Relating proof standards and abstract argumentation

Bas van Gijzel

Supervisor:
Henry Prakken

July 4, 2011
Outline

Motivation and background

Carneades

From Carneades to abstract argumentation

 The translation

 Properties and results
My contribution schematically

Three models for argumentation:

- Carneades
- ASPIC$^+$
- Dung
My contribution schematically

Three models for argumentation:

Structured
\[\text{Carneades} \]

Structured
\[\text{ASPIC}^+ \]

Abstract
\[\text{Dung} \]
My contribution schematically

Three models for argumentation:

- **Structured**
 - *Carneades*

- **Structured**
 - *ASPIC*⁺

- **Abstract**
 - *Dung*
 - *Dung (1995)*
My contribution schematically

Three models for argumentation:

Structured
- Carneades

Structured
- ASPIC$^+$

Abstract
- Dung

Prakken (2010)
My contribution schematically

Three models for argumentation:

Structured
- Carneades

Structured
- ASPIC

Abstract
- Dung

Gordon, Prakken and Walton (2007)
Gordon and Walton (2009)
My contribution schematically

Three models for argumentation:

Structured
Carneades

Structured
ASPIC+
translates to
Dung

Abstract
My contribution schematically

Three models for argumentation:

Structured | Structured | Abstract

Carneades | \textit{ASPIC}^+ | Dung

Prakken (2010)
My contribution schematically

Three models for argumentation:

Structured \[\rightarrow\] \textit{Carneades} \[\rightarrow\] \textit{ASPIC}^+ \[\rightarrow\] \textit{Dung} \[\rightarrow\] Abstract
My contribution schematically

Three models for argumentation:

Structured \(\rightarrow\) \text{Abstract}

\begin{align*}
\text{Carneades} & \rightarrow \text{ASPIC}^+ \rightarrow \text{Dung} \\
\text{My thesis} & \\
\text{van Gijzel and Prakken (2011)}
\end{align*}
Contributions conceptually

- Local proof standards, in Dung,
- Carneades modelled as knowledge-based argumentation,
- Rationality postulates for Carneades,
- Generalised Carneades to cycle-containing structures,
- Full correspondence/acyclicity proof.
- Improving insight in (implemented) Carneades.
 - Used by Gordon (2011)
Outline

Motivation and background

Carneades

From Carneades to abstract argumentation
The translation
Properties and results
Argumentation theory

Interdisciplinary area with various applications:
Argumentation theory

Interdisciplinary area with various applications:

▶ **Law:**

Systems **modelling** legal problems/cases,
Argumentation theory

Interdisciplinary area with various applications:

- **Law:**
 Systems *modelling* legal problems/cases,

- **Decision making:**
 Organising information and source of *efficiency* in decision theory,
Argumentation theory

Interdisciplinary area with various applications:

▶ **Law:**
 Systems *modelling* legal problems/cases,

▶ **Decision making:**
 Organising information and source of *efficiency* in decision theory,

▶ **Communication theory:**
 Making argumentation in existing texts *precise.*
Argumentation

What is argumentation?
Argumentation

In its basic setting:

1. Construct arguments in favour and against a certain statement,
Argumentation

In its basic setting:

1. Construct arguments in favour and against a certain statement,

2. Select the acceptable arguments,
Argumentation

In its basic setting:

1. Construct arguments in favour and against a certain statement,
2. Select the acceptable arguments,
3. Determine whether the statement holds.
Abstract argumentation

Structured

\textbf{Carneades} \quad \text{translates to} \quad \textbf{ASPIC}^+ \quad \text{translates to} \quad \textbf{Dung}

Abstract
In 1995, Dung gave an *abstract* account of argumentation.

- Was able to model several contemporary approaches to non-monotonic logic,
Dung’s argumentation frameworks (AFs)

In 1995, Dung gave an **abstract** account of argumentation.

- Was able to model several contemporary approaches to non-monotonic logic,
- Some scholars believe it to be too abstract,
In 1995, Dung gave an abstract account of argumentation.

