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Outline of this lecture"
•  model checking	



•  transition systems and properties	



•  example: simple transition system	



•  SMV description and specification languages	



•  truth of CTL formulas	
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Exercise 5"
 
// Process 1 
 
init1; 
while(true) { 
c1 = 0;   // entry protocol 
while (c2 == 0) {};      
crit1; 
c1 = 1;   // exit protocol 
rem1; 

} 

 
// Process 2 
 
init2; 
while(true) { 

c2 = 0;   // entry protocol 
while (c1 == 0) {};      
crit2; 
c2 = 1;   // exit protocol 
rem2; 

} 

//shared variables 
integer c1 == 1 c2 == 1;	
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Exercise 5a"
// Process 1 
init1; 
while(true) { 

c1 = 0;   // entry protocol 
while (c2 == 0) {      

if (turn == 2) { 
c1 = 1; 
while (turn == 2) {}; 
c1 = 0; 

} 
} 
crit1; 
turn = 2; // exit protocol 
c1 = 1; 
rem1; 

}!

// Process 2 
init2; 
while(true) { 

c2 = 0;   // entry protocol 
while (c1 == 0) {      

if (turn == 1) { 
c2 = 1; 
while (turn == 1) {}; 
c2 = 0; 
} 

} 
crit2; 
turn = 1; // exit protocol 
c2 = 1; 
rem2; 

} 

c1 == 1 c2 == 1 turn == 1	
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Formal verification"
Formal verification consists of three parts:	


	



•  a description language for describing the system to be verified;	



•  a specification language for describing the properties to be verified; 
and	



•  a verification method to establish whether the description of the 
system satisfies the specification	
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Proof-based approaches to verification"
In a proof-based approach	


	



•  the system description is a set of formulas Γ in some logic	



•  the specification is another formula φ in the same logic	



•  the verification method consists of trying to find a proof that Γ |- φ	



This is time consuming and requires expertise on the part of the user.	
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Model-based approaches to verification"
In a model-based approach	


	



•  the system is represented by a finite model M for an appropriate logic;	



•  the specification is a formula φ in the same logic; and	



•  the verification method consists of computing whether M satisfies φ 
(M |= φ)	



This process can be automated (model checking).	
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Model checking"
•  automatic, model-based, property verification approach, i.e., the 

specification describes a single property of the system rather than its 
complete behaviour;	



•  intended for concurrent, reactive systems, e.g., concurrent programs, 
embedded systems and computer hardware;	



•  post-development methodology.	
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Verifying properties by model checking"
To verify that a program or system satisfies a property, we:	


	



•  describe the system using the description language of the model-
checker;	



•  express the property to be verified using the specification language of 
the model checker; and	



•  run the model checker with the system description and property to be 
verified as inputs.	
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Model checking and temporal logic"
Model checking is based on temporal logic	


	



•  in classical (propositional) logic, a model is an assignment of truth 
values to atomic propositions	



•  the models of temporal logic contain several states and a formula can 
be true in some states and false in others	



•  truth is dynamic in that formulas can change their truth values as the 
system evolves from state to state	



	


In model checking, the models M are transition systems and the properties 
φ are formulas of temporal logic	
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How it works"
When the model checker is run	


	



•  it  generates a model (transition system), M, from the system 
description;	



•  converts the property to be verified into a temporal logic formula φ 
and; 	



•  for every state s in M, checks whether s satisfies φ (M, s |= φ)	


	


If the model doesn’t satisfy the formula most model checkers also output a 
trace of the system behaviour that causes the failure.	
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Transition systems"
A transition system consists of a set of states and the transitions between 
them (a directed graph)	


	



•  the states are the states of the system being modelled	



•  states are labelled by a set of atomic propositions which are true in 
that state, e.g., “variable x has value 1”, “process 1 is in its critical 
section” etc. 	



