
G52CON: 
Concepts of Concurrency 

 
Lecture 17 Model Checking I"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 2	

Outline of this lecture"
•  model checking	

•  transition systems and properties	

•  example: simple transition system	

•  SMV description and specification languages	

•  truth of CTL formulas	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 3	

Exercise 5"

// Process 1

init1;
while(true) {
c1 = 0; // entry protocol
while (c2 == 0) {};
crit1;
c1 = 1; // exit protocol
rem1;

}

// Process 2

init2;
while(true) {

c2 = 0; // entry protocol
while (c1 == 0) {};
crit2;
c2 = 1; // exit protocol
rem2;

}

//shared variables
integer c1 == 1 c2 == 1;	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 4	

Exercise 5a"
// Process 1
init1;
while(true) {

c1 = 0; // entry protocol
while (c2 == 0) {

if (turn == 2) {
c1 = 1;
while (turn == 2) {};
c1 = 0;

}
}
crit1;
turn = 2; // exit protocol
c1 = 1;
rem1;

}!

// Process 2
init2;
while(true) {

c2 = 0; // entry protocol
while (c1 == 0) {

if (turn == 1) {
c2 = 1;
while (turn == 1) {};
c2 = 0;
}

}
crit2;
turn = 1; // exit protocol
c2 = 1;
rem2;

}

c1 == 1 c2 == 1 turn == 1	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 5	

Formal verification"
Formal verification consists of three parts:	

	

•  a description language for describing the system to be verified;	

•  a specification language for describing the properties to be verified;
and	

•  a verification method to establish whether the description of the
system satisfies the specification	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 6	

Proof-based approaches to verification"
In a proof-based approach	

	

•  the system description is a set of formulas Γ in some logic	

•  the specification is another formula φ in the same logic	

•  the verification method consists of trying to find a proof that Γ |- φ	

This is time consuming and requires expertise on the part of the user.	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 7	

Model-based approaches to verification"
In a model-based approach	

	

•  the system is represented by a finite model M for an appropriate logic;	

•  the specification is a formula φ in the same logic; and	

•  the verification method consists of computing whether M satisfies φ
(M |= φ)	

This process can be automated (model checking).	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 8	

Model checking"
•  automatic, model-based, property verification approach, i.e., the

specification describes a single property of the system rather than its
complete behaviour;	

•  intended for concurrent, reactive systems, e.g., concurrent programs,
embedded systems and computer hardware;	

•  post-development methodology.	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 9	

Verifying properties by model checking"
To verify that a program or system satisfies a property, we:	

	

•  describe the system using the description language of the model-
checker;	

•  express the property to be verified using the specification language of
the model checker; and	

•  run the model checker with the system description and property to be
verified as inputs.	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 10	

Model checking and temporal logic"
Model checking is based on temporal logic	

	

•  in classical (propositional) logic, a model is an assignment of truth
values to atomic propositions	

•  the models of temporal logic contain several states and a formula can
be true in some states and false in others	

•  truth is dynamic in that formulas can change their truth values as the
system evolves from state to state	

	

In model checking, the models M are transition systems and the properties
φ are formulas of temporal logic	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 11	

How it works"
When the model checker is run	

	

•  it generates a model (transition system), M, from the system
description;	

•  converts the property to be verified into a temporal logic formula φ
and; 	

•  for every state s in M, checks whether s satisfies φ (M, s |= φ)	

	

If the model doesn’t satisfy the formula most model checkers also output a
trace of the system behaviour that causes the failure.	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 12	

Transition systems"
A transition system consists of a set of states and the transitions between
them (a directed graph)	

	

•  the states are the states of the system being modelled	

•  states are labelled by a set of atomic propositions which are true in
that state, e.g., “variable x has value 1”, “process 1 is in its critical
section” etc. 	

