
G52CON: 
Concepts of Concurrency 

 
Lecture 18 Model Checking II"

Brian Logan	

School of Computer Science	

bsl@cs.nott.ac.uk

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

2	

Outline of this lecture"
•  expressing properties in CTL	

•  example: expressing properties of Peterson’s algorithm	

•  a simple model checking algorithm	

•  Exercise 6: CTL	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

3	

Model-based approaches to verification"
In a model-based approach	

	

•  the system is represented by a finite model M for an appropriate logic;	

•  the specification is a formula φ in the same logic; and	

•  the verification method consists of computing whether M satisfies φ
(M |= φ)	

This process can be automated (model checking).	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

4	

Model checking and temporal logic"
Model checking is based on temporal logic	

	

•  in classical (propositional) logic, a model is an assignment of truth
values to atomic propositions	

•  the models of temporal logic contain several states and a formula can
be true in some states and false in others	

•  truth is dynamic in that formulas can change their truth values as the
system evolves from state to state	

	

In model checking, the models are transition systems and the properties φ
are formulas of temporal logic	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

5	

Syntax of CTL"
CTL is a branching-time temporal logic	

	

•  a set of atomic propositions p, q, r, …	

•  standard logical connectives: ¬, ∧, ∨, →	

•  temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU	

•  formulas: φ = p | ¬φ | φ1 ∧ φ2 ... AX φ ... A[φ U ϕ] ...	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

6	

Temporal connectives"
•  AX φ : on All paths, φ is true in the neXt state	

•  EX φ : on somE path, φ is true in the neXt state	

•  AF φ : on All paths, in some Future state φ is true	

•  EF φ : on somE path, in some Future state φ is true	

•  AG φ : on All paths, in all future states (Globally) φ is true	

•  EG φ : on somE path, in all future states (Globally) φ is true	

•  A[φ U ϕ] : on All paths, φ is true Until ϕ is true	

•  E[φ U ϕ] : on somE path, φ is true Until ϕ is true	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

7	

Specifying properties of systems"
Given some atomic propositions expressing properties of interest such as
ready, started, requested, acknowledged, enabled, deadlock etc., we can
express properties such as:	

	

•  there exits some state where started holds, but ready does not: 	

EF (started ∧ ¬ready)	

	

•  a request for a resource will eventually be acknowledged:	

AG(requested → AF acknowledged)	

	

•  a process will eventually be permanently deadlocked:	

AF(AG deadlock)	

	

•  from any state it is possible to get to a restart state:	

AG(AF restart)	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

8	

Example: Peterson’s algorithm"
// Process 1

init1;

while(true) {

 // entry protocol

 c1 = true;

 turn = 2;

 while (c2 && turn == 2) {};

 crit1;

 // exit protocol

 c1 = false;

 rem1;

}

// Process 2

init2;

while(true) {

 // entry protocol

c2 = true;

turn = 1;

while (c1 && turn == 1) {};

crit2;

// exit protocol

c2 = false;

rem2;

}

// shared variables
bool c1 = c2 = false;
integer turn == 1;	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

9	

Example: Peterson’s algorithm 1"
Atomic propositions:	

	

p1 true when c1 == true
q2 true when turn == 2
s1 true when process 1 is spinning in

its entry protocol	

c1 true when process 1 is in its

critical section	

r1 true when process 1 is in its

remainder	

	

	

	

p2 true when c2 == true
q1 true when turn == 1
s2 true when process 2 is spinning in

its entry protocol	

c2 true when process 2 is in its

critical section	

r2 true when process 2 is in its

remainder	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

10	

Example: Peterson’s algorithm 2"

s0	

s2	

s1	

¬p1,¬p2 , q1 , 	

¬s1,¬s2 ,	

¬c1,¬c2 , 	

¬r1,¬r2 ,	

¬p1,p2 , q1 , 	

¬s1,¬s2 ,	

¬c1,¬c2 , 	

¬r1,¬r2 ,	

p1, ¬ p2 , q1 , 	

¬s1,¬s2 ,	

¬c1,¬c2 , 	

¬r1,¬r2 ,	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

11	

Example: Peterson’s algorithm 3"
Different abstractions are possible, for example:	

