis assists in understanding the

potential of the user settings and any constraints linked to too many elements within the

canvas.

In some web based projects it may be possible to implement testing frameworks,

however this is out of scope for this project as it usually requires large teams of developers

and a significant amount of time. A testing table was not used, however individual element

tests did take place. A method of monitoring console events and checking data results

means that individual UI testing is not needed as all results can be displayed within the

Chrome developer tools. It may also be suggested that in the future a comprehensive user

test takes place; however due to the current COVID-19 situation, and the lack of time to

produce a rigorous testing framework the visualizations produced will be used as results

and enable evaluation through the exploratory methods and visual images produced.

7.1 Results

To enable results generation and testing of the application, a range of case studies

were generated (A-C). Each case study displays the novel approaches available to investors

within the produced application. For each case study, the method of generation and the

results of queries/functions are displayed in addition to this a list of stock symbols is

supplied. Each section also combines short notes on why certain functionality and display

options were chosen and how these might assist in an exploratory analysis of the stock

market.

7.1.1 Case Study A Bargain Stocks

The purpose of Case Study A is to discover and find bargain stocks through using and

interacting with the queries and visualization options available on the web based platform. In

60

the case of bargain or undervalued stock discovery, the P/E ratio and year to date change

meta-data options will be used. The parameters for such will focus on stocks with a low P/E

ratio (below the average of the stock market in question) and a year to date growth rate

which is positive. Through querying the two parameters, results will then be presented and

displayed to the user and an analysis of such results can be performed using the tools

available within the application.

The data being tested in returned from the IEX Cloud and is a relatively large dataset,

depending on the time period selected data for each point ranges between 200-400

elements in length with that then being multiplied by the number of stocks (in this case five).

The dataset ranges from the users determined time selection, which in the case of the

presented case study is the past six months. The data is structured in format, as it is

presented and received in a predictable format. Data that does not exist (should a stock not

be traded at that time) is returned as a null value, meaning no point is placed on the

visualization system.

Figure 47: A screenshot of the resulting visualization produced as part of Case Study A,
displaying three of the five stocks as both MELI and TSLA traded at above $800.

The specific parameters in use will be: year to date change percent > 15% and P/E

Ratio < 10. Combining the two queries is possible through the user interface elements on

the query tab of the right panel. Upon running the query, five stocks are returned which

include: SBAC, INCY, EBAY, MELI and TSLA.

Figure 47 presents the results from the proposed queries, overall five different stocks

were returned however both TSLA and MELI were filtered by the user as they were trading

61

at above $800 meaning they would significantly effect the view of SBAC, INCY and EBAY.

The presented stocks can then be explored through the built-in visualization interaction

options, specifically in the case of figure 48 the visualization can explore the slight market

drops which occurred during the initial stages of COVID-19. Using the provided interaction

tools, stocks within the time period can be compared to discover which had high/low growth

during the March period. The tool also allows for the visualizations to be explored at current

and past prices, meaning daily or a five year view can be selected - should it be required.

Figure 48: A screenshot of the resulting visualization produced as part of Case Study A,
displaying a zoomed in section of the line graph during March 2020.

62

Figure 49: A screenshot of a comparison between the SBAC stock in March compared to
the present day price. The visualization tools provided enable investors to explore stock
prices in comparison to each other.

Figure 49 presents a comparative analysis which can be performed within the system,

using the ’data’ tab. The comparison can be generated using historical and current stock

data of any symbol currently displayed on the screen. The table provides a price

increase/decrease and enables a quicker understanding of the market presented as part of

the visualization. Specifically in the case of SBAC, the large growth is displayed from March

to the 7th September. In addition to this, to enable specific stocks to stand out, the SBAC

stock was changed to a green color as this was the same as the companies logo.

7.1.2 Case Study B Technology Portfolio

Case study B presents a method of visualizing an existing stock portfolio, in this case

the user is looking to display a comparison of prices within the technology industry. Using

either URL parameters or the visual search tool in the data tab seen in figure 50, the user is

able to generate and modify visualizations relating to the query. Upon generating the query,

it is possible for the user to remove the line and also enable logo glyphs meaning stock

prices can be compared in a more general form, the user is once again able to use chart

interactions to zoom and customize the visual experience. The data for the technology

portfolio search is the same as that defined for case study A, however case study b returns

nine results instead.

