
G52CON: 
Concepts of Concurrency 

 
Lecture 13 Synchronisation in Java III"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

2	

Outline of this lecture"
•  condition synchronisation in Java revisited	

•  problems with notifyAll()

–  example: improving the BoundedBuffer solution	

•  deadlock revisited	

•  resource ordering	

•  acquiring multiple locks in Java	

–  example: swapping values in synchronized objects	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

3	

Fully synchronised objects"
The safest (but not necessarily the best) design strategy based on mutual
exclusion is to use fully synchronized objects in which:	

	

•  all methods are synchronized	

•  there are no public fields or other encapsulation violations	

•  all methods are finite (i.e., no infinite loops after acquiring a lock)	

•  all fields are initialised to a consistent state in constructors	

•  the state of the object is consistent at both the beginning and end of
each method (even in the presence of exceptions).	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

4	

Problems with synchronized"
synchronized methods and blocks have a number of limitations:	

	

•  there is no way to back off from an attempt to acquire a lock, e.g., to
timeout or cancel a lock attempt following an interrupt	

•  synchronisation within methods and blocks limits use to strict block
structured locking	

•  there is no way to alter the semantics of a lock, e.g., read vs write
protection 	

	

One way these problems can be overcome is by using utility classes to
control locking.	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

5	

Mutual exclusion summary"
•  all the synchronisation primitives we have looked at are equivalent in

the sense that they all have the same expressive power	

•  while it is often helpful to take advantage of the higher level of
abstraction offered by monitors, there are situations when other forms
of synchronisation are required and we can implement any of these
using any of the primitives.	

•  more complex forms of locking can and are defined in terms of
primitives like Lock. 	

•  at each level of abstraction we see this pattern of acquiring and
releasing locks.	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

6	

Condition synchronisation in Java"
Condition Synchronisation can be implemented using the methods
wait(), notify() and notifyAll():	

	

•  to delay a thread until some condition is true, write a loop that causes
the thread to wait() (block) if the delay condition is false	

•  ensure that every method which changes the truth value of the delay
condition notifies threads waiting on the condition (using notify()
or notifyAll()), causing them to wake up and re-check the delay
condition. 	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

7	

Context switching in Java"
When a thread blocks and/or another is scheduled, the JVM must perform
a context switch:	

	

•  this involves saving the registers of the suspended thread and loading
the registers of the newly scheduled thread	

	

•  which takes time	

•  a concurrent program, runs faster if we can reduce the number of
context switches.	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

8	

Condition variables in Java"
In Java, each object has a single implicit condition variable:	

	

•  a notifyAll() intended to inform threads about one condition also
wakes up threads waiting for unrelated conditions, resulting in large
numbers of context switches	

•  context switching can be minimised by delegating operations with
different wait() conditions to different helper objects	

•  such helper objects serve as condition variables—places to put threads
that need to wait on and be notified of a particular condition	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

9	

Bounded buffer in Java"
class BoundedBuffer {

 // Private variables …

 Object[] buf;

 int out = 0, // index of first full slot

 int in = 0, // index of first empty slot

 int count = 0; // number of full slots

 public BoundedBuffer(int n) {

 buf = new Object[n];

 }

 // continued ...

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

10	

Bounded buffer in Java 2"
 // Monitor procedures …

 public synchronized void append(Object data) {

 try {

 while(count == n) {

 wait();

 }

 catch (InterruptedException e) {

 return;

 }

 buf[in] = data;

 in = (in + 1) % n;

 count++;

 notifyAll();

 }

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

11	

Bounded buffer in Java 3"
 public synchronized Object remove() {

 try {

 while(count == 0) {

 wait();

 }

 catch (InterruptedException e) {

 return null;

 }

 Object item = buf[out];

 out = (out + 1) % n;

 count--;

 notifyAll();

 return item;

 }

}

Problems with the BoundedBuffer
•  there are two different conditions a thread may be waiting on:	

•  the buffer being not full (producer threads)	

•  the buffer being not empty (consumer threads)	

•  but a BoundedBuffer object has only one wait set, so we must use
notifyAll()

•  e.g., if the buffer is full, a consumer taking one item will wake all
waiting producers, even though only one can proceed	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

12	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

13	

Bounded buffer with semaphores"
class BoundedBufferWithSemaphores {

 // Private variables …

 BufferArray buf; // defined later ...

 GeneralSemaphore empty;

 GeneralSemaphore full;

 public BoundedBufferWithSemaphores(int n) {

 buf = new BufferArray(n);

 empty = new GeneralSemaphore(n);

 full = new GeneralSemaphore(0);

 }

 // continued ...

