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Need for Search Methodologies
(Heuristics/Metaheuristics/
Hyper-heuristics, etc...) – Example

 Travelling salesman problem

 N=3, 6

 N=5, 120

 N=7, 5 040

 N=10, 3 628 800

 N=81, ~5.8 x10120

 Number of particles in the universe is in
between 1072 – 1087

 Tianhe-2: 30.65 PF (1015), ~6 x1096 years
3

Problem Classes

4
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Heuristic Search

 Heuristics are rule of thumb methods

 They are informal, judgmental knowledge of
area which can be used to arrive at "good"
enough solutions to some “hard” problems.

 Good for solving

 ill-structured problems, or

 complex well-structured problems (large-scale
combinatorial problems that have many potential
solutions to explore)

5

Search Paradigms

 Single point based search vs. Multi-point
(population) based search

 Constructive

 partial candidate solutions

 Perturbative

 complete solutions

6
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Examples – Heuristics for TSP

 The nearest neighbour (NN) algorithm

 Constructive

 Pairwise exchange (2-opt), or Lin–
Kernighan heuristics

 Perturbative

7

The nearest neighbour (NN)
algorithm

8

city1

city2

city3city4

10

4

5

7

11
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The nearest neighbour (NN)
algorithm

9

city1

city2

city3city4

Select a starting city

<city2>

The nearest neighbour (NN)
algorithm

10

city1

city2

city3city4

choose the nearest
unvisited city as the next
move

<city2, >

4

10
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The nearest neighbour (NN)
algorithm

11

city1

city2

city3city4

choose the nearest
unvisited city as the next
move

<city2, city1, >

4

5
11

The nearest neighbour (NN)
algorithm

12

city1

city2

city3city4

choose the nearest
unvisited city as the next
move

<city2, city1, city4, >

4

5

7
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The nearest neighbour (NN)
algorithm

13

city1

city2

city3city4

After the choice of the last
city, algorithm terminates

<city2, city1, city4, city3> : 26

10

4

5

7

Pairwise exchange (2-opt)

14

city1

city2

city3city4

4

7

11
6

Remove two edges and
replace them with two different
edges, reconnecting the
fragments into a new and
shorter tour.

<city2, city1, city3, city4> : 28
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Pairwise exchange (2-opt)

15

city1

city2

city3city4

4

7

11
6

Remove two edges and
replace them with two different
edges, reconnecting the
fragments into a new and
shorter tour.

<city2, city1, city3, city4> : 28

Pairwise exchange (2-opt)

16

city1

city2

city3city4

4

7

11
6

Remove two edges and
replace them with two different
edges, reconnecting the
fragments into a new and
shorter tour.

<city2, city1, city3, city4> : 28

10

5
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Pairwise exchange (2-opt)

17

city1

city2

city3city4

4

7

<city2, city1, city3, city4> : 26

10

5

Mutational Heuristic

Mutational
Heuristic

3.0

16.0

22.0

Candidate
Solution

16.0

Minimising Fitness /Cost/Penalty/…

e.g., total number of constraint
violations or a weighted sum of
violations

Processes a given candidate solution and generates a solution
which is not guaranteed to be better than the input

18
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Hill Climbing Heuristic

Hill
Climbing

3.0

16.0

16.0

Candidate
Solution

16.0

Minimising Fitness /Cost/Penalty/…

e.g., total number of constraint
violations or a weighted sum of
violations

Processes a given candidate solution and generates a better
or equal quality solution

19

Hyper-heuristics
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Problem with Heuristics? –
Bin Packing

 Place a set of N items with given sizes {e.g.,
N=33 items: 1x85, 1x442, 6x10, 7x252, 2x9 ,
5x127, 4x106, 3x12, 1x84, 1x46, 2x37} into
minimal number of bins, each having a fixed
capacity of C (e.g., C=524)

How would you do it?

21

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7

442 442

252 252

252 252

252 252
252 252

252 252

252 252

252 252

127 127

127 127
127 127

127 127

127 127

106 106

106 106
106 106

106 106

85 85

84 84

46 46
37 37

37 37

12 12

12 12

12 12

10 10
10 10

10 10

10 10

10 10

10 10
9 9

9 9

524 524 524 524 524 524 524

Sort Items  First Fit Heuristic

Instance#1 Instance#2

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8

442

252

252

252

252
252

252

252

127

127

127
127

127

106

106

106

106

85
84

37

37

12

12
12

10

10

10

10

10
10

9

9

516 516 516 516 516 517 516 9

46 – removed
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Problem with Heuristics? –

Examination Timetabling

23

S. Abdul-Rahman, A. Bargiela, E. K. Burke, E. Özcan, B. McCollum and P.
McMullan, Adaptive Linear Combination of Heuristic Orderings in Constructing
Examination Timetable, European Journal of Operational Research, 232 (2), pp.
287-297, 2014

Metaheuristic – Definition

A high-level problem-independent algorithmic
framework that provides a set of guidelines or
strategies to develop heuristic optimisation
algorithms

Source: Glover, F. And Sorensen, K. In: Encyclopaedia of OR/MS,

Springer Verlag, Berlin (to appear)

24
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Sophisticated Metaheuristics

 Simulated annealing

 Tabu search

 Iterated Local Search

 GRASP

 Evolutionary computation

 Evolutionary strategies, Genetic algorithms,
Memetic algorithms, Genetic programming

 Ant colony optimization

and more…
25

Random Mutation Hill Climbing
vs. Iterated Local Search

26

H. R. Lourenco, O. C. Martin, and T. Stutzle. Iterated local search: framework and
applications. In M. Gendreau and J.-Y. Potvin (eds), Handbook of Metaheuristics, vol. 146 of
International Series in Operations Research and Management Science, pp. 363–397, 2010.
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Genetic Algorithm vs.
Memetic Algorithm

27

Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms, Caltech Concurrent Computation Program
Report 826, California Institute of Technology (1989)

OBSERVATIONS

 Most of the real-world problems are proven to be
NP-hard

 The current state of the art in search
methodologies (i.e., metaheuristics) tend to
focus on bespoke systems

 In general, these systems are expensive to build, but
provide successful results

 Unfortunately, their application to new problem
domains or even new problem instances from a
known domain or a slight change in the problem
definition could still require expert involvement.