The visualizations produced for case study B are displayed within figure 51, the

produced visualization enables a visually appealing exploratory analysis to be performed of

63

Figure 50: A screenshot of the visual search displaying the user wishing to add ORCL to the
visualization, all stock symbols can be added/removed from this tool.

the users custom technology stock portfolio. Using user options available through the visual

and display tabs, it is possible to modify the visualization to present data in multiple formats

within the FinVis system. Case study B also showcases the systems potential usage as a

tool for news websites, where a collection of stocks can be stored as URL parameters to

share market updates at specific times through a link. Each generation of the visualization

changes the URL, meaning that should a investor want to share a portfolio it is possible to

do so through the system.

Figure 51: A screenshot displaying the produced visualization of the users custom ’technol-
ogy’ stock portfolio, each dataset is shown using a logo glyph as opposed to a line.

7.1.3 Case Study C COVID-19

Case study C attempts to present opportunities relating to analysis of market downturns

or improvements. When saving a portfolio on the FinVis system, the date and time is also

saved within the portfolio object. Using this data, it is possible to present the user with a

64

previous view of the system enabling potential analysis improvements relating to last known

prices in comparison to current. Using the recent March 2020 downturn, it is possible to

present a previous stock portfolio and showcase the features possible for investor analysis.

For the purpose of the case study, the last access date was changed to the 14th March and

was then opened again on the 7th September.

Figure 52: A screenshot displaying the visualization produced as part of case study C,
showing the H glyph at the date of last access.

Figure 53: A close-up screenshot of the H glyph as part of case study C, which is displayed
on the 14th March.

Figure 52 displays the produced visualization upon the loading of a previously saved

dataset, the visualization is able to load queries and results or merge the query or results

with the existing symbols. Through loading the results, a historical H glyph is displayed,

showing the price and value of the data the previous time a user loaded it in the application.

This enables many novel uses, such as allowing the monitoring of stocks over a long period

65

of time or in this case enable comparison to past data. Through the visualization in figure

53, it is possible to see that the ABT stock had significantly higher volumes traded during the

March period in 2020.

7.2 Performance Analysis

7.2.1 Data Retrieval Analysis

Number of Stocks Loading Time (ms) Any Errors
5 1110 ms
10 1562 ms
15 2140 ms
20 3098 ms
25 3284 ms
30 3859 ms
35 4311 ms
40 4612 ms

Table 2: The loading times (in milliseconds) for returning data from the REST API through
the IEX Cloud.

The data retrieval analysis is calculated from the initial GET request being sent, to the

completion of all stocks. A console.log command is inserted to display the timestamp at

both the start and end, which then allows the extraction of the loading time to be displayed

in milliseconds. The number of stocks significantly changes the possible loading time of the

system, as each stock means more data is being returned through the API.

The data displayed in table 2 presents the number of stocks in comparison to the

loading time. The findings suggest that the larger number of stocks being queried, the

longer it takes for data to be requested and then received from the web server. However,

results for this analysis may change depending on internet speeds meaning a larger amount

of tests would need to be ran over a longer period of time from various connected devices.

Further testing is required based around data retrieval speeds as it significantly depends on

the API performance at the time and testing devices connection speed. It may be possible

within future work to dynamically load stocks into the visualization, meaning that once data

is returned from the API, it is placed within an interactive interface using a synchronous

connection.

66

Option Changed Loading Time (ms) Any Errors
Logos as Points 1982 ms
Volume as Points 1734 ms
Color Map 1450 ms
Animation Removed 784 ms
Animation Increased 2108 ms
Lines Removed 1389 ms
Data Labels Added 2304 ms

Table 3: The loading times (in milliseconds) for changing different user options within the
application.

7.2.2 Visual Performance

The table presented within table 3 showcases how different user options change the

overall speed of the applications load. Each test was set up using the same stocks, amount

of data (5 stocks over 1 month) and through the same Chromium-based web browser

(Google Chrome 85.0). The performance analysis of such data was taken through placing

console.log() functions within the run time code, allowing for an analysis to be performed of

each individual user option.

