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Abstract—Current methods to identify cut-off values for
tumour-associated molecules (antigens) discrimination are based
on statistics and brute force. These methods applied to cancer
screening problems are very inefficient, especially with large
data sets with many antigens being investigated. There is a
long wait to produce outcomes for clinicians, high performance
computing is required, the best solution is not likely to be
achieved and scalability is an issue. Cancer research is therefore
limited in the number of antigens the methods can efficiently
handle, and good solutions are potentially missed. We present an
alternative evolutionary method based on Genetic Algorithms and
Harmony Search to accelerate clinical research and to enable the
consideration of a larger number of candidate antigens during
the designing of the screening. We show that compared to the
traditional methodology employed by clinicians, our approach is
able to produce better results in a timely manner.

Index Terms—genetic algorithms, multiple objectives, compos-
ite chromosome, Monte Carlo, harmony search, cancer-screening,
colorectal cancer, breast cancer, lung cancer

I. INTRODUCTION

The immune system, which protects us from microbes, also
mounts a response to molecules overproduced and released by
cancer cells within a tumour. This response includes the gener-
ation of auto-antibodies to these tumour-associated molecules.
Clinicians have evidence that detecting these auto-antibodies
in the blood of patients can provide a route to improved meth-
ods for early detection of tumours [1]–[8]. The approach only

requires a blood sample, avoiding invasive techniques. Auto-
antibodies are tested to multiple tumour molecules (antigens)
simultaneously in a microarray assay. The signal intensity
of the auto-antibodies response is subsequently stored in a
numerical dataset - anonymised as needed. For each antigen,
a cut-off is established computationally to distinguish those
patients likely to be cancer positive and those who are cancer
negative (namely, controls in clinical research exercises).

In our research, it is expected that cancer patients will
have upregulated responses (higher numerical values) to auto-
antibodies compared to non-cancer patients. Comparison to
cut-offs based upon examination of known cancer patients and
normal controls therefore allows the identification of samples
positive for tumour-molecule auto-antibodies, indicating that
further investigation is required. For cancer types such as lung,
colorectal and breast cancer, there is an urgent need to identify
relevant tumour markers from the blood showing high sensitiv-
ity (high rate of detection of true cancer positive patients) and
specificity (low rate of false positives on true cancer negative
patients) for its early detection. Such detection will enable
the creation of tests that would improve clinical outcomes
for patients. That means less aggressive treatments for early
stage disease, opportunity for targeted chemoprevention, lower
incidence of advanced stage and improved survival.

Current detection of markers is performed by medical
researchers via brute-force, combinatorial methods coupled
with random number generators, known by clinicians as Monte
Carlo approaches. These approaches are inspired by traditional



Monte Carlo Methods [9], [10]. Auto-antibodies responses
to antigens for cancer and control patients are processed
from the microarray raw data and cut-offs for discrimination
are established by the Monte Carlo approach. The cut-offs
determine the sensitivity (SENS) and specificity (SPEC) of the
panel of antigens investigated and therefore their suitability
for early-stage cancer screening. In the screening process,
a patient is labelled as cancer positive if their microarray
values are above the cut-off for at least one antigen within
the panel. Conversely, to be classified as negative, all values
need to be below the cut-off thresholds for all antigens. This
problem therefore, does not fall into classical machine learning
classification (although might be regarded as a very specific
kind of decision tree).

There are several issues with the existing methodology
employed to identify the best set of antigens for the screening
test: (a) The optimal values for cut-offs are not guaranteed
or are too computationally expensive to achieve. This means
that clinicians might be missing on more suitable antigens
(or combinations of antigens); (b) the analytical approach is
laborious and resource intensive, requiring the use of the high
performance computing facilities and the assistance of experts
in computer science; (c) the search mechanism is ineffective,
as millions of sub-optimal solutions are generated, evaluated
and discarded during the analysis; (d) there is a long wait
from researchers until results are produced; (e) the method is
mostly limited to investigations of 40 to 50 antigens, as it is
not scalable within feasible timelines.

