
G52CON: 
Concepts of Concurrency 

 
Lecture 15 Distributed Processing in Java"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

2	

Outline of this lecture"
•  remote invocation and java.rmi

•  structure of RMI applications	

•  RMI mechanics	

•  example: 	

– remote RWDictionary 	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

3	

Recap: synchronising communication"
If a process tries to receive a message before one has been sent, it will
block until there is a message for it to read.	

	

The differences are mainly in the behaviour of the sending process:	

	

•  asynchronous communication: the sending process continues without
waiting for the message to be received, e.g., Unix sockets,
java.net	

•  synchronous communication: the sending process is delayed until the
corresponding receive is executed, e.g., CSP, occam	

•  remote invocation: the sending process is delayed until a reply is
received, e.g., RPC (java.rmi), Extended Rendezvous 	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

4	

Recap: remote invocation"
•  remote invocation combines aspects of monitors and synchronous

message passing:	

–  as with monitors interaction is via public procedures; and	

–  as with synchronous send, calling a procedure delays the
caller.	

•  provides two way communication from the caller to the process
servicing the call and back	

•  remote invocation is implemented using message passing	

	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

5	

Recap: RPC & Extended Rendezvous"

There are two main forms of remote invocation:	

	

•  Remote Procedure Call creates a new process to handle each call	

•  Extended Rendezvous services a request using an existing process.	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

6	

Recap: modules"
A module is an abstraction which can be used to describe both RPC and
Extended Rendezvous	

	

A module contains both processes and local and exported procedures:	

	

•  the header contains the signatures of the exported procedures	

•  the body contains local procedures and processes, local variables, and
initialisation code	

•  at any point in time, a module contains zero or more processes	

•  different modules may reside in different addresses spaces	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

7	

Recap: modules and message passing"

Communication between modules is by calls to exported procedures:	

	

•  arguments and return values are passed as messages	

•  the sending and receiving of messages is implicit rather than
explicitly programmed	

Communication within modules is similar to monitors: 	

•  processes within a module can share variables and call procedures
declared in that module	

	

	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

8	

Recap: modules and RPC"
In RPC, a module contains zero or more processes and some exported
procedures:	

	

•  local processes are called background processes 	

•  processes that result from remote calls to exported procedures which
are called server processes	

	

	

	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

9	

java.rmi"
The package java.rmi implements Java’s version of RPC:	

	

•  remote invocation is based on the model of a procedure call	

•  in Java, non-static methods must be invoked on an object	

•  Java therefore requires both remote methods (procedures) and remote
objects on which the remote methods can be invoked.	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

10	

Java remote objects"
A Java remote object is one whose methods can be invoked from another
JVM, potentially on a different host:	

•  a remote object is described by one or more remote interfaces which
extend java.rmi.Remote

•  methods declared in a Remote interface must throw
RemoteExceptions

•  remote method invocation (RMI) is the action of invoking a method of
a remote interface on a remote object	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

11	

Modules and java.rmi"
•  a Remote interface is similar to the header of a module containing

the signatures of the exported procedures	

•  a class implementing a Remote interface is similar to the the body of
the module, containing local methods and variables, and initialisation
code	

•  the processes in a module are the threads running on the target JVM	

•  details of communication between Remote objects are handled by
RMI, which uses Sockets and Serialization to implement the
transfer of arguments and results	

	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

12	

Structure of RMI applications"
•  a server creates some remote objects, makes references to them

accessible and waits for clients to invoke (remote) methods on the
remote objects	

•  a client gets a remote reference to a remote object in the server, either
from the RMI registry or as a return value to a remote method, and
invokes (remote) methods on it	

•  a component of a distributed Java application can act as both a client
and server	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

13	

The RMI registry"
The system provides a particular remote object, the RMI registry for
finding references to remote objects:	

	

•  once a remote object is registered with the RMI registry on the local
host, clients on any host can look up the remote object by name,
obtain a reference to it (stub), and then invoke its methods	

•  the registry is typically used only to locate the first remote object that
a client needs to use from a particular server	

•  the registry listens on a known port, usually 1099 on the same host as
the server.	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

14	

Structure of an RMI application"

JVM"

Naming

rmiregistry"

Host A"

stub "

stub "

server"

Host B"

client"

JVM"

stub "method invocations"

client"

JVM"

stub "method invocations"

Host C"

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

15	

Stubs"
A stub acts as a proxy for a remote object and is responsible for carrying
out method calls on the remote object.	