- Was able to model several contemporary approaches to non-monotonic logic,
- Some scholars believe it to be too abstract,
- However the model can be instantiated with more structure
 - For instance: ASPIC+.
Two parts: a set of abstract arguments and an (abstract) notion of defeat between arguments.

C B A
Definition

Two parts: a set of abstract arguments and an (abstract) notion of defeat between arguments.

\[C \rightarrow B \rightarrow A \]
Definition

Two parts: a set of abstract arguments and an (abstract) notion of defeat between arguments.

\[C \rightarrow B \rightarrow A \]
Definition

Two parts: a set of abstract arguments and an (abstract) notion of defeat between arguments.

\[\text{C} \rightarrow \text{B} \rightarrow \text{A} \]
Definition

Two parts: a set of abstract arguments and an (abstract) notion of defeat between arguments.

\[C \rightarrow B \rightarrow A \]
Cycles

\[B \leftrightarrow A \]

Dung defined different semantics for dealing with cycles using extensions.

- Complete extension
- Grounded extension
- Preferred extension
- Stable extension
Dung defined different semantics for dealing with cycles using extensions.

- Complete extension
- Grounded extension
- Preferred extension
- Stable extension

Where extension =

“set of arguments that are acceptable when taken together”
Structured argumentation: $ASPIC^+$

Structured Abstract

Carneades translates to $ASPIC^+$ translates to Dung
Structured argumentation: \textit{ASPIC}^+

\textbf{ASPIC}+ by Prakken (2010) starts with:

- \textbf{Knowledge:}
 indisputable facts, assumptions, normal premises, issue premises.

- \textbf{Inference rules:}
 strict or defeasible.

Arguments are given \textit{structure}.
Structured argumentation: \(\text{ASPIC}^+ \)

\(\text{ASPIC}^+ \) by Prakken (2010) starts with:

- **Knowledge:**
 indisputable facts, assumptions, normal premises, issue premises.

- **Inference rules:**
 strict or defeasible.

Arguments are given **structure**.

The **defeat relation** is given structure as following:

- Contrariness function: \(\neg \)

- Preferences on rules/knowledge (not used).
Arguments in ASPIC$^+$ (1)

Argument structure:

- Trees where:

 - Nodes are terms of a logical language L,
 - Links are applications of inference rules:
 - R_s, strict rules of the form: $\phi_1, \ldots, \phi_n \rightarrow \phi$,
 - R_d, defeasible rules of the form: $\phi_1, \ldots, \phi_n \Rightarrow \phi$,
 - Smallest argument is a fact from knowledge base $K \subseteq L$.

Acceptability of arguments determined by corresponding Dung framework.
Arguments in ASPIC$^+$ (1)

Argument structure:

- **Trees** where:
 - **Nodes** are wff of a logical language \mathcal{L},
 - **Links** are applications of inference rules:
 - \mathcal{R}_s, strict rules of the form: $\phi_1, \ldots, \phi_n \rightarrow \phi$,
 - \mathcal{R}_d, defeasible rules of the form: $\phi_1, \ldots, \phi_n \Rightarrow \phi$,
 - Smallest argument is a fact from knowledge base $\mathcal{K} \subseteq \mathcal{L}$.
Arguments in ASPIC$^+$ (1)

Argument structure:

- **Trees** where:
 - **Nodes** are wff of a logical language \mathcal{L},
 - **Links** are applications of inference rules:
 - \mathcal{R}_s, strict rules of the form: $\phi_1, \ldots, \phi_n \rightarrow \phi$,
 - \mathcal{R}_d, defeasible rules of the form: $\phi_1, \ldots, \phi_n \Rightarrow \phi$,
 - Smallest argument is a fact from knowledge base $\mathcal{K} \subseteq \mathcal{L}$.