The use of an alternative, more effective approach is there-
fore necessary and timely. In this paper, we investigate the use
of Genetic Algorithms (GA) [11] combined with Harmony
Search (HS) [14] (GAHS) to achieve optimal screening so-
lutions. We have the following main research objectives: (1)
To improve cut-off optimisation using our approach (2) To
compare our results to the existing Monte Carlo techniques.
(3) To replace effectively and reliably the current methodology.
To achieve these, we investigate five different data sets. We
show that our approach obtains better solutions much faster.
We also show that for a problem where the data set is larger
(58 antigens), the Monte Carlo approach would take more than
one hundred days to produce the results, which is not a feasible
timeline for clinical research.

II. PROBLEM DESCRIPTION

Auto-antibodies from a set of patient’s blood samples are
tested to various tumour-associated antigens simultaneously in
a microarray assay. The signal intensity of the auto-antibodies
response is processed, the microarray signal intensity is con-
verted into a number and stored in a dataset, with a format
shown in Table I. From the larger set of antigens investigated
with microarray technology, it is of interest to select a subset
of antigens with optimal cut-offs separating cancer and control
patients to form a panel to be used for early-cancer detection.

Cancer researchers are interested in four aspects of the data:
(1) to determine a subset (panel) of antigens able to distinguish
with high SENS and SPEC cancer patients from controls in an

TABLE I
TAB:MICROARRAY DATA EXAMPLE

Patient Antigen 1 Antigen 2 ... Antigen n Class
1 0 0.34 0.8 ... cancer
2 0 0.55 0.22 ... control
3 0 0.84 0.22 ... control
... ... ... ... ... ...
n 0 0.11 0 ... cancer

initial training data; (2) to determine the optimal cut-off for
each antigen within the panel for the separation between the
two categories of patients; (3) to maximise the pair (SENS,
SPEC) for the patient cohort; and (4) when possible, to identify
multiple panels that achieve maximum SENS and SPEC to
evaluate which panel will allow for better reproducibility of
results in a validation set.

In this research, we are assisting with the training stage of
the research to produce suitable panels and cut-offs for the
validation stage. From the training data, it is expected that
cancer patients will have higher numerical values for auto-
antibodies responses compared to non-cancer patients. Those
antibodies that do not produce different responses between at
least a sub-group of patients should be discarded and not make
part of a screening panel. A panel of antigens is necessary, as
it is clinically unlikely that a single antibody will produce
similar responses for all patients.

A. Screening Process

To screen and subsequently to classify patients as cancer
positive or negative (controls), cut-off values for each antigen
combination are determined and their SENS and SPEC are
calculated. The objectives are to maximise (SENS, SPEC) for
a panel and to obtain a subset of antigens with the desirable
classification performance. Figure 1 shows an example of an
antigen panel with n antigens and their corresponding cut-
offs. In the figure, 9 patients are considered; four patients are
controls (orange circles) and five patients have cancer (blue
circles). The cut-offs are represented by the red lines. For each
patient screening, the following rules are applied, given a set
of cut-offs defined for each antigen:

• If the patient response to the antigen is higher than the
cut-off for at least one antigen, then the patient is
labelled as cancer positive.

• If the patient response to all antigens is lower than the
cut-off for all antigens, then the patient is labelled as
cancer negative.

The SENS and SPEC are therefore calculated as follows:
• If a cancer patient is True Positive (above threshold) for

at least one antigen then the number of True Positive pa-
tients on the screening is incremented by one. Otherwise,
False Negative is incremented.

• If the control patient is True Negative (below the thresh-
old) for all antigens then the number of True Negative
patients on the screening is incremented by one. Else,
False Positive gets incremented.



Fig. 1. Cancer screening process. In the figure, each rectangle contains the antigens responses for a set of patients. The blue circles represent the cancer
patients; the orange circles are the control patients. For each antigen a cut-off (red horizontal line) needs to be established. Those values for each patient
above the red line are classified as cancer positive; values below are negatives. The true positive patients are the blue circles above the red cut-off for at least
one antigen. True negative patients are the orange circles (control patient values) below the red cut-off for all antigens

It is worth noting that the process described above is used
for patient screening, which is different from patient classifi-
cation. Classical machine learning methods for classification
are therefore not suitable for this problem.

