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Outline of this lecture"
•  mutual exclusion with standard instructions	



•  example: Peterson’s algorithm	



•  comparison with the Test-and-Set solution	



•  spin locks in Java	



•  Java memory model: atomicity, visibility, ordering	



•  Peterson’s algorithm in Java	
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Spin lock using Test-and-Set"
bool lock = false;      // shared lock variable 

 

// Process i 

initi; 

while(true) { 

  while (TS(lock)) {};  // entry protocol 

  criti; 

  lock = false;         // exit protocol 

  remi; 

}	
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Simple spin lock using standard instructions"

bool lock = false;      // shared lock variable 

 

// Process i 

initi; 

while(true) { 

  while(lock) {};       // entry protocol 

  lock = true;          // entry protocol 

  criti; 

  lock = false;         // exit protocol 

  remi; 

}	
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Mutual exclusion violation"
// Process 1 
 
init1; 

while(true) { 

    while(lock) 

    lock = true; 

    crit1; 

     

     

} 
!

// Process 2 
 
init2; 

while(true) { 

    while(lock) 

    lock = true; 

    crit2; 

     

     

}!

 
lock == true	
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Dekker’s algorithm"
// Process 1 

init1; 

while(true) { 

c1 = 0;   // entry protocol 

while (c2 == 0) {      

if (turn == 2) { 

c1 = 1; 

while (turn == 2) {}; 

c1 = 0; 

} 

} 

crit1; 

turn = 2; // exit protocol 

c1 = 1; 

rem1; 

}!

// Process 2 

init2; 

while(true) { 

c2 = 0;   // entry protocol 

while (c1 == 0) {      

if (turn == 1) { 

c2 = 1; 

while (turn == 1) {}; 

c2 = 0; 

} 

} 

crit2; 

turn = 1; // exit protocol 

c2 = 1; 

rem2; 

} 

c1 == 1 c2 == 1 turn == 1	
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Peterson’s algorithm"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

// exit protocol 

c2 = false; 

rem2; 

} 

// shared variables 
bool c1 = c2 = false;  
integer turn = 1;	
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An example trace 1.1"
// Process 1 

init1; 

 

     

   

   

   

   

   

   

   

} 

// Process 2 

init2; 

 

     

 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = false; integer turn = 1;	
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An example trace 1.2"
// Process 1 

init1; 

while(true) { 

     

   

   

   

   

   

   

   

} 

// Process 2 

init2; 

 

     

 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = false; integer turn = 1;	
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An example trace 1.3"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

   

   

   

   

   

   

} 

// Process 2 

init2; 

 

     

 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = false; integer turn = 1;	
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An example trace 1.4"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

   

   

   

   

   

} 

// Process 2 

init2; 

 

     

 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = false; integer turn = 2;	
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An example trace 1.5"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

   

   

   

   

} 

// Process 2 

init2; 

 

     

 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = false; integer turn = 2;	
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An example trace 1.6"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

   

   

   

} 

// Process 2 

init2; 

 

     

 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = false; integer turn = 2;	
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An example trace 1.7"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

   

   

   

} 

// Process 2 

init2; 

while(true) { 

     

 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = false; integer turn = 2;	
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An example trace 1.8"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

 

 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 2;	
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An example trace 1.9"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 1;	
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An example trace 1.10"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 1;	
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An example trace 1.11"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 1;	
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An example trace 1.12"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = true; integer turn = 1;	
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An example trace 1.13"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = true; integer turn = 1;	
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An example trace 1.14"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = true; integer turn = 1;	
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An example trace 1.15"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = true; integer turn = 1;	
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Question (a)"
What happens if Process 2 is slow (or swapped out) and doesn’t notice 
that Process 1 has left its critical section?	
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An example trace 2.1"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 1;	
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An example trace 2.2"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = true; integer turn = 1;	
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An example trace 2.3"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = true; integer turn = 1;	
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An example trace 2.4"
// Process 1 

init1; 

while(true) { 

     

   

   

  

   

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = false; c2 = true; integer turn = 1;	
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An example trace 2.5"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

   

   

   

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 1;	
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An example trace 2.6"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

   

   