- **Acceptability of arguments** determined by corresponding Dung framework.
Structured evaluation (1)

C: \[
\begin{array}{c}
talk_and_drinks \\
\rightarrow \ \\
-\normal_talk
\end{array}
\]

B: \[
\begin{array}{c}
argumentation_talk \\
\rightarrow \ \\
bored
\end{array}
\]

A: \[
\begin{array}{c}
friends \\
\rightarrow \ \\
fun
\end{array}
\]

Evaluated through Dung:
Structured evaluation (1)

C: \(\frac{\text{talk_and_drinks}}{\neg \text{normal_talk}} \)
B: \(\frac{\text{argumentation_talk}}{\text{bored}} \frac{\text{normal_talk}}{\text{fun}} \)
A: \(\frac{\text{friends}}{\text{fun}} \)

Evaluated through Dung:

C → B → A
Rationality postulates

Proved by Caminada and Amgoud (2007) for ASPIC, generalized by Prakken (2010) to ASPIC⁺:
Rationality postulates

Proved by Caminada and Amgoud (2007) for ASPIC, generalized by Prakken (2010) to ASPIC⁺:

- Closure under subarguments
- Closure under strict rules
- Direct consistency
- Indirect consistency
Outline

Motivation and background

Carneades

From Carneades to abstract argumentation

The translation

Properties and results
Structured argumentation: Carneades

Structured

Carneades translates to ASPIC$^+$

Abstract

translates to Dung
Carneades

- Structured argumentation (like ASPIC$^+$)
- Distinguishing feature: proof standards on a local level.

- Structured argumentation (like ASPIC$^+$)
- Distinguishing feature: proof standards on a local level.
 - Model is put forward as different than Dung’s approach and argumentation based on a knowledge-base.

▶ Structured argumentation (like ASPIC$^+$)
▶ Distinguishing feature: proof standards on a local level.
 - Model is put forward as different than Dung’s approach and argumentation based on a knowledge-base.
 - Brewka and Gordon (2010) claim that Dung’s frameworks are not able to model this cycle-free.
Pro and con arguments

Two types of arguments regarding a conclusion c:

- An argument with conclusion c is called $\text{pro } c$,
- An argument for an opposite conclusion, \overline{c}, is called $\text{con } c$.
Pro and con arguments

Two types of arguments regarding a conclusion c:

- An argument with conclusion c is called pro c,
- An argument for an opposite conclusion, \overline{c}, is called con c.

Aggregation of pro and con is done through proof standards.
Arguments in Carneades consist of a two step inference:

- Applicability of an argument.
- Acceptability of the conclusion \(c \).
Applicability

- Witness
- Liar
- Selfdefense
- Intent
- Kill

a_1
a2
a_3
Arguments in Carneades

- \(a_1 \) from witness to intent, weight 0.4
- \(a_2 \) from liar to \(\neg \text{intent} \), weight 0.6
- \(a_3 \) from intent to kill, weight 0.8
Arguments in Carneades (formally)

A propositional language \mathcal{L}.
An argument $\langle P, E, c \rangle$ has 3 parts:
Arguments in Carneades (formally)

A propositional language \mathcal{L}. An argument $\langle P, E, c \rangle$ has 3 parts:

- premises, $P \subseteq \mathcal{L}$,
- exceptions, $E \subseteq \mathcal{L}$,
- conclusion, $c \in \mathcal{L}$.
A propositional language \mathcal{L}.
An argument $\langle P, E, c \rangle$ has 3 parts:

- premises, $P \subset \mathcal{L}$,
- exceptions, $E \subset \mathcal{L}$,
- conclusion, $c \in \mathcal{L}$.

With $P \cap E = \emptyset$, and all premises, exceptions and conclusions literals.
A Carneades argument evaluation structure (CAES) is a tuple \((\text{arguments}, \text{audience}, \text{standard})\) where:

- **arguments** is an acyclic dependency graph of arguments,
- **audience** consists of two parts:
 - assumptions: a set of propositions similar to axioms,
 - weight: function mapping arguments to range 0 to 1,
- **standard** is a total function mapping literals in \(L\) to their applicable proof standards.
A Carneades argument evaluation structure (CAES) is a tuple <arguments, audience, standard> where:

- **arguments** is an acyclic dependency graph of arguments,
A Carneades argument evaluation structure (CAES) is a tuple \(\langle \text{arguments}, \text{audience}, \text{standard} \rangle \) where:

