
Visual Analysis of Higher Education in Wales
Ferdinand Vesely

May 2011

Abstract

Project Dissertation submitted to the Swansea University
in Partial Fulfilment for the Degree of Bachelor of Science

Department of Computer Science
Swansea University

Declaration

This work has not previously been accepted in substance for any degree and is not being cur-
rently submitted for any degree.

May 18, 2011

Signed:

Statement 1

This dissertation is being submitted in partial fulfilment of the requirements for the degree of a
BSc in Computer Science.

May 18, 2011

Signed:

Statement 2

This dissertation is the result of my own independent work/investigation, except where other-
wise stated. Other sources are specifically acknowledged by clear cross referencing to author,
work, and pages using the bibliography/references. I understand that failure to do this amounts
to plagiarism and will be considered grounds for failure of this dissertation and the degree ex-
amination as a whole.

May 18, 2011

Signed:

Statement 3

I hereby give consent for my dissertation to be available for photocopying and for inter-library
loan, and for the title and summary to be made available to outside organisations.

May 18, 2011

Signed:

CONTENTS 2

Contents

1 Introduction 3

2 Background 3
2.1 Introduction to information visualisation . 4
2.2 Geographic information systems and geospatial data 5
2.3 Related work . 7
2.4 Previous systems . 9

2.4.1 Liquid Diagrams . 9
2.4.2 ManyEyes . 9
2.4.3 XmdvTool . 10
2.4.4 Mondrian . 12

3 Project specification and prototyping 13
3.1 Preliminary requirements . 13
3.2 Input data . 13

3.2.1 Higher education data . 13
3.2.2 Geospatial data . 15

3.3 Prototype implementations . 16

4 Design 18
4.1 Overview of Classes . 19

4.1.1 3D Objects . 19
4.2 Diagrams . 20

5 Implementation 20
5.1 Tools and libraries . 21

5.1.1 Programming Language: C++ . 21
5.1.2 Qt: Application framework and widget toolkit 21
5.1.3 OpenGL . 22
5.1.4 OGR: Geospatial vector format library . 23

5.2 Compilation and running . 23
5.3 User interface . 23
5.4 Chart Visualisations . 25

5.4.1 Data aggregation . 25
5.4.2 Chart object creation . 26
5.4.3 Geo-positioning and rendering . 27

5.5 OpenGL text rendering . 28
5.6 Summary and evaluation . 29

6 Conclusion 29

7 Acknowledgement 30

References 30

1 INTRODUCTION 3

1 Introduction

Responsible planning of future development within any area of human activity encompasses
collecting and analysing data representing current state in the area of interest. Naturally, the
collected data does not have to be only limited to current state. It can add another dimension by
including past states. Depending on the particular area of interest, the data which gets collected
can have various properties: dimensionality, data types, structure, etc. However, it is very likely
that the data collected will be sizeable at least in one dimension. Effective analysis of a large
dataset is problematic. For this reason, various tools have to be employed to assist the analysis
of such datasets. One of the obvious choices is a visual tool which will help present the data in
such a way, that it is possible to find a suitable interpretation for it. This interpretation founds
the basis for understanding of the data. Admittedly, visual tools can provide misleading output.
This may be because they contain errors, they are being used incorrectly, or there is intentional
manipulation to produce misleading results. Thus, it is always wishful to support the interpre-
tation based on visual representations with other methods. Nevertheless, tools providing such
visual representations are a part of decision making.

The Planning and Strategic Projects Unit (PSPU) of Swansea University takes part in a wider
project of developing a regional strategy for higher education in South West Wales. As a part
of this task, data has been collected about higher education institutions in the region. The data
should provide understanding of how the region is provided with higher education. The PSPU
has approached the Computer Science Department to help visualising the data to aid the task
they are working on.

The project presented in this dissertation is an attempt to explore the possibilities of geo-
graphically oriented visualisation of the above mentioned data on higher education. The aim
is to create visualisations which would link the figures expressing provision of education with
the geographical location to which they are linked. As a part of the project, a software tool
which allows the user to load in tabular data and visualise them in an interactive map scene
has been developed. This dissertation summarises the work done on the project and includes
documentation for the software tool.

The document is organised as follows. Section 2 contains the preliminaries for the project. In
particular, it provides a short introduction into the topic, a literature review and an overview of
previous software systems. A discussion on the specification of the project and the prototyping
process that was involved in defining the specification can be found in section 3. Section 4
details the software design of the visualisation tool. Section 5 provides technical documentation
of the implementation of the software. Screenshots of the software are included in the section
as well. Finally, the dissertation is concluded in section 7.

2 Background

This section reviews preliminaries for this project. Here the reader can find a short introduc-
tion to information visualisation and geospatial data, an overview of related papers, previous
systems and the input data.

2 BACKGROUND 4

2.1 Introduction to information visualisation

We can find several definitions of the term visualisation. A straightforward definition is offered
by Ward, Grinstein and Keim: visualisation is the act of communicating something using graphi-
cal representations [20]. It is also possible to take a more subject-oriented approach in defining
visualisation. According to R. Spence, visualisation is the act of forming a mental model or im-
age of something [17]. The first definition implies that there is some information which needs
to be effectively communicated. This assumes that the data or information has already been
understood at least to some extent. We think that the second definition is more appropriate
here as it is more general. Visualisation is a personal cognitive activity. It is about approaching
something of interest and forming a visual image to understand it, to gain knowledge which is
normally inaccessible due to the limitations of human perception. An graphical representation
of some data or information is a tool helping to form the visual image. As such it is also a
medium able to communicate some meaning to the perceiver.

Computer-aided visualisation, which is the main topic of this dissertation, provides an ex-
tension to this cognitive activity. The role of computers in visualisation is determined mainly by
three factors:

• computer memory allows storage of large sets of data as well as a relatively fast access to
them,

• increasing speeds of computation enables (inter-)active exploration of data as opposed to
just observing a static representation of a single aspect, and

• computer graphics achieving high resolutions allows the visual representations to match
the abilities of human perception.

These factors predetermine computer visualisation to be helpful when exploring large sets of
data.

History provides some examples of successful use of visualisations to gain knowledge which
was not originally obvious, or to communicate a certain message to the viewer. Both [20]
and [17] list several such examples. We will look at some of those examples to illustrate the
importance of good visualisations.

In the middle of the 19th century there was a severe cholera outbreak in the Soho district of
London. A physician, Dr. John Snow was given the task to investigate the cause of the outbreak.
To accomplish this, Dr. Snow investigated the area, interviewed the people living there and
created a map, where he put a black dot for each death at the corresponding location. The
result was that he was able to identify a concentration of deaths around a water pump in the
area. Based on this, the pump was sealed and the cholera outbreak ended. This happened
in times when the dominant theory used to explain cholera outbreaks was based on “bad air”.
The map of Dr. Snow helped to convince the authorities that badly built water system was the
real cause. This was a major event in the shift towards acceptance of the theory that micro-
organisms are the cause of diseases like cholera. Here visualisation was successfully used to
discover and support a particular theory based on collected data. Figure 1 shows Dr. Snow’s
map.