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 2;	
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An example trace 2.7"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

   

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 2;	
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An example trace 2.8"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

   

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 2;	
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An example trace 2.9"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

   

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 2;	
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An example trace 2.10"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

   

   

   

   

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

 

 

 

} 

// shared variables 
bool c1 = true; c2 = true; integer turn = 2;	
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Question (b)"
How many times can one process that wants to enter its critical section be 
‘bypassed’ by the other before the first process gets to enter its critical 
section?	
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Question (c)"
What would happen if we swapped the order of the statements in the entry 
protocol?  Is the algorithm still correct?	
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Properties of Peterson’s algorithm"
The solution based on Peterson’s algorithm has the following properties:	


	



•  Mutual Exclusion: yes	



•  Absence of Livelock: yes	



•  Absence of Unnecessary Delay: yes	



•  Eventual Entry: is guaranteed even if scheduling policy is only 
weakly fair.	



   A weakly fair scheduling policy guarantees that if a process requests 
to enter its critical section (and does not withdraw the request), the 
process will eventually enter its critical section.	
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Comparison with Test-and-Set"
 Test-and-Set Peterson‘s Algorithm 

Mutual Exclusion: yes yes 

Absence of Deadlock: yes yes 

Absence of Unnecessary Delay: yes yes 

Eventual Entry: scheduling 
strongly fair 

scheduling  
weakly fair 

Practical issues: special 
instructions, 
any number of 
processes 

standard  
instructions, 
> 2 processes  
complex 
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Java execution"
Consider a Java program consisting of two threads: 	


	



Given a single processor, the JVM executes a sequence of instructions 	


which is an interleaving of the instruction sequences for each thread.	



Thread A	



Thread B	

 time	
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Java code optimisation"
Not only may concurrent executions be interleaved, they may also be 
reordered and otherwise manipulated to increase execution speed:	


	



•  the compiler may rearrange the order of the statements;	


•  the processor may rearrange the execution order of the machine 

instructions;	


•  the memory system may rearrange the order in which writes are 

committed to memory;	


•  the compiler, processor and/or memory system may maintain variable 

values in, e.g., CPU registers, rather than writing them to memory so 
long as the code has the “intended” effect.	
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Java Memory Model"

CPU"

registers"
cache"

CPU"

registers"
cache"bus"

main memory" an object representation"
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Working memory"
Java allows threads that access shared variables to keep private ‘working 
copies’ of variables:	


	



•  each thread is defined to have a working memory (an abstraction of 
caches and registers) in which to store values;	



•  this allows a more efficient implementation of multiple threads.  	
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Model properties"
The Java Memory Model specifies when values must be transferred 
between main memory and per-thread working memory:	


	



•  atomicity: which instructions must have indivisible effects	



•  visibility: under what conditions are the effects of one thread visible 
to another; and	



•  ordering: under what conditions the effects of operations can appear 
out of order to any given thread.	
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Atomicity"
Reads and writes to memory cells corresponding to fields of any type 
except long or double are guaranteed to be atomic:	


	



•  when a field (other than long or double) is used in an expression, 
you will get either its initial value or some value that was written by 
some thread;	



•  however you are not guaranteed to get the value most recently written 
by any thread.	
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Visibility"
Without synchronization, changes to fields made by one thread are not 
guaranteed to be visible to other threads:	


	



•  the first time a thread accesses a field of an object, it sees either the 
initial value of the field or a value since written by some other thread; 
and	



•  when a thread terminates, all written variables are flushed to main 
memory.	
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Ordering"
The apparent order in which the instructions in a method are executed can 
differ:	


	



•  from the point of view of the thread executing the method, instructions 
appear to be executed in the proper order (as-if-serial semantics);	



•  from the point of view of other threads executing unsynchronised 
methods almost anything can happen;	
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Example: Peterson’s algorithm"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

// exit protocol 

c2 = false; 

rem2; 

} 

// shared variables 
bool c1 = c2 = false;  
integer turn = 1;	
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Assumptions for Peterson’s 
algorithm"
Peterson’s algorithm implicitly relies on:	


	



•  atomicity: variable reads and writes being atomic;	



•  visibility: the values written to the variables being immediately 
propagated to the other process (thread); 	



•  ordering: the ordering of the instructions being preserved; and	



•  that the scheduling policy is at least weakly fair, otherwise eventual 
entry is not guaranteed. 	



