
G52CON: 
Concepts of Concurrency 

 
Lecture 6: Algorithms for Mutual Exclusion II"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

2	

Outline of this lecture"
•  mutual exclusion with standard instructions	

•  example: Peterson’s algorithm	

•  comparison with the Test-and-Set solution	

•  spin locks in Java	

•  Java memory model: atomicity, visibility, ordering	

•  Peterson’s algorithm in Java	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

3	

Spin lock using Test-and-Set"
bool lock = false; // shared lock variable

// Process i

initi;

while(true) {

 while (TS(lock)) {}; // entry protocol

 criti;

 lock = false; // exit protocol

 remi;

}	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

4	

Simple spin lock using standard instructions"

bool lock = false; // shared lock variable

// Process i

initi;

while(true) {

 while(lock) {}; // entry protocol

 lock = true; // entry protocol

 criti;

 lock = false; // exit protocol

 remi;

}	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

5	

Mutual exclusion violation"
// Process 1

init1;

while(true) {

 while(lock)

 lock = true;

 crit1;

}
!

// Process 2

init2;

while(true) {

 while(lock)

 lock = true;

 crit2;

}!

lock == true	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

6	

Dekker’s algorithm"
// Process 1

init1;

while(true) {

c1 = 0; // entry protocol

while (c2 == 0) {

if (turn == 2) {

c1 = 1;

while (turn == 2) {};

c1 = 0;

}

}

crit1;

turn = 2; // exit protocol

c1 = 1;

rem1;

}!

// Process 2

init2;

while(true) {

c2 = 0; // entry protocol

while (c1 == 0) {

if (turn == 1) {

c2 = 1;

while (turn == 1) {};

c2 = 0;

}

}

crit2;

turn = 1; // exit protocol

c2 = 1;

rem2;

}

c1 == 1 c2 == 1 turn == 1	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

7	

Peterson’s algorithm"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

// exit protocol

c2 = false;

rem2;

}

// shared variables
bool c1 = c2 = false;
integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

8	

An example trace 1.1"
// Process 1

init1;

}

// Process 2

init2;

}

// shared variables
bool c1 = false; c2 = false; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

9	

An example trace 1.2"
// Process 1

init1;

while(true) {

}

// Process 2

init2;

}

// shared variables
bool c1 = false; c2 = false; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

10	

An example trace 1.3"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

}

// Process 2

init2;

}

// shared variables
bool c1 = true; c2 = false; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

11	

An example trace 1.4"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

}

// Process 2

init2;

}

// shared variables
bool c1 = true; c2 = false; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

12	

An example trace 1.5"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

}

// Process 2

init2;

}

// shared variables
bool c1 = true; c2 = false; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

13	

An example trace 1.6"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

}

// Process 2

init2;

}

// shared variables
bool c1 = true; c2 = false; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

14	

An example trace 1.7"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

}

// Process 2

init2;

while(true) {

}

// shared variables
bool c1 = true; c2 = false; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

15	

An example trace 1.8"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

}

// shared variables
bool c1 = true; c2 = true; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

16	

An example trace 1.9"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

}

// shared variables
bool c1 = true; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

17	

An example trace 1.10"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

18	

An example trace 1.11"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

19	

An example trace 1.12"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = false; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

20	

An example trace 1.13"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = false; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

21	

An example trace 1.14"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = false; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

22	

An example trace 1.15"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

}

// shared variables
bool c1 = false; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

23	

Question (a)"
What happens if Process 2 is slow (or swapped out) and doesn’t notice
that Process 1 has left its critical section?	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

24	

An example trace 2.1"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

25	

An example trace 2.2"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = false; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

26	

An example trace 2.3"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = false; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

27	

An example trace 2.4"
// Process 1

init1;

while(true) {

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = false; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

28	

An example trace 2.5"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

29	

An example trace 2.6"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

30	

An example trace 2.7"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

31	

An example trace 2.8"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

32	

An example trace 2.9"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

}

// shared variables
bool c1 = true; c2 = true; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

33	

An example trace 2.10"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

}

// shared variables
bool c1 = true; c2 = true; integer turn = 2;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

34	

Question (b)"
How many times can one process that wants to enter its critical section be
‘bypassed’ by the other before the first process gets to enter its critical
section?	