Another significant historic example of a visualisation is a map created by Charles Joseph
Minard, a civil engineer active in the 19th century. The map effectively represents information
the advance and retreat of Napoleon’s army during the French invasion of Russia in 1812. The
image is a time-series visualisation depicting the number of men in the army throughout the

2 BACKGROUND 5

Figure 1: The map drawn by Dr. John Snow as a part of investigation of the cholera outbreak in London’s
Soho in 19th century. The stacked represent deaths at the corresponding location. Crosses represent public
water pumps. The aggregation of deaths around the water pump on Broad Street is clearly visible. This map
helped to stop the cholera outbreak by convincing the authorities to seal the affected water pump. Image
source: http: // nl. wikibooks. org/ wiki/ Bestand: Snow-cholera-map. jpg . The image is in public
domain.

campaign. It is a very good example of a visualisation where numeric data expressing counts is
linked with time and geographic location. Thickness of the line represents soldier counts. The
time coordinates are given at the bottom along with the temperature the soldier had to endure.
Moreover, the map uses colour coding to represent the two stages of the campaign: brown for
advance, black for retreat. The map is remarkable for the striking amount of information it
communicates to the observer. An image of the visualisation is in figure 2

In regard to this project, a maybe even more interesting visualisation by Ch. Minard is his
map of France with pie charts representing the cattle count sent for consumption to Paris created
in 1858. It is to be seen in figure 3.

These historic examples should offer a justification of use of visualisation in exploring and
presenting data.

2.2 Geographic information systems and geospatial data

Geospatial data is a general term referring to data describing objects, or phenomena which have
a specific location [20]. These spatial phenomena can be categorised as point, line, area, or
surface phenomena. Their location is defined by a position within a coordinate system (geo-

http://nl.wikibooks.org/wiki/Bestand:Snow-cholera-map.jpg

2 BACKGROUND 6

Figure 2: A visual representation of Napoleon’s invasion of Russia in 1812. The map shows the path, which
Napoleon’s army took on the march to Moscow as well as the retreat. The thickness of the line expresses the
current soldier count in the army. The counts are also given as numbers along the path. The line forms a
time-series graph annotated with dates and temperatures at the bottom. Additionally the light brown colour
denotes advance, while black denotes retreat. The map was created by Charles Joseph Minard. Image source:
http: // en. wikipedia. org/ wiki/ File: Minard. png . The image is in public domain.

reference). The location and non-spatial attributes define a geospatial data element. In this
context, we understand a map as a visual representation of these phenomena. An important
aspect of visual representations of geographic data is the topic of map projections. A map pro-
jection defines the mapping between globe coordinates, i.e. longitude (λ) and latitude (ϕ) and
Cartesian coordinates (x, y).

The term geographic information system (GIS) is used to refer to computer-based systems
which are concerned with the acquisition, storage, manipulation, analysis and visualisation
of geographical data [3]. This data is usually represented as theme layers where each layer
contains descriptions of different types of objects, phenomena or attributes. If the elements
in the layers use a common georeferencing system, they can be stacked onto each other and
processed (analysed, visualised) simultaneously. Various file formats can be used for storing
GIS layer data. Mostly these formats are either raster or vector data oriented . Raster formats
include general purpose image formats, like Microsoft Bitmap, JPEG 2000, or TIFF. There are
also special GIS-oriented raster formats. Included here are also extensions to above-mentioned
general purpose formats. These extensions add metadata containing, for example, information
on coordinate systems or map projections. An example of such an extended format is GeoTIFF,
which adds GIS-related metadata to the widely used TIFF format ([15]). In the context of GIS,
raster data formats are mostly used to store map scans or satellite imagery.

Vector data formats used for geospatial data store information about points, lines, polygons
and other shapes. These shapes are represented by a set of vector coordinates. Examples of
vector formats used for geographical data are Scalable Vector Graphics (SVG), MapInfo Inter-
change format, Vector Product Format (VPF), or ESRI Shapefile.

http://en.wikipedia.org/wiki/File:Minard.png

2 BACKGROUND 7

Figure 3: Another example of Ch. Minard’s art of representing information visually. The pie charts rep-
resent cattle sent to Paris for consumption. Minard created this map in 1858. Image source: http:

// en. wikipedia. org/ wiki/ File: Minard-carte-viande-1858. png . The image is in public domain.

2.3 Related work

The papers listed here describe various aspects of multivariate data visualisation. Although they
are not directly related to the approach which was taken in this project, they are nevertheless
included. They have been reviewed as preparation for the development of this project and are
included here to provide a more complete picture of the project work.

XmdvTool: Integrating Multiple Methods for Visualising Multivariate Data A valuable
overview of some of the older multivariate data visualisation types is provided by Ward’s Xmd-
vTool1 paper [21]. The paper sets a few criteria which can be used to evaluate visualisation
techniques. These include data size constraints, occlusion, perceptibility, interaction, and use of
colour. Using these criteria some visualisation types are described and evaluated. Description of
the way these techniques are implemented in XmdvTool is also included. The paper describes
the following techniques:

• Scatterplots – more specifically scatterplot matrices.

In this visualisation the view is divided into N ×N (where N is the number of dimensions
in the dataset) smaller “sub-plots” aligned in a grid. Each dimension is drawn against all
other dimensions in the dataset.

• Glyphs – XmdvTool uses star glyphs and these are described in more detail.

1The tool itself is reviewed below.

http://en.wikipedia.org/wiki/File:Minard-carte-viande-1858.png
http://en.wikipedia.org/wiki/File:Minard-carte-viande-1858.png

2 BACKGROUND 8

In a star glyph plot the dimensions of the dataset are mapped to lines originating in the
same point. These lines are spaced at equal angles and their length is proportional to the
value of the corresponding dimension. The end-points are then connected so the result is
a polygon. Each point in dataspace is plotted as a separate polygonal glyph. In the view,
the glyphs can either be aligned in a regular grid or their positions can be mapped to two
dimensions of the dataspace.

• Parallel coordinates.

In a parallel coordinates plot each dimension is mapped to an axis parallel to other axes.
Each point in the dataspace is represented as a polyline connecting the axes.

• Dimensional stacking.

Dimensional Stacking is a hierarchical visualisation technique. A pair of dimensions forms
a regular grid where each position contains a grid formed by a another pair of dimensions
lower in the hierarchy. The position of the point within the image is determined by recur-
sively finding the position in each sub-plot.

The article also introduces the concept of N-dimensional brushing and linking. Brushing enables
the user to visually select a subset of the dataset directly in the visualisation. Linking means
that when multiple visualisations are available for display, the selections will be reflected in
each visualisation.

Improving the Visual Analysis of High-dimensional Datasets Using Quality Measures When
working with a large multi-dimensional dataset, the difficulty arises: how to choose the most
suitable parameters for the dataset and a selected visualisation type. The paper by Albuquerque
et al. [1] addresses this difficulty. They propose quality measures for three visualisation meth-
ods: Radviz, pixel-oriented displays (jigsaw maps), and table lenses for graphical compressed
tables. The common goal for the measures presented by the paper is to find clusters or outliers
in the visualisation. We can mention the quality measures for Radviz as an example. Radviz
displays the dimensions along a circle. The position of the multi-dimensional point in the circle
is dependent on the ratio of the attributes represented by the dimensions. The dimensions can
be ordered arbitrarily. The quality of a particular Radviz visualisation depends on the ordering
of the dimensions. It is possible to rate a visualisation according to how well it enables to iden-
tify outliers and clusters within the data. By using Gaussian and Laplacian filters it is possible
to pre-process and analyse an image to identify clusters within it. The paper proposes a greedy
algorithm using this technique which starts with 3 dimensions on the circle and determines the
best configuration of the 3 dimensions. Then it repeats the same step for each added dimension.
The algorithm terminates after all the dimensions are displayed. At the end of the process they
should be configured in an optimal way, which reveals interesting patterns in the data.

