
G52CON: 
Concepts of Concurrency 

Lecture 4: Atomic Actions"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 2	

Outline of the lecture"
•  process execution	

•  fine-grained atomic actions	

•  using fine-grained atomic actions to solve simple mutual exclusion

problems:	

– single word readers and writers	

– shared counter	

•  limitations of fine-grained atomic actions	

•  coarse-grained atomic actions	

•  disabling interrupts 	

•  mutual exclusion protocols	

•  unassessed Exercise 1	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 3	

Model of process execution"
A process is the execution of a sequential program.	

•  the state of a process at any point in time consists of the values of both
the program variables and some implicit variables, e.g., the program
counter, contents of registers;	

•  as a process executes, it transforms its state by executing statements;	

•  each statement consists of a sequence of one or more atomic actions
that make indivisible state changes, e.g., uninterruptible machine
instructions that load and store registers;	

•  any intermediate state that might exist in the implementation of an
atomic action is not visible to other processes.	

Atomic actions"
An atomic action is one that appears to take place as a single indivisible
operation	

•  a process switch can’t happen during an atomic action, so	

•  no other action can be interleaved with an atomic action; and	

•  no other process can interfere with the manipulation of data by an
atomic action	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 4	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 5	

Concurrent execution"
Consider a multiprogramming implementation of a concurrent program
consisting of two processes: 	

•  the switching between processes occurs voluntarily (e.g., yield() in
Java); or	

•  in response to interrupts, which signal external events such as the
completion of an I/O operation or clock tick to the processor.	

Process A	

Process B	

 time	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 6	

Atomic actions and process switching"
Process switches can only occur between atomic actions:	

Process A	

Process B	

 time	

atomic actions	

possible process switches	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 7	

Which actions are atomic?"
•  when can the switching between processes occur, i.e., which actions

are atomic?	

•  we saw in the Ornamental Gardens example that high-level program
statements (e.g. Java statements) are not atomic	

•  rather high-level program statements often correspond to multiple
machine instructions	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 8	

Hardware assumptions"
•  values of program variables are manipulated by loading them into

registers, modifying the register value and storing the results back into
memory;	

•  each process has its own set of registers, either:	

–  real registers (in a multiprocessing implementation); or	

–  register values are saved and restored when switching processes

(in a multiprogramming implementation)	

•  when evaluating a complex expression, e.g., z = x * (y + 1),
intermediate results are stored in registers or in memory private to the
executing process, e.g., on a private stack.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 9	

Ornamental Gardens program"
// West turnstile

init1;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}

// East turnstile

init2;

while(true) {

 // wait for turnstile

 count = count + 1;

 // other stuff ...

}!

count == 0	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 10	

Loss of increment"

West turnstile process	

count = count + 1;	

1. loads the value of count into a CPU
register (r == 10)	

4. increments the value in its register 	

(r == 11)	

6. stores the value in its register in count
(count == 11)	

East turnstile process	

count = count + 1;

2. loads the value of count into a CPU
register (r == 10)	

3. increments the value in its register 	

(r == 11)	

5. stores the value in its register in count
(count == 11)	

// shared variable
integer count = 10;

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 11	

Which operations are atomic"
So which of these basic operations are atomic?	

•  some, but not all, machine instructions are atomic	

•  some sequences of machine instructions are atomic	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 12	

Kinds of atomic actions"
•  some, but not all, machine instructions are atomic:	

– a fine-grained atomic action is one that can be implemented
directly as uninterruptible machine instructions e.g., loading and
storing registers	

•  some sequences of machine instructions are (or appear to be) atomic	

– a coarse-grained atomic action consists of a sequence of fine-
grained atomic actions which cannot or will not be interrupted	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 13	

Memory access are atomic"
Reading and writing a single memory location are fine-grained atomic
operations. However:	

•  accesses to non-basic types, e.g. doubles, strings, arrays or reference
types are (usually) not atomic;	

•  if data items are packed two or more to a word, e.g. strings and
bitvectors, then write accesses may not be atomic.	

Few programming languages specify anything about the indivisibility of
variable accesses, leaving this as an implementation issue.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 14	

Memory accesses in Java"
Java is unusual in specifying which memory accesses are atomic:	

•  reads and writes to memory cells corresponding to (instance or static)
fields and array elements of any type except long or double are
guaranteed to be atomic;	

•  when a non-long or non-double field is used in an expression, you
will get either its initial value or some value that was written by some
thread;	

•  however you are not guaranteed to get the value most recently written
by any thread.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 15	

Special machine instructions"
In addition to reads and writes of single memory locations, most modern
CPUs provide additional special indivisible instructions, e.g.:	

•  Exchange instruction	

x r

 where x is a variable and r is a register.	

•  Increment & Decrement instructions (also Fetch-and-Add)	

INC(int x) { int v = x; x = x + 1; return v }

•  Test-and-Set instruction	

TS(bool x) { bool v = x; x = true; return v } 	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 16	

More special instructions"
•  Compare-and-Swap instruction	

CAS(int x, value v, value n) {

 if (x == v) { x = n; return true }

 else { return false }

}

•  LL/SC (Load-Link/Store-Conditional) instructions	

value v = LL(int x);

SC(int x, value v, value n) {

 if (x == v) {x = n; return true }

 else { return false }

}

and x has not been written since LL read v	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 17	

Examples of atomic instructions"

Instruction	

 Processors	

Exchange	

 IA32, Sparc	

Increment/Fetch-and-Add	

 IA32	

Compare-and-Swap	

 IA32, Sparc	

LL/SC	

 Alpha, ARM, MIPS, PPC	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 18	

Simple mutual exclusion"
Special machine instructions can be used to solve some very simple
mutual exclusion problems directly, e.g.:	