Findings suggest that it is possible to significantly improve the speed of canvas

generation through removing animations from the element. This however removes aesthetic

quality from the end product, meaning presenting it as a user option enables end users to

decide which technique to choose. Significantly the second largest loading time was

extending the animation speed, as this requires more frames to be displayed to the user,

which means the browser needs to process more elements over time. It may also be noted

from the results that points as logos and volume slightly increase the average load time,

meaning that the increased amount of data slightly increases the potential processing power

required.

As with the previous performance analysis, further testing through end user browsers

would enable better and more complete results to be gained. Using web-based analytics

tools may assist in finding slow or elements which lack optimization presenting potential for

further development work to increase these.

67

8 Conclusion

The thesis and development work enabled the production of a visual analysis system

for financial stock markets. The tool produced enabled multiple queries and statistics to be

queried, whilst also producing exploratory visualizations capable of presenting the data in a

line graph format. Through the case studies which took place, a large amount of

opportunities exist within the application for assisting in the exploration and analysis of

financial markets. Results that are specifically effective include those that used queries to

find stocks that match specific queries, or importing an existing portfolio of stocks to produce

a comparative visualization from.

The application provided a large amount of interactive visual analysis, which can assist

in the exploration of the stock market. Whilst also provided methods of visualizing stock data

in the following formats:

• View large datasets as a scatter graph, without any lines.

• Visualize specific and closely related stocks, whilst also comparing volume.

• Produce aesthetically pleasing visualizations of stocks within specific industries.

• Display logos of companies as individual data points, enabling larger displays.

Whilst the application may not be a complete system yet in comparison to Google

Finance or Seeking Alpha, the produced visualizations and potential queries offer a

complexity that is not available within the current set of tools. To further improve the

application access to more advanced and complete datasets is required, to allow for more

exploratory queries to be produced.

Overall the research provided a novel method of visualizing stock market data,

alongside a complex collection of user options accessible without a download through a web

browser. To further develop the work, a larger amount of data access is required to assist in

providing further analysis features.

68

9 Future Work

Future work may explore options relating to the investigation of the use of

micro-visualization to present portfolio statistics without having to click on each individual

collection. Further development could also provide better comparative analysis of stocks,

through interactive tools comparing different rows of data from the returned selection. Work

within financial visualization has been significantly developing in recent years, and therefore

other visualization options could also be explored.

In addition to having a larger amount of data to work with, future work within the subject

area should look towards providing better visual analysis of specific meta data types - and

may look to include these as either glyphs or icons within the line chart. Future researchers

may also investigate methods of tracing or drawing desired stock lines on the graph, before

querying the database to present these to the investor.

69

References

[Alp20] Seeking Alpha. Stock Picks, Stock Market Investing. 2020. URL:

https://seekingalpha.com/symbol/AAPL.

[ASP] Explore Five Lightweight Alternatives, Aravind Shenoy, and Anirudh Prabhu.

“CSS Framework Alternatives”. In: ().

[Atl] Atlassian. URL: https://trello.com/.

[Bin+09] Dave Binkley et al. “To camelcase or under score”. In: 2009 IEEE 17th

International Conference on Program Comprehension. IEEE. 2009, pp. 158–167.

[BN13] J Efrim Boritz and Won Gyun No. “The quality of interactive data: XBRL versus

Compustat, Yahoo Finance, and Google Finance”. In: Yahoo Finance, and

Google Finance (April 18, 2013) (2013).

[CH01] Alistair Cockburn and Jim Highsmith. “Agile software development, the people

factor”. In: Computer 34.11 (2001), pp. 131–133.

[Clo20] IEX Cloud. IEX Cloud: Financial Data Infrastructure. 2020. URL:

https://iexcloud.io/.

[Csa+03] Christoph Csallner et al. “Fundexplorer: Supporting the diversification of mutual

fund portfolios using context treemaps”. In: IEEE Symposium on Information

Visualization 2003 (IEEE Cat. No. 03TH8714). IEEE. 2003, pp. 203–208.

[Dao+08] Huyen Tue Dao et al. “NASDAQ Velocity and Forces: An Interactive Visualization

of Activity and Change.” In: J. UCS 14.9 (2008), pp. 1391–1410.