	

•  ni (process i is not in its critical section or trying to enter, i.e., it is
initialising or in the remainder)	

•  ti (process i is trying to enter its critical section)	

•  ci (process i is in its critical section)	

•  each process undergoes transitions in the cycle ni → ti → ci → ni …	

•  only one process can make a transition at a time (e.g., a single
processor and the transitions are atomic)	

•  the two processes start off not in their critical sections, in the initial
state s0	

Note that this loses information and is not a faithful model of Peterson’s
algorithm	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

12	

Example: Peterson’s algorithm 4"

n1, n2	

s0	

c1, n2	

s2	

n1, t2	

s5	

n1, c2	

s6	

c1, t2	

s4	

t1, c2	

s7	

t1, t2	

s3	

t1, n2	

s1	

Note: in each state only those propositions which are true are shown	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

13	

Question 1: safety & liveness properties"
•  Express in CTL the following properties for Peterson’s algorithm:	

– Mutual Exclusion	

– Absence of Unnecessary Delay	

– Eventual Entry	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

14	

Question 1: safety & liveness properties"
•  Mutual Exclusion: 	

AG ¬(c1 ∧ c2)	

•  Absence of Unnecessary Delay: 	

AG (t1 ∧ n2 → AX (¬ t2 → c1)) for process 1	

	

AG (t2 ∧ n1 → AX (¬ t1 → c2)) for process 2	

	

•  Eventual Entry: 	

AG (t1 → AF c1) for process 1	

	

AG (t2 → AF c2) for process 2	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

15	

Question 1: safety & liveness properties"
•  Mutual Exclusion: 	

AG ¬(c1 ∧ c2)	

	

 in all states on all paths from s0, c1 ∧ c2 is false, i.e., process 1 and
process 2 are not in their critical sections at the same time	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

16	

Question 1: safety & liveness properties"
•  Absence of Unnecessary Delay: 	

AG (t1 ∧ n2 → AX (¬ t2 → c1)) for process 1	

 	

 in all states on all paths from s0, if process 1 is trying to enter its
critical section (t1) and process 2 is not in its critical section or trying
to enter (n2), in that state then …	

	

 in the next state on all paths from that state, if process 2 is not trying

to enter its critical section (¬ t2), i.e., it hasn’t started trying at this
transition, then process 1 will enter its critical section (c1)	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

17	

Question 1: safety & liveness properties"
•  Eventual Entry: 	

AG (t1 → AF c1) for process 1	

	

 in all states on all paths from s0, if process 1 is trying to enter its
critical section in that state (t1), then …	

	

 in some future state on all paths from that state, process 1 will enter its

critical section (c1)	

	

 Note that this formula is false in our model of Peterson’s algorithm, as

we have abstracted away the turn variable	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

18	

Question 2: CTL truth definitions"
•  Using CTL truth definitions show that the formula expressing Absence

of Unnecessary Delay: 	

AG (t1 ∧ n2 → AX (¬ t2 → c1))	

	

is true in the state s0	

	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

19	

Example: a system which satisfies AG φ"

	

	

φ	

φ	

φ	

φ	

φ	

φ	

φ	

φ	

 φ	

φ	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

20	

Example: a system where s0 satisfies AX φ"

	

	

φ	

 φ	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

21	

Question 2: CTL truth definitions"
•  for 	

AG (t1 ∧ n2 → AX (¬ t2 → c1))	

	

 to be true in the state s0 then on all paths from s0 if t1 ∧ n2 is true in a
state, then AX (¬ t2 → c1) must also be true in that state	

	

•  for 	

	

 	

AX (¬ t2 → c1)	

	

 to be true in a state si, then must ¬ t2 → c1 be true in all states sj

reachable from si in one step.	