III. MULTI-OBJECTIVE OPTIMISATION (MOO)
FORMULATION

As usual in supervised machine learning, the input data is
a set of tuples of class and feature values; Specifically, each
person p, in the data set, has a tuple (yp, xpa) with meaning:

• Label: yp = 1 if p has cancer, and 0 otherwise
• Data: xpa is the strength of the response of person p on

antigen a.
A candidate solution for a screening system, consists of
• Selection vector: Sa = 1 if antigen a should be included

in the screening panel, and 0 otherwise
• Cut-offs: Ca is the cutoff or threshold for each antigen a.

Only the cut-offs for the selected antigens, with Sa = 1,
are relevant.

To compute the fitness functions we just need formulas for
the sensitivity and specificity. For convenience, let us define
zpa to be 1 if and only if person p exceeds the cut-off for
antigen a:

zpa = 1 if xpa ≥ Ca,

= 0 otherwise (1)

and also define zp to be 1 if and only if person p is screened
as potential cancer, that is, exceeds the cut-off for at least one
antigen a:

zp = 1 if

(∑
a

zpa

)
≥ 1,

= 0 otherwise (2)

The sets of True/False Positives/Negatives are then simply

TP = { p | yp = 1 & zp = 1 } (3)
FP = { p | yp = 0 & zp = 1 } (4)
FN = { p | yp = 1 & zp = 0 } (5)
TN = { p | yp = 0 & zp = 0 } (6)

and then

SENS = |TP | / ( |TP |+ |FN | ) (7)
SPEC = |TN | / ( |TN |+ |FP | ) (8)

Note that the denominator of SENS, |TP |+ |FN | is just the
number of positives in the data set, and so a constant factor
(for a given data set). Similarly, for the denominator in SPEC.
(This is helpful, as it means the problem will be a linear
optimisation problem.) Furthermore, note that if changes to
the cut-off Ca do not change its comparison to any measured
response xpa then the values of zp also do not change and
therefore they do not affect the objectives. Hence, if desired,
the continuous spectrum of values for Ca could be replaced
with a discrete set of representatives from each of the ranges
of values defined from the data xpa. Jointly maximising SPEC
and SENS can therefore be regarded as a (discrete linear) bi-
optimisation problem.

Generally, we could also want to optimise (reduce) the
number of antigens that are used. Hence, for example, there
could be a third objective, to be minimised:

COST =
∑
a

waSa

where wa are some costs associated with performing the test
for antigen a. Overall, this now gives a 3-objective (discrete
linear) optimisation problem. In this paper, however, we do not
address the cost problem; instead we just limit the number of
antigens used and focus on optimising a given combination



of SPEC and SENS rather than doing the full multi-objective
version.

A. Single-Objective Case

In this paper, for simplicity, we do not address the full multi-
objective version but instead focus on an important special
case with a single objective, but that will illustrate the potential
of the methodology.

For the (preliminary) studies in this paper, the fitness (to be
maximised) of the individual is simply given as:

fitness = Min( SENS , SPEC ) (9)

This fitness is also equivalent to minimisation of Max((1−
SENS)), (1 − SPEC)) and so is essentially a form of the
Chebyshev scalarisation method [12], [13]. This is an approach
to multi-objective optimisation using just a single reference
(target) point of SENS = SPEC = 1, and simply uses the
maximum, over the different axes, of the distances from target.
It hence drives the solutions towards increasing SENS and
SPEC with equal weight in a more focussed fashion than
simply using their direct sum. In practical medical situations
SENS and SPEC might not be of equal importance. The fitness
could therefore easily be adjusted to take account of this by
using standard Chebyshev with a different reference point. E.g.
by maximising Min(SENS−a, SPEC), for various values of a,
or similar; this is likely to give a more focussed search than
by using the standard weighted sum method.

This fitness is employed in both our Monte-Carlo studies
in the next section, and the hybrid evolutionary approach in
Section V.

