Scientific Methodology

Tim Brailsford

Science

- What is science?
 - A process for evaluating empirical observations, and organizing it into knowledge.
 - A philosophical technique (scientific methodology) to explain the world about us
- Applied science
 - The application of knowledge from one or more scientific fields to practical problems
 - Information Technology is applied science integrating:
 - Mathematics
 - Psychology
 - Semantics
 - Etc.

Scientific writing vs journalism

- Science must always be objective
 - Based upon hard evidence not opinions
- Science must be transparent
 - Methodologies must be fully explained
 - Studies must be repeatable
- Scientific work should always be placed in context
 - What other relevant work has been done (literature)
 - Cite primary sources as far as possible
 - Secondary citations if not possible
- Journalism is a subjective interpretation of facts – frequently without citation (i.e. little transparency)

The scientific process

- The procedures used to investigate a scientific problem
- A universal approach
 - Used by all “scientific” disciplines
 - Can be used to attempt to get an answer to almost any question
- Steps in the process
 - Define the problem
 - Search the literature
 - Form a hypothesis
 - Test the hypothesis
 - Develop conclusions
 - Publish

The scientific process (2)

- Define the problem
 - Think about this very carefully
 - The nature of the problem must be clear
 - Usually based upon an observation
 - Must be soluble
- Search relevant literature
 - Use the library!
 - Use the internet – but this is a secondary source
 - Ask local experts
 - Avoid duplication

The scientific process (3)

- Form a hypothesis
 - An educated guess about a likely solution to the problem
 - Keep an open mind – don’t assume that your hypothesis is right!
- Test the hypothesis
 - Gather evidence (e.g. conduct experiment)
 - Remember a hypothesis is rarely, if ever, proven
 - Evidence may support the hypothesis
 - Evidence may refute the hypothesis
The scientific process (4)

- Reach conclusions
 - A possible answer to the question based upon the evidence collected
 - Compare the conclusions to other people’s conclusions (i.e. from the literature)
 - Compare the conclusions to theory
 - A theory is a conclusion based upon many investigations
 - A theory is stronger than a conclusion
- Publication
 - Sharing information is a part of the scientific process
 - Thesis/dissertations
 - Journal papers
 - Conferences
 - Informal private publication (e.g. the web)

Characterisation

- The subject of a study must be carefully defined and characterised
 - The “problem”
 - The “unknown”
- The definition of the problem needs to be very precise
 - There is no room for ambiguity – a scientist needs to know exactly what problem he/she is investigating
 - New theories can arise from defining something that has previously not been defined
- Example – “what is the moon made of?”

Hypothesis

- A tentative solution to the problem – may be:
 - Usually a causal explanation or correlation
 - Ideally should be based upon some evidence, but can be a guess (often a “hunch”)
 - Does not matter whether a hypothesis is right or wrong
- Example – “the moon is made of cheese”

Falsifiability

- Hypotheses must be falsifiable
 - It is never possible to prove a hypothesis
 - It is only possible to disprove a hypothesis
- If a hypothesis cannot be falsified, then it is not useful – ultimately this is not science
- Null hypotheses are thus often used
 - Much science is about the attempt to disprove null hypotheses
- Example – “the moon is not made of cheese”

Predictions

- Based upon a hypothesis
- Deductive reasoning is used to predict the behaviour of currently unknown phenomena
- Predictions must be testable (i.e. falsifiable)
- Testing a prediction
 - If the prediction does not hold true, then the hypothesis is refuted
 - If the prediction does hold true, then the hypothesis is supported
 - This does not necessarily mean that it is true, it remains a hypothesis
- Example: “the moon is edible”
Experiments are activities designed to test predictions
- Do this carefully – it is a non-trivial area
- Support by several experiments
- Controlled experiments
- Different prediction
- Changing a hypothesis often requires repeating the experiment
- Example: “go to the moon, and try to eat it”

Hypothesis to Theory
- Experiment does not support a prediction
 - The hypothesis is rejected.
 - A new hypothesis is then required
- Experiment supports the prediction
 - The hypothesis is retained – not proved
 - This is considered evidence to support the hypothesis
- Theory is developed from hypothesis
 - Support by several experiments
 - Experiments must be independently repeated
 - Testing different factors

Iteration in Science
- The scientific process is iterative
- Hypotheses are continually refined
- Changing a hypothesis often requires repeating the process
- Verification of a hypothesis/theory
 - Repeating experiment (same experiment, same observer)
 - Repeating experiment (same experiment, different observer)
 - Repeating experiment (different observation, same prediction)
 - Different prediction

Competing Hypotheses
- Sometimes there is more than one possible explanation of observed facts
 - Principle of parsimony
 - Do not make more assumptions than are needed
 - The simplest explanation is the one that should be used
 - Occam’s Razor
 - Named after William of Occam (1287-1347)
 - NB spelling - Occam, Okham or Ockham
 - *Entia non sunt multiplicanda praeter necessitatem*
 - Entities are not to be multiplied beyond necessity
 - This is a useful tool, but not a guarantee of correctness