
Multi-level Lax Logic

Edwin Lewis-Kelham Mike Stannett

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK.

Correspondence: M.Stannett@dcs.shef.ac.uk

Many thanks to the EPSRC for funding Ed’s research.

TYPES 2006, 18 April 2006

M.Stannett@dcs.shef.ac.uk

Outline

1 Lax Logic

2 History

3 Base Logic Requirements

4 Lax Logic

5 Example

6 Multi-level Lax Logic

7 Operational MLL

8 Recursive MLL

9 Advice, please. . .

10 Further Reading

11 Thank you!

Lax Logic [Men93, FM97]

I Given a base logic B
I we can define a first-order logic, L, equipped with
I a modality, ©, and
I a unary connective ι that faithfully embeds propositions of B as

formulae of L.

The modality represents the idea that a statement can be validated
relative to some — initially unspecified — constraint. The statement ©φ
(‘somehow φ’) is intended to mean ‘for some constraint c, φ holds under
c’.

History: Recent

I originally developed by Mendler [Men93] for extracting and reasoning
about constraints during hardware verification and refinement.

I propositional lax logic (PLL) developed by Mendler and Fairtlough
[FM97]

I two quantified versions (QLL, QLL+) developed by Fairtlough and
Walton [FW97, Wal99]

I multi-level version (MLL) developed by Ed Lewis as part of his PhD
work [LK06] — described below

History: Ancient

With hindsight, © has been studied in other contexts for æons.

I Earliest reference(?) is Curry’s presentation of an elimination
theorem in the presence of modality [Cur52]

I Aczel [Acz99] has identified lax modalities occurring as
I nuclei in locale theory
I strong monads on categories
I modalities in topos theory.

I Pfenning and Davies [PD99] showed lax logic is contained within
modal logic via ©P ≡ ♦�P with P →L Q ≡ (�P) → Q .

Base Logic

B should be many-sorted logic, with equality =, implication →,
quantification ∀, sorts S (including propositions, Ω) and operators O.
Types

τ ::= A | 0 | 1 | τ + τ | τ × τ | τ ⇒ τ | τ∗ | N

where A ∈ S. Quantification is allowed over any type, e.g.
¬φ =def φ→ false where false =def ∀xΩ.x.
Terms

t ::= x | f(t, . . . , t) | t→ t | ∀x.t | t = t |
∗ | πL t | πR t | (t, t) |
t t | λx.t | �t | inL t | inR t | casex,y(t, t, t) |
[] | t :: t | foldx,z(t, t) | 0 | succ | iterx(t, t)

where x, y, z are variables and f ∈ O.

Base: Induction principles and equality axioms

Γ `B∆ φ{[]/z} Γ, φ `B∆,x,z φ{x :: z/z}
ListInd

Γ `B∆ ∀z.φ

Γ `B∆ φ{0/z} Γ, φ `B∆,z φ{succ z/z}
NatInd

Γ `B∆ ∀z.φ

∆, x0 `B t : τ

`B∆,x0 t = �x

∆, xσ `B t : τ

`B∆,xσ (λx.t)x = t

`Bxσ,yτ πL(x, y) = x `Bxσ,yτ πR(x, y) = y

∆ `B u : σ1 ∆, xσ1 `B s : τ ∆, yσ2 `B t : τ

`B∆ casex,y(inL u, s, t) = s{u/x}

∆ `B u : σ1 ∆, xσ1 `B s : τ ∆, yσ2 `B t : τ

`B∆ casex,y(inR u, s, t) = s{u/y}

∆ `B s : τ ∆, xτ `B t : τ

`B∆ iterx(s, t)0 = s

∆ `B s : τ ∆, xτ `B t : τ
zN 6∈ ∆

`B∆,zN iterx(s, t)(succ z) = t{iterx(s, t)z/x}

∆ `B s : σ ∆, zτ , xσ `B t : σ

`B∆ foldz,x(s, t)[] = s

∆ `B s : σ ∆, zτ , xσ `B t : σ
vτ
∗
, uτ 6∈ ∆`B∆ foldz,x(s, t)(u :: v) = t{(foldz,x(s, t)v)/x}{u/z}

`Bx1 x = ∗ `Bxσ×τ (πL x, πR x) = x

∆ `B t : σ ⇒ τ
xσ 6∈ ∆

`B∆ λx.(tx) = t

∆, zσ1+σ2 `B h : τ
xσ1 , yσ2 6∈ ∆

`B∆,zσ1+σ2
casex,y(z, h{inL x/z}, h{inR y/z} = h)

`B∆,x s = t

`B∆ λx.s = λx.t

∆ `B u : σ1 + σ2 `B∆,xσ1 s = s′ `B∆,yσ2 t = t′

`B∆ casex,y(u, s, t) = casex,y(u, s′, t;)

∆ `B s : τ `B∆,xτ t = t′

`B∆ iterx(s, t) = iterx(s, t′)

∆ `B s : σ `B∆,zτ ,xσ t = t′

`B∆ foldz,x(s, t) = foldz,x(s, t′)

Lax: Formulae

The formulae M of L are given by

M ::= ιφ | true | false | ©M |
M ∧M |M ∨M |M →M | ∀x.M | ∃x.M

where φ ranges over the propositions of B and x ranges over variables.
The role of each connective (i.e. whether it is in B or L) is always clear
from context.