	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

22	

Question 2: CTL truth definitions"

n1, n2	

s0	

c1, n2	

s2	

n1, t2	

s5	

n1, c2	

s6	

c1, t2	

s4	

t1, c2	

s7	

t1, t2	

s3	

t1, n2	

s1	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

23	

Question 2: CTL truth definitions"

n1, n2	

s0	

c1, n2	

 ¬t2	

s2	

n1, t2	

s5	

n1, c2	

s6	

c1, t2	

s4	

t1, c2	

s7	

t1, t2	

s3	

t1, n2	

s1	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

24	

Question 2: CTL truth definitions"
•  in s2, t2 is false and c1 is true, so ¬ t2 → c1 is true	

•  in s3, t2 is true so ¬ t2 → c1 is true	

•  so in s1	

	

 	

AX (¬ t2 → c1)	

	

 is true, and t1 ∧ n2 → AX (¬ t2 → c1) is also true	

	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

25	

Question 2: CTL truth definitions"
•  in all other states t1 ∧ n2 is false, so t1 ∧ n2 → AX (¬ t2 → c1) is true	

•  as t1 ∧ n2 → AX (¬ t2 → c1) is true in all states	

AG (t1 ∧ n2 → AX (¬ t2 → c1)) 	

	

 is true	

	

	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

26	

Verifying properties by model checking"
To verify that a program or system satisfies a property, we:	

	

•  describe the system using the description language of the model-
checker;	

•  express the property to be verified using the specification language of
the model checker; and	

•  run the model checker with the system description and property to be
verified as inputs.	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

27	

How it works"
When the model checker is run	

	

•  it generates a model (transition system), M, from the system
description;	

•  converts the property to be verified into a temporal logic formula φ
and; 	

•  for every state s in M, checks whether s satisfies φ (M, s |= φ)	

	

If the model doesn’t satisfy the formula most model checkers also output a
trace of the system behaviour that causes the failure.	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

28	

A model checking algorithm"
The simplest algorithm is as follows:	

	

•  given a transition system S and a formula φ to check	

1. generate the set of subformulas of φ; order them by complexity
(propositional variables first, then negations of propositional
variables, then conjunctions …, φ last)	

2. take a subformula ψ from the list and label those states of S which
satisfy ψ with ψ 	

	

3. repeat step 2 until all subformulas have been processed	

•  when we reach the end of the list we see which states satisfy φ.	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

29	

A model checking algorithm 2"
To label states of S with subformulas that don’t contain CTL connectives:	

	

•  since states come with a labelling function, we know how to label
states with atomic propositions;	

•  if current subformula is ¬ψ, we label with ¬ψ those states which are
not labelled with ψ (note that ψ precedes ¬ψ in the list of
subformulas, so we have already labelled the states with ψ);	

•  if the current subformula is ψ1 ∧ ψ2, we label those states which are
labelled with ψ1 and ψ2 with ψ1 ∧ ψ2 .	

All other boolean connectives can be expressed in terms of ¬ and ∧.	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

30	

A model checking algorithm 3"
To label states with subformulas containing the connectives EX, EU and
AF:	

•  if φ is EX ψ, label predecessors of any state labelled ψ by EX ψ;	

•  if φ is E[ψ1 U ψ2], first find all states labelled ψ2 . Then work
backwards from those states and so long as we encounter ψ1 states we
label them by E[ψ1 U ψ2];	

•  if φ is AFψ, first label all states labelled with ψ with AFψ. Then label
a state with AFψ if all its successor states are labelled with AFψ.
Repeat until there is no change.	

All the other CTL connectives can be expressed in terms of EX, EU and
AF.	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

31	

Overcoming the state explosion problem"

•  using efficient data structures, called ordered binary decision
diagrams, which represent sets of states rather than individual states	

•  abstracting away variables in the model which are not relevant to the
formula being checked	

•  partial order reduction—for asynchronous systems, several
interleavings of component traces may be equivalent as far as
satisfaction of the formula to be checked is concerned	

•  induction—model checking systems with large numbers of identical
or similar components can of be implemented by induction on that
number	

•  composition —breaking the verification problem down into several
simpler verification problems.	

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

32	

Exercise 6: CTL"
// Process 1

while(true) {

 r1 = turn;

 if (!r1) {

 <crit1>;

 turn = true;

 }

}

// Process 2

while(true) {

 r2 = turn;

 if (r2) {

 <crit1>;

 turn = false;

 }

}

	

// Shared datastructures
boolean turn = r1 = r2 = false;

© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking
II	

33	

The next lecture"

Revision?	