28
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Drawbacks of (meta)heuristic
search

 There is no guarantee for the optimality of the
obtained solutions.

 May give a poor solution.

 Usually can be used only for the specific
situation for which they are designed.

 Often, (meta)heuristics have some
parameters

 Performance of a heuristic could be sensitive to
the setting of those parameters

29

Parameter Tuning Parameter Control

• ParamILS: F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu, “Boosting verification
by automatic tuning of decision procedures,” in Proc. of the Formal Methods in
Computer Aided Design, ser. FMCAD ’07. IEEE Computer Society, 2007, pp.
27–34.

• iRace: M. Lopez-Ibanez, J. Dubois-Lacoste, T. Stutzle, and M. Birattari, “The
irace package, iterated race for automatic algorithm configuration,” IRIDIA,
Universite Libre de Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2011-004, 2011

Online initialisation/setting
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Hyper-heuristics

 A class of general purpose search
methodologies with the common goal of
automating the design and tuning of heuristic
methods

31

A hyper-heuristic is a search method or learning
mechanism for selecting or generating heuristics

to solve computationally difficult problems

Motivation – Grand Challenge

 Automating the search/heuristic design process

 Motivated by raising the level of generality.

A CB

Problem Specific Solvers

Doesn’t exist….Significant
scope for
future
research

32
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Domain Barrier

Hyper-heuristic

33

A Hyper-heuristic Framework

Potential Solutions

Hyper-heuristic

Operates upon

Low Level Heuristics

Operate upon

34

Different Search Spaces

Potential Solutions

Standard Heuristic

Operates upon
Metaheuristic
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Characteristics of
Hyper-heuristics

 Operate on a search space of heuristics rather than directly
on a search space of solutions

 Existing (or computer generated) heuristics can be used
within hyper-heuristics

 Aims to take advantage of strengths and avoid weaknesses of
each heuristic

 No problem specific knowledge is required during the search
over the heuristics space (and so hyper-heuristic components
are reusable)

 Easy to implement/deploy/use (easy, cheap, fast)

 Applicable to a range of real-world problems

 Extremely desirable: Employs data science (i.e., machine
learning) techniques 35

Related Areas

 Reactive search

 Algorithm portfolios

 Co-evolution, multimeme memetic algorithms

 Adaptive operator selection

 Parameter tuning

 Parameter control in EAs

 Variable Neighbourhood Search

 Meta-learning

 Algorithm configuration

 Cooperative Search
… 36



12/9/2014

19

A Classification of
Hyper-heuristics

Online
learning

Offline
learning

No-
learning

Feedback

37

Nature of the heuristic search space

Hyper-
heuristics

Heuristic generation

Heuristic selection

constructive
heuristics

perturbative
heuristics

constructive
heuristics

perturbative
heuristics

Methodologies to generate

Methodologies to select

Hyper-heuristics:
Origins

38

19971990-951961-63

Fisher H. and Thompson G.L. Probabilistic Learning Combinations of Local
Job-shop Scheduling Rules. Ch 15,:225-251, Prentice Hall, New Jersey, 1963

Crowston W.B., Glover F., Thompson G.L. and Trawick J.D. Probabilistic and
Parameter Learning Combinations of Local Job Shop Scheduling Rules. ONR
Research Memorandum, GSIA,CMU, Pittsburgh, (117), 1963

Cowling P.I., Kendall G. and Soubeiga E.
(2001): "A Hyperheuristic Approach to
Scheduling a Sales Summit", selected
papers from PATAT 2000, Springer, LNCS
2079, 176-190.

2001
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Generation
Hyper-heuristics

Domain Barrier

Hyper-heuristic

44

A Hyper-heuristic Framework –
revisited
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45

A Generation Hyper-heuristic
Framework

Domain Barrier

Genetic Programming/Grammatical Evolution Hyper-heuristic

Some Java based
Software Libraries

 ECJ: http://cs.gmu.edu/~eclab/projects/ecj/

 TinyGP:
http://cswww.essex.ac.uk/staff/rpoli/TinyGP/

 GEVA (grammatical evolution):
http://ncra.ucd.ie/Site/GEVA.html

 Cartesian GP resources:
http://www.cartesiangp.co.uk/resources.html

46
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Case Study:
Genetic Programming

Hyper-heuristic for
Packing

from the PhD Thesis (2010) of

Matthew Hyde

Classification of the Approach

Offline
learning

Feedback

48

Nature of the heuristic search space

Hyper-
heuristics

constructive
heuristicsGenetic Programming

to generate
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1D Offline Bin Packing

Pack a set of items of sizes si for i =1,…, n

 Sizes are integer values and si  [1,C]

 C is the fixed capacity of each bin

in such a way that

 Never exceed bin capacity

 Minimise number of bins used

Standard NP-hard problem 49

150-

+

FS

C

45

70

35

 Evolves trees representing
a program

 Following tree is a program
that calculates the space
left at the top of the bin

 Train and test

Bin Fullness

Bin Capacity

Piece Size

50

Genetic Programming 101

Terminals: {C, S, F}
Non terminals:{%,+,*,-}
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70 85
30