- **arguments** is an acyclic dependency graph of arguments,
- **audience** consists of two parts:
 - **assumptions**: a set of propositions similar to axioms,
 - **weight**: function mapping arguments to range 0 \(\ldots \) 1.
- **standard** is a total function mapping literals in \(L \) to their applicable proof standards.
A Carneades argument evaluation structure (CAES) is a tuple \(\langle \text{arguments}, \text{audience}, \text{standard} \rangle \) where:

- **arguments** is an acyclic dependency graph of arguments,
- **audience** consists of two parts:
 - **assumptions**: a set of propositions similar to axioms,
 - **weight**: function mapping arguments to range \(0 \leq \text{weight} \leq 1 \).
- **standard** is a total function mapping literals in \(L \) to their applicable proof standards.
A Carneades argument evaluation structure (CAES) is a tuple \langle arguments, audience, standard \rangle where:

- **arguments** is an acyclic dependency graph of arguments,
- **audience** consists of two parts:
 - **assumptions**: a set of propositions similar to axioms,
 - **weight**: function mapping arguments to range 0.0…1.0.
A Carneades argument evaluation structure (CAES) is a tuple \(\langle \text{arguments}, \text{audience}, \text{standard} \rangle \) where:

- \textit{arguments} is an acyclic dependency graph of arguments,
- \textit{audience} consists of two parts:
 - \textit{assumptions}: a set of propositions similar to axioms,
 - \textit{weight}: function mapping arguments to range \(0.0 \ldots 1.0 \).
- \textit{standard} is a total function mapping literals in \(\mathcal{L} \) to their applicable proof standards.
Applicability of arguments

An argument $\langle P, E, c \rangle$ is **applicable** in a CAES iff:

- $p \in P$ implies $p \in \text{assumptions or } [p < \text{assumptions} \text{ and } p \text{ acceptable}]$.
- $e \in E$ implies $e < \text{assumptions and } [e \in \text{assumptions or } e \text{ not acceptable}]$.
Applicability of arguments

An argument $\langle P, E, c \rangle$ is applicable in a CAES iff:

- $p \in P$ implies $p \in \text{assumptions}$ or $[\neg p \notin \text{assumptions} \text{ and } p \text{ acceptable}]$.
- $e \in E$ implies $e \notin \text{assumptions}$ and $[\neg e \in \text{assumptions} \text{ or } e \text{ not acceptable}]$.
Acceptability of propositions

Given a CAES $C = \langle \text{arguments}, \text{audience}, \text{standard} \rangle$.
A literal p is acceptable in C iff its proof standard returns $true$.
Proof standards

Five proof standards:
Proof standards

Five proof standards:

▶ Scintilla of evidence,
▶ Preponderance of the evidence,
▶ Clear and convincing evidence,
▶ Beyond reasonable doubt,
▶ Dialectical validity.
Beyond reasonable doubt

Given a CAES $C = \langle \text{arguments}, \text{audience}, \text{standard} \rangle$ and $p \in \mathcal{L}$.

$\textit{beyond-reasonable-doubt}(p, \text{arguments}, \text{audience}) = \text{true}$ iff

- There is an applicable $a \in \text{arguments}$ with weight $(a) > \alpha$,
- weight (a) exceeds the weight of the applicable con arguments by β,
- the weight of all applicable con arguments is less than γ.
Beyond reasonable doubt

Given a CAES $C = \langle \text{arguments}, \text{audience}, \text{standard} \rangle$ and $p \in \mathcal{L}$.
\textit{beyond-reasonable-doubt}(p, arguments, audience) = true iff

- There is an \textbf{applicable} $a \in$ arguments with $\text{weight}(a) > \alpha$,

\textbf{Universiteit Utrecht}
Beyond reasonable doubt

Given a CAES $C = \langle \text{arguments}, \text{audience}, \text{standard} \rangle$ and $p \in \mathcal{L}$.

\textit{beyond-reasonable-doubt}(p, arguments, audience) = true \textit{iff}

- There is an \textit{applicable} $a \in \text{arguments}$ with $\text{weight}(a) > \alpha$,
- $\text{weight}(a)$ exceeds the weight of the \textit{applicable} con arguments by β,

Universiteit Utrecht
Beyond reasonable doubt

Given a CAES $C = \langle \text{arguments}, \text{audience}, \text{standard} \rangle$ and $p \in \mathcal{L}$.