	

Invoking a stub method:	

	

•  initiates a connection with the remote JVM containing the remote
object;	

•  writes and transmits the method parameters to the remote JVM;	

•  waits for the results of the method invocation; and	

•  reads the result (return value or exception) and returns it to the caller	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

16	

Parameter passing in RMI"
An argument to or return value form a remote object can be any Java
object that is serializable:	

	

•  non-remote method arguments and results are passed by copying–
changes made to the object are not visible to other clients.	

•  remote objects are passed by reference (i.e., a copy of the stub is
passed or returned)–changes made by one client to the state of the
remote object are visible to all clients.	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

17	

Example RWDictionary
class RWDictionary {
 private final Map<String, Data> m =
 new TreeMap<String, Data>();

 // locks
 private final ReentrantReadWriteLock rwl =
 new ReentrantReadWriteLock();
 private final Lock r = rwl.readLock();
 private final Lock w = rwl.writeLock();

 // methods follow ...

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

18	

Example RWDictionary readers
 // Reader method (does not update the map)

 public Data get(String key) {

 r.lock();

 try {

 return m.get(key);

 }

 finally {

 r.unlock();

 }

 }

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

19	

Example RWDictionary writers
 // Writer method (changes the map)

 public Data put(String key, Data value) {

 w.lock();

 try {

 return m.put(key, value);

 }

 finally {

 w.unlock();

 }

 }

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

20	

Remote RWDictionaryServer
import java.rmi.*;

import java.rmi.server.*;

interface RWDictionaryServer extends Remote {

 Data get(String key) throws RemoteException;

 Data put(String key, Data value) throws

 RemoteException;

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

21	

RWDictionaryServerImpl"
class RWDictionaryServerImpl
 extends UnicastRemoteObject implements RWDictionaryServer {

 private final Map<String, Data> m =
 new TreeMap<String, Data>();

 private final ReentrantReadWriteLock rwl =
 new ReentrantReadWriteLock();
 private final Lock r = rwl.readLock();
 private final Lock w = rwl.writeLock();

 public RWDictionaryServerImpl() throws RemoteException { }

 // continued ...

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

22	

RWDictionaryServerImpl 2"
 // Reader method (does not update the map)

 public Data get(String key)

 throws RemoteException {

 r.lock();

 try {

 return m.get(key);

 }

 finally {

 r.unlock();

 }

 }

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

23	

RWDictionaryServerImpl 3"
 // Writer method (changes the map)
 public Data put(String key, Data value)
 throws RemoteException {
 w.lock();
 try {
 return m.put(key, value);
 }
 finally {
 w.unlock();
 }
 }
}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

24	

RWDictionaryServerImpl 4"
 public static void main(String[] args) {

 try {

 RWDictionaryServer server =

 new RWDictionaryServerImpl();

 Naming.bind(“//host:port/rwDictionary”, server);

 } catch (Exception e) {

 System.err.println(e);

 }

 }

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

25	

RWDictionaryServerImpl 4"
 public static void main(String[] args) {

 try {

 RWDictionaryServer server =

 new RWDictionaryServerImpl();

 Naming.bind(“//host:port/rwDictionary”, server);

 } catch (Exception e) {

 System.err.println(e);

 }

 }

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

26	

RWDictionaryServerImpl.main()"
The main method creates an instance of the RWDictionaryServerImpl
class

•  this calls the UnicastRemoteObject constructor which in turn exports
the newly created object to the RMI runtime	

	

•  the RemoteRWDictionary remote object is then ready to accept

incoming calls from clients on an anonymous port chosen by RMI or the
underlying OS	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

27	

Exporting the server"

stub "

server"
JVM"

Host A"

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

28	

RWDictionaryServerImpl 4"
 public static void main(String[] args) {

 try {

 RWDictionaryServer server =

 new RWDictionaryServerImpl();

 Naming.bind(“//host:port/rwDictionary”, server);

 } catch (Exception e) {

 System.err.println(e);

 }

 }

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

29	

RWDictionaryServerImpl.main()2"

Before a caller can invoke a method on a remote object, it must obtain a
remote reference to it:	

•  the Naming interface is used for registering and looking up remote
objects in the registry	

•  once a remote object is registered with the RMI registry on the local
host, clients on any host can look up the remote object by name,
obtain its reference and then invoke its methods.	