60

-

+

FS

C

%

C

90
120

30 45

-15

51

Genetic Programming
Heuristics – Bin Packing

70 85
30

60

-

+

FS

C

%

C

90
120

30 45

-15 -3.75

52

Genetic Programming
Heuristics – Bin Packing
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70 85
30

60

-

+

FS

C

%

C

90
120

30 45

-15 -3.75 3

53

Genetic Programming
Heuristics – Bin Packing

70 85
30

60

-

+

FS

C

%

C

90
120

30 45

-15 -3.75 3 4.29

54

Genetic Programming
Heuristics – Bin Packing
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70 85
30

60

-

+

FS

C

%

C

90
120

30 45

-15 -3.75 3 4.29 1.88

55

Genetic Programming
Heuristics – Bin Packing

70 85
30

60

-

+

FS

C

%

C

90
120

30 45

-15 -3.75 3 4.29 1.88

56

Genetic Programming
Heuristics – Bin Packing
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85
30

60

-

+

FS

C

%

C

90
120

30 45

-15 -3.75 3 4.29 1.88

70

57

Genetic Programming
Heuristics – Bin Packing

85
30

60

-

+

FS

C

%

C

90
120

30 45

70

58

Genetic Programming
Heuristics – Bin Packing
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GP Hyper-heuristic for packing
– Conclusions

 A more general packing methodology for 1D,
2D and 3D bin packing and knapsack problems

 Achieved generality without the loss of
solution quality

59

Policy Matrix Evolution
for Generation of
Heuristics

Ender Özcan
Joint work with

Andrew J. Parkes

Best paper Award:
E. Özcan, and A. J. Parkes, Policy Matrix Evolution for
Generation of Heuristics, Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation
(GECCO '11), Natalio Krasnogor (Ed.). ACM, New York,
NY, USA, pp. 2011-2018, 2011
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Classification of the Approach

Offline
learning

Feedback

61

Nature of the heuristic search space

Hyper-
heuristics

constructive
heuristicsGenetic Algorithm

to generate

Policy Generation

 Vast O.R. literature on finding policies for
stochastic processes. Potential usages

 Customer service centres
 Call centres

 Health services

 Distribution centres
 items onto trucks

 etc

 In some cases analytical solutions are possible

 Generally, will need “numerical” methods for
complex situations

62
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1D Offline Bin Packing

Pack a set of items of sizes si for i =1,…, n

 Sizes are integer values and si  [1,C]

 C is the fixed capacity of each bin

in such a way that

 Never exceed bin capacity

 Minimise number of bins used

Standard NP-hard problem 63

1D Online Bin Packing

Pack a stream of items of sizes si for i =1,…

 Sizes are integer values and si  [1,C]

 C is the fixed capacity of each bin

upon their arrival (one item at a time)

in such a way that

 Never exceed bin capacity

 Minimise number of bins used (Maximise the
average bin-fullness) at the end

64
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1D Online Bin Packing

 A new empty bin is always available (open)

 A bin is closed if it can take no more items
 e.g. if residual space is smaller than size of any item

 We need a good “policy”, i.e. a method to
assign a new item upon its arrival to one of
the open bins

65

1D Online Bin Packing

845

3

2

?

0 1 2 3 4

C = 12

66



12/9/2014

34

Standard Heuristic Policies:
First-fit

8

3

0 1 2 3 4

2 45

X 

Pack new item into the leftmost (first) bin that can take it

C = 12

67

8

3

2 45

? ?

Standard Heuristic Policies:
Best-fit

Pack new item into the fullest bin that can take it

0 1 2 3 4

C = 12

?

68
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Potential General Method for
1D Online Bin Packing

 On arrival of new item of size si

 Inspect the current set of open bins

 Simultaneously use the entire set of residual spaces
in the open bins to pick where to place the new item

 This is difficult and expensive (in general)

69

“Index Policies”

 “index policy”: each choice option is given a score,
or “index value” independently of the other options

 The option with the highest index value is taken

 Also need a rule to break ties

 Although index policies are a special case, in some
situations, they can be optimal, or at least very good

 Index policies occur in bandit problems, with use in
search control

 OR has lots of work in this area, e.g. Gittins/Whittle indices

70
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Index Policies for
1D Online Bin Packing
 Given

 r : remaining capacity of bin (residual space)

 s : item size

 score of bin is f(r,s) for some function f

 Given a new item of size then place into bin with
largest value of f(r,s)

 We will break any ties using FF:

 place item in earliest bin with the best available
score

71

1D Online Bin Packing

845

3

max

2

f(5,3)
= 7

0 1 2 3 4

C = 12

72

f(4,3)
= 9

f(12,3)
= -13

f(8,3)
= 1X
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Generating Heuristics

 Within search methods, often have score functions,
“index functions” to help make some choice

 difficult to invent successful ones; want to automate this

 GP approach: evolve arithmetic score functions

 Burke, Hyde, Kendall, Woodward (GECCO 2007)
(and other papers, also on other problem domains,
please see http://www.cs.nott.ac.uk/~mvh/)

 Use Genetic Programming to learn f(r,s)

 f(r,s) is represented as arithmetic function tree

 Automatically creates functions that at least match FF, BF

73

GP – 1D Online Bin Packing

845

3

2

f(5,3)
= -1

0 1 2 3 4

C = 12

74

f(4,3)
= 1

f(12,3)
= -15

f(8,3)
= -7

2

*

r

+

s

-

C

f(r,s) =

X
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Generating Heuristics

Challenge:

 Space of functions, as used in GP,

 is hard to understand

 potentially biased because of the choice of
representation

 some perfectly good functions might have
“bloated” representations

75

Can one do even better?