\textit{beyond-reasonable-doubt}$(p, \text{arguments, audience}) = \text{true}$ iff

- There is an \textit{applicable} $a \in \text{arguments}$ with $\text{weight}(a) > \alpha$,
- $\text{weight}(a)$ exceeds the weight of the \textit{applicable} \text{con arguments} by β,
- the weight of all \textit{applicable} \text{con arguments} is less than γ.
Outline

Motivation and background

Carneades

From Carneades to abstract argumentation
 The translation
 Properties and results
Outline

Motivation and background

Carneades

From Carneades to abstract argumentation
 The translation
 Properties and results
The translation

\[\text{Structured} \quad \text{Structures} \quad \text{Abstract} \]

\[\text{Carneades} \quad \text{translates to} \quad \text{ASPIC}^+ \quad \text{translates to} \quad \text{Dung} \]
Translating an argument

Applicability:
Translating an argument

Applicability:

\[\frac{p_1}{\text{arg}_{a_1}} \]

\[\frac{p_2}{\text{app}_{a_1}} \]

\[\frac{\neg \text{app}_{a_1}}{e_1} \]
Translating an argument

Applicability and acceptability:

\[
\begin{align*}
p_1 & \quad p_2 & \quad e_1 \\
\text{arg}_{a_1} & \quad \text{app}_{a_1} & \quad \neg \text{app}_{a_1}
\end{align*}
\]

\[
\begin{align*}
p_1 & \quad p_2 & \quad \text{arg}_{a_1} & \quad \text{app}_{a_1} & \quad \neg \text{app}_{a_1} \\
\hline
0.4 & \quad c & \quad \text{acc}_{a_1}
\end{align*}
\]
Translating arguments

- **Witness** and **liar** lead to **intent** with a probability of 0.4.
- **Selfdefense** leads to **intent** with a probability of 0.6.
- **Intent** leads to **kill** with a probability of 0.8.
Translating arguments

\[
\begin{align*}
\text{witness} & \quad \frac{\text{app}_{a_1}}{\text{arg}_{a_1}} \\
\text{intent} & \quad \frac{\text{kill}}{\text{arg}_{a_3}} \\
\text{murder} & \quad \frac{\text{self defense}}{\text{arg}_{a_2}} \\
\text{liar} & \quad \frac{\text{\neg intent}}{\text{\neg app}_{a_1}}
\end{align*}
\]
Argumentation system corresponding to a CAES (1)

Given a CAES:
For every argument $a = \langle P, E, c \rangle$ in arguments:

\[
\mathcal{R}_{da} = \{ P \Rightarrow_{app_a} arg_a; \ arg_a \Rightarrow_{acc_a} c \} \cup \\
\{ e_i \Rightarrow \neg app_a \mid e_i \in E \}
\]
Argumentation system corresponding to a CAES (2)

\[\mathcal{L}_{AS} = \mathcal{L}_{CAES} \cup \text{argument nodes} \cup \text{rule names}, \]
Argumentation system corresponding to a CAES (2)

- $\mathcal{L}_{AS} = \mathcal{L}_{CAES} \cup \text{argument nodes} \cup \text{rule names}$,
- $\mathcal{K}_n = \text{assumptions}$.
Argumentation system corresponding to a CAES (2)

- $\mathcal{L}_{AS} = \mathcal{L}_{CAES} \cup \text{argument nodes} \cup \text{rule names},$
- $\mathcal{K}_n = \text{assumptions},$
- $\mathcal{K}_i = \mathcal{L}_{CAES} \setminus (\text{assumptions} \cup \{c \mid \langle P, E, c \rangle \in \text{arguments}\}).$
Beyond reasonable doubt

Given a CAES $C = \langle \text{arguments}, \text{audience}, \text{standard} \rangle$ and $p \in \mathcal{L}$.