Visual Analysis of Document Triage Data One of the papers that touch upon a subject more
related to this project is the technical report by Geng et al. [10]. Given a multivariate dataset
from a user study on document triage data, the authors compare several visualisation tools and
techniques. The aim is to find suitable presentations of the data, which will enable the HCI
researchers to understand the results and form better hypotheses. The visualisations presented
in the paper are the following:

• a 2D stack graph using ManyEyes,

2 BACKGROUND 9

• a 3D stack graph using Microsoft Excel 2007,

• a tree map using ManyEyes,

• a matrix chart using ManyEyes,

• parallel coordinates using Xmdv,

• a multiple view visualisation in Mondrian, and

• a 3D bar chart using Excel 2007.

Overall, the paper provides a good and useful overview of the various tools and techniques for
representing multi-dimensional data. Comments of the HCI researchers on the visualisations
are also included in the paper.

2.4 Previous systems

There is a number of applications which can be used for visualising multi-dimensional datasets.
Most of these applications are general in the sense that the user loads the data in a particular
way and then chooses and configures a suitable type of visualisation. These systems allow
the user to experiment with finding the proper visualisation for their data. The problem with
this kind of systems is that the user already has to have some knowledge and experience with
visualisation. Also some skill with manipulation and preparation of the data is necessary.

2.4.1 Liquid Diagrams2

Liquid Diagrams [2] are a set of visualisation tools written for the spreadsheet application of the
Google Documents suite. They enable the user to directly visualise the data contained within
a spreadsheet. This is possible through the Google Visalization API and the so-called gadgets,
which can be inserted in the spreadsheet using the menu. This is similar to the way the inser-
tion of charts of various types works in standard spreadsheet applications. The visualisation
types which should be provided by the gadgets are: area, bar, line and pie charts, heat map,
parallel coordinates, and tree map. The authors also plan to implement star plots and voronoi
tree maps. The tool is promising as it delivers advanced visualisation to already existing spread-
sheets. Unfortunately, at the time of writing this document the Liquid Diagrams gadgets were
not available to the public. Thus, we did not have a chance to test them directly.

2.4.2 ManyEyes

ManyEyes [19] is a publicly accessible website providing a visualisation tool for a wide range of
Internet users. It is being developed as a project at IBM Research. The aim of ManyEyes is to
provide a community visualisation portal. The authors compare the website to YouTube. Users
from many backgrounds and with different needs can upload datasets and create interactive
visualisations from them. The datasets are uploaded in a simple text format using a table layout
and tabs as column separators. Unformatted text is accepted as input for text visualisations. The
visualisations created from the uploaded datasets are publicly accessible and other users can
comment on them and modify them. This is the main focus of the social interaction on the site.

2The description of Liquid Diagrams is based on their authors’ paper [2]. The gadgets themselves were not
available to us for reviewing.

2 BACKGROUND 10

Figure 4: Two screenshots of the ManyEyes web application. The picture on the left shows a bub-
ble chart visualisation of cumulative CO2 emissions (URL: http: // www-958. ibm. com/ software/

data/ cognos/ manyeyes/ visualizations/ cumulative-emissions-of-g20-non-g2-3). The picture
on the right is a stack graph visualisation of the distribution of US Foreign Aid over the years
1946-2005 (URL: http: // www-958. ibm. com/ software/ data/ cognos/ manyeyes/ visualizations/
distribution-of-us-foreign-aid-ove-3).

The visualisations may change over time so the problem of referring to a particular state of the
visualisation arises. ManyEyes solves this by providing bookmarks in the form of special URLs
which point to a specific state of the visualisation. It is then possible to refer to this particular
state in the comments or on other pages on the web. The system also provides annotations
which point to a particular aspect of the visualisation. ManyEyes is a very promising project,
which will allow journalists, bloggers as well as other users to create good-looking interactive
visualisations to accompany their work. A possible drawback is that every dataset uploaded to
the site as well as every visualisation created there is public. This means that ManyEyes is not
an option when privacy (or public non-availability) of the data is a concern.

The visualisation types supported by ManyEyes include: scatterplots, matrix charts, bubble
charts, stack graphs, tree maps, network diagrams, and maps. Text analysis visualisations are
provided by word trees, phrase nets, tag clouds, and word clouds. The website is built using
standard-compliant HTML and JavaScript. The visualisations are created using Java Applets
and Adobe Flash objects.

ManyEyes supports export of PNG images and allows linking to the visualisations (and their
states).

See Figure 4 for screenshots.
The application is available at [11].

2.4.3 XmdvTool

XmdvTool [21] is a public domain visualisation program. It was originally created as a result
merging of several small visualisation programs written by M. Ward. The software is mainly
developed by academics and students with the goal of exploring multivariate data visualisa-
tion. It provides several types of visualisations for representing multivariate data. Included are
parallel coordinates, scatterplot matrices, star glyphs, dimension stacking, and pixel-oriented

http://www-958.ibm.com/software/data/cognos/manyeyes/visualizations/cumulative-emissions-of-g20-non-g2-3
http://www-958.ibm.com/software/data/cognos/manyeyes/visualizations/cumulative-emissions-of-g20-non-g2-3
http://www-958.ibm.com/software/data/cognos/manyeyes/visualizations/distribution-of-us-foreign-aid-ove-3
http://www-958.ibm.com/software/data/cognos/manyeyes/visualizations/distribution-of-us-foreign-aid-ove-3

2 BACKGROUND 11

Figure 5: Two screenshots of XmdvTool 8.0. The left side of the image shows a parallel coordinates plot
in XmdvTool. The right side shows a star glyph plot. Both plots are representations of the “cars dataset”
distributed with XmdvTool. It is possible to see the N-dimensional brush in the pictures. The red polylines
on the parallel coordinates plot represent a selection achieved by manipulating the pink polygon in the
background. Some of the corresponding glyphs can be seen in the right picture. They are highlighted in red
as well.

displays (although this is somewhat cumbersome to use). Each of the visualisation types also
has a hierarchical variant. The primarily used input file format is a text file. The top of the file
is occupied by meta data such as the number of dimensions and data items, the names of the
dimensions (“column names” in a table terminology), and the value ranges for each dimension.
The rest of the file is taken up by the data items. Dimensions are separated by blanks. The files
using this format implicitly use an .okc extension. XmdvTool also supports CSV file import.
It will automatically convert the data into the native okc format. For hierarchical plots previ-
ous versions required the users to supply a cluster file. The current version converts the data
automatically into a binary cluster file. The users still can create their own cluster files using
external tools. The program supports user interaction. After plotting the data the user can zoom
in or out as well as pan the view. However, the tools could be more intuitive. A very interesting
feature of XmdvTool is N-dimensional brushing. This enables the user to use a hyperbox to make
a selection within the visualisation. The selection made in one visualisation will be reflected in
the other ones. For hierarchical displays the software provides a structure-based brush [7].

Originally, XmdvTool was programmed in C using Athena Widgets and later Tcl/Tk. Cur-
rently parts of the code are written in C++ and use Qt and OpenGl3. XmdvTool supports
export of Bitmap, JPEG and PNG images.

See Figure 5 for screenshots.
The XmdvTool can be downloaded at [22].

2 BACKGROUND 12

Figure 6: The screenshot shows the main window of Mondrian as well as 2 visualisation windows. The
dataset loaded in the application is the “Olive Oils” dataset (available from Mondrian’s website), which
contains data on fatty acids content in Italian olive oils. The middle window is a parallel coordinates plot
and the right window is a scatterplot matrix of the same dataset. As can be seen, the selection of one area
made in the parallel coordinates plot is reflected in the scatterplot matrix.

