Structured English

- Use four types of structures: sequences, decisions, cases and iterations to express decision-making logic
- Use capitalised keywords: IF, THEN, WHILE, etc.
- Adequate indentation should be used for clarity
- Careful use or some logical and relational words such as: AND, OR, GREATER THAN, etc.

Sequences

- Use four types of structures: sequences, decisions, cases and iterations to express decision-making logic
- Use capitalised keywords: IF, THEN, WHILE, etc.
- Adequate indentation should be used for clarity
- Careful use or some logical and relational words such as: AND, OR, GREATER THAN, etc.

Decisions

- IF price less than credit
 THEN print “you have credit”
 ELSE print “you have no credit”

Example 17.1 Assume that the decision-logic of process 'enrol student in module' (process 2.4 in Lecture 15) of the University Registrations System is described as follows.

If the number of credits in the student's schedule does not exceed the maximum credits per term (MCT), then enrol student in selected module. Otherwise calculate the excess of credits in the schedule. If the excess of credits is less than 15% of the average credits taken in previous years, then enrol student in selected module. If the excess of credits is less than 10% of the maximum credits per term (MCT), then enrol student in selected module only if the average mark is higher than 68.

The above textual description is ambiguous and inaccurate.
- How to determine average credits taken in previous years?
- What happens if it is a first year student?

Decision Tables

- Use conditions, rules and actions arranged in a table to express decision-making logic
- Determine adequate number of conditions, condition alternatives and actions
- Eliminate redundancy by combining rules (condition alternatives + actions)
- Eliminate impossibilities and contradictions
- Re-arrange the table if required to achieve clarity
- Four main problems that can occur in developing decision tables: incompleteness, impossible situations, contradictions, redundancy
Eliminating Redundancy in Decision Tables

Redundant rules result on the same action for different combinations of conditions and have one condition that makes them different from other non-redundant rules.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>condition 1</td>
<td>Y Y Y N N N</td>
</tr>
<tr>
<td>condition 2</td>
<td>Y N N Y N N</td>
</tr>
<tr>
<td>condition 3</td>
<td>N Y Y N N N</td>
</tr>
</tbody>
</table>

Actions

- action 1: X
- action 2: X X
- action 3: X X X X

Example 17.2 Construct a decision table using only alternatives Y and N for the Process 2.4 – Enrol student in module.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule credits < MCT</td>
<td>Y N N N N N</td>
</tr>
<tr>
<td>Year of study > 1</td>
<td>– – Y Y Y Y</td>
</tr>
<tr>
<td>Excess credits ≤ 15% Average Credits</td>
<td>– – Y N N – N</td>
</tr>
<tr>
<td>Excess credits ≤ 10% MCT</td>
<td>– – – Y N Y N</td>
</tr>
<tr>
<td>Average Mark > 88</td>
<td>– – – N Y Y N</td>
</tr>
</tbody>
</table>

Actions

- Accept enrolment: X X X X
- Reject enrolment: X X X X

Decision Trees

- Used to reflect the sequence of decision-making logic
- Use conditions (circles) and actions (squares) in a branching tree to express decision-making logic
- Determine conditions, actions and their sequence
- List all required possibilities when drawing the tree
- Construct the tree from left to right
- The order of checking conditions and executing actions is immediately noticeable in decision trees
- Compared to decision tables, decision trees are more readily understood by others in the organization

Example 17.3 Construct a decision tree for the Process 2.4 – Enrol student in module.

Exercise 17.1 (Kendall&Kendall, chapter 9).

A computer supplies firm will give discounts if payments are made within 18 days. The discount policy is as follows: If the amount of the order for computer supplies is greater than £1,000, give a 4% discount; if the amount is between £500 and £1,000, give a 2% discount; if the amount is less than £500, do not apply any discount. All orders made via the Web automatically receive an extra 5% discount. Any special order (computer furniture, for example) is exempt from all discounting.

Develop a decision tree, decision table (alternatives Y and N only) and structured English descriptions for this decision logic.
Exercise 17.1 (cont.)

Description in structured English.

Name: PX – Determine discount

Decisions: Determines if customer is entitled to a discount and for how much

Input data flow: order details, payment details

Data flow: discount details

Process logic:

IF order details special order = TRUE
 THEN No discount
ELSE
 IF payment details early payment = FALSE
 THEN No discount
 ELSE
 IF order details order amount < 500
 THEN No discount
 ELSE
 IF order details order amount < 1000
 THEN discount = - 2
 ELSE discount = - 4

University of Nottingham
School of Computer Science
Large Scale Systems Design
Dr Diana Landa-Silva

Exercise 17.2 (cont.)

Create structured English, decision tree and decision table to represent following the decision-making logic.

The decision-making logic of a bank to approve or reject loan applications is as follows. If the loan is for less than £2000 the loan officer checks the applicants credit report. If the credit report is rated good or excellent, the loan officer approves the loan. If the credit report is rated fair, the officer checks to see if the applicant has an account at the bank. If the applicant holds an account, the application is approved; otherwise, the application is denied. If the credit report is rated poor, the application is denied. Loan applications for amounts between £2000 and £20000 are divided into four categories: car, mortgage, educational, and others. For car, mortgage and other loan requests, the applicants credit report is reviewed and an employment check is made to verify the applicants reported salary income. If the credit report rating is poor, the loan is denied. If the credit report rating is fair, good or excellent and the salary income is verified, the loan is approved.

University of Nottingham
School of Computer Science
Large Scale Systems Design
Dr Diana Landa-Silva

Exercise 17.3 (cont.)

The process logic is as follows:

If the loan amount is less than £1000, the application is denied.

If the loan amount is between £1000 and £20000, the loan officer checks the applicants credit report. If the credit report is rated good or excellent, the loan officer approves the loan. If the credit report is rated fair, the officer checks to see if the applicant has an account at the bank. If the applicant holds an account, the application is approved; otherwise, the application is denied. If the credit report is rated poor, the application is denied.

If the loan amount is greater than £20000, the loan application is denied.

University of Nottingham
School of Computer Science
Large Scale Systems Design
Dr Diana Landa-Silva

Exercise 17.4 (cont.)

If the salary income is not verifiable, the applicant is contacted and additional information is requested. In this case, the loan application along with the additional information is sent to the bank’s vice-president for review and a final loan decision.

For educational loans, the educational institution to which the applicant will attend is contacted to determine the estimated cost of attendance. This amount is then compared to the amount of the loan requested in the application. If the requested amount exceeds the cost of attendance, the loan is denied. Otherwise, educational loan requests for amounts between £2000 and £34000 are approved if the applicants credit rating is fair, good, or excellent.

Education loan applications requesting amounts from £35000 to £200000 are approved only if the credit rating is good or excellent. All loan applications for amounts greater than £200000 are sent to the bank’s vice-president for review and approval.

University of Nottingham
School of Computer Science
Large Scale Systems Design
Dr Diana Landa-Silva
Exercise 17 (cont.)

Name: PX – Determine loan approval decision

Description: Determines if loan application is approved, denied or referred

Input data flow: LoanAmount, LoanType, CreditStatus, SalaryVerified,

BankAccount

Output data flow: Decision

Process Logic

To Be Completed by Student Following the Decision Tree or Decision Table

Additional Reading

Chapter 9 of (Kendall and Kendall, 2005)

Chapter 8 of (Hoffer et al., 2005)