Is there
another way
to find
policies?

76

Source: http://en.wikipedia.org/wiki/The_Matrix
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Matrix View of
Policies/Heuristics

 Since all item sizes (s) and residual capacities
(r) are integer, then f(r,s) is simply a large (CxC)
matrix M(r,s) of parameter values

M(r,s)

77

r \ s 1 2 3 4 5 6

1 . . . . . .

2 . 2 . . . .

3 . 1 2 . . .

4 . 2 1 . . .

5 . . . . . .

6 . 2 2 . . .

C

C

NOT
USABLE

r < s

r ≥ s

s

2 3 4

1 * * *

2 * * *

3 * * *

4 * 7 *

5 * 5 *

r 6 * * *

7 * * *

8 * 1 *

9 * * *

10 * * *

11 * * *

12 * 3 *

Policy Matrix – 1D Online Bin
Packing

845

3

max

2

M(5,3)
= 5

0 1 2 3 4

C = 12

78

M(4,3)
= 7

M(12,3)
= 3

M(8,3)
= 1X
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Uniform (random) Instances

We empirically studied matrix policies on Uniform
Bin Packing problems

UBP(C, smin, smax, N)

 Bin capacity C

 N items are generated with integer sizes
independently taken uniformly at random from
the range [ smin, smax ]

 N is usually taken to be large: 100k

79

UBP(6,2,3)

 (Bin capacity 6, items are size 2 or 3 only.)

 The only perfect packings are

 2+2+2

 3+3

 Hence the ‘obvious’ policy is …

 … “never mix even and odd sizes”

80
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UBP(6,2,3)

 … “never mix even and odd sizes”

 Index policy as a matrix:
 rows: residual capacity of the bin

 columns: item size

 Ties are broken using First-Fit (FF)

 Grey entries “.” are never usable

resid \ item 1 2 3 4 5 6

1 . . . . . .

2 . 2 . . . .

3 . 1 2 . . .

4 . 2 1 . . .

5 . . . . . .

6 . 2 2 . . .

81

Creating Heuristics viA Many
Parameters - CHAMP

 Basic idea:

 Take values in matrix M(r,s) to be integers

 Do (meta-)heuristic search to find good choices for
M(r,s): Evaluation is by simulation

 Our Original Expectation:

 the matrix will tweak the functions from GP and might
slightly improve performance

 Potential expected disadvantages:

 matrices can be much more verbose than functions

 they fail to take into account of the good structure
captured by functions 82
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Implementation Details

 Apply a standard Genetic Algorithm
 Trans-generational (with weak elitism), Uniform Crossover,

standard mutation

 Only the active members of the matrix are stored as
integer values in the chromosome

 Evaluation:
 write matrix to a file

 use matrix as input for a program that packs many items

83

CHAMP-GA Architecture

84
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85

UBP(20,5,10) – Example of a
good evolved matrix

?

 Does not look like a smooth function
 “Weird”

 Seems to have spikes
86

UBP(20,5,10) – Example of a
good evolved matrix
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UBP(20,5,10)

 Empirical results

 Even the worst run of the GA outperforms FF

 The gap is quite large – the wasted space is
reduced by a factor of ~7

Heuristic %-Avg. Fullness

First-Fit 91.55

Best Fit 91.54

“Best run” Evolved Matrix 98.18

“Worst run” Evolved Matrix 97.00

87

Results – Best of runs for GA

88

Alg. U
B

P
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BF 92.30 99.62 91.55 96.84 98.38 90.23 92.55 96.08 96.39 95.82

FF 92.30 99.55 91.54 96.68 97.93 90.22 92.55 95.91 96.29 95.64
GA1 99.99 99.63 98.18 99.41 98.39 96.99 99.68 98.22 98.54 97.88

GA2 99.99 99.61 98.42 99.58 99.55 96.75 96.96 98.45 98.46 97.63
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Conclusions

 Can use standard metaheuristics to create policies
expressed in matrix representation

 Policies exist that out-perform standard heuristics

 Finding the policies is easier than expected

 There are many different policies with similar performance

 The policies are “weirder” than expected, even after
smoothing.
 The good policies could have “random” structures

 Not necessarily easy to capture with an algebraic function of GP

 The results can be “analysed” (inspected) to produce
simple policies that out-perform standard ones
 and that then scale to larger problems 89

Recent Work:
Genetic Programming

Hyper-heuristics for
Scheduling
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Job Shop Scheduling

 Single objective: Rachel Hunt, Mark Johnston, Mengjie
Zhang, Evolving "less-myopic" scheduling rules for
dynamic job shop scheduling with genetic
programming, Proc. of the 2014 conference on Genetic
and evolutionary computation, pp. 927-934, 2014

 Multi-objective: Su Nguyen, Mengjie Zhang, Johnston,
M., Kay Chen Tan, Automatic Design of Scheduling
Policies for Dynamic Multi-objective Job Shop
Scheduling via Cooperative Coevolution Genetic
Programming, Evolutionary Computation, IEEE
Transactions on , vol.18, no.2, pp.193,208, 2014

91

How does an evolved rule look
like?

