G52CON:;
Concepts of Concurrency

Lecture 17 Model Checking |

Brian Logan

School of Computer Science
bsl@cs.nott.ac.uk

Outline of this lecture

model checking

transition systems and properties

example: simple transition system

SMYV description and specification languages

truth of CTL formulas

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

Exercise 5

// Process 1 // Process 2

initl; init2;

while (true) { while (true) {
cl = 0; // entry protocol c2 = 0; // entry protocol
while (c2 == 0) {}; while (cl == 0) {};
critl; crit2;
cl = 1; // exit protocol c2 = 1; // exit protocol
reml; rem?2;

//shared variables
integer cl == 1 c2 == 1;

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 3

Exercise 5a

// Process 1 // Process 2

init?2;
{ while (true) {

initl;
while (true)

cl = 0; // entry protocol
while (c2 == 0) { while (cl ==
if (turn == 2) { if (turn
cl = 1; c2 = 1;
while (turn == 2) {}; while (turn
cl = 0; c2 = 0;
} }
} }
critl; crit2;
turn = 2; // exit protocol
cl = 1; c2 = 1;
reml; rem2;
} }
cl == 1 c2 == 1 turn == 1

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

c2 = 0; // entry protocol

turn = 1; // exit protocol

Formal verification

Formal verification consists of three parts:
e adescription language for describing the system to be verified;

e a specification language for describing the properties to be verified;
and

* a verification method to establish whether the description of the
system satisfies the specification

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

Proof-based approaches to verification

In a proof-based approach

* the system description is a set of formulas I' in some logic
* the specification is another formula ¢ in the same logic

e the verification method consists of trying to find a proof that I' |- ¢

This is time consuming and requires expertise on the part of the user.

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 6

Model-based approaches to verification

In a model-based approach
* the system is represented by a finite model M for an appropriate logic;
e the specification is a formula ¢ in the same logic; and

e the verification method consists of computing whether M satisfies ¢

M= 9)

This process can be automated (model checking).

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 7

Model checking

e automatic, model-based, property verification approach, i.e., the
specification describes a single property of the system rather than its
complete behaviour;

* intended for concurrent, reactive systems, e.g., concurrent programs,
embedded systems and computer hardware;

e post-development methodology.

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

Verifying properties by model checking

To verify that a program or system satisfies a property, we:

» describe the system using the description language of the model-
checker;

e express the property to be verified using the specification language of
the model checker; and

* run the model checker with the system description and property to be
verified as inputs.

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 9

Model checking and temporal logic

Model checking is based on temporal logic

* in classical (propositional) logic, a model is an assignment of truth
values to atomic propositions

 the models of temporal logic contain several states and a formula can
be true in some states and false in others

e truth is dynamic in that formulas can change their truth values as the
system evolves from state to state

In model checking, the models M are transition systems and the properties
¢ are formulas of temporal logic

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 10

How It works

When the model checker is run

* it generates a model (transition system), M, from the system
description;

e converts the property to be verified into a temporal logic formula ¢
and;

* for every state s in M, checks whether s satisfies ¢ (M, s I= ¢)

If the model doesn’t satisfy the formula most model checkers also output a
trace of the system behaviour that causes the failure.

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 11

Transition systems

A transition system consists of a set of states and the transitions between
them (a directed graph)

* the states are the states of the system being modelled

e states are labelled by a set of atomic propositions which are true in
that state, e.g., “variable x has value 17, “process 1 is in its critical

section’’ etc.

