An Algebra of Dependent Data Types

TYPES 2006

Tyng-Ruey Chuang

Joint work with Jan-Li Lin

Institute of Information Science, Academia Sinica
Nangang, Taipei 115, Taiwan

trc@iis.sinica.edu.tw
List in Coq

Inductive List (A: Set): nat -> Set :=
 Nil: List A 0
| Cons: A -> forall (n: nat), List A n -> List A (1+n).

Fixpoint concat (A: Set) (m: nat) (p: List A m) (n: nat) (q: List A n) {struct q}: List A (n+m) :=
 match q in List _ i return List _ (i+m) with
 Nil => p
 | Cons a n' q' => Cons A a (n'+m) (concat A m p n' q')
 end.

concat: forall (A : Set) (m : nat), List A m ->
 forall n : nat, List A n -> List A (n + m)
List in O’Caml

let rec concat p q =
 match q with
 | [] -> p
 | h::t -> h::(concat p t)

concat : 'a list -> 'a list -> 'a list
Motivations

Given two data types S and T, we want a way to express

- (some) dependencies of S on T,
- dependencies in (some) functions from S to T.

We address only “regular” data types however:

- unit, sum, product, polynomial, and fixed point
- taking an initial F-algebra approach
- $\text{List}_A = \mu X.F_A(X)$ where $F_A(X) = 1 + A \times X$
The Plan

• Use the arrow category to express dependencies between data types.

• Use natural transformations to characterize natural dependencies between data types.

• Define the dependency component in the inductive step for an inductive computation between data types.

• Formulate the above as abstract as possible; use initial \mathcal{F}_{η}-algebra.

• Recast the above to O’Caml to allow for generic and efficient run-time calculation of dependencies in inductive computations.
Initial F-algebra for Induction

\[
\begin{array}{ccc}
S & \xleftarrow{\alpha} & FS \\
\downarrow |f\rangle & & \downarrow F(|f\rangle) \\
X & \xleftarrow{f} & FX
\end{array}
\]

An F-algebra is called an initial F-algebra if it has an initial object (α, S). For any object (f, X), one uses the notation $|f\rangle$ to denote the unique arrow $S \to X$ satisfying $|f\rangle \circ \alpha = f \circ F(|f\rangle)$.

Note that α is an isomorphism between S and FS. That is, we view a regular data type S as the fixed point of a polynomial endofunctor F.

Programming Initial F-algebra in O’Caml

```ocaml
type ('a, 'b) t = Nil | Cons of 'a * 'b
let map f t = match t with Nil -> Nil | Cons (a, b) -> Cons (a, f b)

type 'a list = Rec of ('a, 'a list) t
let rec fold f (Rec t) = f (map (fold f) t)

let concat p q =
  let f t = match t with Nil -> p | Cons (a, b) -> Rec (Cons (a, b))
in
  fold f q

val map : ('a -> 'b) -> ('c, 'a) t -> ('c, 'b) t = <fun>
val fold : (('a, 'b) t -> 'b) -> 'a list -> 'b = <fun>
val concat : 'a list -> 'a list -> 'a list = <fun>
```
Let \(C \) be a category, the \textit{arrow category} of \(C \) is denoted as \(C \rightarrow \). It has families \(\varphi : X \rightarrow A \) as objects. For two objects \(\varphi : X \rightarrow A \) and \(\psi : Y \rightarrow B \), the arrows of \(C \rightarrow \) from \(\varphi : X \rightarrow A \) to \(\psi : Y \rightarrow B \) are of the form \((h, k)\), where \(h \) is a arrow of \(C \) from \(X \) to \(Y \) and \(h \) is a arrow of \(C \) from \(A \) to \(B \), with the property that \(k \circ \varphi = \psi \circ h \).
For two endofunctors $F, G : \mathbb{C} \to \mathbb{C}$, and a natural transformation

$\eta : F \to G$, we derive an endofunctor $\mathcal{F}_\eta : (\mathbb{C} \to) \to (\mathbb{C} \to)$ as follows.

- For an object $\varphi : X \to A$, let

 $\mathcal{F}_\eta(\varphi) : FX \to GA = \eta_A \circ F\varphi = G\varphi \circ \eta_X$.

- For an arrow $(h, k) : \varphi \to \psi$, define $\mathcal{F}_\eta(h, k) = (Fh, Gk)$.
Let $\eta : F \to G$ be natural transformation between two endofunctors F and G. The category of \mathcal{F}_η-algebra is described above.
Proposition. Let \((\alpha_S, S)\) and \((\alpha_A, A)\) be the initial object of an \(F\)-algebra and a \(G\)-algebra, respectively. Let \(\eta : F \rightarrow G\) be a natural transformation, then the above diagram is the initial object of the \(\mathcal{F}_\eta\)-algebra.

Note: Both \(S\) and \(A\) are regular data types. The above object describes a \textit{natural} dependency of \(S\) on \(A\). The initiality of this object can be used to derive other dependencies.
The dependency of S on B is described by $g \circ (k)_{S} = (h)_{A} \circ (\alpha_{A} \circ \eta_{A})_{S}$.

