
G52CON: 
Concepts of  Concurrency 

 
Lecture 5: Algorithms for Mutual Exclusion I"

Brian Logan	


School of Computer Science	



bsl@cs.nott.ac.uk 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



2	



Outline of this lecture"
•  mutual exclusion protocols	


	


•  criteria for a solution 	



–  safety properties	



–  liveness properties	



•  simple spin lock	



•  spin lock using turns	



•  spin lock using the Test-and-Set special instruction	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



3	



Archetypical mutual exclusion"

// Process 1 

init1; 

while(true) { 

crit1; 

rem1; 

} 

 

// Process 2   ...    // Process n 

init2;                initn; 

while(true) {         while(true) { 

crit2;                critn; 

rem2;                 remn; 

}                      } 

	



Any program consisting of n processes for which mutual exclusion is 
required between critical sections belonging to just one class can be written:	



where initi denotes any (non-critical) initialisation, criti denotes 	


a critical section, remi denotes the (non-critical) remainder of the 	


program, and i  is 1, 2, … n.	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



4	



We assume that init, crit and rem may be of any size:	



• crit  must execute in a finite time—process does not terminate in 
crit	



• init and rem may be infinite—process may terminate in init or 
rem 

• crit and rem may vary from one pass through the while loop to 
the next	



With these assumptions it is possible to rewrite any process with critical 
sections into the archetypical form.	


	



Archetypical mutual exclusion"



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



5	



Ornamental Gardens problem"
// West turnstile 

 

init1; 

while(true) { 

  // wait for turnstile 

  < count = count + 1; > 

  // other stuff ... 

 

} 

// East turnstile 

 

init2; 

while(true) { 

  // wait for turnstile 

  < count = count + 1; > 

  // other stuff ... 

   

} 

// Shared datastructures 
count == 0	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



6	



Ornamental Gardens problem"
// West turnstile 

 

init1; 

while(true) { 

  // wait for turnstile 

  < INCR count; > 

  // other stuff ... 

 

} 

// East turnstile 

 

init2; 

while(true) { 

  // wait for turnstile 

  < INCR count; > 

  // other stuff ... 

   

} 

// Shared datastructures 
count == 0	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



7	



Limitations of special instructions"
This solution will work if:	


	



•  we have a multiprogramming implementation of concurrency (or we 
can lock memory)	



•  we have an atomic increment instruction available on the target CPU	



•  we know how a given high-level program statement will be compiled	



However, the range of things you can do with a single atomic action is 
limited —we can’t write a critical section longer than one instruction.	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



8	



Shared Queue problem!

// Process 1 
!
init1 
while(true) { 
  tail = tail + 1; 
  queue[tail] = data1; 
 
  // other code ... 
  rem1 
} 

// Process 2 
!
init2 
while (true) { 
  tail = tail + 1; 
  queue[tail] = data2; 
 
  // other code ... 
 rem2 
} 

// Shared datastructures 
	


Object queue[SIZE]; 
integer tail; 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



9	



Example: coarse-grained atomic action!
// Process 1 
!
init1 
while(true) { 
 < tail = tail + 1; 
   queue[tail] = data1; > 
 
  // other code ... 
} 

// Process 2 
!
init2 
while (true) { 
 < tail = tail + 1; 
   queue[tail] = data2; > 
 
  // other code ... 
} 

// Shared datastructures 
	


Object queue[SIZE]; 
integer tail; 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



10	



Defining a mutual exclusion protocol"
To solve the mutual exclusion problem, we adopt a standard Computer 
Science approach: 	


	



•  we design a protocol which can be used by concurrent processes to 
achieve mutual exclusion and avoid interference;	



•  our protocol will consist of a sequence of instructions which is 
executed before and possibly after the critical section;	



•  such protocols can be defined using standard sequential programming 
primitives, special instructions and what we know about when process 
switching can happen.	



	


There are many ways to implement such a protocol.	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



11	



General form of a solution"
We assume that each of the n processes have the following form, 	


i = 1, …, n	


 

// Process i  
initi; 

while(true) { 

    // entry protocol 

    criti; 

    // exit protocol 

    remi; 

} 

	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



12	



Shared Queue problem!