[Dav19] Dave. Yahoo Finance Premium Review - Is It Worth Paying For? Sept. 2019.

URL: https://daytradereview.com/yahoo-finance-premium-review/.

[DE02] Tim Dwyer and Peter Eades. “Visualising a fund manager flow graph with

columns and worms”. In: Proceedings Sixth International Conference on

Information Visualisation. IEEE. 2002, pp. 147–152.

[DML14] Maxime Dumas, Michael J McGuffin, and Victoria L Lemieux. “Financevis. net-a

visual survey of financial data visualizations”. In: Poster Abstracts of IEEE

Conference on Visualization. Vol. 2. 2014, p. 8.

70

https://seekingalpha.com/symbol/AAPL
https://trello.com/
https://iexcloud.io/
https://daytradereview.com/yahoo-finance-premium-review/

[Dwy03] Tim Dwyer. “A scalable method for visualising changes in portfolio data”. In:

Proceedings of the Asia-Pacific symposium on Information visualisation-Volume

24. 2003, pp. 17–25.

[EBM07] Robert D Edwards, WHC Bassetti, and John Magee. Technical analysis of stock

trends. CRC press, 2007.

[End+17] Alex Endert et al. “The state of the art in integrating machine learning into visual

analytics”. In: Computer Graphics Forum. Vol. 36. 8. Wiley Online Library. 2017,

pp. 458–486.

[FFM12] Fabian Fischer, Johannes Fuchs, and Florian Mansmann. “ClockMap: Enhancing

Circular Treemaps with Temporal Glyphs for Time-Series Data.” In: EuroVis

(Short Papers). 2012.

[Fin20] FinViz. FINVIZ.com - Stock Screener. 2020. URL: https://finviz.com/.

[Fuc+13] Johannes Fuchs et al. “Evaluation of alternative glyph designs for time series

data in a small multiple setting”. In: Proceedings of the SIGCHI conference on

human factors in computing systems. 2013, pp. 3237–3246.

[Fuh19] Ryan Fuhrmann. Yahoo! Finance vs. Google Finance: Which Is Better for

Investors? Apr. 2019. URL:

https://www.investopedia.com/articles/investing/081314/yahoo-

finance-vs-google-finance-which-should-you-use.asp.

[GLS17] Connor C. Gramazio, David H. Laidlaw, and Karen B. Schloss. “Colorgorical:

creating discriminable and preferable color palettes for information visualization”.

In: IEEE Transactions on Visualization and Computer Graphics (2017).

[Goo20] Google. Finance - Google Search. 2020. URL:

https://www.google.co.uk/finance.

[Gre+99] Donna L Gresh et al. “An interactive framework for visualizing foreign currency

exchange options”. In: Proceedings Visualization’99 (Cat. No. 99CB37067).

IEEE. 1999, pp. 453–562.

[HB03] Mark Harrower and Cynthia A Brewer. “ColorBrewer. org: an online tool for

selecting colour schemes for maps”. In: The Cartographic Journal 40.1 (2003),

pp. 27–37.

71

https://finviz.com/
https://www.investopedia.com/articles/investing/081314/yahoo-finance-vs-google-finance-which-should-you-use.asp
https://www.investopedia.com/articles/investing/081314/yahoo-finance-vs-google-finance-which-should-you-use.asp
https://www.google.co.uk/finance

[ID17] Vaishali Ingle and Sachin Deshmukh. “Live news streams extraction for

visualization of stock market trends”. In: Proceedings of the International

Conference on Signal, Networks, Computing, and Systems. Springer. 2017,

pp. 297–301.

[JI13] Joel Joseph and Indratmo Indratmo. “Visualizing stock market data with

self-organizing map”. In: The Twenty-Sixth International FLAIRS Conference.

2013.

[Ko+16] Sungahn Ko et al. “A survey on visual analysis approaches for financial data”. In:

Computer Graphics Forum. Vol. 35. 3. Wiley Online Library. 2016, pp. 599–617.

[KY18] Zura Kakushadze and Willie Yu. “Stock Market Visualization”. In: arXiv preprint

arXiv:1802.05264 (2018).