2.4.4 Mondrian

Mondrian is another desktop visualisation tool. It is relatively similar to XmdvTool. The visu-
alisation types it provides include scatterplot matrices, maps, histograms, bar charts, parallel
coordinates, and parallel boxplots (as well as a combination of both parallel coordinates and
boxplots). It also allows brushing – interactive selection of areas in the plot which are reflected
in other plots of the same data. Over XmdvTool it allows the user to open multiple windows
with different visualisations at once. This makes the brushing technique even more valuable
than in XmdvTool. The user is able to immediately see how their selection in dataspace relates
to representations in different types of visualisations. This facilitates good orientation within
the data space. Mondrian allows to load the data from text files using standard comma or tab
delimited value format. It also provides interaction with R4 and has basic support for database
access. The program does not allow export of images. Mondrian is being developed in Java and
thus it is possible to run the binary on many platforms.

For screenshots see Figure 6.
Mondrian is available through its website at [12].

3An aside: The source code for XmdvTool 8.0 downloaded from the website needed fixing some errors to compile
correctly (using GCC 4.4).

4http://www.r-project.org/

http://www.r-project.org/

3 PROJECT SPECIFICATION AND PROTOTYPING 13

3 Project specification and prototyping

3.1 Preliminary requirements

At the start of the project it was unclear what exact features should be implemented. We have
chosen to experiment with various approaches to visualising the data. As a guidance, we have
set the following general requirements for the software in the initial document:

1. The tool should provide means to load in datasets in a suitable data format.

2. Multiple visualisation options should be available.

3. Interactive visual exploration of the data should be supported. This includes tools and
techniques like brushing and linking, zooming, and panning.

4. It should provide export at least to a bitmap image format.

5. A help system should be provided.

6. The program should handle errors gracefully and recover from an error if possible.

3.2 Input data

3.2.1 Higher education data

The data, which was available for this project comes in the form of Excel spreadsheets. They
are derived from data received from the Higher Education Statistics Agency (HESA). We have
two types of figures available.

Student counts One spreadsheet contains the higher education provision in Wales for the
academic year 2008/2009 using student counts. This file contains multiple sheets which give
figures on student counts studying a particular subject area at higher education institutions
in Wales. The subject areas are categorised according to the Joint Academic Coding System
(JACS) devised by the HESA. The JACS subject area codes are listed in Table 1. The student
counts for each subject area are further split according to student domicile into “UK”, “Other
EU” and “Non EU” students. Additionally, for each institution the proportion of UK students
studying at that institution is given. Aggregated totals for South West Wales, Wales and whole
UK are also provided. The data is further divided into sheets according to the type of degree
into:

• Undergraduate – first degree

• Undergraduate – other

• Higher Degree – taught

• Higher Degree – research

• Other Postgraduate

Each has a full time and a part time variant. This gives 10 sheets for the higher education
provision file. Institutions from whole Wales are included, not just South West Wales. Figure 7
shows an example of the spreadsheet.

3 PROJECT SPECIFICATION AND PROTOTYPING 14

JACS Code Subject Area
1 Medicine and dentistry
2 Subjects allied to medicine
3 Biological sciences
4 Veterinary science
5 Agriculture and related subjects
6 Physical sciences
7 Mathematical sciences
8 Computer science
9 Engineering and technology
A Architecture, building and planning
B Social studies
C Law
D Business and administrative studies
E Mass communications and documentation
F Languages
G Historical and philosophical studies
H Creative arts and design
I Education
J Combined

Table 1: JACS Subject Area Codes. These subject areas are further subdivided into principal subjects.

Full-time equivalent The other data set expresses education provision through full-time equiv-
alent (FTE). FTE expresses what ratio of a full-time credit count for an academic year students
are taking in a particular principal subject. The full-time credit count is 120 credits. This is
equal to an FTE of 1. For example, if a student is taking 90 credits in subject A and 30 cred-
its in subject B, this adds an FTE of 0.75 (90/120 = 0.75) to the total of subject A and 0.25
(30/120 = 0.25) to the total of subject B. The FTE data which we have currently available is
split into multiple Excel spreadsheet files according to the following categories:

• Undergraduate – first degree – full-time

• Undergraduate – first degree – part-time

• Undergraduate – other – full-time

• Undergraduate – other – part-time

• Postgraduate – taught

• Postgraduate – research

• Total

The tables show the what full-time equivalent is taken in a principal subject at a particular
institution. The subjects are listed as JACS codes for principal subjects. This means that the
FTE tables give more detailed figures than the student counts tables which only give figures
by subject areas. Again, totals for Wales and whole UK are also included. An example of the
spreadsheet can be seen in Figure 8.

3 PROJECT SPECIFICATION AND PROTOTYPING 15

Figure 7: An example of the student counts provision data spreadsheet. Displayed in OpenOffice.org.

Figure 8: An example of the Total Full-Time Equivalent provision data spreadsheet. Displayed in OpenOf-
fice.org.

3.2.2 Geospatial data

The map data available to us for this project uses the ESRI Shapefile format. The official descrip-
tion for this format can be found in the ESRI Shapefile Technical Description [5]. It is published
by the Environmental Systems Research Institute (ESRI) and was created for their ArcGIS sys-

3 PROJECT SPECIFICATION AND PROTOTYPING 16

tem. The basic data storage for this format consists of three files. The shape file (extension shp)
contains information about the vector shapes. The index file (extension shx) stores indexes
for the shapes specified in the shape file. This serves for fast shape look-up in the shape file.
The third file type (extension dbf) is a simple feature attribute database. The format of this
file was the native format of the once popular dBASE database management system developed
by Ashton-Tate. This file contains feature attributes (or attribute keys for linking with other
tables) of the shapes. The file contains one record per feature, with the same record order as
the shape order. Optionally additional files may be included. For example, the “projection file”
(extension prj) contains a description of the coordinate system used (projection specification).
This knowledge allows transformation between different georeference systems.

The shapes supported by the ESRI Shapefile format are points, lines and polygons. Each
shape has a planar variant (with only x and y coordinates) or a variant extended to the third
dimension (an additional z coordinate). Additional shape variants are achieved by adding a
measure attribute to the three dimensional version of a shape.

For the project we have different kinds of shape files available. They have a varying degree
of detail, raging from a simple polygonal contour of Wales to detailed division of Wales into
communities. The most suitable for the purposes of this project appears to be the map “5 UAs”,
which contains a subdivision of South West Wales into the 5 unitary authorities that constitute
it. An example rendering of this map can be found in Figures 11.

3.3 Prototype implementations

The implementation and prototyping work on the project started by developing routines for
reading comma-separated value files and display the data contained in them in a table widget.
The file reader module from this small program is also included in the final application. The
program was also used as the basis for the first prototype of a map oriented visualisation tool.

The first prototype was implemented using Google Chart Tools and integrated with the CSV
file reader program. A screenshot of the program can be seen in Figure 9. This prototype allows
the user to select a data range from the higher education provision table. After the user confirms
the selection by clicking on the “Show Map” button, a URL is constructed using the figures in
the selected region. This URL is used to send a request to the Google Maps server. If the
request succeeds, the resulting map picture is displayed to the user in the application window.
Being designed for easy and simple visualisations to be inserted into web pages, the Google
Charts have very limited possibilities. All they allow the user to do is to choose regions to be
displayed, select colours for them and add simple labels as shown in Figure 9. Implementing a
map visualisation similar to the map chart is quite easy and thus there is no point in embedding
the Google Chart Tools into the application.