•  the transitions correspond to the atomic transitions of the system, e.g., 
atomic instructions or synchronized methods	



•  there may be many transitions from each state—one for each process 
that could go next in an interleaving	
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Example: simple transition system"

// Process 1 

while(true) { 

    x = 1; 

    y = 100; 

} 

Atomic propositions: 
 

p0 true when x == 0 
p1 true when x == 1 
p100 true when x == 100 

// Process 2 

while(true) { 

x = y; 

} 

 
 

q0 true when y == 0 
q100 true when y == 100 

// shared variables 
integer x = 0; y = 0; 	
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p0, q100	



Example: simple transition system 2"

p0, q0	


s0	



p1, q100	


s2	



p100, q100	



s4	


p100, q100	



s5	


p1, q100	



s3	



p1, q0	


s1	



p0, q0	


s6	

 s7	
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Example: simple transition system"

// Process 1 

while(true) { 

  α1 

    x = 1; 

  α2 

    y = 100; 

} 
 

// Process 2 

while(true) { 

x = y; 

} 

 
 
 

// shared variables 
integer x = 0; y = 0; 	
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Example: simple transition system 2"

p0, q0	


s0	



p1, q100	


s2	



p100, q100	



s4	


p100, q100	



s5	


p1, q100	



s3	



p1, q0	


s1	



α1	

 α2	

 α1	

 α2	

 α2	



α1	



x = 1 y = 100 x = 1 x = y 

y = 100 

x = y 
y = 100 

x = y 

x = y 

x = y 

x = y 

x = 1 

p0, q100	

p0, q0	


s6	

 s7	


y = 100 x = 1 

x = y 

α2	

 α1	



x = y 
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The system description"
Model checkers don’t usually take program text as input:	


	



•  a system description at the program statement level may be too fine 
grained for the properties to be checked	



•  model checkers are also used to verify hardware systems, 
communication protocols, etc. 	



	


Instead, each model checker has its own description language and 
specification language.	
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Example: SMV model checker"
MODULE main 

VAR 

  request: boolean; 

  status : {ready, busy}; 

ASSIGN 

  init(status) := ready; 

  next(status) := case 

                    request : busy; 

                    1 : {ready, busy}; 

                  esac; 

SPEC 

  AG(request -> AF status = busy) 
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Specifying properties"
The property of the system to be verified is expressed in the model 
checker’s specification language	


	



•  many model checkers allow properties to be expressed directly in 
temporal logic (often using a simplified syntax)	



•  for example, the SMV model checker uses Computation Tree Logic 
(CTL) as its specification language	
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Syntax of CTL"
CTL is a branching-time temporal logic	


	



•  a set of atomic propositions p, q, r, …	



•  standard logical connectives: ¬, ∧, ∨, →	



•  temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU	



•  formulas: φ = p | ¬φ | φ1 ∧ φ2 ... AX φ ... A[φ U ϕ] ...	
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Temporal connectives"
•  AX φ : on All paths, φ is true in the neXt state	


•  EX φ : on somE path, φ is true in the neXt state	



•  AF φ : on All paths, in some Future state φ is true	


•  EF φ : on somE path, in some Future state φ is true	



•  AG φ : on All paths, in all future states (Globally) φ is true	


•  EG φ : on somE path, in all future states (Globally) φ is true	



•  A[φ U ϕ] : on All paths, φ is true Until ϕ is true	


•  E[φ U ϕ] : on somE path, φ is true Until ϕ is true	





© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 22	



Specifying properties of systems"
Given some atomic propositions expressing properties of interest such as 
ready, started, requested, acknowledged, enabled, deadlock etc., we can 
express properties such as:	


	



•  there exits some state where started holds, but ready does not: 	


EF (started ∧ ¬ready)	

	



•  a request for a resource will eventually be acknowledged:	


AG(requested → AF acknowledged)	



	


•  a process will eventually be permanently deadlocked:	



AF(AG deadlock)	

	


•  from any state it is possible to get to a restart state:	



AG(AF restart)	





© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 23	



CTL formulas can be evaluated relative to the computation tree which is 
the unwinding of the transition system describing the system.	