IV. THE MONTE CARLO APPROACH

For the Monte Carlo (with brute force) approach currently
employed by clinicians in [5], [8], fixed sizes of panels of

interest are established. Normally, panels with 6, 8, 10, 12
and 15 antigens are investigated. All possible combinations of
antigens from the microarray data are produced and the panels’
effectiveness in distinguishing cancer and control patients are
assessed. The number of possible combinations, considering
N antigens is calculated by the standard “N choose n”, or
binomial coefficient

(
N
n

)
= N !/(n! · (N −n)!), where n is the

size of the panel (in our case, 6, 8, 10, 12 or 15 antigens).
For each antigen ai (i : 1..n) the cut-off calculation is given

by the Monte Carlo Approach. Fifty thousand random cut-off
values are generated for each antigen in the panel. The random
combinations for cutoffi range between the minimum and the
maximum value for antigen ai. The panels and cut-offs pro-
duced are subsequently evaluated (according to their SENS and
SPEC) and the best results are saved. The best result in our case
is the panel that achieves maximum non-dominated solution
for the pair (SENS,SPEC). The maximum non-dominated pair
is chosen after processing all combinations, by looking at the
Pareto front graph of solutions output by the Monte Carlo, as
shown in Figure 2. The criteria for the best solution is defined
for the purpose of output comparison.

In cases where N is a high number (larger than 40), the
number of combinations reaches the order of 1010, which
requires very large processing power and is a very ineffective,
laborious way of tackling the problem. The resource-intensive
search strategy generates millions of sub-optimal solutions that
have to be evaluated and subsequently discarded during the
analysis. In addition, as there is no mechanism to improve the
search of the cut-offs, their optimal values are not guaranteed.
This means that clinicians are limited to partial searches,
which might be missing out on more suitable panels.

The limitations of the current methodology, has led us
to work with clinicians to improve their tool set for the
results computation. We have therefore created a solution by

Fig. 2. Example of how the best solution is selected for the Monte Carlo Approach. The best pair (SENS,SPEC) is obtained by extracting the maximum
non-dominated solution, according to the fitness function.



employing Genetic Algorithms (GA) coupled with Harmony
Search (HS) to achieve better cut-offs and determine better
possible panels, as further discussed next.

V. THE EVOLUTIONARY APPROACH TO THE SOLUTION

A GA hybrid with HS (GAHS) is designed to tackle the
proposed problem. Given the data set of antigens and a specific
panel size, the steady-state GA is implemented to produce the
best antigen panel. In the GA, each chromosome represents
a possible panel. The chromosome fitness is based on the
SENS and SPEC calculation for a set of cut-offs, which are
determined by the HS.

In this problem, the GA solution is encoded as a binary
chromosome representation of length N , where N is number
of input antigens from the microarray data. The uniform
crossover operator is adopted. Single point and two points
crossover operators are also implemented, however in our
experiments the uniform crossover produces better results. The
flip mutation operator is adopted. The whole procedure of the
genetic algorithm is summarised as follows:

1) Initialise the population. A list of binary chromosomes
[g1, g2, · · · , gN ] is randomly constructed, where gi = 1
if this antigen is selected in the panel for further
evaluation and 0, otherwise. Further validation of the
individual is required to ensure that the sum of ones in
the chromosome does not exceed the panel size (ps).
A valid chromosome needs to satisfy the following
constraint: (

N∑
i=1

gi

)
= ps (10)

2) For each individual generated, calculate the fitness value
of each cut-off chromosome obtained from using HS.

3) Construct a new population. Randomly split the whole
population into pairs of parents. With the selected
parents, two new individuals are produced through
crossover and mutation operators. Each offspring chro-
mosome is evaluated and corrected (as in step 1) to
satisfy the required panel size constraint.

4) Update the population. Replace parents if better fitness
values are achieved in the offspring. Replacement of
individuals occurs in the following manner:

if Min(Offspring1.fitness, Offspring2.fitness) ≥
Max(Parent1.fitness, Parent2.fitness) then

Keep offspring for the next generation;
end
else if Max(Offspring1.fitness, Offspring2.fitness) ≤
Min(Parent1.fitness, Parent2.fitness) then

keep parents for the next generation;
end
else

keep the better offspring and the better parent for the
next generation;

end

5) Repeat the procedure from step 2 to step 4 until sat-
isfying the termination criterion. Output the panel by
decoding the best chromosome from the last generation.