•  the transitions correspond to the atomic transitions of the system, e.g.,
atomic instructions or synchronized methods	

•  there may be many transitions from each state—one for each process
that could go next in an interleaving	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 13	

Example: simple transition system"

// Process 1

while(true) {

 x = 1;

 y = 100;

}

Atomic propositions:

p0 true when x == 0
p1 true when x == 1
p100 true when x == 100

// Process 2

while(true) {

x = y;

}

q0 true when y == 0
q100 true when y == 100

// shared variables
integer x = 0; y = 0; 	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 14	

p0, q100	

Example: simple transition system 2"

p0, q0	

s0	

p1, q100	

s2	

p100, q100	

s4	

p100, q100	

s5	

p1, q100	

s3	

p1, q0	

s1	

p0, q0	

s6	

 s7	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 15	

Example: simple transition system"

// Process 1

while(true) {

 α1

 x = 1;

 α2

 y = 100;

}

// Process 2

while(true) {

x = y;

}

// shared variables
integer x = 0; y = 0; 	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 16	

Example: simple transition system 2"

p0, q0	

s0	

p1, q100	

s2	

p100, q100	

s4	

p100, q100	

s5	

p1, q100	

s3	

p1, q0	

s1	

α1	

 α2	

 α1	

 α2	

 α2	

α1	

x = 1 y = 100 x = 1 x = y

y = 100

x = y
y = 100

x = y

x = y

x = y

x = y

x = 1

p0, q100	

p0, q0	

s6	

 s7	

y = 100 x = 1

x = y

α2	

 α1	

x = y

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 17	

The system description"
Model checkers don’t usually take program text as input:	

	

•  a system description at the program statement level may be too fine
grained for the properties to be checked	

•  model checkers are also used to verify hardware systems,
communication protocols, etc. 	

	

Instead, each model checker has its own description language and
specification language.	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 18	

Example: SMV model checker"
MODULE main

VAR

 request: boolean;

 status : {ready, busy};

ASSIGN

 init(status) := ready;

 next(status) := case

 request : busy;

 1 : {ready, busy};

 esac;

SPEC

 AG(request -> AF status = busy)

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 19	

Specifying properties"
The property of the system to be verified is expressed in the model
checker’s specification language	

	

•  many model checkers allow properties to be expressed directly in
temporal logic (often using a simplified syntax)	

•  for example, the SMV model checker uses Computation Tree Logic
(CTL) as its specification language	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 20	

Syntax of CTL"
CTL is a branching-time temporal logic	

	

•  a set of atomic propositions p, q, r, …	

•  standard logical connectives: ¬, ∧, ∨, →	

•  temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU	

•  formulas: φ = p | ¬φ | φ1 ∧ φ2 ... AX φ ... A[φ U ϕ] ...	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 21	

Temporal connectives"
•  AX φ : on All paths, φ is true in the neXt state	

•  EX φ : on somE path, φ is true in the neXt state	

•  AF φ : on All paths, in some Future state φ is true	

•  EF φ : on somE path, in some Future state φ is true	

•  AG φ : on All paths, in all future states (Globally) φ is true	

•  EG φ : on somE path, in all future states (Globally) φ is true	

•  A[φ U ϕ] : on All paths, φ is true Until ϕ is true	

•  E[φ U ϕ] : on somE path, φ is true Until ϕ is true	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 22	

Specifying properties of systems"
Given some atomic propositions expressing properties of interest such as
ready, started, requested, acknowledged, enabled, deadlock etc., we can
express properties such as:	

	

•  there exits some state where started holds, but ready does not: 	

EF (started ∧ ¬ready)	

	

•  a request for a resource will eventually be acknowledged:	

AG(requested → AF acknowledged)	

	

•  a process will eventually be permanently deadlocked:	

AF(AG deadlock)	

	

•  from any state it is possible to get to a restart state:	

AG(AF restart)	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 23	

CTL formulas can be evaluated relative to the computation tree which is
the unwinding of the transition system describing the system.	