	

	

	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

35	

Question (c)"
What would happen if we swapped the order of the statements in the entry
protocol? Is the algorithm still correct?	

	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

36	

Properties of Peterson’s algorithm"
The solution based on Peterson’s algorithm has the following properties:	

	

•  Mutual Exclusion: yes	

•  Absence of Livelock: yes	

•  Absence of Unnecessary Delay: yes	

•  Eventual Entry: is guaranteed even if scheduling policy is only
weakly fair.	

 A weakly fair scheduling policy guarantees that if a process requests
to enter its critical section (and does not withdraw the request), the
process will eventually enter its critical section.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

37	

Comparison with Test-and-Set"
 Test-and-Set Peterson‘s Algorithm

Mutual Exclusion: yes yes

Absence of Deadlock: yes yes

Absence of Unnecessary Delay: yes yes

Eventual Entry: scheduling
strongly fair

scheduling
weakly fair

Practical issues: special
instructions,
any number of
processes

standard
instructions,
> 2 processes
complex

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

38	

Java execution"
Consider a Java program consisting of two threads: 	

	

Given a single processor, the JVM executes a sequence of instructions 	

which is an interleaving of the instruction sequences for each thread.	

Thread A	

Thread B	

 time	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

39	

Java code optimisation"
Not only may concurrent executions be interleaved, they may also be
reordered and otherwise manipulated to increase execution speed:	

	

•  the compiler may rearrange the order of the statements;	

•  the processor may rearrange the execution order of the machine

instructions;	

•  the memory system may rearrange the order in which writes are

committed to memory;	

•  the compiler, processor and/or memory system may maintain variable

values in, e.g., CPU registers, rather than writing them to memory so
long as the code has the “intended” effect.	

	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

40	

Java Memory Model"

CPU"

registers"
cache"

CPU"

registers"
cache"bus"

main memory" an object representation"

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

41	

Working memory"
Java allows threads that access shared variables to keep private ‘working
copies’ of variables:	

	

•  each thread is defined to have a working memory (an abstraction of
caches and registers) in which to store values;	

•  this allows a more efficient implementation of multiple threads. 	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

42	

Model properties"
The Java Memory Model specifies when values must be transferred
between main memory and per-thread working memory:	

	

•  atomicity: which instructions must have indivisible effects	

•  visibility: under what conditions are the effects of one thread visible
to another; and	

•  ordering: under what conditions the effects of operations can appear
out of order to any given thread.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

43	

Atomicity"
Reads and writes to memory cells corresponding to fields of any type
except long or double are guaranteed to be atomic:	

	

•  when a field (other than long or double) is used in an expression,
you will get either its initial value or some value that was written by
some thread;	

•  however you are not guaranteed to get the value most recently written
by any thread.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

44	

Visibility"
Without synchronization, changes to fields made by one thread are not
guaranteed to be visible to other threads:	

	

•  the first time a thread accesses a field of an object, it sees either the
initial value of the field or a value since written by some other thread;
and	

•  when a thread terminates, all written variables are flushed to main
memory.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

45	

Ordering"
The apparent order in which the instructions in a method are executed can
differ:	

	

•  from the point of view of the thread executing the method, instructions
appear to be executed in the proper order (as-if-serial semantics);	

•  from the point of view of other threads executing unsynchronised
methods almost anything can happen;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

46	

Example: Peterson’s algorithm"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

// exit protocol

c2 = false;

rem2;

}

// shared variables
bool c1 = c2 = false;
integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

47	

Assumptions for Peterson’s
algorithm"
Peterson’s algorithm implicitly relies on:	

	

•  atomicity: variable reads and writes being atomic;	

•  visibility: the values written to the variables being immediately
propagated to the other process (thread); 	

•  ordering: the ordering of the instructions being preserved; and	

•  that the scheduling policy is at least weakly fair, otherwise eventual
entry is not guaranteed. 	