	


	





Weak fairness"
A weakly fair scheduling policy guarantees that if a process requests to 
enter its critical section (and does not withdraw the request), the process 
will eventually enter its critical section. 	
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Spin locks in Java"
With unsynchronized code, all that is guaranteed by the Java 
Memory Model is that the variable reads and writes are atomic: 	


	



•  we may have to wait an arbitrarily long time for new values of, e.g., 
c1 or turn, to be propagated to the other thread	



•  an optimising compiler could reorder the instructions so long as the 
threads themselves can’t tell the difference, e.g., the compiler could 
swap the order of	



           c1 = 1; 
            turn = 2; 

   in the entry protocol, since the thread executing the statements can’t 
tell the difference.	
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volatile fields"
If a field is declared volatile, a thread must reconcile its working copy 
of the field with the master copy every time it accesses the variable. 	


	



•  reads and writes to a volatile field are guaranteed to be atomic 
(even for longs and doubles); 	



•  new values are immediately propagated to other threads; and	



•  from the point of view of other threads, the relative ordering of 
operations on volatile fields are preserved.  	



	


However the ordering and visibility effects surround only the single read 
or write to the volatile field itself, e.g, ‘++’ on a volatile field is 
not atomic.	
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Spin locks with volatile 
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

// exit protocol 

c2 = false; 

rem2; 

} 

// shared variables 
volatile bool c1 = c2 = false;  
volatile integer turn = 1;	
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Assumptions for Peterson’s 
algorithm"
Peterson’s algorithm implicitly relies on:	


	



•  atomicity: variable reads and writes being atomic;	



•  visibility: the values written to the variables being immediately 
propagated to the other process (thread); 	



•  ordering: the ordering of the instructions being preserved;	



•  that the scheduling policy is at least weakly fair, otherwise eventual 
entry is not guaranteed. 	
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Archetypical mutual exclusion"
In lecture 2, we assumed that:	


	



•  the initialisation, critical sections and remainder may be of any size 
any may take any length of time to execute–each may vary from one 
pass through the while loop to the next;	



•  the critical sections must execute in a finite time;  i.e., each process 
must leave its critical section after a finite period of time; and	



•  the initialisation and remainder of each process may be infinite.	



If the critical sections don’t execute in finite time, the scheduling policy 
can’t be weakly fair. 	
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Properties of the Java scheduler"
However Java makes no promises about scheduling or fairness, and does 
not even strictly guarantee that threads make forward progress:	



•  most Java implementations display some sort of weak, restricted or 
probabilistic fairness properties with respect to executing runnable 
threads	



•  however you can’t depend on this.	
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Spin locks and Thread priorities"
Threads have priorities which heuristically influence schedulers:	


	



•  each thread has a priority in the range Thread.MIN_PRIORITY to 
Thread.MAX_PRIORITY	



•  when there are more runnable threads than CPUs, a scheduler is 
generally biased in favour of threads with higher priorities.	



•  typically, a thread will run until one of the following conditions is 
true:	



–  a higher-priority thread becomes runnable;	


–  the thread yields or its run() method exits; or	


–  on systems that support time-slicing, its quantum has expired.	



•  in general, lower-priority threads will run only when higher-priority 
threads are blocked (not runnable).	
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Spin locks in Java (scheduling)"
A consequence of Java’s weak scheduling guarantees is that spin locks of 
the form:	

	


    while (c2 && turn == 2) { 

        // do nothing 

    } 	


may spin forever.  Even a loop of the form:	


	


    while (c2 && turn == 2) { 

        Thread.yield(); 

    } 	


is not guaranteed to be effective in allowing other threads to execute and 
change the condition.	
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The next lecture"
Semaphores	



	


Suggested reading:	



•  Andrews (2000), chapter 4, sections 4.1–4.2;	


•  Ben-Ari (1982), chapter 4;	


•  Burns & Davies (1993), chapter 6.	