For example, the graph:	

	

Semantics of CTL"

p, q	

s0	

q, r	

s1	

r	

s2	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 24	

Unwinding the graph"

	

	

 p, q	

s0	

p, q	

s0	

q, r	

s1	

r	

s2	

r	

s2	

r	

s2	

r	

s2	

r	

s2	

q, r	

s1	

Can be unwound as:	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 25	

Interpreting temporal connectives"
•  M, s |= AX φ : in every next state starting in s φ holds	

	

•  M, s |= EX φ : in some next state starting in s φ holds	

	

•  M, s |= AF φ : for all computation paths starting in s there is some

future state where φ holds	

	

•  M, s |= EF φ : there exits a computation path starting in s such that φ
holds in some future state	

	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 26	

Interpreting temporal connectives 2"
•  M, s |= AG φ : for all computation paths starting in s the property φ

holds globally (in every state along the path including s)	

	

•  M, s |= EG φ : there exists a computation path starting in s such that φ
holds globally (in every state along the path including s)	

	

•  M, s |= A[φ1 U φ2] : for all computation paths starting in s the property
φ1 holds in every state along the path (including s) until φ2 holds 	

	

•  M, s |= E[φ1 U φ2] : there exists a computation path starting in s such

that the property φ1 holds in every state along the path (including s)
until φ2 holds 	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 27	

Example: a system which satisfies EF φ"

	

	

φ	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 28	

Example: a system which satisfies EG φ"

	

	

φ	

φ	

φ	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 29	

Example: a system which satisfies AG φ"

	

	

φ	

φ	

φ	

φ	

φ	

φ	

φ	

φ	

 φ	

φ	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 30	

Example: a system which satisfies AF φ"

	

	

φ	

φ	

φ	

φ	

 φ	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 31	

Models of CTL"
A model M = (S, →, L) for CTL is given by:	

	

•  a set of states S	

	

•  a transition relation → on S, such that for every s ∈ S there exists an s´
∈ S such that s → s´ 	

•  if there are no transitions possible from s, e.g., s is a termination state
or a deadlock state, we add transition from s to a special state with a
transition to itself, representing termination or deadlock.	

•  a labelling function L(s) specifying the set of atomic propositions
which are true at s.	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 32	

Definition of truth for CTL formulas"
Let M = (S, →, L) be a model of CTL. For any state s ∈ S, a CTL
formula φ holds at s iff:	

	

M, s |= φ	

	

1. M, s |= p iff p ∈ L(s)	

	

2. M, s |= ¬φ iff M, s |≠ φ	

	

3. M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2 	

	

4. M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2 	

	

5. M, s |= φ1 → φ2 iff M, s |≠ φ1 or M, s |= φ2 	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 33	

Definition of truth for CTL formulas 2"
6. M, s |= AX φ iff for all s1 such that s → s1, we have M, s1 |= φ	

	

7. M, s |= EX φ iff for some s1 such that s → s1, we have M, s1 |= φ	

	

8. M, s |= AF φ iff for all paths s1 → s2 → s3 →... , where s1 equals s, there
is some si such that M, si |= φ	

	

9. M, s |= EF φ iff there exists a path s1 → s2 → s3 →... , where s1 equals s
and there is some si such that M, si |= φ 	

	

10. M, s |= AG φ iff for all paths s1 → s2 → s3 →... , where s1 equals s, all
si along the path we have M, si |= φ	

	

11. M, s |= EG φ iff there exists a path s1 → s2 → s3 →... , where s1 equals
s and all si along the path we have M, si |= φ 	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 34	

Definition of truth for CTL formulas 3"
12. M, s |= A[φ1 U φ2] iff for all paths s1 → s2 → s3 →... , where s1 equals
s and that path satisfies φ1 U φ2, i.e., there is some si along the path such
that M, si |= φ2 and for each j < i, we have M, sj |= φ1	

	

13. M, s |= E[φ1 U φ2] iff there exists a path s1 → s2 → s3 →... , where s1
equals s and that path satisfies φ1 U φ2, i.e., there is some si along the path
such that M, si |= φ2 and for each j < i, we have M, sj |= φ1	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 35	

Given the following transition system:	

	

Exercise: evaluating CTL formulas"

p, q	

s0	

q, r	

s1	

r	

s2	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 36	

Questions"
•  is the CTL formula AF r true at s0?	

•  is the CTL formula AG r true at s0?	

•  is the CTL formula AG AF r true at s0?	

© Brian Logan 2014	

 G52CON Lecture Lecture 17: Model Checking	

 41	

The next lecture"

Model Checking II	

	

Suggested reading:	

	

•  Huth & Ryan (2000), chapter 3.	

	