	

	

Weak fairness"
A weakly fair scheduling policy guarantees that if a process requests to
enter its critical section (and does not withdraw the request), the process
will eventually enter its critical section. 	

	

	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

48	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

49	

Spin locks in Java"
With unsynchronized code, all that is guaranteed by the Java
Memory Model is that the variable reads and writes are atomic: 	

	

•  we may have to wait an arbitrarily long time for new values of, e.g.,
c1 or turn, to be propagated to the other thread	

•  an optimising compiler could reorder the instructions so long as the
threads themselves can’t tell the difference, e.g., the compiler could
swap the order of	

 c1 = 1;
 turn = 2;

 in the entry protocol, since the thread executing the statements can’t
tell the difference.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

50	

volatile fields"
If a field is declared volatile, a thread must reconcile its working copy
of the field with the master copy every time it accesses the variable. 	

	

•  reads and writes to a volatile field are guaranteed to be atomic
(even for longs and doubles); 	

•  new values are immediately propagated to other threads; and	

•  from the point of view of other threads, the relative ordering of
operations on volatile fields are preserved. 	

	

However the ordering and visibility effects surround only the single read
or write to the volatile field itself, e.g, ‘++’ on a volatile field is
not atomic.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

51	

Spin locks with volatile
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

// exit protocol

c2 = false;

rem2;

}

// shared variables
volatile bool c1 = c2 = false;
volatile integer turn = 1;	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

52	

Assumptions for Peterson’s
algorithm"
Peterson’s algorithm implicitly relies on:	

	

•  atomicity: variable reads and writes being atomic;	

•  visibility: the values written to the variables being immediately
propagated to the other process (thread); 	

•  ordering: the ordering of the instructions being preserved;	

•  that the scheduling policy is at least weakly fair, otherwise eventual
entry is not guaranteed. 	

	

	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

53	

Archetypical mutual exclusion"
In lecture 2, we assumed that:	

	

•  the initialisation, critical sections and remainder may be of any size
any may take any length of time to execute–each may vary from one
pass through the while loop to the next;	

•  the critical sections must execute in a finite time; i.e., each process
must leave its critical section after a finite period of time; and	

•  the initialisation and remainder of each process may be infinite.	

If the critical sections don’t execute in finite time, the scheduling policy
can’t be weakly fair. 	

	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

54	

Properties of the Java scheduler"
However Java makes no promises about scheduling or fairness, and does
not even strictly guarantee that threads make forward progress:	

•  most Java implementations display some sort of weak, restricted or
probabilistic fairness properties with respect to executing runnable
threads	

•  however you can’t depend on this.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

55	

Spin locks and Thread priorities"
Threads have priorities which heuristically influence schedulers:	

	

•  each thread has a priority in the range Thread.MIN_PRIORITY to
Thread.MAX_PRIORITY	

•  when there are more runnable threads than CPUs, a scheduler is
generally biased in favour of threads with higher priorities.	

•  typically, a thread will run until one of the following conditions is
true:	

–  a higher-priority thread becomes runnable;	

–  the thread yields or its run() method exits; or	

–  on systems that support time-slicing, its quantum has expired.	

•  in general, lower-priority threads will run only when higher-priority
threads are blocked (not runnable).	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

56	

Spin locks in Java (scheduling)"
A consequence of Java’s weak scheduling guarantees is that spin locks of
the form:	

	

 while (c2 && turn == 2) {

 // do nothing

 } 	

may spin forever. Even a loop of the form:	

	

 while (c2 && turn == 2) {

 Thread.yield();

 } 	

is not guaranteed to be effective in allowing other threads to execute and
change the condition.	

© Brian Logan 2014	

 G52CON Lecture 6: Algorithms for Mutual
Exclusion II	

57	

The next lecture"
Semaphores	

	

Suggested reading:	

•  Andrews (2000), chapter 4, sections 4.1–4.2;	

•  Ben-Ari (1982), chapter 4;	

•  Burns & Davies (1993), chapter 6.	