For example, the graph:	


	



Semantics of CTL"

p, q	


s0	



q, r	


s1	



r	


s2	
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Unwinding the graph"

	


	

 p, q	



s0	



p, q	


s0	



q, r	


s1	



r	


s2	



r	


s2	



r	


s2	



r	


s2	



r	


s2	



q, r	


s1	



Can be unwound as:	
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Interpreting temporal connectives"
•  M, s |= AX φ : in every next state starting in s φ holds	



	


•  M, s |= EX φ : in some next state starting in s φ holds	



	


•  M, s |= AF φ : for all computation paths starting in s there is some 

future state where φ holds	


	



•  M, s |= EF φ : there exits a computation path starting in s such that φ 
holds in some future state	
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Interpreting temporal connectives 2"
•  M, s |= AG φ : for all computation paths starting in s the property φ 

holds globally (in every state along the path including s)	


	



•  M, s |= EG φ : there exists a computation path starting in s such that φ 
holds globally (in every state along the path including s)	



	


•  M, s |= A[φ1 U φ2] : for all computation paths starting in s the property 
φ1 holds in every state along the path (including s) until φ2  holds 	



	


•  M, s |= E[φ1 U φ2] : there exists a computation path starting in s such 

that the property φ1 holds in every state along the path (including s) 
until φ2  holds 	
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Example: a system which satisfies EF φ"

	


	



φ	
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Example: a system which satisfies EG φ"

	


	



φ	



φ	



φ	
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Example: a system which satisfies AG φ"

	


	



φ	



φ	



φ	



φ	



φ	



φ	



φ	

φ	

 φ	



φ	
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Example: a system which satisfies AF φ"

	


	



φ	



φ	



φ	

φ	

 φ	





© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 31	



Models of CTL"
A model M = (S, →, L) for CTL is given by:	


	



•  a set of states S	


	



•  a transition relation → on S, such that for every s ∈ S there exists an s´ 
∈ S such that s → s´ 	



•  if there are no transitions possible from s, e.g., s is a termination state 
or a deadlock state, we add transition from s to a special state with a 
transition to itself, representing termination or deadlock.	



•  a labelling function L(s) specifying the set of atomic propositions 
which are true at s.	
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Definition of truth for CTL formulas"
Let M = (S, →, L) be a model of CTL.  For any state s ∈ S, a CTL 
formula φ holds at s iff:	


	



M, s |= φ	


	


1. M, s |= p iff  p ∈ L(s)	


	


2. M, s |= ¬φ iff M, s |≠ φ	


	


3. M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2 	

	


4. M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2 	

	


5. M, s |= φ1 → φ2 iff M, s |≠ φ1 or M, s |= φ2 	





© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 33	



Definition of truth for CTL formulas 2"
6. M, s |= AX φ iff  for all s1 such that s → s1, we have M, s1 |= φ	


	


7. M, s |= EX φ iff  for some s1 such that s → s1, we have M, s1 |= φ	


	


8. M, s |= AF φ iff  for all paths s1 → s2 → s3 →... , where s1 equals s, there 
is some si such that M, si |= φ	


	


9. M, s |= EF φ iff  there exists a path s1 → s2 → s3 →... , where s1 equals s 
and there is some si such that M, si |= φ 	


	


10. M, s |= AG φ iff  for all paths s1 → s2 → s3 →... , where s1 equals s, all 
si along the path we have M, si |= φ	


	


11. M, s |= EG φ iff  there exists a path s1 → s2 → s3 →... , where s1 equals 
s and all si along the path we have M, si |= φ 	


	





© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 34	



Definition of truth for CTL formulas 3"
12. M, s |= A[φ1 U φ2] iff  for all paths s1 → s2 → s3 →... , where s1 equals 
s and that path satisfies φ1 U φ2, i.e., there is some si along the path such 
that M, si |= φ2 and for each j < i, we have M, sj |= φ1	


	


13. M, s |= E[φ1 U φ2] iff  there exists a path s1 → s2 → s3 →... , where s1 
equals s and that path satisfies φ1 U φ2, i.e., there is some si along the path 
such that M, si |= φ2 and for each j < i, we have M, sj |= φ1	
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Given the following transition system:	


	



Exercise: evaluating CTL formulas"

p, q	


s0	



q, r	


s1	



r	


s2	
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Questions"
•  is the CTL formula AF r true at s0?	



•  is the CTL formula AG r true at s0?	



•  is the CTL formula AG AF r true at s0?	
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The next lecture"

Model Checking II	


	


Suggested reading:	


	



•  Huth & Ryan (2000), chapter 3.	


	