The map visualisation created using the Google Map Chart was unsatisfactory and lacked
any opportunities of customisation. The next prototype was an attempt to create a versatile 3D
map object using OpenGL. First approach was to create a rectangular polygon in 3D space and
use texture mapping to paint a map of Wales image on it. The Figure 10 shows an example
output of this prototype. The prototype allows user interaction with the object. Clicking the
mouse button and dragging the mouse, the user is able to rotate the object around all three
axes as well as moving it in horizontal and vertical direction. The plus and minus keys allow
to zoom in and out. Implementation of the prototype revealed two basic difficulties with this
approach. One difficulty is the quality of the texture. If the quality of the texture image is

3 PROJECT SPECIFICATION AND PROTOTYPING 17

Figure 9: A prototype using Google Chart Tools to generate a map image. The user selects a column of data
to be visualised (left part of the image). After the user requests the map using the toolbar button, Google
Chart Tools servers are queried and the result is displayed (right part of the image).

low, this becomes too obvious when zooming in on the object. However, if the quality of the
texture image is increased, the interactivity is slightly reduced because of the higher rendering
times. Finding a good compromise between texture quality and performance is made difficult
by the fact that for OpenGL, both the width and the height of the texture has to be a power of
two. This means that if an image with the size 2048 (211) in one dimension is not satisfactory,
the nearest possible size is 4096 (212). The other difficulty is that there is no georeferencing
information given for the map texture images we can use. It would be necessary to “create”
such information for the texture image. This would make it possible to place objects on the
map at positions which correspond to their real-world location attribute.

To overcome both of the difficulties, an alternative approach was chosen for map rendering
in 3D space. Rendering a map using a geographical vector specification solves both problems.
The quality is not affected when zooming in on the map and using metadata in the vector
map data file it is possible to place objects on the map with proper georeferencing. The vector
map files available to us use the ESRI Shapefile format, which is described in section 3.2.2. The
prototype uses the OGR library for reading shapefiles and OpenGL for rendering the map object.
As a basic simple optimisation, it is possible to adjust the amount vertices to be skipped from
the shape when rendering. Figure 11 contains a screenshot of the prototype. This prototype
allows the same types of interactions as the texture-based one.

The last mentioned prototype provided the basis for the final application. The map render-
ing implementation from the prototype was reworked and improved and included in the final
application.

4 DESIGN 18

Figure 10: A map of Wales placed into 3D space using OpenGL and texture mapping.

Figure 11: Vector based map object rendered using OpenGL.

4 Design

This section details the design of the software system. It is appropriate here to remind the reader
that the software did not follow a standard software development model. It was developed in
an evolutionary way. This implies that the parts of the software have been designed “on-the-fly”
and gradually added to the overall design of the system.

4 DESIGN 19

4.1 Overview of Classes

The HiEdVis software is composed of several classes. In this subsection, we introduce the classes
in the design and provide a short description of each.

MainWindow This is the main class of the application. The responsibility of the class is to
create the main window of the application and manage it. This includes creation of the menus,
tool-bar, data, control and visualisation views. Additionally, the class is responsible for the file
I/O. Reading of the data from the user specified file is done in collaboration with CsvReader.
Also the request to save an image of the visualisation scene is handled by this class.

GlSceneView The main responsibility of this class is to allow viewing of the 3D visualisation
scene. This maintains a list of the 3D objects in the scene and requests them to draw them-
selves. It handles input events and allows interactive manipulations of the scene such: rotation,
translation and scaling (zoom in and out).

MapVisManager This class is responsible for managing the map visualisations. Upon request,
it processes data from the data table in the main window and creates visualisation objects. It
collaborates with GlSceneView to place the objects into the scene at the correct positions. It
allows enabling and disabling of objects on the map. For this it provides a user interface, where
the user can select which objects are to be shown or hidden.

VisControl Customization and configuration of the applications behaviour and appearance is
the main responsibility of this class. Especially it provides the user with means of controlling
the appearance of the visualisation scene.

MapObject The GlObjects (described bellow) are designed to be independent of the geo-
graphical character of the visualisation they are used in. Because of this, the MapObject class
encapsulates a GlObject along with its location.

CsvReader This class “knows” the CSV file format and upon request from MainWindow reads
and parses the specified file. It loads the data into the memory and provides it to the application.

CsvValue This class represents a single value in the from the CSV data file. It maintains the
value itself along with its type.

PersistentState This is a pure abstract class (interface). It is implemented by classes which
store their state in a file.

4.1.1 3D Objects

Described bellow are the classes of objects which can be placed in the scene.

5 IMPLEMENTATION 20

GlObject This abstract class is the ancestor of all classes of objects which can be added to the
scene. The descendants of GlObject can draw themselves into the scene. They allow changing
their dimensions (width, height, depth) and provide these upon request. Additionally, they have
a label which they can also draw when requested.

GlMapPainter The main responsibility of this class is to draw a map in 3D space. It allows the
setting of the map data file. Additionally, it takes care of placing other GlObjects at the specified
latitude and longitude.

GlChartObject The abstract class GlChartObject is the ancestor for chart objects like bar charts
and pie charts. A GlChartObject needs access to values, colours and labels associated with the
values. It uses the information to draw a specific type of a 3D chart. Chart objects can have
contours.

GlBarChart This is the class of bar chart objects. It receives a set of values along with addi-
tional information such as colours and labels for individual bars. Its responsibility is to correctly
visualise the values as bars with appropriate height and colour and annotate them with the
labels given.

GlPieChart Similar to GlBarChart, this is the class of pie chart objects. It receives sets of values
and colours. It is then responsible for visualising the values as in a pie chart object where the
slices are drawn with the appropriate angle and using the associated colour.

4.2 Diagrams

To further illustrate the relationships between the classes outlined in the previous subsection,
we provide diagrams here. The design contains only one real hierarchy of classes. Most of the
classes in the design shall inherit from and implement the PersistentState interface. This is due
to the fact that they should allow saving their state in a settings file. The hierarchy is depicted
in figure 12.

5 Implementation

This section describes how the software system is implemented. In particular it gives description
of solutions to some interesting problems associated with implementing software of this kind.

The complete design as it was presented in section 4 was implemented with the exception
of the PersistentState functionality for saving settings of the objects. The application is imple-
mented using OpenGL for accelerated polygon-based 3D rendering, ORG for vector map data
reading and Qt for user interface creation and other services. Also, the standard C++ library is
used extensively.

5 IMPLEMENTATION 21

Figure 12: The main hierarchy of the application. Abstract classes are indicated in the diagram by italic
font. The abstract class PersistentState is the root of the hierarchy. Classes which inherit this class shall
implement routines for loading and storing their state in a settings file. The abstract class GlObject forms the
root of a “sub-hierarchy” containing 3D objects which can be placed into the 3D scene. The GlChartObject
sub-hierarchy contains 3D chart objects, which access a list of values and render a chart object using the
specified colours and labels.

5.1 Tools and libraries

5.1.1 Programming Language: C++

C++ has been originally developed at AT&T’s Bell labs by Bjarne Stroustrup as an object-oriented
extension of C. The language which resulted is for many years the industry standard for gen-
eral software development. It combines the advantages of compiled code which has a minimal
overhead (a feature inherited from C) with the abstraction provided by the object-oriented ap-
proach. Many critics of C++ point out that the language does not provide as many run-time
safety features as other more recent languages like Java. Also, as the output of the compiler
is machine code (embedded in an OS-specific binary format) it is not possible to use the same
binary across different platforms. However, if the software system is well designed, well imple-
mented and the right tools are used, it is possible to develop fast, safe, and portable applications
with C++. In the case of C++ the cost of portability lies on the shoulders of the developer and
not the user as is the case with Java for example. Modern programming frameworks like Qt
(which is introduced below) further reduce the cost and ease the implementation of large sys-
tems which need to be portable. C++ is also mostly the language of choice when programming
graphics software.

