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Outline of this lecture"
•  expressing properties in CTL	



•  example: expressing properties of Peterson’s algorithm	



•  a simple model checking algorithm	



•  Exercise 6: CTL	
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Model-based approaches to verification"
In a model-based approach	


	



•  the system is represented by a finite model M for an appropriate logic;	



•  the specification is a formula φ in the same logic; and	



•  the verification method consists of computing whether M satisfies φ 
(M |= φ)	



This process can be automated (model checking).	
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Model checking and temporal logic"
Model checking is based on temporal logic	


	



•  in classical (propositional) logic, a model is an assignment of truth 
values to atomic propositions	



•  the models of temporal logic contain several states and a formula can 
be true in some states and false in others	



•  truth is dynamic in that formulas can change their truth values as the 
system evolves from state to state	



	


In model checking, the models are transition systems and the properties φ 
are formulas of temporal logic	
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Syntax of CTL"
CTL is a branching-time temporal logic	


	



•  a set of atomic propositions p, q, r, …	



•  standard logical connectives: ¬, ∧, ∨, →	



•  temporal connectives: AX, EX, AF, EF, AG, EG, AU and EU	



•  formulas: φ = p | ¬φ | φ1 ∧ φ2 ... AX φ ... A[φ U ϕ] ...	
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Temporal connectives"
•  AX φ : on All paths, φ is true in the neXt state	


•  EX φ : on somE path, φ is true in the neXt state	



•  AF φ : on All paths, in some Future state φ is true	


•  EF φ : on somE path, in some Future state φ is true	



•  AG φ : on All paths, in all future states (Globally) φ is true	


•  EG φ : on somE path, in all future states (Globally) φ is true	



•  A[φ U ϕ] : on All paths, φ is true Until ϕ is true	


•  E[φ U ϕ] : on somE path, φ is true Until ϕ is true	
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Specifying properties of systems"
Given some atomic propositions expressing properties of interest such as 
ready, started, requested, acknowledged, enabled, deadlock etc., we can 
express properties such as:	


	



•  there exits some state where started holds, but ready does not: 	


EF (started ∧ ¬ready)	

	



•  a request for a resource will eventually be acknowledged:	


AG(requested → AF acknowledged)	



	


•  a process will eventually be permanently deadlocked:	



AF(AG deadlock)	

	


•  from any state it is possible to get to a restart state:	



AG(AF restart)	
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Example: Peterson’s algorithm"
// Process 1 

init1; 

while(true) { 

    // entry protocol 

  c1 = true; 

  turn = 2; 

  while (c2 && turn == 2) {}; 

  crit1; 

  // exit protocol 

  c1 = false; 

  rem1; 

} 

// Process 2 

init2; 

while(true) { 

    // entry protocol 

c2 = true; 

turn = 1; 

while (c1 && turn == 1) {}; 

crit2; 

// exit protocol 

c2 = false; 

rem2; 

} 

// shared variables 
bool c1 = c2 = false;  
integer turn == 1;	
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Example: Peterson’s algorithm 1"
Atomic propositions:	


	


p1 true when c1 == true 
q2 true when turn == 2 
s1 true when process 1 is spinning in 

its entry protocol	


c1 true when process 1 is in its 

critical section	


r1 true when process 1 is in its 

remainder	


	


 

	


	


p2 true when c2 == true 
q1 true when turn == 1 
s2 true when process 2 is spinning in 

its entry protocol	


c2 true when process 2 is in its 

critical section	


r2 true when process 2 is in its 

remainder	
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Example: Peterson’s algorithm 2"

s0	



s2	

s1	



¬p1,¬p2 , q1 , 	


¬s1,¬s2 ,	


¬c1,¬c2 , 	


¬r1,¬r2 ,	



¬p1,p2 , q1 , 	


¬s1,¬s2 ,	


¬c1,¬c2 , 	


¬r1,¬r2 ,	



p1, ¬ p2 , q1 , 	


¬s1,¬s2 ,	


¬c1,¬c2 , 	


¬r1,¬r2 ,	
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Example: Peterson’s algorithm 3"
Different abstractions are possible, for example:	

	



•  ni (process i is not in its critical section or trying to enter, i.e., it is 
initialising or in the remainder)	



