
G52CON: 
Concepts of Concurrency 

Lecture 9 Monitors"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 2	

Outline of this lecture"
•  solution to semaphores exercise	

•  limitations of semaphores 	

•  monitors	

•  example: bounded buffer with monitors	

•  comparison of semaphores and monitors	

•  monitors and Java	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 3	

Problems with semaphores"
Semaphores can be used to solve simple mutual exclusion and condition
synchronisation problems. However ...	

•  they are low-level: omitting a single V operation is likely to lead to
deadlock; omitting a P operation may lead to a violation of mutual
exclusion	

•  they are unstructured: synchronisation code is typically dispersed
throughout the whole program, rather than localised in well-defined
regions	

•  they confuse conceptually distinct operations: the same primitives are
used to implement mutual exclusion and condition sychronisation	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 4	

Monitors as abstract data types"
A monitor is an abstract data type representing a shared resource.	

•  semaphores can be used to control access to a shared resource; 	

•  monitors encapsulate the shared resource (usually—we’ll look at
another approach in the next lecture);	

A monitor implements a shared data structure together with the (coarse-
grained atomic) operations which manipulate the data structure. 	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 5	

Monitors"
Monitors have four components:	

•  a set of private variables which represent the state of the resource;	

•  a set of monitor procedures which provide the public interface to the
resource; 	

•  a set of condition variables used to implement condition
synchronisation; and	

•  initialisation code which initialises the private variables.	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 6	

Monitor procedures"
Monitor procedures manipulate the values of the private monitor
variables:	

•  only the names of monitor procedures are visible outside the monitor	

•  the only way a process can read or change the value of a private
monitor variable is by calling a monitor procedure	

– the private monitor variables are shared by all the monitor
procedures	

– monitor procedures may also have their own local variables—each
procedure call gets its own copy of these	

•  statements within monitor procedures (or initialisation code) may not
access variables declared outside the monitor (unless passed as
arguments to a monitor procedure)	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 7	

Condition variables"
Condition variables are used to delay a process that can’t safely execute a
monitor procedure until the monitor’s state satisfies some boolean
condition:	

•  condition variables are not visible outside the monitor and the only
access to them is via special monitor operations within monitor
procedures	

•  like semaphores, their values can’t be tested or assigned to directly
even by the monitor procedures	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 8	

Synchronisation"
Synchronisation within monitors is achieved using monitor procedures
and condition variables:	

•  mutual exclusion is implicit—monitor procedures by definition
execute with mutual exclusion;	

•  condition synchronisation must be programmed explicitly using
condition variables. 	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 9	

Mutual exclusion"
At most one instance of one monitor procedure may be active in a monitor
at a time:	

•  if one process is executing a monitor procedure and another process
calls a procedure of the same monitor, the second process blocks and
is placed on the entry queue for the monitor	

•  when the process in the monitor completes its monitor procedure call,
mutual exclusion is passed to a blocked process on the entry queue	

•  entry queues are usually defined to be FIFO, so the first process to
block will be the next to one to enter the monitor.	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 10	

Critical sections"
This solves the critical section problem	

•  if all the shared state in the system is held in private monitor variables;
and 	

•  all communication between processes is via calls to monitor
procedures; then	

•  any accesses to any part of the shared state by any process is
guaranteed to be mutually exclusive of any other accesses to that part
of the state by other processes. 	

Different classes of critical section can be implemented using a different
monitor for each class	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 11	

Condition synchronisation"
The value of a condition variable is a delay queue of blocked processes
waiting on a condition	

•  if a call to a monitor procedure can’t proceed until the monitor’s state
satisfies some boolean condition, the process that called the monitor
procedure waits on the corresponding condition variable	

•  when another process executes a monitor procedure that makes the
condition true, it signals to the process(es) waiting on the condition
variable	

Condition variables are like semaphores used for condition
synchronisation	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 12	

Operations on condition variables"
We assume that the following operations are defined for a condition
variable v:	

• wait(v)wait at the end of the delay queue for v

• signal(v)wake the process at the front of the delay queue for v
and continue	

• signal_all(v)wake all the processes on the delay queue for v
and continue	

• empty(v)true if the delay queue for v is empty 	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 13	

The wait operation"
If a process can’t proceed, it blocks on a condition variable v by
executing:	

• wait(v);

The blocked process relinquishes exclusive access to the monitor and is
appended to the end of the delay queue for v.	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 14	

The signal operation"
Processes blocked on a condition variable v are woken up when some
other process performs a signal operation on the variable:	

• signal(v);

This awakens the process at the front of the delay queue. If the delay
queue for v is empty, signal does nothing. 	