* the transitions correspond to the atomic transitions of the system, e.g.,
atomic instructions or synchronized methods

 there may be many transitions from each state—one for each process
that could go next in an interleaving

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 12

Example: simple transition system

// shared variables
integer x = 0; vy = 0;

// Process 1 // Process 2
while (true) { while (true) {
x = 1; X =Y

vy = 100; }

}

Atomic propositions:
g, true when y == 0

Do true when x == q,00 ttue when y == 100
p; true when x ==
Do ttue when x == 100

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

13

Example: simple transition system 2

P 100> 9104
' S3

Po> 90 @ P149100 (P> 49100 P 100> 9i0q
NG NG N S!
Po> 90 Po> 9100

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

14

Example: simple transition system

// Process 1

while (true) {

ol
x = 1;
oz
vy = 100;
}
© Brian Logan 2014

// shared variables
integer x = 0; y = 0;

// Process 2

while (true) {

X = Vs

G52CON Lecture Lecture 17: Model Checking

15

Example: simple transition system 2

ol

P1oo 9100
X =y S5 y = 100

X =y X = yx =1 X =Yy
ol o2 ol o2 o2 ‘
Po 4o ¥E—= P90 ¥—=— P 9100F—= / P 910051000 9100
So S q 4 Ss

f Dt

X =y

y 0

a2 al

= 100 =
Po> 90 Po> 9100 x =1

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 16

The system description

Model checkers don’t usually take program text as input:

e a system description at the program statement level may be too fine
grained for the properties to be checked

* model checkers are also used to verify hardware systems,
communication protocols, etc.

Instead, each model checker has its own description language and
specification language.

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

17

Example: SMV model checker

MODULE main
VAR
request: boolean;

status : {ready, busy};

ASSIGN
init (status) := ready;
next (status) := case
request : busy;
1 : {ready, busy};
esac;
SPEC

AG (request -> AF status = busy)
© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

Specifying properties

The property of the system to be verified i1s expressed in the model
checker’s specification language

* many model checkers allow properties to be expressed directly in
temporal logic (often using a simplified syntax)

 for example, the SMV model checker uses Computation Tree Logic
(CTL) as its specification language

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

19

Syntax of CTL

CTL 1s a branching-time temporal logic
e a set of atomic propositions p, g, 7, ...
 standard logical connectives: =, A, v, —
e temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU

e formulas: p=pl =¢ 1P, A P, ... AX ¢ ... A[p U @] ...

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

20

Temporal connectives

e AX ¢ : on All paths, ¢ is true in the neXt state
* EX ¢ : on somE path, ¢ is true in the neXt state

e AF ¢ : on All paths, in some Future state ¢ is true
* EF ¢ : on somE path, in some Future state ¢ is true

* AG ¢ : on All paths, in all future states (Globally) ¢ is true
* EG ¢ : on somE path, in all future states (Globally) ¢ is true

* A[¢ U @] : on All paths, ¢ is true Until ¢ is true
 E[¢p U @] : on somE path, ¢ is true Until @ is true

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

21

Specifying properties of systems

Given some atomic propositions expressing properties of interest such as
ready, started, requested, acknowledged, enabled, deadlock etc., we can

express properties such as:

e there exits some state where started holds, but ready does not:
EF (started n —ready)
e arequest for a resource will eventually be acknowledged:
AG(requested — AF acknowledged)
e a process will eventually be permanently deadlocked:

AF(AG deadlock)

* from any state it is possible to get to a restart state:
AG(AF restart)

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 22

Semantics of CTL

CTL formulas can be evaluated relative to the computation tree which is
the unwinding of the transition system describing the system.

For example, the graph:

Sy

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

23

Unwinding the graph

Can be unwound as:

© Brian Logan 2014

G52CON Lecture Lecture 17: Model Checking

24

Interpreting temporal connectives

* M, s |I= AX ¢ : in every next state starting in s ¢ holds

* M, s |I= EX ¢ : in some next state starting in s ¢ holds

* M, s |= AF ¢ : for all computation paths starting in s there is some
future state where ¢ holds

* M, s I= EF ¢ : there exits a computation path starting in s such that ¢
holds in some future state

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

25

Interpreting temporal connectives 2

* M, s |l=AG ¢ : for all computation paths starting in s the property ¢
holds globally (in every state along the path including s)