By fusion law, both sides equal to $(h \circ \eta_{B})_{S}$.
Function concat Re-visited

where \(\ell_1 : \text{list } \alpha \ m \) and \(\text{cat}_{\ell_1} : \text{forall } n : \text{nat}, \text{list } \alpha \ n \rightarrow \text{list } \alpha \ (n + m) \)
Function concat Re-visited, in O’Caml

```ocaml
type ('a, 'b) t = Nil | Cons of 'a * 'b
let mapF f t = match t with Nil -> Nil | Cons (a, b) -> Cons (a, f b)

type 'a list = Rec of ('a, 'a list) t

let rec fold (k, h) t = ...

let concat p q =
  let k t = match t with Nil -> p | Cons (a, b) -> Rec (Cons (a, b))
  in let h s = match s with O -> length p | S n -> 1 + n
  in
  fold (k, h) q
```

14
Programming \mathcal{F}_η-algebra in O’Caml, Modularly

- Layers of categorical constructions are systematically mapped to layers of ML modules.
 - objects are types; arrows are typed functions;
 - functors become type constructors and the map functions;
 - natural transformations become polymorphic functions;
 - fixpoints and dependencies are generated by parameterized modules, \textit{etc.}

- The type constructors are of fixed arities (-).

- The modules are highly parameterized (+).
module type CAT = sig
 type 'a t
end

module type FUN = sig
 type ('a, 'b) t
 val map: ('b -> 'c) -> ('a, 'b) t -> ('a, 'c) t
end

module type NAT = sig
 module S: FUN
 module T: FUN

 val eta: ('a, 'b) S.t -> ('a, 'b) T.t
end
Programming \mathcal{F}_η-algebra in O’Caml, 2/7

module type FIX = sig
 module Base: FUN
 type 'a t
 val up: ('a, 'a t) Base.t -> 'a t
 val down: 'a t -> ('a, 'a t) Base.t
end

module type MU = functor (B: FUN) -> FIX with module Base = B

module Mu: MU = functor (B: FUN) ->
struct
 module Base = B
 type 'a t = Rec of ('a, 'a t) Base.t
 let up a = Rec a
 let down (Rec a) = a
end
Programming F_η-algebra in O’Caml, 3/7

module type DEP =
 sig
 module S: CAT
 module A: CAT
 val index: 'a S.t -> 'a A.t
 end

module type NAT’DEP =
 functor (S: FIX) ->
 functor (A: FIX) ->
 functor (N: NAT with module S = S.Base and module T = A.Base) ->
 DEP with module S = S and module A = A
module type DEP'FOLD = functor (S: FIX) -> functor (A: FIX) ->
 functor (N: NAT with module S = S.Base and module T = A.Base) ->
 functor (D: DEP) ->

sig

val f: (('a, 'a D.S.t) S.Base.t -> 'a D.S.t) *
 (('a, 'a D.A.t) A.Base.t -> 'a D.A.t) ->
 ('a S.t -> 'a D.S.t) * ('a S.t -> 'a D.A.t)

end

module Fold: DEP'FOLD = functor (S: FIX) -> functor (A: FIX) ->
 functor (N: NAT with module S = S.Base and module T = A.Base) ->
 functor (D: DEP) ->

struct

let f (k, h) =
 let rec s2t s = (k $ S.Base.map s2t $ S.down) s
 in let rec s2b s = (h $ N.eta $ S.Base.map s2b $ S.down) s
 in
 (s2t, s2b)

end
module FNat = struct
 type (\'a, \'b) t = O | S of \'b
 let map f t = match t with
 O -> O | S a -> S (f a)
end

module FList = struct
 type (\'a, \'b) t = Nil | Cons of \'a * \'b
 let map f t = match t with
 Nil -> Nil | Cons (a, b) -> Cons (a, f b)
end

module Nat = Mu (FNat)
module List = Mu (FList)

module List2Nat = struct
 module S = FList
 module T = FNat
 let eta t = match t with
 Nil -> O | Cons (_ , b) -> S b
end
module ListNatDep = Dep (List) (Nat) (List2Nat)
module NewListNatDep = Fold (List) (Nat) (List2Nat) (ListNatDep)

let k p q = match q with
 Nil -> p
 _ -> List.up q

let h p_i q_i = match q_i with
 O -> p_i
 _ -> Nat.up q_i

let list2 = List.up (Cons (true, List.up (Cons (true, List.up Nil))))
 (* [true; true] *)

let nat2 = Nat.up (S (Nat.up (S (Nat.up 0))))
 (* 2 *)

let (cat, cat_i) = NewListNatDep.f (k list2, h nat2)
Programming \mathcal{F}_η-algebra in O’Caml, 7/7

let list3 = List.up (Cons (false, List.up (Cons (false, List.up (Cons (false, List.up Nil))))))
(* [false; false; false] *)

let list5 = cat list3 (* [false; false; false; true; true] *)

let nat5 = cat_i list3 (* 5 *)

cat : bool List.t -> bool List.t
cat_i : '_a List.t -> '_a Nat.t
Conclusion

• We have proposed an algebra of dependent data types.

• Category theory is helpful. (Sometimes.)

• O’Caml and Coq are fun! (Most of the time.)

• Natural transformations may be too restrictive in the specifications of dependencies. However, as long as the necessary diagrams are commutative, the results will still apply.