Lax: Deduction Rules

Most of these rules are standard.

trueI
true

false
falseE

M

M N
∧I

M ∧ N
M ∧ N ∧EL
M

M ∧ N ∧ER
N

M ∨IL
M ∨ N

N ∨IR
M ∨ N M1 ∨M2

[x1 : M1].
.
.
N

[x2 : M2].
.
.
N

∨Ex1,x2
N

M
∀Ix

∀x.M
∀x.M ∀Et
M{t/x} ∃x.M

[y : M].
.
.
N ∃Ey

N

M{t/x}
∃It∃x.M

ιφ1 . . . ιφk
ι (side condition: φ1, . . . , φk`Bψ)

ιψ

ι(s = t) M{s/x}
Subst

M{t/x}

[x : M].
.
.
N → Ix

M → N

M → N M
→E

N

Lax: Deduction rules (cont.)

Mendler’s lets-not-bother rule is a bit odd! Even though it provides
no information, it still seems to be useful (worth investigating further).

©M

[x : M].
.
.

©N ©Lx©N

M
©I

©M

©©M
©M

©M ©M

[x : M].
.
.
N ©Fx©N

M{0/n}

[x : M].
.
.

M{succ n/n}
NatIndn,x

∀n.M

M{[]/l}

[x : M].
.
.

M{h :: l/l}
ListIndh,l,x

∀l.M

lets-not-bother
©M

Lax: Constraint extraction

A proof of ©φ is a pair (c, p) where c is a constraint and p is a proof of φ
under c. We need to find both c and p. We first associate every closed
L-statement M with a predicator M#.

(ιφ)#z =def φ

(©M)#z =def (M#(πR z))πL z

false#z =def false
true#z =def true

(M ∧N)#z =def M#(πL z) ∧N#(πR z)
(M ∨N)#z =def (∃x|M |.z = inL x ∧M#x)∨

(∃y|N |.z = inR y ∧N#y)
(M → N)#z =def ∀x|M |.M#x→ N#(zx)
(∀xτ .M)#z =def ∀xτ .M#(zx)
(∃xτ .M)#z =def (M{πL z/x})#(πR z)

Lax: Constraint extraction (cont.)

Next we find any proof of ©φ and translate it using these rules:

[trueI] = ∗
[falseE(a)] = �[a]

[∧I(a, b)] = ([a], [b])
[∧EL(a)] = πL[a]
[∧ER(a)] = πR[a]
[∨IL(a)] = inL[a]
[∨IR(a)] = inR[a]

[∨Ex1,x2 (a, b1, b2)] = casex1,x2 ([a], [b1], [b2])
[∀Ix(a)] = λx.[a]
[∀Et(a)] = [a] t

[∃Ey(a, b)] = [b]{πL[a]/x}{πR[a]/y}
[∃It(a)] = (t, [a])

[ι(a1, . . . , ak)] = ∗
[→ Ix(a)] = λx.[a]

[→ E(a, b)] = [a] [b]
[©Lx(a, b)] = (πL([b]{πR[a]/x})@πL[a], πR([b]{πR[a]/x}))

[©I(a)] = ([], [a])
[©M(a)] = ((πL πR[a])@(πL[a]), πR πR[a])

[©Fx(a, b)] = (πL[a], [b]{πR[a]/x})
[Subst(a, b)] = [b]

[NatIndn,x(a, b)] = natrec([a], λn.λx.[b])
[ListIndh.l,x(a, b)] = listrec([a], λh.λl.λx.[b])

Example

Consider the formula

SPEC =def ∀mN.©ι∃nN.(m = succ n) .

We expect to extract ‘m 6= 0’. Given any constraint term z, we get

SPEC#z =(∀mN.©ι∃nN.(m = succ n))#z

=∀mN.((©ι∃nN.(m = succ n))#(zm))

=∀mN.(((ι∃nN.(m = succ n))
#
πR(zm))πL(zm))

=∀mN.((∃nN.(m = succ n))πL(zm))

=∀mN.(φπL(zm))

where φ =def ∃nN.(m = succ n), so the constraint in question is given
by the subterm πL(zm).