The HS is also a population-based solving procedure, simi-
lar to GAs. Figure 3 shows an example of how HS determines
the cut-off for 5 antigens. An individual in HS is a harmony
and the whole population is defined as harmony memory
(HM). Each position of harmony is a pitch. The HS procedure
implemented in this paper is described next:

1) Initialise the harmony memory. Given a specific
chromosome [g1, g2, · · · , gn] from the GA, the HM
[xm

1 , xm
2 , · · · , xm

n ] is randomly constructed. m is the
harmony index and n is the antigen index. xm

n is a
random value from the pitch range [antinmin, anti

n
max]

if gn = 1. This is the cut-off for further evaluation.
Otherwise xm

n is assigned as 0. As the example showed
in Figure 3, the number of input antigens is 5 and the
selected panel is a combination of antigens 2 and 3. In
this example, the range of antigen 2 is [0, 1] and [1,
2] for antigen 3. The related SENS and SPEC of each
harmony is calculated and stored in the memory.

2) Construct a new harmony [x
′

1, x
′

2, · · · , x
′

n]. The har-
mony value is determined by two parameters, the har-
mony memory considering rate (HMCR) and pitch ad-
justing rate (PAR), which is similar to crossover and
mutation rates in the GA, respectively. If x

′

i is chosen
from the HM, then any values of pitch i in the memory
can be selected. This value could be further adjusted
to a neighbour among the pitch range if gi = 1. If
x

′

i is not chosen from the memory, it is assigned by
a random value as step 1. As shown in the example
in Figure 3, the value of pitch 2 in the new harmony
is chosen from the memory. Data of the same pitch in
the memory is [0.28, 0.47, 0.83] and it is preliminary
assigned as 0.47. This value could be further adjusted
to a neighbour value, for example 0.4, or kept into the
harmony. The value of pitch 3, conversely, is randomly
assigned from [1, 2]. The remaining pitches are kept
unchanged.

3) Update the harmony memory. Calculate SENS and SPEC
of the harmony from step 2. Replace the worst harmony
in the recent memory if both values are higher. Other-
wise, eliminate the constructed harmony.

4) Repeat the procedure of step 2 and step 3 until satisfying
the termination criterion. Return the harmony with the
best SENS and SPEC values.

The GA and HS are inter-linked with each other to produce
the desired search. On one hand, the output of the HS is
dependent on the chromosomes constructed by the GA. On
the other hand, the population of the GA could be efficiently
updated if a better fitness value is obtained by the HS.

In future versions of our tool, the search for different
configurations of the pair (SENS,SPEC) will be changed via
input parameters, for instance to (a) maximise, only SENS;
(b) maximise only SPEC; or to find a specific value for the



chromosome: 0 1 1 0 0

Harmony Search:

0 0.28 1.84 0 0

0 0.47 1.58 0 0

0 0.83 1.23 0 0

Initialise:

harmony1

harmony2

harmony3

New Harmony

0 ? ? 0 0 HMCR

PAR

0 0 0

Yes

No

No

Yes

1.36

0.47 0.4

1.360.4

Evaluate
and

UpdateHarmony Memory

pitch

Fig. 3. Example of Harmony Search for 5 antigens

pair (e.g. SENS = 0.65 and SPEC = 0.85) depending on the
clinicians research questions. In such cases, the comparison
with the Monte Carlo is also performed by searching for the
equivalent solution in the Pareto front.

VI. EXPERIMENTAL DESIGN

Experiments are run in five data sets, described in Table II.
They vary in number of patients and in number of antigens
considered. The data is obtained from clinicians from the
School of Medicine at the University of Nottingham. It has
been anonymised regarding the type of cancer, the origin of
the patient samples and the name of antigens considered to
protect patient privacy and the clinical research intellectual
property.

TABLE II
DATA SETS INVESTIGATED

Dataset Number of Patients Total Antigens
Data 1 20 32
Data 2 41 32
Data 3 202 32
Data 4 263 32
Data 5 181 58

For each data set, panels of 6, 8, 10, 12 and 15 antigens
are considered (6 and 10 for Data 1, 2, 3 and 4; and 6, 8, 10,
12 and 15 for Data 5). The objective is to find the panel with
the highest SENS and SPEC.