\textit{beyond-reasonable-doubt}(p, arguments, audience) = true iff

- There is an \textbf{applicable} $a \in \text{arguments}$ with $\text{weight}(a) > \alpha$,
- $\text{weight}(a)$ exceeds the weight of the \textbf{applicable} con arguments by β,
- the weight of all \textbf{applicable} con arguments is less than γ.
Argumentation system corresponding to a CAES (3)

For every argument \(a = \langle P, E, c \rangle \) in arguments with \(\text{standard}(a) = \text{beyond-reasonable-doubt} \):

\[
\mathcal{R}_{s_a} = \{ \rightarrow \neg \text{acc}_a \mid \text{weight}(a) \leq \alpha \} \\
\neg a = \{ (\text{acc}_a, \text{arg}_b) \mid b = \langle P', E', \overline{c} \rangle \in \text{arguments}, \\
\quad \text{weight}(a) \leq \text{weight}(b) + \beta \\
\quad \lor \text{weight}(b) \geq \gamma \} \\
\cup \{ (\text{acc}_a, \neg \text{acc}_a) \}
\]
Outline

Motivation and background

Carneades

From Carneades to abstract argumentation
 The translation
 Properties and results
Two part translation

Carneades was translated in two steps:
1. To an ASPIC$^+$ argumentation system,
2. To a Dung framework.
Interesting results about both!
A special case of Dung frameworks: well-founded argumentation frameworks

An argumentation framework is **well-founded** iff there does not exist an infinite sequence of arguments: $A_0, A_1, \ldots, A_n, \ldots$ such that for each i, $\text{defeats}(A_{i+1}, A_i)$ holds.
A special case of Dung frameworks: well-founded argumentation frameworks

An argumentation framework is well-founded iff there does not exist an infinite sequence of arguments: \(A_0, A_1, \ldots, A_n, \ldots \) such that for each \(i \), \(\text{defeats}(A_{i+1}, A_i) \) holds.

\[
A_0 \leftarrow A_1 \leftarrow \ldots \leftarrow A_n \leftarrow \ldots
\]

nor

\[
B \leftrightarrow A
\]
Theorem 30 of Dung (1995):

A well-founded argumentation framework has exactly one complete extension which is grounded, preferred and stable.
Proposition:

Every argumentation framework corresponding to a CAES is well-founded.
Uniqueness of extension of AF corresponding to CAES

Proposition:

Every argumentation framework corresponding to a CAES is well-founded.

Corollary:

Every argumentation framework corresponding to a CAES has exactly one complete extension which is grounded, preferred and stable.
Correspondence results

Theorem:

Given a CAES C and corresponding argumentation framework, AF. Then:

1. An argument $a \in \text{arguments}$ is **applicable** in C iff there is an argument contained in the complete extension of AF with the corresponding conclusion arg_a.

2. A propositional literal $c \in \mathcal{L}_{CAES}$ is **acceptable** in C or $c \in \text{assumptions}$ iff there is an argument contained in the complete extension of AF with the corresponding conclusion c.
Generalisation of a CAES

Given a cyclic CAES C. Then for $s \in \{complete, preferred, grounded, stable\}$:

- An argument $a \in arguments$ is **applicable** in C under sceptical (credulous) s semantics iff all (some) s extensions of AF contain an argument with conclusion arg_a.

- A propositional literal $c \in L_{CAES}$ is **acceptable** in C or $c \in assumptions$ under sceptical (credulous) s semantics iff all (some) s extensions of AF contain an argument with conclusion c.
 Corresponding argumentation system

Advantages of using ASPIC$^+$ as an intermediate step:

▶ Carneades modelled as knowledge-based argumentation,
▶ Lift the language of Carneades to predicate logic or further,
▶ Argument schemes and ASPIC$^+$ knowledge and rules can be used,
▶ Rationality postulates.
Future work

Multiple avenues for future work:

- **Argument generation** of ASPIC$^+$ lacks detail,
 - Translation and work as done by Besnard and Hunter can be **integrated**,
 - Initial results on **computational complexity**. Should be formalised!
- **Uses of ASPIC$^+$ argumentation system** in translated Carneades should be worked out further,
- **Dialogical** component of Carneades should be related.