Learning the Quality of Dispatch Heuristics
Generated by Automated Programming

Andrew J. Parkes, Neema Beglou, and Ender Ozcan

School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK

Abstract. One of the challenges within the area of optimisation, and
AT in general, is to be able to support the automated creation of the
heuristics that are often needed within effective algorithms. Such an ex-
ample of automated programming may be performed by search within
a space of heuristics that will be applied to a target domain. In this,
brief proof-of-concept, paper, we consider the case of online bin-packing
as the target domain, and consider the potential for machine learning
methods to aid the associated automated programming problem. Simple
numerical ‘policy matrices’ are used to represent heuristics, or ‘dispatch
policies’, controlling the placement of item into bins as they arrive. We
report on an initial investigation of the potential for neural nets to anal-
yse and classify the resulting ‘policy matrices’, and find strong evidence
that simple nets can be trained to learn to predict which heuristics, ex-
pressed as policy matrices, exhibit better or worse fitness. This gives the
potential for them to be used as a surrogate fitness function to enhance
the usage of search algorithms for finding heuristics. It also supports the
prospect of using machine learning to extract the patterns that lead to
successful heuristics, and so generate explanations and understanding of
machine-generated heuristics.

1 Introduction

The effective solution of many real-world combinatorial optimisation problems,
such as scheduling, timetabling, resource assignment, etc., requires good heuris-
tics to be used within the heart of many algorithms. Usually, these heuristics are
generated by human experts - however, the rise of powerful methods in search
and AT holds the potential for them to be created automatically. To further this
aim, in this paper, we consider the specific and simple case of online bin packing:
items arrive one at a time, and immediately, and irrevocably need to be assigned
to a bin, either an existing bin with sufficient space, or by opening a new bin,
and the goal is simply to minimise the number of bins are used. The decision
process then requires a ‘dispatch policy’ or ‘heuristic’ to decide which bin should
be used. The quality of a heuristic can be evaluated by simply using it to pack
many items and then taking the average fullness of the bins - usually expressed
as a percentage, and higher is better. A natural way to do this is with an ‘index
policy’ in which a score is given to each packing option based on: the size s of
the item under consideration, and the remaining space, r, within the bin, and
then the highest scoring option is taken. In the ‘CHAMP’ approach [3, 1], Parkes

and Ozcan introduced a “policy matrix” representation, denoted as M|s,r] to
store the scores, and so a matrix constitutes a heuristic. Then standard search
methods (evolutionary algorithms or metaheuristics) are used to find good val-
ues for those matrices. (Note that the associated search problem is in the space
of heuristics and not the direct space of solutions to the target domain.) Ear-
lier work [2] in this area used genetic programming (GP) to build a numeric
score function f(s,r) as an arithmetic tree of the relevant inputs; however, the
automatically-generated matrix policies heuristics significantly improved upon
the GP approaches. A surprise of the CHAMP work was that the resulting matri-
ces were rather ‘spiky’, and did not have the smooth structure that was usually
(implicitly) assumed in human-generated heuristics or those arising in the GP
approaches. Accordingly, the table-lookup representation seems to offer the po-
tential for search-based methods to create new kinds of heuristics. However, a
disadvantage is that the resulting policy matrices can be hard to interpret — it is
not immediately evident which matrices are good, and which are bad. It is then
natural to ask whether machine learning methods can identify the structures or
patterns in such “machine-discovered heuristics”, and so give insight into what
properties a heuristic ought to have. Given that the policy matrices are two-
dimensional matrices, and so similar to 2-d pictures, it particularly natural to
ask whether systems used in machine vision might be applicable, and in partic-
ular to try neural nets. Accordingly, in this (short proof-of-concept) paper, we
show that indeed neural nets can be trained to distinguish between good and
bad matrices. Furthermore, even simple nets do well, and this gives evidence for
a potential for use of neural nets (or machine learning in general) to be used for
the automated generation and understanding of heuristics.

2 Experimental Results

In this paper, we will use an example of online bin-packing as in previous work
[3]; “UBP(20,5,10)”, with bins of capacity 20, and item sizes selected uniformly
at random from the range [5,...,10]. See [3,1] for explicit examples of some
resulting matrices. For this paper, the relevant entries in each matrix can be
simply regarded as a set of integers (the size of the set happens to be 57).
Furthermore, we restrict the value of each entry to be in {1, 2, 3}; this restriction
still allows matrices of high fitness. The set of such numbers then define the
heuristic. The standard heuristics, such as “best-fit” and “first-fit” can easily be
represented as matrices and give a bin fullness of around 92%; however, using
a GA much better matrices can be found with a fullness of up to about 98%.
The aim here is to determine whether machine learning methods can be used to
predict and aid understanding the fitness of such matrices.

For the study, we used a combination of random generation and local search
to generate a diverse dataset of over 150k matrices, each with the associated

fitness!.

