
G52CON: 
Concepts of Concurrency 

 
Lecture 12 Synchronisation in Java II"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

2	

Outline of this lecture"
•  mutual exclusion in Java revisited	

•  problems with synchronized

–  example: backing off from lock attempts	

–  example: non-block structured locking	

–  example: read-write locks	

	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

3	

Fully synchronised objects"
The safest (but not necessarily the best) design strategy based on mutual
exclusion is to use fully synchronized objects in which:	

	

•  all methods are synchronized	

•  there are no public fields or other encapsulation violations	

•  all methods are finite (i.e., no infinite loops after acquiring a lock)	

•  all fields are initialised to a consistent state in constructors	

•  the state of the object is consistent at both the beginning and end of
each method (even in the presence of exceptions).	

Synchronization wrappers"
•  you can turn a Collection into a fully synchronized object using a

synchronization wrapper

•  each of the core collection interfaces, Collection, Set, List, Map,
SortedSet, and SortedMap, has a static factory method	

public static <T> Collection<T>
synchronizedCollection(Collection<T> c);

public static <T> Set<T> synchronizedSet(Set<T> s);
public static <T> List<T> synchronizedList(List<T> list);
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m);
public static <T> SortedSet<T>
synchronizedSortedSet(SortedSet<T> s);

public static <K,V> SortedMap<K,V>
synchronizedSortedMap(SortedMap<K,V> m);

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

4	

Ensuring synchronization"
•  the factory methods returns a synchronized Collection backed by

the collection passed as argument	

•  to ensure mutual exclusion, all access to the backing collection must
be through the synchronized collection	

•  simplest approach is not to keep a reference to the backing collection,
e.g.:	

List<T> list = Collections.synchronizedList(new
ArrayList<T>());

•  note that wrappers only synchronize interface methods	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

5	

Wrappers and iterators"
•  a synchronized wrapper does not make a collection thread safe for

iteration	

•  iteration involves multiple calls into the collection, and you must
manually synchronize on the wrapped collection when iterating over it,
e.g.:	

List<T> list = Collections.synchronizedList(new
ArrayList<T>());

synchronized(list) {
 for (T e : list)
 foo(e);
}

•  note that when iterating over a Collection view of a synchronized
Map you should synchronize on the Map not the Collection view	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

6	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

7	

Problems with synchronized"
synchronized methods and blocks have a number of limitations:	

	

•  there is no way to back off from an attempt to acquire a lock, e.g., to
timeout or cancel a lock attempt following an interrupt	

•  synchronisation within methods and blocks limits use to strict block
structured locking	

•  there is no way to alter the semantics of a lock, e.g., read vs write
protection 	

	

One way these problems can be overcome is by using utility classes to
control locking.	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

8	

Problems with synchronized"
synchronized methods and blocks have a number of limitations:	

	

•  there is no way to back off from an attempt to acquire a lock, e.g., to
timeout or cancel a lock attempt following an interrupt	

•  synchronisation within methods and blocks limits use to strict block
structured locking	

•  there is no way to alter the semantics of a lock, e.g., read vs write
protection 	

	

One way these problems can be overcome is by using utility classes to
control locking.	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

9	

Example: semaphores"
A semaphore s is an integer variable which can take only non-negative
values. Once it has been given its initial value, the only permissible
operations on s are the atomic actions:	

	

P(s) : if s > 0 then s = s – 1, else suspend execution of the process that

called P(s)	

	

V(s) : if some process p is suspended by a previous P(s) on this

semaphore then resume p, else s = s + 1	

	

A general semaphore can have any non-negative value; a binary
semaphore is one whose value is always 0 or 1.	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

10	

Exercise: semaphores in Java"
class GeneralSemaphore {

 private long resource;

 public GeneralSemaphore (long r) {

 resource = r;

 }

 // method to implement the P operation

 // method to implement the V operation

}

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

11	

Semaphores in Java"
// Sample implementation – not the way it’s done in

// java.util.concurrent.Semaphore

class GeneralSemaphore {

 private long resource;

 public GeneralSemaphore (long r) {

 resource = r;

 }

 public synchronized void V() {

 ++resource;

 notify();

 }

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

12	

Semaphores in Java 2"
 public synchronized void P() throws

 InterruptedException {

 while (resource <= 0)

 wait();

 --resource;

 }

}	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

13	

Example: GeneralSemaphore
The GeneralSemaphore class is fully synchronized:	

•  when the P() method is invoked on an instance of the
GeneralSemaphore class, s, the invoking thread attempts to
obtain the lock on s

•  there is no way to back off if the lock is already held by another
thread, to give up after waiting for a specified time, or to cancel the
lock attempt following an interrupt	

•  this can make it difficult to recover from liveness problems.	