The Monte Carlo approach was run on the University of
Nottingham’s High Performance Computer (HPC) platform,
known and hereafter referred to as ”Minerva” which has since
been decommissioned. Minerva consisted of approximately

180 compute nodes, each of which in turn consisted of two 8
core x86 Intel processors and 32Gb of RAM; Minerva boasted
a total compute capacity of around 40 TFLOPS with each user
limited to 3 TFLOPS (or 192 cores) per compute job. In terms
of software, a bespoke package was authored in Fortran to the
95 standard and parallelised using OpenMPI 1. For the Monte
Carlo, all combinations of antigens have been generated and
fifty thousand random cut-offs were considered.

The GAHS 2 described in section V is implemented in Java
(JDK 1.7) and all computations were performed on an Intel
(R) Core (TM) i7 CPU with 3.2 GHz and 6 GB of RAM.
The fitness value of of the candidate solutions is calculated
as Function 9. The parameter settings of GAHS are given in
Table III.

TABLE III
PARAMETERS OF GENETIC ALGORITHM AND HARMONY SEARCH

Genetic Algorithm Harmony Search
Population 50 Harmony Memory 100
Generations 100 Iterations 1000000
Crossover Uniform Crossover HMCR 0.7
Crossover Rate 0.5 PAR 0.2
Mutation Rate 0.03 Neighbour Gap 0.15

The parameter values from Table III are set based on
preliminary experiments using Data 1 from Table II. In the
future, we intend to investigate potential improvements in the
results exhibited in Section VII by employing parameter tuning
procedures.

1https://bitbucket.org/ADAC UoN/montecarlo/src
2https://github.com/PengSimonShi/ProjectGAHS.git



VII. RESULTS

In order to analyse the performance of GAHS compared
with the Monte Carlo method, five data sets were selected for
testing with the parameter settings described previously. The
results obtained by Monte Carlo and GAHS are presented in
Table IV. For GAHS, the table shows the best run achieved
among 10 independent experiments. The highest values for
sensitivity, specificity and times are highlighted in bold.

The Monte Carlo method is inherently paralleliseable due to
the independence of each combination and as such, compute
cost scaled approximately linearly with the number of possible
combinations. The largest analysis feasible on Minerva was for
Dataset 5 with 58 antigens and a panel size of 8, resulting in
approximately 2 billion combinations; this job took 4 days
on 192 cores an average of 500 million combinations per
day. For comparison, a panel size of 10 for dataset 5 would
have 52 billion combinations and take an estimated 104 days
to complete. Theoretically, with full utilisation of Minerva’s
resources at 100% parallel efficiency, an analysis of dataset 5
with a panel size of 10 would still not have been feasible due
to a wall time constraint of 7 days. We have therefore limited
our processing time to 144 hours and collected the best results
produced. However, for 15 antigens, satisfactory results were
still not achievable within this time frame.

In general, SENS and SPEC obtained by GAHS is better than
the Monte Carlo (MC) approach. Even though specificity for
Data 5 obtained by GAHS is worse for 8, 10 and 12 antigens,
the gap between these two approaches is of 8% at most.
Importantly, the computational time of generating these results
by GAHS is much shorter than MC. Efficiency is therefore the
advantage of the proposed approach comparing with Monte
Carlo. This means that clinicians can get insights and make
decisions in a much faster manner. This will also allow for
a larger volume of experiments to be run considering large
numbers of antigens, which will hopefully improve clinical
research.

With our method, we were also able to identify multiple

panels with optimal SENS and SPEC. For instance, for Data
1 we identified 5 different panels with SENS = 1 and SPEC
= 0.91. We expect that in the future, when we tackle the
multi-objective problem, we can also perform a systematic
comparison regarding the number and diversity of the panels
found compared to Monte Carlo.