* M, s I= EG ¢ : there exists a computation path starting in s such that ¢
holds globally (in every state along the path including s)

* M, s |=A[¢,; U ¢,] : for all computation paths starting in s the property
¢, holds in every state along the path (including s) until ¢, holds

* M, s |=E[¢,; U @,] : there exists a computation path starting in s such
that the property ¢, holds in every state along the path (including s)
until ¢, holds

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 26

Example: a system which satisfies EF ¢

© Brian Logan 2014 G52CON L¥cture Lecture 17: Model Checking

27

Example: a system which satisfies EG ¢

o

© Brian Logan 2014 G52CON L¥cture Lecture 17: Model Checking

28

Example: a system which satisfies AG ¢

© Brian Logan 2014 G52CON L¥cture Lecture 17: Model Checking

29

Example: a system which satisfies AF ¢

© Brian Logan 2014 G52CON L¥cture Lecture 17: Model Checking

30

Models of CTL

A model M = (S, —, L) for CTL is given by:
* aset of states S

e a transition relation — on S, such that for every s € S there exists an s~
€ S such that s — s~

e if there are no transitions possible from s, €.g., s is a termination state
or a deadlock state, we add transition from s to a special state with a
transition to itself, representing termination or deadlock.

e a labelling function L(s) specifying the set of atomic propositions
which are true at s.

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 31

Definition of truth for CTL formulas

Let M = (S, —, L) be a model of CTL. For any state s € S, a CTL
formula ¢ holds at s iff:

M,sl=¢
I.M,sl=piff p € L(s)
2.M,sl==¢iff M, s I= ¢
3.M,sl=¢, AP, iff M, s|=¢,and M, s |= ¢,
4.M,sl=¢, v ¢,iff M,sl=¢,or M, s = ¢,

SM,sl=¢;, = ¢, it M, sl=¢p,or M, sl=¢,

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

32

Definition of truth for CTL formulas 2

6.M, s |= AX ¢ iff for all s; such that s = s,, we have M, s, |= ¢
7.M, s |I= EX ¢ iff for some s; such that s — s;,, we have M, s, |= ¢

8.M, s |I= AF ¢ iff for all paths s, —= s, — s; —..., where s, equals s, there
is some s; such that M, s; |= ¢

9.M, s |= EF ¢ iff there exists a path s, — s, —= s; —..., where s, equals s
and there 1s some s, such that M, s; |= ¢

10. M, s I= AG ¢ iff for all paths s, —= s, — s;—..., where s, equals s, all
s; along the path we have M, s, |= ¢

11.M, s |I= EG ¢ iff there exists a path s, = s, — s; —..., where s, equals
s and all s; along the path we have M, s, |= ¢

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 33

Definition of truth for CTL formulas 3

12.M, s |I= A[¢$p, U ¢,] iff for all paths s, = s,— s5;—..., where s, equals
s and that path satisfies ¢, U ¢,, 1.e., there 1s some s; along the path such
that M, s; |= ¢, and for each j < i, we have M, s; I= ¢,

13.M, s |=E[¢, U ¢,] iff there exists a path s, = s,— s, —..., where s,

equals s and that path satisfies ¢, U ¢,, 1.e., there 1s some s, along the path
such that M, s; |= ¢,and for each j < i, we have M, S; =@,

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking 34

Exercise: evaluating CTL formulas

Given the following transition system:

© Brian Logan 2014 G52CON Lecture Lecture 17: Model Checking

35

Questions

* is the CTL formula AF r true at s,?

e is the CTL formula AG r true at s,?

e is the CTL formula AG AF r true at s,?

© Brian Logan 2014

G52CON Lecture Lecture 17: Model Checking

36

The next lecture

Suggested reading:

Model Checking I1

e Huth & Ryan (2000), chapter 3.

© Brian Logan 2014

G52CON Lecture Lecture 17: Model Checking

41