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

14	

Bounded buffer with semaphores 2"
 public void append(Object data)

 throws InterruptedException {

 empty.P();

 buff.append(data);

 full.V();

 }

 public Object remove()

 throws InterruptedException {

 full.P();

 Object data = buff.remove();

 empty.V();

 }

}

Bounded buffer with semaphores 3"
•  operations with different wait() conditions are delegated to

different helper objects – the GeneralSemaphores

•  underlying array operations are isolated in a simple BufferArray
class	

•  BufferArray uses synchronized methods to ensure mutually
exclusive access to the underlying array	

•  only one thread can access the buffer at a time	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

15	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

16	

Bounded Buffer with Semaphores 4"
class BufferArray {

 Object[] array; int in = 0; int out = 0;

 BufferArray(int n) { array = new Object[n]; }

 synchronized void append(Object data) {

 array[in] = data;

 in = (in + 1) % array.length;

 }

 synchronized Object remove() {

 Object data = array[out];

 array[out] = null;

 out = (out + 1) % array.length;

 return data;

 }

}

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

17	

Quadratic to linear"
• BoundedBufferWithSemaphores is likely to run more

efficiently than the BoundedBuffer class when many threads are
using the buffer	

	

•  it uses two different underlying wait sets	

•  the semaphores only wake one thread on each operation, eliminating
the unnecessary context switching caused by using notifyAll()
instead of notify()	

•  this reduces the worst case number of wakeups from a quadratic
function of the number of invocations to linear	

	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

18	

The Condition interface"
Condition factors out the Object condition synchronisation methods
(wait, notify and notifyAll) into distinct objects to give the effect of
having multiple wait-sets per object	

 public interface Condition {

 // Key methods only ...
 void await() throws InterruptedException
 void signal()

 void signalAll()
 }

•  the utility classes ReentrantLock, ReentrantReadWriteLock,
etc. implement the Condition interface

Condition methods"
•  void await(): causes the invoking thread to wait until it is signalled

or interrupted 	

	

•  boolean await(long time, TimeUnit unit): causes the
invoking thread to wait until it is signalled or interrupted, or the specified
waiting time elapses	

•  void awaitUninterruptibly(): causes the invoking thread to
wait until it is signalled	

•  void signal(): wakes one thread waiting on the condition	

	

•  void signalAll(): wakes all threads waiting on the condition���
	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

19	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

20	

The Condition interface"
•  because access to the shared condition occurs in different threads, it

must be protected by a Lock 	

•  each Condition instance is intrinsically bound to a Lock—to
obtain a Condition instance for a particular Lock instance use its
newCondition() method. 	

•  waiting for a Condition atomically releases the associated lock and
suspends the current thread, just like Object.wait()	

•  supports interruptible, non-interruptible, and timed waits	

Example: Bounded buffer with Conditions"

class BoundedBuffer {

 final Lock lock = new ReentrantLock();
 final Condition notFull = lock.newCondition();
 final Condition notEmpty = lock.newCondition();

 Object[] buf;
 int out = 0, // index of first full slot
 int in = 0, // index of first empty slot
 int count = 0; // number of full slots

 public BoundedBuffer(int n) {
 buf = new Object[n];
 }
 // continued ...

G52CON Lecture 13: Synchronisation in Java
III	

21	

© Adriano Galati 2010	

Bounded buffer with Conditions 2"
public void append(Object data)
 throws InterruptedException {
 lock.lock();
 try {
 while (count == items.length)
 notFull.await();

 buf[in] = data;

 in = (in + 1) % n;

 count++;
 notEmpty.signal();
 } finally {
 lock.unlock();
 }
}

G52CON Lecture 13: Synchronisation in Java
III	

22	

© Adriano Galati 2010	

Bounded buffer with Conditions 3"
public Object remove() throws InterruptedException {
 lock.lock();
 try {
 while (count == 0)
 notEmpty.await();
 Object item = buf[out];

 out = (out + 1) % n;

 count--;
 notFull.signal();
 return item;
 } finally {
 lock.unlock();
 }
}

G52CON Lecture 13: Synchronisation in Java
III	

23	

© Adriano Galati 2010	

Other java.util.concurrent utility classes"

•  utility classes implementing the Lock and Condition interfaces are
used internally in the implementation of other classes in
java.util.concurrent

•  e.g., the BlockingQueue<E> interface defines a Queue with
operations that: 	

– wait for the queue to become non-empty when retrieving an element	

– wait for space to become available in the queue when storing an
element	

•  if inserting, removing or examining an element can’t proceed, methods
may either: throw an exception, return a special value, block, or timeout	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

24	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

25	

The class ArrayBlockingQueue<E>

ArrayBlockingQueue implements a bounded buffer backed by a
fixed-sized array	

	

•  attempts to put an element into a full queue block;	

•  attempts to take an element from an empty queue also block;	

•  supports an optional fairness policy for ordering waiting producer and
consumer threads—a queue constructed with fairness set to true grants
threads access in FIFO order;	

•  fairness generally decreases throughput but reduces variability and
avoids starvation. 	