VIII. CONCLUSIONS AND FUTURE WORK

In cancer research there is an urgent need to identify
relevant tumour markers from the blood for its early detection.
Methods for fast detection are important as they enable the
creation of tests that can potentially improve clinical outcomes
for patients. Early disease diagnosis means less aggressive
treatments, opportunity for targeted treatments, lower chances
of reaching advanced cancer stages and reduced mortality.
Microarray research for early stage screening identifies tumour
auto-antibody responses to antigens and relies on computa-
tional methods to determine thresholds that classify patients
between cancer positives and negatives within a panel. Cur-
rent screening algorithms to calculate those cut-offs and to
determine the best panels are based on Monte Carlo methods
and brute force. These methods perform poorly, as they do
not guarantee that the best solution will be achieved; they
are also very resource-intensive and take long periods of
time to produce the desired outcomes. This means that early
stage cancer research is being delayed by a less suitable
computational tool kit.

In this paper we investigated a more effective alternative
to address the problem based on evolutionary algorithms. We
implemented a tool based on GAs and HS to search for the best
panel of antigens with the highest sensitivity and specificity
for patient classification. We wanted to address the research
questions: (1) Can we improve cut-off optimisation using our
approach? (2) How our results compare to the existing Monte
Carlo techniques? (3) Can this approach replace effectively
and reliably the current methodology? To answer these re-
search questions, we investigated five different real-world data
sets, collected by clinicians. For each data set, we ran both

TABLE IV
COMPARATIVE RESULTS BETWEEN THE ORIGINAL IMPLEMENTATION OF THE MONTE CARLO APPROACH AND THE EVOLUTIONARY APPROACH. NOTE

THAT TIME IS EXPRESSED AS HH:MM::SS

Data set Patients Total Antigens Panel Size
Methods’ performance

Monte Carlo GA + HS
Sensitivity Specificity Time Sensitivity Specificity Time

Data 1 21 32 6 0.9 0.9 43:45:20 1 0.909 1:51:23
10 0.9 0.8 72:18:21 1 0.909 3:08:13

Data 2 41 32 6 0.85 0.85 43:47:56 0.864 0.895 3:09:35
10 0.85 0.8 72:20:47 0.905 0.9 5:34:27

Data 3 202 32 6 0.7 0.77 42:36:10 0.825 0.828 11:48:10
10 0.78 0.8 72:31:18 0.825 0.828 14:33:10

Data 4 263 32 6 0.7 0.8 43:49:50 0.791 0.791 22:25:24
10 0.73 0.75 72:20:10 0.793 0.797 24:55:35

Data 5 181 58

6 0.58 0.6 48:00:00 (aprox.) 0.714 0.719 22:51:26
8 0.6 0.8 96:00:00 (aprox.) 0.728 0.739 27:11:55

10 0.6 0.8 144:00:00 0.745 0.745 24:43:49
12 0.6 0.8 144:00:00 0.767 0.767 25:57:42
15 — — — 0.767 0.767 27:6:36



Monte Carlo and our approach, and collected the results for
the best pair of sensitivity and specificity coupled with the
time taken to obtain the desired outcome.

Our experiments showed that our approach in general
obtains better solutions much faster. We also show that for
a problem where the data set is larger (58 antigens), the
Monte Carlo approach would take more than one hundred
days to produce the results, which is not a feasible timeline
for clinical research. GAHS is still limited however when
compared to the Monte Carlo in some aspects. As the problem
was converted to a single objective, we do not produce a
Pareto front as does the Monte Carlo approach. Our current
methodology therefore will be extended to address the multi-
objective character of the problem. This will require adapting
multi-objective evolutionary methods to handle the combined
system of a GA for selecting antigens, and the HS for selecting
cut-offs. Another issue that will need to be addressed is that
the solution space is “multi-modal”, in the sense that multiple
panels can produce the same SENS and SPEC; the search
should be enhanced to ensure that a diverse set of such modes
are captured and provided to the clinicians.

Another aspect to be investigated by our tool is the potential
of using combined antigens rather than a single one flagging
up possible cancer. This would assist clinicians to understand
the interplay between different antigens and potentially point
to more robust screening approaches.

Future work could also study other machine learning mech-
anisms, but adapted to the screening problem and retaining
the ease of understanding and explaining of the results to
clinicians. In addition, it would be important to investigate
whether the assumption of needing a simple decision method
leads to a significant loss of classification quality. We will
also assess the effectiveness of other alternative evolutionary
and swarm methods and perform a comparative study with our
current approach.
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