•  Single Word Readers and Writers: several processes read a shared
variable and several process write to the shared variable, but no
process both reads and writes	

•  Shared Counter: several processes each increment a shared counter	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 19	

Single Word Readers & Writers"
Several processes read a shared variable and several process write to the
shared variable, but no process both reads and writes	

•  if the variable can be stored in a single word, then the memory unit
will ensure mutual exclusion for all accesses to the variable	

•  e.g., one process might sample the output of a sensor and store the
value in memory; other processes check the value of the sensor by
reading the value	

•  also works in multiprocessing implementations.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 20	

Shared Counter"
Several processes each increment a shared counter	

•  if the counter can be stored in a single word, then a special increment
instruction can be used to update the counter, ensuring mutual exclusion	

•  reading the value of the shared counter is also mutually exclusive (since
reading a single memory location is atomic)	

•  e.g., the Ornamental Gardens problem	

•  but only works if the target CPU has an atomic increment instruction (and
the compiler/JVM uses it), and 	

•  probably won’t work for multiprocessing implementations.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 21	

Multiprocessing implementations"
In multiprocessing implementations, the set of atomic instructions is
different:	

•  special machine instructions which are atomic on a single processor do
not provide mutual exclusion between different processors	

•  the execution of many instructions involves several memory accesses 	

•  there is nothing to prevent another processor which shares the same
memory accessing memory between accesses of the the first processor. 	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 22	

Example: test-and-set"
•  for example, the Test-and-Set instruction:	

TS(bool x) { bool v = x; x = true; return v } 	

• test-and-set x is atomic on one processor, but a process on a
different processor could modify the value of x during the execution
of the test-and-set instruction	

•  the operation is atomic with respect to interrupts (the interrupt is
effectively before or after it), but not with respect to memory access
over the bus (another CPU can access the bus between the read and
write)	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 23	

Memory lock instructions"
Multiprocessor machines sometimes provide a special memory lock
instruction (e.g. LOCK on Intel) which locks memory during execution of
the next instruction	

•  no other processors are permitted access to the shared memory during
the execution of the instruction following the memory lock instruction	

•  memory locked instructions are thus effectively indivisible and
therefore mutually exclusive across all processors	

However memory lock instructions may work for only a limited set of
instructions, and (temporarily) lock other processors, such as device
controllers, out of memory.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 24	

Problems with (fine-grained) atomic
actions"
Fine-grained atomic actions are not very useful to the applications
programmer:	

•  atomic actions don’t work for multiprocessor implementations of
concurrency unless we can lock memory	

•  the set of atomic actions (special instructions) varies from machine to
machine	

•  we can’t assume that a compiler will generate a particular sequence of
machine instructions from a given high-level statement	

•  the range of things you can do with a single machine instruction is
limited —we can’t write a critical section of more than one
instruction.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 25	

Coarse-grained atomic actions"
To write critical sections of more than a single machine instruction, we
need some way of concatenating fine-grained atomic actions:	

•  a coarse-grained atomic action is consists of an uninterruptible
sequence of fine-grained atomic actions, e.g., a call to a
synchronized method in Java;	

•  coarse-grained atomic actions can be implemented at the hardware
level (on a single processor/core) by disabling interrupts, or	

•  by defining a mutual exclusion protocol (later lectures).	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 26	

Process switching"
Process switches happen between (fine-grained) atomic actions. 	

•  in a multiprogramming implementation there are 3 points at which a
process switch can happen:	

– (hardware) interrupt, e.g., completion of an I/O operation, system
clock etc.;	

– return from interrupt, e.g. after servicing an interrupt caused by a
key press or mouse click; and	

– trap instruction, e.g., a system call.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 27	

Disabling interrupts"
We can ensure mutual exclusion between critical sections in a
multiprogramming implementation by disabling interrupts in a critical
section.	

Process A	

Process B	

 time	

critical section

critical section

interrupts disabled

interrupts disabled

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 28	

Problems with disabling interrupts"
However disabling interrupts has several disadvantages:	

•  it is available only in privileged mode;	

•  it excludes all other processes, reducing concurrency; and	

•  it doesn’t work in multiprocessing implementations (disabling
interrupts is local to one processor).	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 29	

When to disable interrupts"
Disabling interrupts is only useful in a small number of situations, e.g., 	

•  writing operating systems 	

•  dedicated systems or bare machines such as embedded systems	

•  simple processors which don’t provide support for multi-user systems 	

and is not a very useful approach from the point of view of an application
programmer.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 30	

Defining a mutual exclusion protocol"
To solve the mutual exclusion problem, we adopt a standard Computer
Science approach: 	

•  we design a protocol which can be used by concurrent processes to
achieve mutual exclusion and avoid interference	

•  our protocol will consist of a sequence of instructions which is
executed before (and possibly after) the critical section	

•  such protocols can be defined using standard sequential programming
primitives, special instructions and what we know about when process
switching can happen.	

Fine-grained atomic actions can be used to implement higher-level
synchronisation primitives and protocols.	

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 31	

Exercise 1: Interference"
Process 1	

// initialisation code
integer x;

x = y + z;

// other code ...

Process 2	

// initialisation code

y = 1;
z = 2;

// other code ...

Shared datastructures	

integer y = 0, z = 0;

© Brian Logan 2014	

 G52CON Lecture 4: Atomic Actions	

 32	

The next lecture"

Mutual Exclusion Algorithms I: Test-and-Set	

Suggested reading:	

•  Andrews (2000), chapter 3, sections 3.1–3.2;	

•  Ben-Ari (1982), chapter 2;	

•  Andrews (1991), chapter 3, section 3.1.	