// Process 1 
!
init1 
while(true) { 
  // entry protocol 
  tail = tail + 1; 
  queue[tail] = data1; 
  // exit protocol 
 
  // other code ... 
} 

// Process 2 
!
init2 
while (true) { 
  // entry protocol 
  tail = tail + 1; 
  queue[tail] = data2; 
  // exit protocol 
 
  // other code ... 
} // Shared datastructures 

	


Object queue[SIZE]; 
integer tail; 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



13	



Correctness of concurrent programs"
A concurrent program must satisfy two types of property:	


	



•  Safety Properties: requirements that something should never happen, 
e.g., failure of mutual exclusion or condition synchronisation, 
deadlock etc.	



•  Liveness Properties: requirements that something will eventually 
happen, e.g. entering a critical section.	



	


Note that establishing liveness may require proving safety properties.	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



14	



Criteria for a solution"
The protocols should satisfy the following properties	



•  Mutual Exclusion: at most one process at a time is executing its 
critical section	



•  Absence of Deadlock (Livelock): if no process is in its critical 
section and two or more processes attempt to enter their critical 
sections, at least one will succeed	



•  Absence of Unnecessary Delay: if a process is trying to enter its 
critical section and other processes are executing their noncritical 
sections (or have terminated), the first process is not prevented from 
entering its critical section	



•  Eventual Entry: a process that is attempting to enter its critical 
section will eventually succeed	



– Andrews (2000), p 95.	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



15	



Deadlock vs livelock"
A processes is deadlocked or livelocked when it is unable to make 
progress because it is waiting for a condition that will never become true	



•  a deadlocked process is blocked waiting on the condition, e.g, in 
wait() — process does not consume any CPU	



•  a livelocked process is alive and waiting on the condition, e.g, busy 
waiting — process does consume CPU	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



16	



A simple spin lock"
bool lock = false;      // shared lock variable 

 

// Process i 

initi; 

while(true) { 

  while(lock) {};       // entry protocol 

  lock = true;          // entry protocol 

  criti; 

  lock = false;         // exit protocol 

  remi; 

}	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



17	



Properties of the simple spin lock"
Does the simple spin lock satisfy the following properties:	


	



•  Mutual Exclusion: yes/no	



•  Absence of Livelock: yes/no	



•  Absence of Unnecessary Delay: yes/no	



•  Eventual Entry: yes/no	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



19	



An example trace 1"
// Process 1 
 
init1; 

 

     

     

     

     

     

} 
!

// Process 2 
 
init2; 

 

     

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



20	



An example trace 2"
// Process 1 
 
init1; 

while(true) { 

     

     

     

     

     

} 
!

// Process 2 
 
init2; 

 

     

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



21	



An example trace 3"
// Process 1 
 
init1; 

while(true)  

     

     

     

     

     

} 
!

// Process 2 
 
init2; 

while(true)  

     

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



22	



An example trace 4"
// Process 1 
 
init1; 

while(true) { 

    while(lock) 

     

     

     

     

} 
!

// Process 2 
 
init2; 

while(true)  

     

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



23	



An example trace 5"
// Process 1 
 
init1; 

while(true) { 

    while(lock)  

     

     

     

     

} 
!

// Process 2 
 
init2; 

while(true) { 

    while(lock)  

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



24	



An example trace 6"
// Process 1 
 
init1; 

while(true) { 

    while(lock) 

    lock = true; 

     

     

     

} 
!

// Process 2 
 
init2; 

while(true) { 

    while(lock) 

     

     

     

     

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



25	



An example trace 7"
// Process 1 
 
init1; 

while(true) { 

    while(lock) 

    lock = true; 

    crit1; 

     

     

} 
!

// Process 2 
 
init2; 

while(true) { 

    while(lock) 

     

     

     

     

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



26	



An example trace 8"
// Process 1 
 
init1; 

while(true) { 

    while(lock) 

    lock = true; 

    crit1; 

     

     

} 
!

// Process 2 
 
init2; 

while(true) { 

    while(lock) 

    lock = true; 

     

     

     

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



27	



An example trace 9"
// Process 1 
 
init1; 

while(true) { 

    while(lock) 

    lock = true; 

    crit1; 

     

     

} 
!