5.1.2 Qt: Application framework and widget toolkit

There are certain factors which limit the choice of libraries for this project. The library has to
be freely usable (at least for academic purposes), it should be accompanied with well written
documentation and it should allow development for multiple platforms. The documentation
factor is important to avoid or minimise risks related to unexpected (undocumented) behaviour
of a part of the library. The multi-platform character of the library should enable to develop the

5 IMPLEMENTATION 22

software for example using the Linux operating system and deploy it on Windows or Mac OS X.
For most software products it is very likely that their potential users will want to use them on
operating systems, which were not the primary development platform. It is an advantage if the
software has been developed with this possibility in mind.

Even considering the aforementioned three constraints, there are several options for a GUI
library – widget toolkit for C++. Options include GTK+, wxWidgets, Qt, Juce, FOX Toolkit, or
FLTK. Probably the two most widely used toolkits from this list are GTK+ and Qt. The final
choice for this project is Qt. One of the reasons is that it has a cleaner C++ API (probably due to
being primarily a C++ library, whereas the C++ bindings of GTK+ are built on top of the original
C library).

The development of Qt began in the early 90s in Norway. The impetus for its creation was
the lack of an appropriate object-oriented GUI system for C++. By 1995 the library has been
named Qt and its creators founded the company Trolltech to develop and market Qt. Today
Qt is owned by Nokia, which has acquired Trolltech. The library evolved into an extensive
framework for developing applications targeting various platforms. Its main advantages can be
summarised as:

• a powerful signal-slot mechanism for event-driven GUI programming

• a set of high-quality widgets to be used for user interfaces

(The look of Qt applications is themeable. On Windows and Mac OS X the widgets are
rendered using the system look by default. Qt also makes it easy for the programmer to
extend and modify existing widgets or to create new ones.)

• a set of general purpose classes and functions as well as a set of template classes.

(These provide modern replacements and extensions of most of the C++ standard library.
The programmer can find, for example, Unicode aware string manipulation classes or
platform independent binary file format classes here.)

• a clean API which is relatively easy to learn and use

• it contains its own meta-object system which extends the C++ language

• it is very well documented

Apart from the documentation (which is available online) and the support forums, valuable
sources of information about programming with Qt are [4] and [18].

5.1.3 OpenGL

OpenGL is a software library providing an interface to graphics hardware. Using the commands
provided by the library, the programmer is able to take advantage of the graphics hardware. The
library has implementations on multiple operating system platforms (Linux, Window, Mac OS
X). On each platform, a wide array of OpenGL graphic card drivers is available. This means that
source code written using the OpenGL C API is fairly portable, i.e. it can be compiled on various
platforms and make use of different graphic cards. The standard reference book, informally
called the “Red Book” is the OpenGL Programming Guide [16].

5 IMPLEMENTATION 23

5.1.4 OGR: Geospatial vector format library

OGR is an open-source library for accessing vector map data formats. It supports various for-
mats and data sources, including ESRI Shapefile, MapInfo, Scalable Vector Graphics (SVG) with
georeferencing, spatial data from databases including Oracle, PostrgreSQL, MySQL, and other
formats. The library allows accessing layers in the files, features in the layers – their geometry
and attributes, and also the spatial reference – the projection data. It is available for download
as a part of the GDAL library, which itself is a raster map handler library. They are available at
[9].

5.2 Compilation and running

To compile the program, it is necessary to have a working C++ build environment. We recom-
mend the C++ compiler included as a part of the GNU Compiler Collection (GCC) available at
[8]. For development, we used GCC version 4.5.2 installed on a Debian GNU/Linux system.
The software also needs the Qt library along with the header files ([14]), the GDAL library and
headers ([9]) and an installation of OpenGL (this depends on the platform). Compiling starts
by running the qmake program, which generates a Makefile for the program. The program can
be then compiled by simply using make. This should produce a binary executable (hiedvis on
Unix-like platforms). The program accepts one optional command-line argument. This argu-
ment is the path to an alternative map file. If no argument is specified, the default map file will
be used.

The entry point of the program, main is located in main.cpp. In main an instance of the
main application class, MainWindow is created. If a custom map data file was specified on the
command line, the name of the file is passed to MainWindow. Subsequently, the main event
loop of the application is started which effectively hands control over to MainWindow. Once
the main window is shown, it is possible to use the application.

5.3 User interface

As mentioned before, the user interface is created using the widgets provided by the Qt library.
The interface is dominated by the main window. The main window contains the menu bar with
sub-menus, a tool bar for easy access to some functions, an 3D object list, the 3D scene and
a tabbed widget containing the data table view and a visualisation settings section. Figure 13
shows a screen-shot of the main window of the application.

The table view is somewhat problematic. The data tables which were available to us, were
very wide. Due to this it is very difficult to get an overview of the data that is selected. To
ameliorate the situation slightly, next to the table, to the right, the interface provides a slider
for changing the font size of the table. This is far from an ideal solution. However, font size
reduced even beyond the limit of readability allows for a partial overview of the selected areas.
For future work, the application would benefit from an additional area within the main window,
which would provide some kind of graphical overview of the distribution of the data. This
overview would be linked to the table and the visualisation scene.

The user interface is relatively standard compared to many contemporary desktop appli-
cations. This should make it easier for users to get accustomed to the application. However,
usually the user expects to find the settings for the application in a separate dialogue accessible
through the main menu. This is not the case with the presented system. Instead the settings are

5 IMPLEMENTATION 24

Figure 13: Main window of the application. Menus are accessible through the menu bar at the top. Right
bellow is the tool-bar containing buttons for easy access to some functions. The buttons are labelled with
easy-to-understand icons. On the left is the object list, which allows deactivations of objects in the scene. The
main part of the window is divided between the 3D scene view and part the data & control part. The latter
is divided into tabs containing the data table and the visualisation settings.

available under the 3D scene. This solution was chosen, because changing the settings has an
immediate effect what the user sees on the screen. The intermediate step of pressing a button
to apply settings was removed. This, in conjunction with the direct availability of the controls
makes the user experience more direct. The user is able to immediately see how the changes
affect the look and behaviour. On the other hand, if the application would become more com-
plex, there would likely be a need for an additional separate settings dialogue to accommodate
all available options. The visualisation control can be seen in figure 14.

It is possible to manipulate the 3D scene by clicking a mouse button and dragging. The
following combinations are possible:

5 IMPLEMENTATION 25

Keyboard modifier Mouse button Drag direction Result
none left or right vertical rotate around the X axis
none left horizontal rotate around the Y axis
none right horizontal rotate around the Z axis
Shift right horizontal translate (move) in the hori-

zontal direction
Shift left vertical translate (move) in the verti-

cal direction
Ctrl left vertical moving up zooms in; moving

down zooms out

Figure 14: The visualisation settings (“Control”). This collection of options allows changing the appearance
of the visualisations and of the application. In particular it allows to change the way the values from the
table are aggregated and the appearance of the 3D scene and the objects in the scene. Additionally it is
possible to set the font used for the data table. As the table is very wide, it can be helpful to change the font
to a narrow face, if the user has such available.

5.4 Chart Visualisations

The creation of geographically located 3D charts can be divided into 3 steps:

1. Collection or aggregation of user-selected data.

2. Creation of chart objects.

3. Scene update: positioning and rendering.

We will look at each of these steps in more detail.