•  the main method then exits—as long as there is a reference to the
RWDictionaryServer object in another JVM, on the same or a
different host, the JVM will not be shut down	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

30	

Naming.bind"

JVM"

Naming

rmiregistry"

Host A"

stub "

server"

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

31	

Downloading the stub"
When the RWDictionaryServerImpl binds its remote object
reference in the registry	

	

•  the registry downloads the RWDictionaryServerImpl_Stub
and the RWDictionaryServer interface which the stub
implements 	

•  these come from the RWDictionaryServerImpl’s web server or
file system	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

32	

Downloading the stub"

JVM"

Naming

rmiregistry"

Host A"

stub "

stub "

server"

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

33	

WriterClient"
class WriterClient {

 public static void main(String[] args) {

 try {

 System.setSecurityManager(new RMISecurityManager());

 String name = “//host:port/rwDictionary”;

 RWDictionaryServer d =

 (RWDictionaryServer) Naming.lookup(name);

 // Make a key,value pair and put it in the dictionary

 d.put(key, value);

 } catch (Exception e) {

 System.err.println(e);

 }

 }

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

34	

WriterClient"
class WriterClient {

 public static void main(String[] args) {

 try {

 System.setSecurityManager(new RMISecurityManager());

 String name = “//host:port/rwDictionary”;

 RWDictionaryServer d =

 (RWDictionaryServer) Naming.lookup(name);

 // Make a key,value pair and put it in the dictionary

 d.put(key, value);

 } catch (Exception e) {

 System.err.println(e);

 }

 }

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

35	

Naming.lookup"

JVM"

Naming

rmiregistry"

Host A"

stub "

JVM"

Host B"

client" stub "

server"

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

36	

Remote method invocation on the stub"
This returns a remote reference to the RWDictionaryServerImpl
object—its stub:	

	

•  the RWDictionaryServerImpl_Stub is downloaded to the
client’s JVM from the registry’s web server	

•  the stub knows the anonymous port on which the
RWDictionaryServer_Impl is listening for method calls	

•  the WriterClient can then invoke methods on the stub, e.g.,
put(String key, Data value)

	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

37	

Distributed RWDictionary"

JVM"

Naming

rmiregistry"

Host A"

stub "

client"

JVM"

stub "

Host B"

stub "

server"

method invocations"

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

38	

ReaderClient"
class ReaderClient {

 public static void main(String[] args) {

 try {

 System.setSecurityManager(new RMISecurityManager());

 String name = “//host:port/rwDictionary”;

 RWDictionaryServer d =

 (RWDictionaryServer) Naming.lookup(name);

 // Check whether a key is in the dictionary

 Data value = d.get(key);

 } catch (Exception e) {

 System.err.println(e);

 }

 }

}

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

39	

Distributed BoundedBuffer"

JVM"

Naming

rmiregistry"

Host A"

stub "

stub "

server"

Host B"

client"

JVM"

stub "method invocations"

client"

JVM"

stub "method invocations"

Host C"

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

40	

RMI and Threads"
“A method dispatched by the RMI runtime to a remote object may or may
not execute in a separate thread. The RMI runtime makes no guarantees
with respect to mapping remote method invocations to threads. Since
remote method invocation on the same remote method may execute
concurrently, a remote object implementation needs to make sure its
implementation is thread-safe.”	

	

— Java RMI Specification, section 3.2	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

41	

Summary"
•  in this part of the module, we have looked at the relationship between

abstract concurrency ideas and their Java implementation:	

– Atomic Actions: Java Memory Model	

– Mutual Exclusion: synchronized	

– Condition Synchronisation: wait(), notify(),
notifyAll()	

– Distributed Processing: java.rmi 	

•  the Java implementation of concurrency is usually more complex
(because of the need to handle things like exceptions); and 	

•  the guarantees given by Java are often weaker than offered by the
abstract model	

© Brian Logan 2015	

 G52CON Lecture 15: Distributed Processing in
Java	

42	

The next lecture"
Proving Correctness	

	

Suggested reading:	

•  Andrews (2000), chapter 2, sections 2.6–2.8;	

•  Ben-Ari (1982), chapter 3.	