Example

Consider the formula

SPEC =def ∀mN.©ι∃nN.(m = succ n) .

We expect to extract ‘m 6= 0’.

Given any constraint term z, we get

SPEC#z =(∀mN.©ι∃nN.(m = succ n))#z

=∀mN.((©ι∃nN.(m = succ n))#(zm))

=∀mN.(((ι∃nN.(m = succ n))
#
πR(zm))πL(zm))

=∀mN.((∃nN.(m = succ n))πL(zm))

=∀mN.(φπL(zm))

where φ =def ∃nN.(m = succ n), so the constraint in question is given
by the subterm πL(zm).

Example

Consider the formula

SPEC =def ∀mN.©ι∃nN.(m = succ n) .

We expect to extract ‘m 6= 0’. Given any constraint term z, we get

SPEC#z =(∀mN.©ι∃nN.(m = succ n))#z

=∀mN.((©ι∃nN.(m = succ n))#(zm))

=∀mN.(((ι∃nN.(m = succ n))
#
πR(zm))πL(zm))

=∀mN.((∃nN.(m = succ n))πL(zm))

=∀mN.(φπL(zm))

where φ =def ∃nN.(m = succ n), so the constraint in question is given
by the subterm πL(zm).

Example (cont).

Different proofs of SPEC yield different choices for z. Let’s use the
following proof.

w ∀E∃nN.(0=succ n)
©ι∃nN.(0 = succ n)

[m : N].
.
.

succ m = succ m ∃BI
∃nN.(succ m = succ n)

ι

ι∃nN.(succ m = succ n)
©I

©ι∃nN.(succ m = succ n)
NatIndm,m

∀mN.©ι∃nN.(m = succ n)

Example (cont.)

This translates into the constraint term

z = [NatIndm,m]([∀E∃nN.(0=succ n)]([w]), [©I]([ι]([. . .])))

= natrec ([∀E∃nN.(0=succ n)](?), λm.λm
′.[©I]([ι]([. . .])))

= natrec (?(∃nN.(0 = succ n)), λm.λm′.([], [ι]([. . .])))

= natrec (([∃nN.(0 = succ n)], ∗), λm.λm′.([], ∗))

and the required constraint, πL(zm), is

πL(zm) ≡ πL(natrec(([∃nN.(0 = succ n)], ∗), λm.λm′.([], ∗)) m)

Example (cont.)

This is equivalent to (m 6= 0), as required: For the base case (m = 0),
we have

πL(z 0) ≡ πL(natrec(([∃nN.(0 = succ n)], ∗), λm.λm′.([], ∗)) 0)

≡ πL([∃nN.(0 = succ n)], ∗)

≡ [∃nN.(0 = succ n)]

and for m = succ k we have

πL(z (succ k)) ≡ πL(natrec(([∃nN.(0 = succ n)], ∗), λm.λm′.([], ∗)) (succ k))

≡ πL((λm.λm′.([], ∗)) k natrec(([∃nN.(0 = succ n)], ∗), λm.λm′.([], ∗)) k)

≡ πL([], ∗)
≡ []

Notions of Constraint

Central to the idea of constraint extraction is a notion C of constraint, a
set including a unit constraint 1, together with a function
under : B × C → B satisfying the following conditions:

I φ under 1 is always equivalent to φ
I constraints can be combined, so that for any constraints c, d there is

a constraint c.d such that φ under c under d is always equivalent to
φ under c.d.

I the application of constraints preserves implication: if φ implies ψ,
then φ under c implies ψ under c, for every constraint c.

General constraints

The constraints relative to which © is interpreted form a monoidal action
C ≡ (C, 1, ., under) which preserves implication. Since different choices
of C lead to different notions of logical refinement and constraint
extraction, Mendler’s original formulation of lax logic is rather general. In
the standard interpretation C is the sets of lists [c1, . . . , cn] with
members from some subset of statements, constraint composition is list
concatenation, the void constraint is the empty list, and under is:

φ under [c1, . . . , cn] ≡ cn → · · · → c1 → φ

We can replace the constraint list C = [c1, . . . , ck] of the standard
interpretation by the single constraint uC where
u =def foldz,x(true, z ∧ x).

Multiple constraint levels

The idea behind multi-level lax logic (MLL) is to allow multiple notions
of constraint to operate simultaneously. Currently, all constraints must
belong to the same underlying monoid.