5.4.1 Data aggregation

The application provides two types of chart visualisation: 3D bar charts and 3D pie charts. Data
to be visualised is selected in the table view. The selection can have a form of one contiguous
region or can be composed of multiple regions (achieved by holding down the control key). The
Map Visualisation Manager is responsible for creating the visualisations upon request from the
Main Window class. To achieve this, the manager accesses the data table and requests a list of
the selections made by the user. It then processes the selections and aggregates the values in
the table. The aggregated values are then used to create the charts, which in turn are placed

5 IMPLEMENTATION 26

on their respective locations in the map view. The following assumptions are made about the
layout of the data in the table:

• the table rows are associated to a particular location and the columns contain data for
that location,

• the first column contains the name of the institution, or whatever “main key” should be
used for the data, and

• there is a column containing a name of the location for the corresponding row.

As just mentioned, for the aggregation to happen correctly, the table has to contain a spe-
cially labelled column with location names for each of the rows. The location column is expected
to be labelled “[[[LOCATION]]]”. As the program was specially written for a particular dataset,
currently only 3 locations are supported: Swansea, Lampeter and Carmarthen. The coordinates
for the locations are written directly into the source code. However, it should be fairly easy to
extend the program to support reading of coordinates from a user-supplied file, if such a need
arises. To provide for some flexibility, a dictionary is used to associate different location names
to a single location coordinate. Thus, the exact location is determined indirectly by taking the
location name specified in the table, converting it to upper case, looking up the correspond-
ing location index, and then finally retrieving the coordinates from the coordinate array. This
is a relatively simple solution to the problem of determining to which location the table rows
correspond.

When aggregating values, an associative array is used. The array is indexed by a string. The
source of the key depends on the aggregation mode. It is possible to switch between two modes
of aggregation: “group by institution” or “group by location”. In the former case, the institution
name (i.e. the string in the first column) is used, in the latter the location name is used. The
aggregation happens for each selection by iterating over the rows, determining the location
and then adding the individual column values in that row. For each row an array with the size
equal to the total column count in the selections. For each column, a zero is first inserted and
subsequently the values are added to the appropriate array cells. This means that grouping by
location gives a sum of the values for that location. In fact, if there would be multiple rows with
exactly the same institution name, they would be aggregated the same way.

5.4.2 Chart object creation

After the values from the table are collected, they are iterated over and for each (key, value)
pair, the selected type of chart object is created. The chart object receives the array of table
values and the key value as a label. The newly created object is then wrapped into an enhanced
smart pointer, MapObject, which associates geographic coordinates with an object and also its
distance from the map plane. MapObject also automatically frees the char object’s memory as
a part of its own destruction. This smart pointer is inspired by auto_ptr available from the
standard library. The “map object” which is created like this, gets added into MapVisManager’s
list of current objects. Additionally, each map object is added to an associative array with
locations as keys. This is a helper array which aids when finally placing the objects into the
scene. After the objects are created an update of the visualisation scene is triggered.

5 IMPLEMENTATION 27

5.4.3 Geo-positioning and rendering

The scene update is executed independently from the object creation. A scene update is trig-
gered when objects are created or when they are enabled/disabled, that is, when the state
of the corresponding check-box in the object list is toggled. A scene update is the result of
collaboration of MapVisManager, 3D scene view (GlSceneView) and the OpenGL map painter
(GlMapPainter). First GlSceneView is requested to clear all objects from the map scene. Then
the associative array of location-objects is processed and objects from MapVisManager’s (possi-
bly modified) object list are added back to the map scene. For each location, there is a vertical
distance counter, which is increased every time an object is placed into the scene. The next
object is placed at this height from the map plane. This allows positioning objects, which are at
the same location, above each other, effectively creating stacks of objects. The responsibility for
handling placement of multiple objects in the same location is held by MapVisManager, rather
than GlSceneView or GlMapPainter. This way the latter classes do not have to deal with the
equality of two location; and this is all handled within MapVisManager.

The placing of objects into the scene is carried out by adding the objects to GlSceneView’s
list of object pointers. When the scene view receives an update event request, it first applies
3D transformations. Then GlMapPainter is requested to render the map. It also takes care
for rendering of the objects in the correct locations. For this, it first computes the projected
coordinates of the object and then requests the object to render itself. Naturally, the projection
is computed using the specifications of the currently loaded map file. The coordinate transfor-
mation itself is computed using a utility function GeoUtils::TransformCoordinates (GeoUtils
being a namespace), which in turn uses routines provided by the OGR library. Once the (x, y)
pair of coordinates in map-plane is retrieved, GlMapPainter translates the OpenGL coordinate
system to position the objects. Finally, it requests the objects to render themselves. Descendants
of GlObject provide a member function GlDraw for this purpose. Additionally, also the labels
for the objects are rendered by calling the corresponding member functions of those objects.

Figure 15 provides an example of a scene with bar charts and pie charts.

Figure 15: Examples of 3D bar charts and pie charts rendered in the application.

5 IMPLEMENTATION 28

5.5 OpenGL text rendering

An interesting problem, encountered during the implementation of the software, was connected
with trying to find a good way of rendering labels for the 3D objects.Surprisingly, rendering text
to to annotate OpenGL objects is relatively problematic. OpenGL itself does not provide font
rendering routines which would be universal to all platforms. The platform specific parts (GLX
for X Window, WGL for Windows) provide some functionality to access the platform’s fonts.
However, this functionality is limited and would require extra work to make it portable. There
are external libraries which provide font rendering with OpenGL, for example FTGL [6]. A
short, slightly outdated, survey of font rendering options can be found in [13]. There are three
main possibilities of rendering fonts in OpenGL:

1. Texture mapped text. The glyphs of the font are rendered into a bitmap buffer and the
used as texture on objects.

2. Outline or polygon fonts. The font glyphs are transformed into polygons which can be
textured, manipulated and rendered as any other polygon in OpenGL.

3. Bitmap or “overlaid” text. With this approach the text (font glyphs) are rendered directly
over the framebuffer of the viewport. In its simplest form, this approach does not allow
any OpenGl transformations to be applied to the rendered text.

Qt, through its QGLWidget class, provides a function to render overlaid text on an OpenGL
viewport. There are two overloaded versions of the renderText function. One allows specifying
the position of the text in window coordinates. The other takes 3D world coordinates, to which
also all the transformations are applied. This means that the rendered text always “follows”
the point as it is being moved in the scene. This version of the function also provides visibility
detection, so when the parts of the text which should be behind an object are not rendered.

We have experimented with the text rendering capabilities of Qt and also with FTGL. After
a few attempts with textured and outline text using FTGL, this approach was ruled out, as the
transformations applied to the scene made the text unreadable from many view angles. The
overlaid text solution was chosen as the best option for labelling. As in this area both Qt and
FTGL offered more or less the same capabilities, FTGL was dropped to avoid adding an extra
library dependence. Unfortunately, with Qt (the same applies to bitmap text in FTGL) it is only
possible to specify the left starting position of the text. This is problematic when annotating
objects in 3D space. When the scene gets rotated 180 degrees around the y-axis, the text starts
at the corner of the object, written in the direction away from the object. The result looks like
a confusing mix of objects and unrelated labels. We solved this problem by rendering centred
labels. To do this, it was necessary to compensate the lack of a readily available function. Our
solution takes as input the x, y, z coordinates of the centre of the rendered text, the text itself
and the font to be used for rendering. The process of rendering the text is the following

1. Transform the coordinates using the current OpenGL model and projection matrices onto
the current viewport and retrieve the projected coordinates. OpenGL provides a function
glProject for this purpose.

2. Using the font metrics data determine the width and the height of the text. Qt provides
functionality for this through its simple-to-use font management classes.