92

S. Nguyen, M. Zhang, M. Johnston, and K-C. Tan, Dynamic Multi-objective Job
Shop Scheduling: A Genetic Programming Approach, Automated Scheduling and
Planning, Studies in Comp. Intelligence vol. 505, 2013, pp 251-282
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Flexible Job Shop Scheduling

 Single objective: Beham, A; Winkler, S.; Wagner, S.;
Affenzeller, M., A genetic programming approach to
solve scheduling problems with parallel
simulation, Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, pp.1-5,
2008

 Multi-objective: Joc Cing Tay, Nhu Binh Ho, Evolving
dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems,
Computers & Industrial Engineering, Vol. 54, Issue 3,
2008, pp. 453-473

93

Single Machine Scheduling

 Single objective: C. Dimopoulos, A.M.S. Zalzala,
Investigating the use of genetic programming for a
classic one-machine scheduling problem, Advances
in Engineering Software, Volume 32, Issue 6, June 2001,
Pages 489-498

 Multi-objective: S. Nguyen, M.Zhang, M. Johnston, K. C.
Tan, Learning Reusable Initial Solutions for Multi-
Objective Order Acceptance and Scheduling
Problems with Genetic Programming, Proc. of the
16th European Conference on Genetic Programming,
EuroGP 2013, pp 157-168, LNCS 7881, 2013

94
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Others

 Parallel Machine: Domagoj Jakobović, Leonardo 
Jelenković, Leo Budin, Genetic Programming
Heuristics for Multiple Machine Scheduling, LNCS
4445, 2007, pp 321-330

 Flow shop scheduling: Franco Mascia, Manuel López-
Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, From
Grammars to Parameters: Automatic Iterated Greedy
Design for the Permutation Flow-Shop Problem with
Weighted Tardiness, LNCS 7997, pp 321-334, 2013

95

Selection
Hyper-heuristics
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Domain Barrier

Hyper-heuristic

97

A Hyper-heuristic Framework –
revisited

98

Heuristic Selection Method Move Acceptance Criteria

Perturbative low level heuristics

Domain Barrier

A Selection Hyper-heuristic
Framework – Single Point Search
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A Selection Hyper-heuristic
Framework – Single Point Search

99

1. generate initial candidate solution p

2. while (termination criteria not satisfied){

3. select a heuristic (or subset of

heuristics) h from {H1, ..., Hn}

4. generate a new solution (or solutions) s

by applying h to p

5. decide whether to accept s or not

6. if (s is accepted) then

7. p=s }

8. return p;

Heuristic Selection

100

Learning Automata Mısır et al. (2009)

Quality Index and Tabu based
Learning Heuristic Selection     Mısır et al. (2009)
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Move Acceptance

101

Iteration Limited Threshold
Accepting (ILTA) Mısır et al. (2009)

Adaptive ILTA Mısır et al. (2009)

..

 Apply each low level heuristic to the candidate
solution and choose the one that generates
the best objective value

H1 H2 H3 H4 H5

GR

H6

f1 f2 f3 f4 f5 f6

f3 < f1, f2, f4, f5, f6 at step t

102

Heuristic Selection –
Greedy (GR)
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 A machine learning technique

 Inspired by related psychological theory

 Reward and punishment

 Concerned with how an agent ought to take
actions in an environment to maximize some
notion of long-term reward

 Maintains a score for each heuristic

 If an improving move then increase, otherwise
decrease the score of the heuristic

103

Heuristic Selection –
Reinforcement Learning (RL)

 The choice function maintains a record of the
performance of each heuristic. Three criteria
are maintained:

1) Its individual performance

2) how well it has performed with other
heuristics

3) the elapsed time since the heuristic has been
called

104

Heuristic Selection –
Choice Function (CF)

''t t t
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H1 H2 H3 H4 H5

CF

H6

s1 s2 s3 s4 s5 s6

s2 > s1, s3, s4, s5, s6 at step t

105

Heuristic Selection –
Choice Function (CF)

Move Acceptance

106

Iteration Limited Threshold
Accepting (ILTA) Mısır et al. (2009)

Adaptive ILTA Mısır et al. (2009)

..
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 AM: All Moves Accepted

 OI: Only Improving Moves accepted

 IE: Improving or Equal moves are accepted.

107

Move Acceptance –
Simple Criteria

 Improving and equal moves are
accepted

 Non-improving moves resulting in a
fitness value less than a threshold are
accepted.

 The threshold is decreased to global
minimum with time.
 N : initial fitness – minimum fitness

 t : time passed

 D : Duration











D

t
Nfft 1min

current
fitness

threshold

108

Move Acceptance –
Great Deluge (GD)
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 All improving moves are accepted while the
non-improving are accepted based on
Metropolis criterion (e-/), where 
represents temperature, being decreased at
each iteration using a cooling schedule, and
 is the change in the solution quality.

 Previous studies show that simulated
annealing is one of the best move
acceptance criterion

109

Move Acceptance –
Simulated Annealing

Some Tools for Heuristic
Selection

 SATzilla: algorithm portfolio oriented data-driven
framework

 Simple Neighborhood-based Algorithm Portfolio
in PYthon (snappy)

 Hyper-heuristics Flexible Interface (HyFlex)

 ParHyFlex extends MPI

 Hyperion provides a white-box framework
giving a metaheuristic/hyper-heuristic full
access to the problem domain

110
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A Comprehensive Analysis
of Hyper-heuristics

Ender Özcan, Burak Bilgin, Emin
Erkan Korkmaz

Intelligent Data Analysis, 12:1, pp. 3-23, 2008

Selection Hyper-heuristic
Frameworks

112
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Results

 Binary
representation

 3 mutational, 3 hill
climbing heuristics

 FB and FC employ
DBHC.