This is unlike semaphores, where if no process was waiting on the
semaphore, a V operation increments the semaphore.	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 15	

Signalling disciplines"
When a monitor procedure calls signal on a condition variable, it
wakes up the first blocked process in the delay queue waiting on the
condition.	

•  Signal and Wait: the signaller waits until some later time and the
signalled process executes now.	

•  Signal and Continue: the signaller continues and the signalled
process executes at some later time.	

The examples in this lecture use the signal and continue signalling
discipline.	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 16	

Bounded Buffer with monitors"
monitor BoundedBuffer {

 // Private variables …

 Object buf = new Object[n];

 integer out = 0, // index of first full slot

 in = 0, // index of first empty slot

 count = 0; // number of full slots

 // Condition variables ...

 condvar not_full, // signalled when count < n

 not_empty; // signalled when count > 0

 // continued ...

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 17	

Bounded Buffer with monitors 2"
 // Monitor procedures ...

 //(signal & continue signalling discipline)

 procedure append(Object data) {

 while(count == n) {

 wait(not_full);

 }

 buf[in] = data;

 in = (in + 1) % n;

 count++;

 signal(not_empty);

 }

 // continued ...

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 18	

Bounded Buffer with monitors 3"
 procedure remove(Object &item) {

 while(count == 0) {

 wait(not_empty);

 }

 item = buf[out];

 out = (out + 1) %n;

 count--;

 signal(not_full);

 }

}

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 19	

An example trace 1"

C1: remove(&item)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 20	

An example trace 2"

C1: remove(&item)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 21	

An example trace 3"

C1: remove(&item)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: append(data)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 22	

An example trace 4"

C1: remove(&item)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: append(data)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 23	

An example trace 5"

C1: remove(&item)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: append(data)

C2: remove(&item)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 24	

An example trace 6"

C1: while(count == 0)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: append(data)

C2: remove(&item)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 25	

An example trace 7"

wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: append(data)

C2: remove(&item)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 26	

An example trace 8"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: append(data)

C2: remove(&item)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 27	

An example trace 9"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: while(count == n)

C2: remove(&item)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 28	

An example trace 10"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: buf[in] = data

C2: remove(&item)

count == 1

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 29	

An example trace 11"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: signal(not_empty)

C2: remove(&item)

count == 1

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 30	

An example trace 12"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

P1: return

C2: remove(&item)

count == 1

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 31	

An example trace 13"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full C2: remove(&item)

count == 1

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 32	

An example trace 14"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full C2: while(count == 0)

count == 1

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 33	

An example trace 15"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full C2: item = buf[out]

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 34	

An example trace 16"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full C2: signal(not_full)

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 35	

An example trace 17"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 36	

An example trace 18"

C1: while(count == 0)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 37	

An example trace 19"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 38	

An example trace 20"

C1: wait(not_empty)

BoundedBuffer Monitor	

buffer

entry queue

not_empty

not_full

count == 0

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 39	

Semaphores and monitors"
Semaphores and monitors have the same expressive power:	

•  monitors can be used to simulate semaphores; and	

•  semaphores can be used to simulate monitors.	

What we gain with monitors is a higher level of abstraction.	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 40	

Monitors & Java"
Monitors form the basis of Java’s support for (shared memory)
concurrency:	

•  mutual exclusion can be implemented in Java using the
synchronized keyword	

•  a synchronized method (or block) is executed under mutual exclusion
with all other synchronized methods on the same object	

•  Java provides basic operations for condition synchronisation: wait
(), notify(), notifyAll()	

•  each Java object has a single (implicit) condition variable and delay
queue, the wait set	

•  Java uses the signal and continue signalling discipline	

© Brian Logan 2014	

 G52CON Lecture 9: Monitors	

 41	

The next lecture"
Monitors II	

Suggested reading:	

•  Andrews (2000), chapter 5;	

•  Ben-Ari (1982), chapter 5;	

•  Burns & Davies (1993), chapter 7, sections 7.4–7.9;	