•  ti (process i is trying to enter its critical section)	



•  ci (process i is in its critical section)	



•  each process undergoes transitions in the cycle ni → ti → ci → ni …	



•  only one process can make a transition at a time (e.g., a single 
processor and the transitions are atomic)	



•  the two processes start off not in their critical sections, in the initial 
state s0	



Note that this loses information and is not a faithful model of Peterson’s 
algorithm	
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Example: Peterson’s algorithm 4"

n1, n2	


s0	



c1, n2	


s2	



n1, t2	


s5	



n1, c2	


s6	



c1, t2	


s4	



t1, c2	


s7	



t1, t2	


s3	



t1, n2	


s1	



Note: in each state only those propositions which are true are shown	
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Question 1: safety & liveness properties"
•  Express in CTL the following properties for Peterson’s algorithm:	



– Mutual Exclusion	



– Absence of Unnecessary Delay	



– Eventual Entry	





© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking 
II	



14	



Question 1: safety & liveness properties"
•  Mutual Exclusion: 	



AG ¬(c1 ∧ c2)	



•  Absence of Unnecessary Delay: 	



AG (t1 ∧ n2 → AX (¬ t2 →  c1)) for process 1	

	


AG (t2 ∧ n1 → AX (¬ t1 →  c2)) for process 2	



	


•  Eventual Entry: 	



AG (t1 → AF c1) for process 1	

	


AG (t2 → AF c2) for process 2	
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Question 1: safety & liveness properties"
•  Mutual Exclusion: 	



AG ¬(c1 ∧ c2)	


	



   in all states on all paths from s0, c1 ∧ c2 is false, i.e., process 1 and 
process 2 are not in their critical sections at the same time	
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Question 1: safety & liveness properties"
•  Absence of Unnecessary Delay: 	



AG (t1 ∧ n2 → AX (¬ t2 →  c1)) for process 1	


 	



   in all states on all paths from s0, if process 1 is trying to enter its 
critical section (t1) and process 2 is not in its critical section or trying 
to enter (n2), in that state then …	



	


   in the next state on all paths from that state, if process 2 is not trying 

to enter its critical section (¬ t2), i.e., it hasn’t started trying at this 
transition, then process 1 will enter its critical section ( c1)	

	





© Brian Logan 2014	

 G52CON Lecture Lecture 18: Model Checking 
II	



17	



Question 1: safety & liveness properties"
•  Eventual Entry: 	



AG (t1 → AF c1) for process 1	


	



   in all states on all paths from s0, if process 1 is trying to enter its 
critical section in that state (t1), then …	



	


   in some future state on all paths from that state, process 1 will enter its 

critical section (c1)	


	


   Note that this formula is false in our model of Peterson’s algorithm, as 

we have abstracted away the turn variable	
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Question 2: CTL truth definitions"
•  Using CTL truth definitions show that the formula expressing Absence 

of Unnecessary Delay: 	



AG (t1 ∧ n2 → AX (¬ t2 →  c1))	


	


is true in the state s0	
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Example: a system which satisfies AG φ"

	


	



φ	



φ	



φ	



φ	



φ	



φ	



φ	

φ	

 φ	



φ	
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Example: a system where s0 satisfies AX φ"

	


	



φ	

 φ	
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Question 2: CTL truth definitions"
•  for 	



AG (t1 ∧ n2 → AX (¬ t2 →  c1))	


	



   to be true in the state s0 then on all paths from s0 if t1 ∧ n2 is true in a 
state, then AX (¬ t2 →  c1) must also be true in that state	



	


•  for 	



	

 	

AX (¬ t2 →  c1)	

	


   to be true in a state si, then must ¬ t2 →  c1 be true in all states sj 

reachable from si in one step.	
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Question 2: CTL truth definitions"

n1, n2	


s0	



c1, n2	


s2	



n1, t2	


s5	



n1, c2	


s6	



c1, t2	


s4	



t1, c2	


s7	



t1, t2	


s3	



t1, n2	


s1	
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Question 2: CTL truth definitions"

n1, n2	


s0	



c1, n2	


 ¬t2	



s2	



n1, t2	


s5	



n1, c2	


s6	



c1, t2	


s4	



t1, c2	


s7	



t1, t2	


s3	



t1, n2	


s1	
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Question 2: CTL truth definitions"
•  in s2,  t2 is false and  c1  is true, so ¬ t2 →  c1 is true	