	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

14	

Semaphores in Java 2a"
 public void P() throws InterruptedException {

 if (Thread.interrupted())

 throw new InterruptedException();

 synchronized(this) {

 while (resource <= 0)

 wait();

 --resource;

 }

 }

}	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

15	

Handling interrupts"
Threads should periodically check their interrupt status, and if interrupted,
shut down:	

	

•  a good place to check is before calling a synchronized method,
e.g.:	

// other code ...

s.P();

 as we may spend a long time contending for the lock on s

•  this can result in threads being unresponsive to interrupts	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

16	

Backing off from lock attempts"
Even if we check for interrupts before attempting to acquire a lock on a
synchronized method or block	

	

•  a thread which is trying to acquire the lock must still be prepared to
wait indefinitely	

•  deadlocks are fatal—the only way to recover is to restart the
application (next lecture)	

	

•  however, we can implement more flexible locking protocols using

utility classes	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

17	

The Lock interface"
java.util.concurrent defines a Lock interface and a number of utility classes
(e.g., ReentrantLock) which implement the interface:	

	

public interface Lock {

 void lock();

 void lockInterruptibly() throws InterruptedException;

 boolean tryLock();

 boolean tryLock(long timeout, TimeUnit unit) throws

 InterruptedException;

 void unlock();

 Condtion newCondition(); // next lecture ...

}

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

18	

Replacing synchronized blocks"
A Lock can be used to replace blocks of the form:	

synchronized(this) { /* body */} 	

with a before/after construction, e.g.:	

	

Lock lock = new ReentrantLock();

lock.lock();

try {

 // body: catch & handle exceptions if necessary
} finally {

 lock.unlock();

}

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

19	

Backing off from lock attempts with Lock

Unlike synchronzied, the Lock interface supports:	

	

•  polled lock acquisition: tryLock() allows control to be regained if
all the required locks can’t be acquired	

•  timed lock acquisition: tryLock(timeout) allows control to be
regained if the time available for an operation runs out	

•  interruptible lock acquisition: lockInterruptibly allows an
attempt to aquire a lock to be interrupted	

	

	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

20	

Problems with synchronized"
synchronized methods and blocks have a number of limitations:	

	

•  there is no way to back off from an attempt to acquire a lock, e.g., to
timeout or cancel a lock attempt following an interrupt	

•  synchronisation within methods and blocks limits use to strict block
structured locking	

•  there is no way to alter the semantics of a lock, e.g., read vs write
protection 	

	

One way these problems can be overcome is by using utility classes to
control locking.	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

21	

Locking is block structured"
• synchronized methods and blocks limits use to strict block

structured locking:	

– a lock is always released in the same block as it was acquired,
regardless of how control exits the block	

– e.g., a lock can’t be acquired in one method or block and released
in another	

•  this prevents potential coding errors, but can be inflexible	

•  again we can use utility classes to implement non-block stuctured
locking	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

22	

Example: ListUsingLocks
•  for example, we can use Lock objects to lock the nodes of linked list

during operations that traverse the list	

•  the lock for the next node must be obtained while the lock for the
current node is still being held	

•  after acquiring the next lock, the current lock is released	

•  this allows extremely fine-grained locking and increases potential
concurrency 	

•  only worthwhile in situations where there is a lot of contention.	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

23	

Example: ListUsingLocks"
class ListUsingLocks {

 static class Node {

 Object item;

 Node next;

 Lock lock = new ReentrantLock();

 Node(Object x, Node n) { item = x; next = n; }

 }

 protected Node head;
 protected synchronized Node getHead() { return head; }

 public synchronized add(Object x) {

 head = new Node(x, head);

 }

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

24	

ListUsingLocks 2"
 boolean search(Object x) throws InterruptedException {
 Node p = getHead();
 if (x == null || p == null) return false;

 Node nextp;
 p.lock.lock();
 for (;;) {
 try {
 if (x.equals(p.item)) return true;
 if ((nextp = p.next()) == null) return false;
 nextp.lock.lock();
 } finally {
 p.lock.unlock();
 }
 p = nextp;
 }
 } // other methods omitted ...