We could instead use product notions, for example, but no
general-purpose composition of constraint notions has been investigated,
but it is reasonable to expect the cardinality |C×C′| to be of the order
of |C| × |C′| or (even infinitely) worse. Consequently, if we attempt to
solve systems defined relative to multiple notions of constraint, we are
likely to run into combinatorial explosion problems and a consequent lack
of scalability.

Operational MLL [LK06]

Write p / M to mean that p is a proof(-term) for the statement M . Ed’s
work considers expressions of the form

p1 / p2 / . . . / pn / φ

and shows how to extract constraints at each level. These constraints
satisfy statements of the form this constraint allows us to deduce that
that constraint allows us to deduce that the next constraint . . . allows us
to deduce φ. His approach is ‘operational’ in the following sense: he
defines multi-level versions of the logical connectives and deduction rules,
and then extends the translation rules given above for ‘level-one’ lax logic.

Example: ©n

Having defined the operators let and val, Lewis defines deduction rules
for the © operator.

Γ ` p1 / . . . / pn / P
©nI

Γ ` valn,1p1 / . . . / valn,npn / ©nP

Γ ` p1 / . . . / pn / ©nP Γ, z1 / . . . / zn / P ` q1 / . . . / qn / ©nQ
©nE

Γ ` letn,1zn . . . z1 ⇐ pn . . . p1 in qn . . . q1 / . . . /

letn,n−1znzn−1 ⇐ pnpn−1 in qnqn−1 /

letn,nzn ⇐ pn in qn / ©nQ

Consolidation

Because Ed’s rules are defined one connective at a time, he cannot
guarantee a priori that his logic makes sense as a whole, but has to prove
this. He has implemented the rules using both Lego and Isabelle, at the
same time showing that his logic has ‘sensible properties’. He has a
translation T taking each (n+ 1)-level expression into an equivalent
n-level expression. Ultimately, his approach appears to rely on the
following claim (currently being checked):

Claim: Given any level n formula φ, we have `B Tnφ if and only if `n φ.

Recursive MLL

Another approach! Any suitably rich base logic B can be extended to a
lax logic L: write Ψ for this (essentially algorithmic) procedure. Build a
transfinite lax hierarchy by defining (for ordinals ν and limit ordinals µ)

L0 =def B
L1 =def L

Lν+1 =def ΨLν

Lµ =def

⋃
{Lν | ν < µ}

Taking MLL to be
⋃

n<ω Ln gives the multi-level logic we seek. Easy
result: If B is consistent, so is

⋃
n<ω Ln. Note. Each laxification can be

w.r.t. a different notion of constraint — the MLL type system may
depend upon the choices made at each level.

Advice, please. . .

I Which approach to MLL makes more sense?
I Should the two approaches give equivalent logics?
I Is there any role for a transfinite version of MLL? What might we

use it for?
I What about the lets-not-bother rule? How come a semantically

empty rule is actually useful?!

Further Reading

[Acz99] P. Aczel. The Russell-Prawitz Modality. Math. Struct. in Comp.
Science, 1999.

[Cur52] H.B. Curry. The Elimination Theorem when Modality is Present. J.
Symbolic Logic, 17(4):249–265, 1952.

[FM97] M. Fairtlough and M. Mendler. Propositional Lax Logic. Information
and Computation, 137(1):1–33, 1997.

[FW97] M. Fairtlough and M. Walton. Quantified Lax Logic. Technical Report
CS–97–11, University of Sheffield, Department of Computer Science,
1997.

[LK06] E. Lewis-Kelham. Multi-level Lax Logic. PhD thesis, University of
Sheffield, Department of Computer Science, 2006. Submittted.

[Men93] M. Mendler. A Modal Logic for Handling Behavioural Constraints in
Formal Hardware Verification. PhD thesis, Edinburgh University,
Department of Computer Science, 1993.

[PD99] F. Pfenning and R. Davies. A Judgemental Reconstruction of Modal
Logic. Technical report, Carnegie-Mellon University, Department of
Computer Science, 1999.

[Wal99] M. Walton. First-Order Lax Logic: A Framework for Abstraction
Constraints and Refinement,. PhD thesis, 1999.

Thank you!

I Which approach to MLL makes more sense?
I Should the two approaches give equivalent logics?
I Is there any role for a transfinite version of MLL? What might we

use it for?
I What about the lets-not-bother rule? How come a semantically

empty rule is actually useful?!
I Any other questions worth addressing as well (or instead)?

Please contact me at: M.Stannett@dcs.shef.ac.uk

M.Stannett@dcs.shef.ac.uk

	Outline
	Lax Logic
	History
	Base Logic Requirements
	Lax Logic
	Example
	Multi-level Lax Logic
	Operational MLL
	Recursive MLL
	Advice, please…
	Further Reading
	Thank you!