1 We plan to make the dataset available at an appropriate time

g-mean Predicted | Predicted g-mean Predicted | Predicted
86.4% P:[94-100] | N:[92-94] 93.3% P:[94-100] | N:[92-93]
Actual 982 298 Actual 1190 106
P:[94-100] 76.7% 23.3% P:[94-100] 91.8% 8.2%
Actual 300 12063 Actual 161 8781
N:[92-94] 2.4% 97.6% N:[92-93] 1.8% 98.2%

Table 1. Single Layer MLP using
classes N:[92-94]-P:[94-100].

Table 2. Single Layer MLP using
classes N:[92-93]-P:[94-100].

In order to train a neural net there were two primary decision: how to give
the matrices as input to the net, and the structure of the net. Firstly, the input
is done using a standard ‘one-hot’ scheme - for each matrix entry, each of the
possible values from {1,2,3} is selected using a set of 3 {0,1} inputs. Hence,
each matrix is converted to 3*57=171 binary inputs. (Other schemes were tried
but were less effective.) Secondly, for the neural net structure, we used a simple
feed-forward Multi-layer Perceptron (MLPs), with one hidden layer. We followed
a common heuristic that each layer should be about half the size of the previous
one, so the hidden layer was give 171/2=85 nodes After some initial experiments
we decided on sigmoid activation functions for the hidden layer. The system was
implemented using DeepLearning4J? and the training parameters were fairly
standard e.g. using stochastic gradient descent. Again other options were tried,
but were no more effective.

This proof-of-concept paper just aims to give evidence that neural nets have
the ability to detect patterns in the matrices that are correlated with their fitness.
Hence, instead of doing regression we just did binary classification. It is usual
to discuss results in terms of “Positive (P)” and “Negative (N)” classes, and we
take the P class to correspond to the better matrices. (The net is trained so
that the output gives the class memberships.) As usual, we will report confusion
matrices. The positive class will usually have fewer instances, and so we need
to also use performance measures that are appropriate when the class sizes are
imbalanced [4]; the accuracy would be a poor measure, hence we also report the
standard geometric mean ‘g-mean’ of the true positive and true negative rates.

Due to lack of space, we just give representative results using two pairs of
classes. Since we are mostly interesting in good matrices then it is reasonable
to restrict to instances with fitness of at least 92%; Table 1 shows results when
the two classes are then formed from a threshold at fitness 94%. This case is
arguably challenging, as the range of fitness values is small, and there will be
fewer of the very bad matrices that are (presumably) easier to spot. However,
the performance is still good, with 77% of those in the higher-fitness class being
recognised. This case has ‘adjacent classes’ with a boundary at 94%, and so
small differences in the fitness could lead matrices to be placed in separate
classes; such boundary cases are likely to be more difficult to learn, and so
results could be unduly pessimistic. Accordingly, we put a small gap between

2 https://deeplearning4j.org/

the two classes by excluding the fitness range [92%-93%)], giving a second case
with two classes N:[92-93]-P:[94-100]. The results in Table 2 indicate that the
classification performance did then improve significantly; now 92% of the higher
fitness class was recognised, again with a very good value for the g-mean.

3 Conclusions and Future Work

We considered the issue of finding and identifying good heuristic dispatch policies
for the online bin-packing problem. The heuristics are represented numerically
by an integer matrix, with the pertinent entries being scores that are used during
the decision process of where to allocate items as they arrive. We investigated
whether or not a neural net can predict the quality of the matrices. On converting
to binary classification problems, the results clearly indicate that nets with just
one hidden layer can achieve high discriminating and predictive power. This
indicates that the properties of the matrix that lead to high fitness are indeed
susceptible to being learned. The first natural potential impact is that such
learned model could be used as a surrogate fitness value during a search in the
space of matrices; being used to select matrices more likely to perform well when
evaluating their true fitness.

Arguably more importantly, a potential impact is using a learned model in
order to generate understanding of the space of heuristics (matrices). Inspections
of the weights in the trained nets should be at least able to indicate which of
the entries of the matrix are considered most important, and deeper analysis
might also reveal the conditions needed on the relevant values. For this, it is
particularly interesting that even just a single hidden layer gives good results; as
such simple nets are likely to be much easier to analyse. Future work will look
at other methods, such as SVM (with appropriate kernels) and decision trees,
as this might well give results that are easier to interpret. Such understanding
will hopefully also lead to better insight of how to search for good heuristics.

Overall, the main novelty and contribution of this study is to show that
(standard) machine learning can be applied in an intriguing way to study the
space of ‘special purpose’ heuristic functions that are used in dispatch policies,
or in optimisation algorithms.

References

1. Asta, S., Ozcan, E., Parkes, A.J.: CHAMP: Creating Heuristics viA many Parame-
ters. Expert Systems with Applications 63, 208-221 (2016)

2. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: The scalability of evolved on
line bin packing heuristics. In: 2007 IEEE Congress on Evolutionary Computation.
pp. 2530-2537 (Sept 2007)

3. Ozcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. Proc.
of the 13th ann. conf. on Genetic and evolutionary computation (GECCO) (2011)

4. V. Loépez and A. Ferndndez and S. Garca and V. Palade and F. Herrera: An insight
into classification with imbalanced data: Empirical results and current trends on
using data intrinsic characteristics. Information Sciences 250, 113 — 141 (2013)

