A Practical Approach to Co-induction in Twelf

Alberto Momigliano
Laboratory for Foundations of Computer Science
University of Edinburgh

Funded by EU-project Mobius (IST-2005-015905)
TYPES 2006, Nottingham, April 18-21, 2006
Motivation

- Common complaint (see the POPLmark challenge): *Twelf* is a great system but is cannot do “⟨insert your favorite theorem prover feature⟩” and somebody says, you may as well junk it.

- We are going to show a way to do proofs by co-induction in Twelf **now**.

- No change to the Twelf’s meta-theory, hence the *totality* checker is available.

- The basic idea: dating back Milner’s CCS [1980]: define, whenever possible, your co-inductive relation, *inductively*. Mentioned also in Miller et al 1997.

- No free lunch: It’s a bit awkward and better seen as an incentive to develop the appropriate meta-theory. Still, **all** proofs in Milner [1980] are inductive. In general, proof by co-induction are sporadic (only 3 co-inductive lemmas in Howe’s proof of congruence of applicative bisimulation)
Technical development

- Start with a set-theoretic characterization of a (co)inductive definition. A rule set \mathcal{R} [Aczel 77], a possibly (denumerable) infinite set of pairs $\langle G, a \rangle$ (notation: $a \leftarrow G$) on an universe \mathcal{U}, such that $a \in \mathcal{U}, G \subseteq 2^\mathcal{U}$.

- There is an alternative characterization via fix points of monotone operators: let $\Phi_{\mathcal{R}} : 2^\mathcal{U} \rightarrow 2^\mathcal{U}$ and define $\Phi_{\mathcal{R}}(A) = \{ a \in \mathcal{U} \mid a \leftarrow G \in \mathcal{R}, G \subseteq A \}$

- The set co-inductively defined by \mathcal{R} is the greatest \mathcal{R}-dense set, namely $\operatorname{CId}(\mathcal{R}) = \bigvee \{ A \mid A \subseteq \Phi_{\mathcal{R}}(A) \}$

$$
\exists A. a \in A \quad A \subseteq \Phi_{\mathcal{R}}(A) \\
\hline
\quad a \in \operatorname{CId}(\mathcal{R}) \quad \text{CI}
$$
Technical development, cont’ed

• From Tarski’s theorem, if Φ_R is monotone, by repeated application to the empty set, it will converge to the set inductively defined by the rule set; if it is continuous, it will converge at most in ω steps.

• What about the dual? Can we characterize $gfix$ via iteration of the operator to the universe of discourse? Yes, provided it satisfies co-continuity (preservation of meet’s)

$$
T_0 = \mathcal{U} \\
T_{n+1} = \Phi_R(T_n) \\
T_\omega = \cap\{T_k \mid k \in \omega\} = gfix(\Phi_R)
$$

• In practical terms, we are looking for decidable conditions on the “shape” of the definition, so that co-continuity holds. One such example is “finite branching”, as we will see.
First example: divergence in the untyped λ-calculus

\[
\frac{\uparrow e_1}{\uparrow (e_1 \, e_2)} \text{ div} \, \neg \text{app1} \quad \frac{e_1 \Downarrow \lambda x.e}{\uparrow (e_1 \, e_2)} \text{ div} \, \neg \text{app2}
\]

- The gfix of this rules encode divergence. However, it can be shown (trust me, it follows from determinism if evaluation) that the associated operator is co-continuous, so the set can be computed inductively:

- So, let’s write some Twelf code. First declarations for expressions and lazy evaluation. I assume familiarity with Twelf’s idea of encoding theorem as relation between type families that need to be verified as total functions.
Evaluation in the lazy λ-calculus

exp : type.
lam : (exp -> exp) -> exp. %%% Note HOAS here
app : exp -> exp -> exp.

%block L1 : block {x:exp}. %%% Ignore this for now
%worlds (L1) (exp).

eval : exp -> exp -> type.
%mode +{E:exp} -{V:exp} eval E V.

ev_lam : eval (lam E) (lam E).

ev_app : eval (app E1 E2) V
 <- eval E1 (lam E1')
 <- eval (E1' E2) V. %% note subst as meta-level application
Divergence in the untyped λ-calculus: inductive encoding

%%% fixed point indexes
index : type.

zz : index.
ss : index -> index.

ndiverge : index -> exp -> type. %% divergence has additional argument
%mode ndiverge +N +E.

divbase : ndiverge zz E. %% everything diverges at stage zero

div_app1 : ndiverge (ss N) (app E1 E2)
 <- ndiverge N E1.

div_app2 : ndiverge (ss N) (app E1 E2)
 <- eval E1 (lam E)
 <- ndiverge N (E E2).
Adequacy

• Finally, say that \(\text{diverge } e \ \text{iff } \forall k : \text{index. ndiverge } k \ e \). Why is this correct? One direction, easy induction on “k” (formalised in Isabelle/HOL with the newly revamped Hybrid06 package, where \(\uparrow \) is implemented as a HOL’s co-inductive definition):

\[
\uparrow e \rightarrow \forall k : \text{index. ndiverge } k \ e
\]

• Other way: need to apply CI rule, hence to show that \(\text{ndiverge} \) is a “simulation”. This follows from definitions and from the fact that the (big-step) evaluation is determinate.