[Lar10a] Robert S Laramee. “Bob’s concise coding conventions (c3)”. In: Advances in

Computer Science and Engineering (ACSE) (2010).

[Lar10b] Robert S Laramee. Bob’s Minutes of Meeting Protocol: Incentive and a

Description. Mar. 2010.

[Lar11] Robert S Laramee. “Bob’s project guidelines: Writing a dissertation for a BSc. in

computer science”. In: Innovation in Teaching and Learning in Information and

Computer Sciences 10.1 (2011), pp. 43–54.

[LZ10] Su Te Lei and Kang Zhang. “A visual analytics system for financial time-series

data”. In: Proceedings of the 3rd International Symposium on Visual Information

Communication. 2010, pp. 1–9.

[Ma09] Rui Ma. Designing interactive visualization methods for comparing multivariate

stock market data over time. na, 2009.

[Mir+07] Barbara Mirel et al. “Visual analytics for model-based policy analysis: exploring

rapid changes in commodities markets”. In: Proceedings of the 8th annual

international conference on Digital government research: bridging disciplines &

domains. 2007, pp. 312–313.

[ML17] Liam McNabb and Robert S Laramee. “Survey of Surveys (SoS)-Mapping The

Landscape of Survey Papers in Information Visualization”. In: Computer

Graphics Forum. Vol. 36. 3. Wiley Online Library. 2017, pp. 589–617.

72

[Mor20] Morningstar. Morningstar Financial Research, Analysis, Data and News. 2020.

URL: https://www.morningstar.co.uk/uk/.

[MUS12] Andrew Morin, Jennifer Urban, and Piotr Sliz. “A quick guide to software licensing

for the scientist-programmer”. In: PLoS Comput Biol 8.7 (2012), e1002598.

[Nai16] Suchismita Naik. “A Narrative Data Visualization Of The Indian Stock Market”. In:

Proceedings of the 8th Indian Conference on Human Computer Interaction.

2016, pp. 162–177.

[NB04] Keith V Nesbitt and Stephen Barrass. “Finding trading patterns in stock market

data”. In: IEEE Computer Graphics and Applications 24.5 (2004), pp. 45–55.

[Ozg+17] Ceyhun Ozgur et al. “MatLab vs. Python vs. R”. In: Journal of Data Science 15.3

(2017), pp. 355–372.

[PAN18] Aaron Pang, Craig Anslow, and James Noble. “What programming languages do

developers use? a theory of static vs dynamic language choice”. In: 2018 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC).

IEEE. 2018, pp. 239–247.

[PM17] Shyam Prabhakar and Larry Maves. “Big Data Analytics and Visualization:

Finance”. In: Big Data and Visual Analytics. Springer, 2017, pp. 219–229.

[PS16] Anirudh Prabhu and Aravind Shenoy. “Introducing Materialize”. In: Introducing

Materialize. Springer, 2016, pp. 1–9.

[Ref20] Refinitiv. Financial Technology, Data, and Expertise. 2020. URL:

https://www.refinitiv.com/en.

[Rog09] Jakob Rogstadius. Visualizing the Ethiopian Commodity Market. 2009.

[Rup10] Nayan B Ruparelia. “Software development lifecycle models”. In: ACM SIGSOFT

Software Engineering Notes 35.3 (2010), pp. 8–13.

[Sch+07] Tobias Schreck et al. “Trajectory-based visual analysis of large financial time

series data”. In: ACM SIGKDD Explorations Newsletter 9.2 (2007), pp. 30–37.

[Sch+09] Tobias Schreck et al. “Visual cluster analysis of trajectory data with interactive

kohonen maps”. In: Information Visualization 8.1 (2009), pp. 14–29.

[SCR16] Brian Steele, John Chandler, and Swarna Reddy. “Real-time Analytics”. In:

Algorithms for Data Science. Springer, 2016, pp. 381–401.

73

https://www.morningstar.co.uk/uk/
https://www.refinitiv.com/en

[Shn94] Ben Shneiderman. “Dynamic queries for visual information seeking”. In: IEEE

software 11.6 (1994), pp. 70–77.

[Sho+07] James Shore et al. The Art of Agile Development: Pragmatic guide to agile

software development. ” O’Reilly Media, Inc.”, 2007.