 FD uses CF-AM
(mutational) and
CF-IE (hill climbing)

113

Succes rate = (# of runs achieving
expected objective value)/(total # of runs)

Results

 GD, MC and IE performs well with CF and SR

 CF-IE (under FC) delivers a “similar” performance to
multimeme memetic
algorithm

 Choice of low level heuristics influences the overall
performance of a hyper-heuristic

114
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[Hyper-heuristics
Flexible Interface]

HyFlex

HyFlex
Hyper-heuristics Flexible Interface

116

 Defines behaviours of components and
arranges the interaction between them

Separation between the
problem-specific and the
general-purpose parts, both
of which are reusable and
interchangeable through
the HyFlex interface

http://www.hyflex.org/
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HyFlex v1.0 Java
Implementation

117

 Currently there are 6 problem domain implementations

 heuristic types: mutational, ruin-recreate, local search, crossover

 parameters: intensity, depth of search

Bin
Packing

Flow Shop

Personnel
Scheduling

TSP

MAX-SAT

VRP http://www.hyflex.org/

118

CHeSC 2011 benchmark based on HyFlex v1.0

Organising Partners:

Sponsor:

Bin
Packing

Flow Shop

Personnel
Scheduling

TSP

MAX-SAT

VRP

• 10 public training instances
• 5 test instances
(3 training + 2 hidden/all hidden)

• Set problem instance
• Set time limit (10 min.)
• Perform 31 runs
• Report median

Hidden

http://www.hyflex.org/

Ranking: Formula 1
scoring system
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119

http://www.hyflex.org/

And the winner is...

AdapHH – M. Mısır
K. Verbeeck
P. De Causmaecker
G. Vanden Berghe

AdapHH – Overview

120
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AdapHH – Heuristic Selection

121

 A multi-phase approach adaptively deciding on the
subset of low level heuristics to use at a phase and its
duration

 Computes quality index for each heuristic based on a
weighted average of performance measure based on (i)

the number of new best solutions found, the total number of (ii)
improvement and (iii) worsening until a given time and (iv, v) during
a single phase, (vi) overall remaining time, the time spent by a
heuristic (vii) until that moment and (viii) during a phase

and excludes the one below the average at a stage

 Excludes relatively slow heuristics

 Uses a probability vector to select a heuristic based on
(i), (vi), overall time and time spent

AdapHH – Heuristic Selection

122

 A multi-phase approach adaptively deciding on the
subset of low level heuristics to use at a phase and its
duration

 Computes quality index for each heuristic based on a
weighted average of performance measure based on (i)

the number of new best solutions found, the total number of (ii)
improvement and (iii) worsening until a given time and (iv, v) during
a single phase, (vi) overall remaining time, the time spent by a
heuristic (vii) until that moment and (viii) during a phase

and excludes the one below the average at a stage

 Excludes relatively slow heuristics

 Uses a probability vector to select a heuristic based on
(i), (vi), overall time and time spent
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AdapHH – Heuristic Selection

123

 Relay hybridisation: Keeps track of performance of
successive application of heuristic pairs and applies a
pair of heuristics with a certain probability. The first
heuristic is chosen using a learning automaton which
maintains the probability of selecting a given heuristic.

 Heuristic Parameter Adaptation: A reinforcement
learning based mechanism is used

AdapHH – Move acceptance
AILLA

 Maintains a list of fitness values for the
recently visited new best solutions

 A worsening solution is accepted:

 If a new best solution cannot be found after a
certain number of iterations with consecutive
worsening solutions (adapted during search)

 If its fitness is better than the fitness of the top
solution in the list which acts like a threshold level

124
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CHeSC Results

125

Limitations of CHeSC/Hyflex

 Deficiencies of standard CHeSC/Hyflex:

 Pure Blackbox Interface: Hyflex

 Only allows access to the objective value of current
state

 Many suggestions for extensions to permit more
information to be passed

 Fixed 10mins

 Independent instances

 The HH is restarted for each instance and so cannot
pass on anything it has learned

126
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Limitations of CHeSC/Hyflex

 Fixes to deficiencies of standard
CHeSC/Hyflex:

 Blackbox “hyflex” interface

 Many people have suggested extensions to permit
more information to be passed

 Fixed 10mins

 Easy to change

 Independent instances

 Batched mode

127

Batched Mode (CHeSC 2014)

 Simple extension to Hyflex/CHeSC

 “Batched mode”:

HH is given N instances and a total time T

 Advantages:

 Load Balancing:

 Allocate more time to harder instances, by stopping
earlier on “easy” ones

 Inter-instance learning:

 Allowed to keep information learned from previous
instances

128
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Potential Future Directions

 Better annotations

 Instance features

 Solution features

 Distance metrics

 Multi-objective support

 Extensions to support generative hyper-heuristics

and more…

These are currently being explored and Hyflex being
extended to match them.