3. Determine the centre of the bounding box of the text. Transform the calculated coordi-
nates of the central point back into the 3D world coordinates. The glUnproject function
is used for this.

6 CONCLUSION 29

4. Use the 3D world-coordinate version of renderText to overlay the text over the scene at
the relevant position.

It is possible to eliminate step 3, i.e. reverse the reverse projection of the coordinates and to
use the 2D coordinate version of renderText. However, this way, the rendered text would not
go through the visibility detection. Rendering the text with visibility detection, so that it hides
behind objects when it is supposed to, aids orientation in the scene. For this reason we decided
to add the extra step.

Using this approach, we are able to create good looking labels, which are always visually
associated with the corresponding object in the scene.

5.6 Summary and evaluation

The software, which is submitted as a part of this dissertation, implements the following fea-
tures:

1. Reading data from a CSV file. The CSV file has to be prepared for the used with the
program by adding a location column. This column has to be labelled ”[[[LOCATION]]]”
and contain a name for the location. Currently accepted values are “Swansea”, “Lampeter”
and “Carmarthen”.

2. The user can select regions from the data, which they want visualised.

3. Two kinds of visualisations are available: 3D pie charts and 3D bar charts. Both are
rendered at the corresponding location in the map scene.

4. It is possible to interact with the scene. The user can use the mouse to move, rotate and
zoom the map scene in and out.

5. Aggregation of the data can be done on a per-institute or per-location basis. The user can
toggle this interactively and see the immediate result.

6. Various customisation options are available. The user can change the scene colours, fonts
used for labels or the table and toggle scene lights.

7. The program allows saving of an image with a screenshot of the visualisation scene.

The program does not provide an integrated help system.

6 Conclusion

The dissertation presented a project on visualising higher education data. A short overview of
the relevant topics in visualisation was given to add context to the subject. Also a survey of
literature and previous software systems was presented as a part of the work on this project.
The rest of the dissertation was dedicated to discussing the starting points of the project, the
design and the implementation of the software tool. The software tool which was developed
as a part of this project allows users to visualise numerical data related to geographic locations
using 3D pie charts and bar charts visualisations.

7 ACKNOWLEDGEMENT 30

7 Acknowledgement

I would like to thank my supervisor, Dr. Robert Laramee. Firstly, for providing me with an
opportunity to work on this project. Secondly, with the help and support he has given me. I
have found his comments and advices very helpful during the work. He also provided me with
tips on literature and engaged with me in discussions on various topics related to this project.

I would also like to thank my second marker, Dr. Oliver Kullmann, for offering a different
perspective on the project and giving suggestion.

Finally I’d like to thank my wife, Olga, for being generally supportive and trying to help
always when I needed it.

Thanks also goes to people involved in projects developing the free tool which I used
throughout this project. Open-source software used during writing and development includes
LaTeX, Qt, GCC, Vim, OpenOffice.org, Inkscape, Gimp and Dia.

References

[1] Georgia Albuquerque, Martin Eisemann, Dirk J. Lehmann, Holger Theisel, and Marcus
Magnor. Improving the Visual Analysis of High-dimensional Datasets Using Quality Mea-
sures. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology
(IEEE VAST), 10 2010.

[2] Keith Andrews and Martin Lessacher. Liquid Diagrams: Information Visualisation Gadgets.
Information Visualisation, International Conference on, 0:104–109, 2010.

[3] Tor Bernhardsen. Geographic Information Systems: An Introduction. John Wiley and Sons,
3rd edition, 2002.

[4] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt 4. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2008.

[5] Environmental Systems Research Institute, Inc. ESRI Shapefile Technical Description. An
ESRI White Paper, July 1998.

[6] FTGL. http://sourceforge.net/apps/mediawiki/ftgl/index.php?title=Main_Page.
Link valid as of May 17th, 2011.

[7] Ying-Huey Fua, M.O. Ward, and E.A. Rundensteiner. Navigating hierarchies with structure-
based brushes. In Information Visualization, 1999. (Info Vis ’99) Proceedings. 1999 IEEE
Symposium on, pages 58 –64, 146, 1999.

[8] GCC, the GNU Compiler Collection. http://gcc.gnu.org/. Link valid as of May 17th,
2011.

[9] GDAL – Geospatial Data Abstraction Library. http://www.gdal.org. Link valid as of May
17th, 2011.

[10] Zhao Geng, Robert S. Laramee, Fernando Loizides, and George Buchanan. Visual Analysis
of Document Triage Data. Technical report, Visual and Interactive Computing Group,
Department of Computer Science, University of Wales, Swansea, December 2009.

http://sourceforge.net/apps/mediawiki/ftgl/index.php?title=Main_Page
http://gcc.gnu.org/
http://www.gdal.org

REFERENCES 31

[11] Many Eyes. http://www-958.ibm.com/software/data/cognos/manyeyes/. Link valid
as of May 17th, 2011.

[12] Mondrian. http://rosuda.org/mondrian/. Link valid as of May 17th, 2011.

[13] Survey Of OpenGL Font Technology. http://www.opengl.org/resources/features/

fontsurvey. Accessed on May 17th, 2011.

[14] Qt – Cross-platform application and UI framework. http://qt.nokia.com/. Link valid as
of May 17th, 2011.

[15] Niles Ritter and Mike Ruth. GeoTIFF Format Specification. http://www.remotesensing.
org/geotiff/spec/geotiffhome.html, December 2010. Accessed on May 17th, 2011.

[16] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide.
Addison-Wesley, 5th edition, 2006.

[17] Robert Spence. Information Visualization: Design for Interaction (2nd Edition). Pearson
Education Limited, Harlow, Essex, England, 2007.

[18] Mark Summerfield. Advanced Qt Programming: Creating Great Software with C++ and Qt
4. Prentice Hall, 2010.

[19] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon. ManyEyes: a Site for
Visualization at Internet Scale. Visualization and Computer Graphics, IEEE Transactions on,
13(6):1121 –1128, nov. 2007.

[20] Matthew Ward, Georges Grinstein, and Daniel Keim. Interactive Data Visualization: Foun-
dations, Techniques and Applications. A K Peters, Ltd., Natick, Massachusetts, 2010.

[21] Ward, Matthew O. XmdvTool: integrating multiple methods for visualizing multivariate
data. In Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis’99), pages
326 –333, oct. 1994.

[22] XmdvTool Home Page. http://davis.wpi.edu/xmdv/. Link valid as of May 17th, 2011.

http://www-958.ibm.com/software/data/cognos/manyeyes/
http://rosuda.org/mondrian/
http://www.opengl.org/resources/features/fontsurvey
http://www.opengl.org/resources/features/fontsurvey
http://qt.nokia.com/
http://www.remotesensing.org/geotiff/spec/geotiffhome.html
http://www.remotesensing.org/geotiff/spec/geotiffhome.html
http://davis.wpi.edu/xmdv/

	Introduction
	Background
	Introduction to information visualisation
	Geographic information systems and geospatial data
	Related work
	Previous systems
	Liquid Diagrams
	ManyEyes
	XmdvTool
	Mondrian

	Project specification and prototyping
	Preliminary requirements
	Input data
	Higher education data
	Geospatial data

	Prototype implementations

	Design
	Overview of Classes
	3D Objects

	Diagrams

	Implementation
	Tools and libraries
	Programming Language: C.06em++1000
	Qt: Application framework and widget toolkit
	OpenGL
	OGR: Geospatial vector format library

	Compilation and running
	User interface
	Chart Visualisations
	Data aggregation
	Chart object creation
	Geo-positioning and rendering

	OpenGL text rendering
	Summary and evaluation

	Conclusion
	Acknowledgement
	References