• CAVEAT: co-induction is defined meta-theoretically, via universal quantification. It \textbf{cannot} be queried existentially as a standard logic program. The preservation of the invariant must be checked at \textbf{every} stage of the fixed point construction.
Proving Ω diverges

- Theorem: the Ω combinator diverge. The standard formal proof (in HOL) requires to guess the right simulation, which is in this case $\{\text{omega}\}$ and afterward a 10 commands script. In Coq you can use the CoFix tactics and guarded induction, but of course it clashes with HOAS and the overall soundness still an issue.

- You write this relation in Twelf ...

\[
\text{omega} = \text{app} (\text{lam} [x] (\text{app} x x)) (\text{lam} [x] (\text{app} x x)).
\]

\[
\text{divomegaR}: \{I : \text{index}\} \ \text{ndiverge} \ I \ \text{omega} \rightarrow \text{type}.
\%\text{mode} \ \text{ndivomegaR} \ +I \ -Q.
\]

\[
\text{dub} : \text{ndivomegaR} \ zz \ \text{divbase}.
\text{dd} : \text{ndivomegaR} (\text{ss} \ zz) (\text{div_app1} \ \text{divbase}).
\text{dus} : \text{ndivomegaR} (\text{ss} \ I) (\text{div_app2} \ D1 \ (\text{ev_lam})) \leftarrow \text{ndivomegaR} \ I \ D1.
\]
Proving Ω diverges, cont’ed

• ...and have it checked for totality:

```
%mode +{I:index} -{Q:diverge I omega} (divomegaR I Q).
%worlds () (divomegaR _ _).
%total I (divomegaR I P).
```

• Luckily, the Carsten’s meta-theorem prover will also find it for you:

```
%theorem ndiv_omega: forall {N:index}
exists {Pi : ndiverge N omega} true.
%prove 3 N (div_omega N _ ).
```

%%% Twelf’s answer:
```
%theorem div_omega : {N:index} diverge N omega -> type.
%prove 3 N (div_omega N _ ).
%mode +{N:index} -{Pi:diverge N omega} (div_omega N Pi).
%QED
%skolem div_omega#1 : {N:index} diverge N omega.
```
Applicative simulation (Ong-Abramski)

- The largest relation defined by:

\[
\forall e'.e \Downarrow \lambda x. e' \rightarrow \exists f':\Downarrow f \lambda x. f' \land \forall m.e'[m/x] \leq f'[m/x] \quad \text{sim}
\]

- Let’s play the same trick: \(e \leq f \) implies \(\forall n : \text{index}. \ sim n e f \). Conversely, \(sim n e f \) is indeed a simulation.

- Note that, by the reduced syntax of LF (no existentials), we have to split the judgment into two so that \(F' \) is correctly quantified.

- However, the use of hypothetical judgments obliterates the difference between simulation and its \textit{open} extension, which saves us some serious pain while formalising the proofs.
Applicative simulation: Twelf encoding

```
sim : index -> exp -> exp -> type.
%mode sim +N +E +F.

simbody : index -> (exp -> exp) -> exp -> type.
%mode simbody +N +E +F.

sim_all : sim zz E F.                  %% everything goes at step 0

simf : sim (ss I) E F
    <- ({E':exp -> exp} eval E (lam E')
        -> simbody I E' F).

sb : simbody I E' F
    <- eval F (lam F')
    <- ({m:exp} sim I (E' m) (F' m)).
```
A tiny bit of meta-theory: reflexivity of simulation

% Reflexitivity of simulation

nsimrefl: {N : index} {E : exp} sim N E E -> type.
%mode nsimrefl +I +E -D.

nsimr_z : nsimrefl zz _ sim_all.
nsimr_s : nsimrefl (ss N) _
 (simf
 ([e:exp -> exp][u : eval E1 (lam e)] sb ([x:exp] NS e u x) u)
 <- ({e:exp -> exp} {u :eval E1 (lam e)} {x:exp} nsimrefl N _ (NS e u)

%block L2 : some {E:exp} block {e:exp -> exp}{u:eval E (lam e)} {x:exp}
%worlds (L1 | L2) (exp).
%worlds (L2) (nsimrefl _ _ _).
%total M (nsimrefl M _ _).
Conclusion: what have we learned?

- What I’ve shown today is little more than a patch.

- However, it shows that with a very little thought you do not need to rubbish a system such as Twelf for lacking a feature you may deem fundamental.

- It may be interesting to play out some more extensive examples (Howe’s proof) to see the limitations of this approach.

- At the same time, I think that there is mounting evidence that co-induction should be a first class citizen in Twelf-land.