// Process 2 
 
init2; 

while(true) { 

    while(lock) 

    lock = true; 

    crit2; 

     

     

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



28	



Mutual exclusion violation"
// Process 1 
 
init1; 

while(true) { 

    while(lock) 

    lock = true; 

    crit1; 

     

     

} 
!

// Process 2 
 
init2; 

while(true) { 

    while(lock) 

    lock = true; 

    crit2; 

     

     

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



29	



Properties of the simple spin lock"
The simple spin lock has the following properties:	


	



•  Mutual Exclusion: no	



•  Absence of Livelock: yes	



•  Absence of Unnecessary Delay: yes	



•  Eventual Entry: is guaranteed only if the scheduling policy is 
strongly fair.	



	


A strongly fair scheduling policy guarantees that if a process requests to 
enter its critical section infinitely often, the process will eventually enter 
its critical section. 	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



30	



Properties of the simple spin lock"
•  Mutual Exclusion: doesn’t hold because there are interleavings which allow 

both processes to pass their entry protocols	



•  Absence of Livelock: holds because if all processes are outside their critical 
sections, lock must be false, and hence (at least) one of the processes will be 
allowed to enter its critical section	



•  Absence of Unnecessary Delay: holds because if all the other processes are 
outside their critical sections and stay there, lock is false and stays false, and 
hence the process that is trying to enter can immediately do so	



•  Eventual Entry: holds because if a process tests lock infinitely often, it 
must eventually see the value false—lock must become false eventually as 
no process can spend infinitely long in its critical section, so must eventually 
execute its exit protocol, setting lock to false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



31	



Spin lock using turns"
// Process 1 
 
init1; 

while(true) { 

    // entry protocol 

    while(turn == 2) {}; 

    crit1; 

    // exit protocol 

    turn = 2; 

    rem1; 

} 
!

// Process 2 
 
init2; 

while(true) { 

    // entry protocol 

    while(turn == 1) {}; 

    crit2; 

    // exit protocol 

    turn = 1; 

    rem2; 

}!

 turn == 1	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



32	



Properties of round robin"
Does round robin satisfy the following properties:	


	



•  Mutual Exclusion: yes/no	



•  Absence of Livelock: yes/no	



•  Absence of Unnecessary Delay: yes/no	



•  Eventual Entry: yes/no	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



34	



Properties of round robin"
Round robin has the following properties:	


	



•  Mutual Exclusion: yes	



•  Absence of Livelock: no	



•  Absence of Unnecessary Delay: no	



•  Eventual Entry: no	



	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



35	



Properties of round robin"
•  Mutual Exclusion: holds because turn can’t be both 1 and 2, so at 

most one process can be in its critical section at any given time	



•  Absence of Livelock: doesn’t hold — if there are three processes, one 
of which has terminated (e.g., in rem), then the other two processes 
may not be able to enter their critical sections	



•  Absence of Unnecessary Delay: fails for two reasons— (1) if any 
processes terminates outside its critical section, then a process that 
wants to enter may be unable to do so; (2) even if no process 
terminates, all processes are constrained to enter their critical sections 
in order and equally often	



•  Eventual Entry: doesn’t hold because the processes can Livelock	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



36	



Test-and-Set instruction"
The Test-and-Set instruction effectively executes the function	


	


bool TS(bool lock) { 

    bool v = lock; 

    lock = true; 

    return v; 

}	


	


as an atomic action.	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



37	



Spin lock using Test-and-Set"
// Process i 

 

initi; 

while(true) { 

  while (TS(lock)) {};  // entry protocol 

  criti; 

  lock = false;         // exit protocol 

  remi; 

}	



// shared lock variable 
bool lock = false;       



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



38	



An example trace 1"
// Process 1 
 
init1; 

 

     

     

     

     

     

} 
!

// Process 2 
 
init2; 

 

     

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



39	



An example trace 2"
// Process 1 
 
init1; 

while(true)  

     

     

     

     

     

} 
!

// Process 2 
 
init2; 

 

     

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



40	



An example trace 3"
// Process 1 
 
init1; 

while(true)  

     

     

     

     

     

} 
!