129

Case Study:
A Tensor-based Selection
Hyper-heuristic for Cross

Domain Search

Shahriar Asta, Ender Özcan

Information Sciences, to appear

School of
Computer Science
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Classification of the Approach

Online
learning

Feedback

131

Nature of the heuristic search space

Hyper-
heuristics

Heuristic selection

perturbative
heuristics

Methodologies to select

Two Simple Hyper-heuristics
Mixing Heuristics
(Stochastic Local Search)

 Simple Random Heuristic Selection –
Improving and Equal Move Acceptance (IE)

 Reject any worsening move

 Simple Random Heuristic Selection – Naïve
Move Acceptance (NA)

 Accept a worsening move with a fixed probability
of p (0.5 in this study)

132
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Proposed Approach – Ideas

 The balance between diversification and
intensification is crucial

 Mix move acceptance methods

 Use machine learning to partition the low level
heuristics associated with each method

ts 2ts 3ts
? ?
IE NA
hIE hNA = h (hIE hNA = )

h: set of low level heuristics
(MU+RC+LS)

(e.g. ILS)

Intensify Diversify Intensify Diversify Intensify

time

133

Tensors

 Many real-world data are multidimensional

 Very high-dimensional (big) with a large amount
of redundancy

 Multi-dimensional arrays representing such
data describe a tensor

Many applications in
signal processing,
psychometrics, and
more

SOURCE:http://en.wikipedia.org/wiki/File:Video
_represented_as_a_third-order_tensor.jpg

134



12/9/2014

68

Tensor Factorisation

 There are different decomposition methods,
we use Canonical Polyadic (CP) factorisation

 This gives a projection of 3D data onto 1D
vectors

 Helps to discover
latent structures in
data, quantifying the
relationship between
pairs of different
components

SOURCE: B. Krausz, C. Bauckhage, Action
recognition in videos using nonnegative tensor
factorization., in: ICPR, IEEE, 2010, pp. 1763–1766.

135

Proposed Approach –
TeBHA-HH

136

-NA

Noise Elimination

(Exclude Poor

Performing

Heuristic Group)

Construct Tensor

Tensor

Factorization (CP

Decomposition)

Analysis: Extract

two subgroups of

࡭ࡺࢎ and ࡱࡵࢎ

Switch the subgroup

and move

acceptance, XX

XX←NA  XX←IE

Apply SR-XX

using ܆܆ࢎ

ିࢎ

Tmax

reached

?

No

YesReturn Solution

(Stop)

Tmax

tp tp

ts

Perform Search

Basic

Frame
Use SR-NA
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TeBHA-HH:
1. Noise Elimination Phase

-NA

Noise Elimination

(Exclude Poor

Performing

Heuristic Group)

Construct Tensor

Tensor

Factorization (CP

Decomposition)

Analysis: Extract

two subgroups of

࡭ࡺࢎ and ࡱࡵࢎ

Switch the subgroup

and move

acceptance, XX

XX←NA  XX←IE

Apply SR-XX

using ܆܆ࢎ

ିࢎ

Tmax

reached

?

No

YesReturn Solution

(Stop)

Tmax

tp tp

ts

Perform Search

Basic

Frame
Use SR-NA

 Low level heuristics:
RR, MU, LS (HC)

 Split the time into two
halves:

 Run SR-NA using RR
and LS

 Run SR-NA using MU
and LS

 Drop the group with
poorer performance

TeBHA-HH:
2. Tensor Construction Phase

-NA

Noise Elimination

(Exclude Poor

Performing

Heuristic Group)

Construct Tensor

Tensor

Factorization (CP

Decomposition)

Analysis: Extract

two subgroups of

࡭ࡺࢎ and ࡱࡵࢎ

Switch the subgroup

and move

acceptance, XX

XX←NA  XX←IE

Apply SR-XX

using ܆܆ࢎ

ିࢎ

Tmax

reached

?

No

YesReturn Solution

(Stop)

Tmax

tp tp

ts

Perform Search

Basic

Frame
Use SR-NA

 Represent the search
history of SR-NA using
remaining low level
heuristics and
construct a 3rd order
tensor in time tp
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TeBHA-HH:
3. Tensor Factorization

-NA

Noise Elimination

(Exclude Poor

Performing

Heuristic Group)

Construct Tensor

Tensor

Factorization (CP

Decomposition)

Analysis: Extract

two subgroups of

࡭ࡺࢎ and ࡱࡵࢎ

Switch the subgroup

and move

acceptance, XX

XX←NA  XX←IE

Apply SR-XX

using ܆܆ࢎ

ିࢎ

Tmax

reached

?

No

YesReturn Solution

(Stop)

Tmax

tp tp

ts

Perform Search

Basic

Frame
Use SR-NA

 Decompose the tensor
using CP (Alternating
Least Square
algorithm)

 Produce a basic frame

Basic Frame

TeBHA-HH:
4. Tensor Analysis

-NA

Noise Elimination

(Exclude Poor

Performing

Heuristic Group)

Construct Tensor

Tensor

Factorization (CP

Decomposition)

Analysis: Extract

two subgroups of

࡭ࡺࢎ and ࡱࡵࢎ

Switch the subgroup

and move

acceptance, XX

XX←NA  XX←IE

Apply SR-XX

using ܆܆ࢎ

ିࢎ

Tmax

reached

?

No

YesReturn Solution

(Stop)

Tmax

tp tp

ts

Perform Search

Basic

Frame
Use SR-NA

 Locate the pair with
max score: LS0,LS1

 Top half goes to hNA, the rest to hIE

 Sort all entries on the column:

(LS0,LS1,MU3,MU2,MU5,MU4,MU1,MU0)
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TeBHA-HH:
5. Final Phase: Perform Search

-NA

Noise Elimination

(Exclude Poor

Performing

Heuristic Group)

Construct Tensor

Tensor

Factorization (CP

Decomposition)

Analysis: Extract

two subgroups of

࡭ࡺࢎ and ࡱࡵࢎ

Switch the subgroup

and move

acceptance, XX

XX←NA  XX←IE

Apply SR-XX

using ܆܆ࢎ

ିࢎ

Tmax

reached

?