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

25	

ListUsingSynchronized"
// Broken, do not use ...
boolean search(Object x) throws InterruptedException {
 Node p = getHead();
 if (x == null || p == null) return false;

 Node nextp;
 for (;;) {
 synchronized(p) {
 if (x.equals(p.item)) return true;
 if ((nextp = p.next()) == null) return false;
 synchronized(nextp) {
 // can’t release the lock on p here ...

 } // lock on nextp will be released here
 p = nextp;
 } // lock on ‘p’ will be released here ...
 }
}

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

26	

Problems with synchronized"
synchronized methods and blocks have a number of limitations:	

	

•  there is no way to back off from an attempt to acquire a lock, e.g., to
timeout or cancel a lock attempt following an interrupt	

•  synchronisation within methods and blocks limits use to strict block
structured locking	

•  there is no way to alter the semantics of a lock, e.g., read vs write
protection 	

	

One way these problems can be overcome is by using utility classes to
control locking.	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

27	

Altering the semantics of a lock"
With synchronized there is no way to alter the semantics of a lock,
e.g., read vs write protection 	

	

•  this makes it difficult to solve selective mutual exclusion problems,
like the Readers and Writers problem	

•  again, these problems can be overcome is by using utility classes to
control locking	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

28	

The ReadWriteLock interface"
• java.util.concurrent defines a ReadWriteLock interface

and a number of utility classes (e.g., ReentrantReadWriteLock)
which implement the interface:	

	

 public interface ReadWriteLock {

 Lock readLock(); // returns the read lock

 Lock writeLock(); // returns the write lock

 }

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

29	

ReadWriteLocks"
A ReadWriteLock maintains a pair of associated Locks, one for read-
only operations and one for writing:	

	

•  the readLock may be held simultaneously by multiple reader
threads, so long as there are no writers	

•  the writeLock is exclusive	

•  since the readLock and writeLock implement the Lock
interface, they support polled, timed and interruptible locking

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

30	

Read-Write locks"
A read-write lock can allow for a greater level of concurrency in
accessing shared data than that permitted by a mutual exclusion lock if:	

	

•  the methods in a class can be separated into those that only read
internally held data and those that read and write	

•  reading is not permitted while writing methods are executing	

•  the application has more readers than writers	

•  the methods are time consuming, so it pays to introduce more
overhead in order to allow concurrency among reader threads	

•  e.g, in accessing a dictionary which is frequently read but seldom
modified	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

31	

Example RWDictionary
class RWDictionary {

 private final Map<String, Data> m =

 new TreeMap<String, Data>();

 private final ReentrantReadWriteLock rwl =

 new ReentrantReadWriteLock();

 private final Lock r = rwl.readLock();

 private final Lock w = rwl.writeLock();

 // methods follow ...

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

32	

Example RWDictionary readers
 // Reader method (does not update the map)

 public Data get(String key) {

 r.lock();

 try { return m.get(key); }

 finally { r.unlock(); }

 }

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

33	

Example RWDictionary writers
 // Writer method (changes the map)

 public Data put(String key, Data value) {

 w.lock();

 try { return m.put(key, value); }

 finally { w.unlock(); }

 }

}

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

34	

Mutual exclusion summary"
•  all the synchronisation primitives we have looked at are equivalent in

the sense that they all have the same expressive power	

•  while it is often helpful to take advantage of the higher level of
abstraction offered by monitors, there are situations when other forms
of synchronisation are required and we can implement any of these
using any of the primitives.	

•  more complex forms of locking can and are defined in terms of
primitives like Lock. 	

•  at each level of abstraction we see this pattern of acquiring and
releasing locks.	

© Brian Logan 2014	

 G52CON Lecture 12: Synchronisation in Java
II	

35	

The Next Lecture"
Synchronisation in Java III	

	

Suggested reading:	

•  Lea (2000), chapter 3.	