// Process 2 
 
init2; 

while(true)  

     

     

     

     

     

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



41	



An example trace 4"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) 

     

 

 

} 
!

// Process 2 

 

init2; 

while(true) { 

     

 

 

 

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



42	



An example trace 5"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) 

     

 

 

} 
!

// Process 2 

 

init2; 

while(true) { 

    while(TS(lock)) 

 

 

 

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



43	



An example trace 6"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) {}; 

     

 

 

} 
!

// Process 2 

 

init2; 

while(true) { 

    while(TS(lock)) {}; 

 

 

 

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



44	



An example trace 7"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) {}; 

    crit1; 

     

 

} 
!

// Process 2 

 

init2; 

while(true) { 

    while(TS(lock)) {}; 

 

 

 

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



45	



An example trace 7"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) {}; 

    crit1; 

    lock = false; 

 

} 
!

// Process 2 

 

init2; 

while(true) { 

    while(TS(lock)) {}; 

     

 

 

}!

 
lock == false	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



46	



An example trace 8"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) {}; 

    crit1; 

    lock = false; 

    rem1; 

} 
!

// Process 2 

 

init2; 

while(true) { 

    while(TS(lock)) {}; 

    crit2; 

     

 

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



47	



An example trace 9"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) {}; 

    crit1; 

    lock = false; 

    rem1; 

} 
!

// Process 2 

 

init2; 

while(true) { 

    while(TS(lock)) {}; 

    crit2; 

 

 

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



48	



An example trace 10"
// Process 1 

 

init1; 

while(true) { 

    while(TS(lock)) {}; 

    crit1; 

    lock = false; 

    rem1; 

} 
!

// Process 2 

 

init2; 

while(true) { 

    while(TS(lock)) {}; 

    crit2; 

 

 

}!

 
lock == true	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



50	



Properties of the Test-and-Set solution"
The solution based on Test-and-Set has the following properties:	


	



•  Mutual Exclusion: yes	



•  Absence of Livelock: yes	



•  Absence of Unnecessary Delay: yes	



•  Eventual Entry: is guaranteed only if the scheduling policy is 
strongly fair.	



	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



51	



Solving the Shared Queue problem!

// Process 1 
!
init1 
while(true) { 
   
  tail = tail + 1; 
  queue[tail] = data1; 
 
  // other code ... 
} 

// Process 2 
!
init2 
while (true) { 
   
  tail = tail + 1; 
  queue[tail] = data2; 
 
  // other code ... 
} 

// Shared datastructures 
	


Object queue[SIZE]; 
integer tail; 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



52	



Solving the Shared Queue problem!

// Process 1 
!
init1 
while(true) { 
  while(TS(lock)) {};  
  tail = tail + 1; 
  queue[tail] = data1; 
  lock = false; 
  // other code ... 
} 

// Process 2 
!
init2 
while (true) { 
  while(TS(lock)) {}; 
  tail = tail + 1; 
  queue[tail] = data2; 
  lock = false; 
  // other code ... 
} 

// Shared datastructures 
Object queue[SIZE]; 
integer tail; 
lock = false; 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



53	



Overhead of spin locks"

Process A	



Process B	

 time	



critical section 

critical section 

Process B spinning 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



54	



Possible starvation with spin locks"

Process A	



Process B	

 time	



critical section 

Process B spinning 

critical section 



© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



55	



Test-and-Set summary"
•  Test-and-Set must be atomic	


•  in a multiprocessing implementation Test-and-Set must effectively 

lock memory	



•  if both processes don’t try to enter their critical section at the same 
time neither will have to wait (no Unnecessary Delay)	



•  if there is contention, so long as the critical sections are short the 
amount of time that each process should have to spend spinning (or 
busy waiting) will be small	



•  for Eventual Entry, the scheduling policy must be strongly fair	



•  since all processes execute the same protocol it works for any number 
of processes	





© Brian Logan 2014	

 G52CON Lecture 5: Algorithms for Mutual 
Exclusion I	



56	



The next lecture"
Mutual Exclusion Algorithms II	



	


Suggested reading:	



•  Ben-Ari(1982), chapter 3;	


•  Burns & Davies (1993), chapter 3, section 3.4.	