No

YesReturn Solution

(Stop)

Tmax

tp tp

ts

Perform Search

Basic

Frame
Use SR-NA

 Run the cyclic multi-stage hyper-heuristic
SR−IE with ℎூா® SR-NA with ℎே஺
alternating at every time period ts

ࡱࡵ vs. ࡭ࡺ

 Histograms

142SAT BP
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Interaction Between
Hyper-heuristic Components

143
BP

Performance Comparison of
Hyper-heuristics

144

MAX-SAT BP PS

FS VRP TSP
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Results–CHeSC2011

MAX-SAT

VRP

2nd in BP
4th in TSP
4th in PS
Worst in FS

145

Case Study: A Data Mining
Embedded Hyper-heuristic

Sahriar Asta, Ender Ozcan
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Classification of the Approach

Feedback

147

Nature of the heuristic search space

Hyper-
heuristic

a hyper-heuristic

to generate

Offline
learning

An Apprenticeship Learning
Hyper-Heuristic for Vehicle Routing
in HyFlex (SSCI 2014, to appear)
 Basic idea: Learn from an expert

(AdapHH – winner of CHeSC 2011)
how to make decisions on heuristic
selection, parameter setting and
move acceptance for building a
selection hyper-heuristic

 C4.5 to construct decision trees

148
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Case Study: A Multi-
stage Selection Hyper-

heuristic
Ahmed Kheiri, Ender Ozcan

EJOR, in review

Classification of the Approach

Online
learning

Feedback

150

Nature of the heuristic search space

Hyper-
heuristics

Heuristic selection

perturbative
heuristics

Methodologies to select
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Stage 1 Hyper-heuristic

 Select a low level heuristic i with probability

 Apply the chosen heuristic

 Accept/reject based on an adaptive threshold
acceptance method

151

Stage 2 Hyper-heuristic

 Uses relay
hybridisation

 Reduces the set of
low level heuristics

 Adjusts heuristic
scores according to
a Greedy and
dominance based

LLH1=2, LLH2=1, LLH3=1
50% 25% 25%

2+4 LLHs  3 LLHs

Given LLH1 and LLH2:
LLH3=LLH1+LLH1,…,
LLH6=LLH2+LLH1

approach



12/9/2014

77

MSHH

153

Relay Hybridisation

PS TSP

154
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Result

155

A Memetic Algorithm for
Solving a Project

Scheduling Problem

School of
Computer Science

S. Asta,D. Karapetyan, A. Kheiri, E. Özcan,
and A.J. Parkes, Combining Monte-Carlo

and Hyper-heuristic methods for the Multi-
mode Resource-constrained Multi-project

Scheduling Problem, Journal of Scheduling,
in review.

TeamID#3 .
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MISTA 2013 Challenge

 Aim: Develop an algorithm that produces the
best possible solution to any given problem
in 300 sec.

 Problem instances are not known in advance.

 21 teams registered, 16 teams qualified after
the first round, 9 teams qualified after the
final round.

 We designed a memetic algorithm –
construct and improve

157

Problem Description

Resource-Constrained
Project Scheduling

 Schedule given jobs

 Limited resources

 Precedence relations

 Minimise makespan

Multi-mode
Resource-constrained
Multi-project Scheduling

 Multiple modes for each job

 Multiple projects

 Local and global resources

 Minimise the sum of
makespans
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159

• swap two jobs
• change mode of a job

3

• reshuffle several jobs
• change mode of several jobs

10

• swap two projects
• move a project

4

Low Level
Heuristics/Operators

A Multi-stage Hyper-heuristic

A Memetic Algorithm

160

Core
1

Core
2

Core
k

Hyper-heuristic

Hyper-heuristic

Hyper-heuristic

Monte Carlo Tree Search
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Results

161

MISTA 2013 Challenge – Result

 We produced the best
solutions for 17 out of
the 20 instances

 On the 12th second
our algorithm
becomes the winner 162
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Summary (and Potential
Future Research

Directions)

Summary

 Hyper-heuristic research originated from a job
shop scheduling application and has been
rapidly growing since then.

 Generation hyper-heuristics are commonly used
in the area
 Train and test fashion

 Does the selected subset of training instances is
sufficiently representative of the test set?

 Training is time-consuming (delta/incremental
evaluation, surrogate functions)

 The evolved heuristics might not be easy to interpret,
yet they can outperform human designed heuristics 164
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Summary (cont.)

 There is empirical evidence that machine
learning/analytics/ data science help to
improve the hyper-heuristic search process

 Problem features vs solution/state features

 Offline versus online learning – Life long learning

 There is still a lack of benchmarks
 Problem domains are needed

 Multi-criteria, multi-objective and dynamic
problems

165

Summary (cont.)

 Domain barrier issues

 What constitutes as domain independent information

 More/less number of heuristics

 Minimal heuristic set

 Multistage hyper-heuristics

 Which hyper-heuristics to combine?

 How to switch from one to another?

 How to decide on the low level heuristic set?

 Is there an end to the recursion/levels?
(hyperNheuristic)

166
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Summary (cont.)

 Finding common representations or description
formats that unify different but related problems

 Example: grouping hyper-heuristics

 Design a solver for the problems with
binary/permutation/integer packed representation

 How do we compare hyper-heuristics?

 Fairness issues: Termination criteria

 If we test a hyper-heuristic on

 new problem instances

 new problem domains

167

Summary (cont.)

 Automated design of search methodologies is
extremely challenging

 Addressed in almost complete absence of a
mathematical and theoretical understanding

 Heuristic Understanding

 How can we analyse the search space of
heuristics?

 How can we visualise the search space of
heuristics?

 Is it possible to learn from small examples and
apply to large instances? 168
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Summary (cont.)

169
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Thank you.
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