Condition synchronisation summary"
•  simple condition synchronisation can be implemented using the

methods wait(), notify() and notifyAll()	

•  however a single wait set can be inefficient if threads wait on different
conditions	

•  context switching can be minimised by delegating operations with
different wait() conditions to different helper objects	

• Condition interface makes it clear that an object is being used as a
condition variable, and allows interruptible and timed waits	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

26	

Multiple locks"
•  utility classes implementing Lock and Condition allow finer-

grained locking	

•  used correctly, this can increase concurrency/reduce latency	

•  however problems can arise when threads must acquire multiple locks	

•  a particular problem is deadlock	

•  e.g.: two threads must acquire locks on two objects, get one lock each,
and wait forever for each other to release the other lock.	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

27	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

28	

Dining Philosophers Problem"
The Dining Philosophers problem illustrates mutual exclusion between
processes which compete for overlapping sets of shared variables	

	

•  five philosophers sit around a circular table	

•  each philosopher alternately thinks and eats spaghetti from a dish in

the middle of the table	

•  the philosophers can only afford five forks–one fork is placed between

each pair of philosophers	

•  to eat, a philosopher needs to obtain mutually exclusive access to the

fork on their left and right	

	

The problem is to avoid starvation–e.g., each philosopher acquires one
fork and refuses to give it up. 	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

29	

Dining Philosophers Problem"

P5

P1

P2 P3

P4

fork 1

fork 2

fork 3

fork 4

fork 5

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

30	

Deadlock in the Dining Philosophers"
The key to the solution is to avoid deadlock caused by circular waiting:	

	

•  process 1 is waiting for a resource (fork) held by process 2	

•  process 2 is waiting for a resource held by process 3 	

•  process 3 is waiting for a resource held by process 4	

•  process 4 is waiting for a resource held by process 5	

•  process 5 is waiting for a resource held by process 1.	

No process can make progress and all processes remain deadlocked.	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

31	

Semaphore Solution"
// Philosopher i, i == 1-4

while(true) {

 //get right fork then left

 P(fork[i]);

 P(fork[i+1]);

 // eat ...

 V(fork[i]);

 V(fork[i+1]);

 // think ...

}!

// Philosopher 5

while(true) {

 //get left fork then right

 P(fork[1]);

 P(fork[5]);

 // eat ...

 V(fork[1]);

 V(fork[5]);

 // think ...

}!

// Shared variables
binary semaphore fork[5] = {1, 1, 1, 1, 1};	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

32	

Deadlock"
Although fully synchronised objects are always safe, threads using them
are not always live	

	

•  some synchronized actions are multiparty – they acquire locks on
multiple objects	

•  deadlock is possible when two or more objects are mutually accessible
from two or more threads, and each thread holds one lock while trying
to obtain another lock held by another thread	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

33	

Example: Cell
class Cell { // Broken, do not use ...

 private long value;

 synchronized long getValue() { return value; }

 synchronized void setValue(long v) { value = v; }

 synchronized void swapValue(Cell other) {

 long t = getValue();

 long v = other.getValue();

 setValue(v);

 other.setValue(t);

 }

} – see Lea (2000), p 87.	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

34	

Example deadlock trace"

	

Thread 1	

acquire lock for a on invoking
a.swapValue(b)
	

pass the lock for a (since already held)
on invoking t = getValue()	

	

block waiting for lock on b on
invoking v = other.getValue()

	

	

	

Thread 2	

	

	

acquire lock for b on invoking
b.swapValue(a)
	

pass lock for b (since already held) on
invoking t = getValue()
	

block waiting for lock on a on
invoking v = other.getValue()	

Consider two threads, one of which invokes a.swapValue(b) while 	

the other invokes b.swapValue(a) 	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

35	

Resource ordering"
One way to avoid this kind of deadlock is to use resource ordering:	

	

•  associate a numerical (or any other strictly orderable data type) tag
with each object that can be an argument to a synchronized
multiparty action	

•  if synchronization is always performed in tag order, then a situation
can never arise in which a thread which has a lock on object x and is
waiting for a lock on y while another thread has a lock on y and is
waiting for a lock on x

•  whichever thread locks the resource with the lowest tag first will
acquire both locks while the other waits, and then the second thread
will acquire both locks	

Example: resource ordering"
•  in the case of Cells, we can either extend the Cell class to add a

tag field	

•  or we can use some existing information about Cell objects, e.g.,
their hash codes	

•  e.g., we can use System.identityHashCode which returns the
hash value computed by Object.hashCode (even if a class
overrides the hashCode method) 	

•  while the identityHashCode value is not guaranteed to be
unique, it is very likely to be unique, which is often good enough	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

36	

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

37	

Example: swapValue()"
 public void swapValue(Cell other) {

 if (System.identityHashCode(this) <

 System.identityHashCode(other))

 this.doSwapValue(other);

 else

 other.doSwapValue(this);

 }
 protected synchronized void doSwapValue(Cell other) {

 long t = getValue();

 long v = other.getValue();

 setValue(v);

 other.setValue(t);

 }

© Brian Logan 2014	

 G52CON Lecture 13: Synchronisation in Java
III	

38	

The next lecture"
Remote invocation	

	

Suggested reading:	

•  Andrews (2000), chapter 8;	

•  Ben-Ari (1982), chapter 6;	

•  Burns & Davies (1993), chapter 5;	

•  Andrews (1991), chapters 9.	