•  in s3,  t2 is true so ¬ t2 →  c1 is true	



•  so in s1	



	

 	

AX (¬ t2 →  c1)	

	


   is true, and t1 ∧ n2 → AX (¬ t2 →  c1) is also true	
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Question 2: CTL truth definitions"
•  in all other states t1 ∧ n2  is false, so t1 ∧ n2 → AX (¬ t2 →  c1) is true	



•  as t1 ∧ n2 → AX (¬ t2 →  c1)  is true in all states	



AG (t1 ∧ n2 → AX (¬ t2 →  c1)) 	


	


   is true	
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Verifying properties by model checking"
To verify that a program or system satisfies a property, we:	


	



•  describe the system using the description language of the model-
checker;	



•  express the property to be verified using the specification language of 
the model checker; and	



•  run the model checker with the system description and property to be 
verified as inputs.	
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How it works"
When the model checker is run	


	



•  it  generates a model (transition system), M, from the system 
description;	



•  converts the property to be verified into a temporal logic formula φ 
and; 	



•  for every state s in M, checks whether s satisfies φ (M, s |= φ)	


	


If the model doesn’t satisfy the formula most model checkers also output a 
trace of the system behaviour that causes the failure.	
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A model checking algorithm"
The simplest algorithm is as follows:	


	



•  given a transition system S and a formula φ to check	



1. generate the set of subformulas of φ; order them by complexity 
(propositional variables first, then negations of propositional 
variables, then conjunctions …, φ last)	



2. take a subformula ψ from the list and label those states of S which 
satisfy ψ with ψ 	


	


3. repeat step 2 until all subformulas have been processed	



•  when we reach the end of the list we see which states satisfy φ.	
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A model checking algorithm 2"
To label states of S with subformulas that don’t contain CTL connectives:	


	



•  since states come with a labelling function, we know how to label 
states with atomic propositions;	



•  if current subformula is ¬ψ, we label with ¬ψ those states which are 
not labelled with ψ  (note that ψ precedes ¬ψ in the list of 
subformulas, so we have already labelled the states with ψ);	



•  if the current subformula is ψ1 ∧ ψ2, we label those states which are 
labelled with ψ1 and ψ2 with ψ1 ∧ ψ2 .	



All other boolean connectives can be expressed in terms of ¬ and ∧.	
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A model checking algorithm 3"
To label states with subformulas containing the connectives EX, EU and 
AF:	



•  if φ  is  EX ψ, label  predecessors of any state labelled ψ by EX ψ;	



•  if φ  is E[ψ1 U ψ2], first find all states labelled ψ2 . Then work 
backwards from those states and so long as we encounter ψ1 states we 
label them by E[ψ1 U ψ2];	



•  if φ  is AFψ, first label all states labelled with ψ with AFψ. Then label 
a state with AFψ if all its successor states are labelled with AFψ. 
Repeat until there is no change.	



All the other CTL connectives can be expressed in terms of  EX, EU and 
AF.	
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Overcoming the state explosion problem"

•  using efficient data structures, called ordered binary decision 
diagrams, which represent sets of states rather than individual states	



•  abstracting away variables in the model which are not relevant to the 
formula being checked	



•  partial order reduction—for asynchronous systems, several 
interleavings of component traces may be equivalent as far as 
satisfaction of the formula to be checked is concerned	



•  induction—model checking systems with large numbers of identical 
or similar components can of be implemented by induction on that 
number	



•  composition —breaking the verification problem down into several 
simpler verification problems.	
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Exercise 6: CTL"
// Process 1 
 
while(true) { 

    r1 = turn; 

    if (!r1) { 

        <crit1>; 

        turn = true; 

    } 

} 

// Process 2 
 
while(true) { 

    r2 = turn; 

    if (r2) { 

        <crit1>; 

        turn = false; 

    } 

} 

	


// Shared datastructures 
boolean turn = r1 = r2 = false; 
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The next lecture"

Revision?	