[SP18a] Aravind Shenoy and Anirudh Prabhu. “Building a Landing Page with Skeleton”.

In: CSS Framework Alternatives. Springer, 2018, pp. 15–40.

[SP18b] Aravind Shenoy and Anirudh Prabhu. “Building a Product Page with Milligram”.

In: CSS Framework Alternatives. Springer, 2018, pp. 41–68.

[SP18c] Aravind Shenoy and Anirudh Prabhu. “Introducing UIkit”. In: CSS Framework

Alternatives. Springer, 2018, pp. 69–106.

[Ste10] Stoyan Stefanov. JavaScript Patterns: Build Better Applications with Coding and

Design Patterns. ” O’Reilly Media, Inc.”, 2010.

[Str95] Lisa Strausfeld. “Financial Viewpoints: using point-of-view to enable

understanding of information”. In: Conference companion on Human factors in

computing systems. 1995, pp. 208–209.

[VV06] Georg Von Krogh and Eric Von Hippel. “The promise of research on open source

software”. In: Management science 52.7 (2006), pp. 975–983.

[War19] Colin Ware. Information visualization: perception for design. Morgan Kaufmann,

2019.

[Wat99] Martin Wattenberg. “Visualizing the stock market”. In: CHI’99 extended abstracts

on Human factors in computing systems. 1999, pp. 188–189.

[Yah20a] Yahoo. Yahoo Finance – stock market live, quotes, business finance news. 2020.

URL: https://uk.finance.yahoo.com/.

[Yah20b] Yahoo. Yahoo Finance Premium. 2020. URL:

https://finance.yahoo.com/premium-marketing/.

[Yue+19] Xuanwu Yue et al. “sPortfolio: Stratified Visual Analysis of Stock Portfolios”. In:

IEEE Transactions on Visualization and Computer Graphics 26.1 (2019),

pp. 601–610.

[Zha+16] Kaiyu Zhao et al. “MaVis: Machine Learning Aided Multi-Model Framework for

Time Series Visual Analytics”. In: Electronic Imaging 2016.1 (2016), pp. 1–10.

74

https://uk.finance.yahoo.com/
https://finance.yahoo.com/premium-marketing/

[ZK11] Xiao-ping Zhang and David Kedmey. “TechWare: Financial Data and Analytic

Resources [Best of the Web]”. In: IEEE Signal Processing Magazine 28.5 (2011),

pp. 138–141.

[ZNK08] Hartmut Ziegler, Tilo Nietzschmann, and Daniel A Keim. “Visual analytics on the

financial market: Pixel-based analysis and comparison of long-term investments”.

In: 2008 12th International Conference Information Visualisation. IEEE. 2008,

pp. 287–295.

75

	Introduction
	Motivation
	Research Problem
	Aims and Objectives
	Key Results
	Thesis Structure

	Related Work
	Literature Review
	Survey Literature
	Financial Visualization Techniques
	Stock Portfolio Monitoring
	Exploratory Financial Visualization Techniques

	Previous Systems
	Yahoo Finance
	Google Finance
	FinViz
	Seeking Alpha
	Morningstar

	Potential Contribution
	Data Characteristics
	Data Sources and Description
	Accessing Data

	Project Specification
	Feature Specification
	Basic Features
	Enhancements

	Technology Choices
	Programming Languages
	Libraries
	User Interface
	Visualization

	Other Software
	Version Control
	Package Management
	Programming Environments

	Project Plan and Timetable
	Meeting Notes
	Project Plan
	Software Development Life Cycle

	Design
	Visualization Pipeline
	Process Diagram
	System Diagrams
	Data Interaction Diagram

	Implementation
	Basic Implementation and Relevant Enhancements
	Data Import
	Web-Based UI
	Line Graph
	Queries
	Portfolios
	Colour Selection

	Other Enhancements
	Preset Options
	Line Graph Interactions
	Points Display

	Code Guidelines
	Code Commenting
	Coding Conventions

	Testing and Evaluation
	Results
	Case Study A Bargain Stocks
	Case Study B Technology Portfolio
	Case Study C COVID-19

	Performance Analysis
	Data Retrieval Analysis
	Visual Performance

	Conclusion
	Future Work

