
0

PROGRAMMING IN HASKELL

Chapter 6 - Recursive Functions

1

Introduction

As we have seen, many functions can naturally be
defined in terms of other functions.

fac :: Int ® Int

fac n = product [1..n]

fac maps any integer n to the product
of the integers between 1 and n.

2

Expressions are evaluated by a stepwise process of
applying functions to their arguments.

For example:

fac 4

product [1..4]
=

product [1,2,3,4]
=

1*2*3*4
=

24
=

3

Recursive Functions

In Haskell, functions can also be defined in terms of
themselves. Such functions are called recursive.

fac 0 = 1

fac n = n * fac (n-1)

fac maps 0 to 1, and any other
integer to the product of itself and

the factorial of its predecessor.

4

For example:

fac 3

3 * fac 2
=

3 * (2 * fac 1)
=

3 * (2 * (1 * fac 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=

5

Note:

❚ fac 0 = 1 is appropriate because 1 is the identity
for multiplication: 1*x = x = x*1.

❚ The recursive definition diverges on integers < 0
because the base case is never reached:

> fac (-1)

*** Exception: stack overflow

6

Why is Recursion Useful?

❚ Some functions, such as factorial, are simpler to
define in terms of other functions.

❚ As we shall see, however, many functions can
naturally be defined in terms of themselves.

❚ Properties of functions defined using recursion
can be proved using the simple but powerful
mathematical technique of induction.

7

Recursion on Lists

Recursion is not restricted to numbers, but can also
be used to define functions on lists.

product :: Num a Þ [a] ® a
product [] = 1
product (n:ns) = n * product ns

product maps the empty list to 1,
and any non-empty list to its head
multiplied by the product of its tail.

8

For example:

product [2,3,4]

2 * product [3,4]
=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24
=

9

Using the same pattern of recursion as in product
we can define the length function on lists.

length :: [a] ® Int

length [] = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0,
and any non-empty list to the

successor of the length of its tail.

10

For example:

length [1,2,3]

1 + length [2,3]
=

1 + (1 + length [3])
=

1 + (1 + (1 + length []))
=

1 + (1 + (1 + 0))
=

3
=

11

Using a similar pattern of recursion we can define
the reverse function on lists.

reverse :: [a] ® [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty
list, and any non-empty list to the reverse

of its tail appended to its head.

12

For example:

reverse [1,2,3]

reverse [2,3] ++ [1]
=

(reverse [3] ++ [2]) ++ [1]
=

((reverse [] ++ [3]) ++ [2]) ++ [1]
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=

13

Multiple Arguments

Functions with more than one argument can also
be defined using recursion. For example:

❚ Zipping the elements of two lists:

zip :: [a] ® [b] ® [(a,b)]

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

14

drop :: Int ® [a] ® [a]

drop 0 xs = xs

drop _ [] = []

drop n (_:xs) = drop (n-1) xs

❚ Remove the first n elements from a list:

(++) :: [a] ® [a] ® [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

❚ Appending two lists:

15

Quicksort

The quicksort algorithm for sorting a list of values
can be specified by the following two rules:

❚ The empty list is already sorted;

❚ Non-empty lists can be sorted by sorting the
tail values £ the head, sorting the tail values >
the head, and then appending the resulting
lists on either side of the head value.

16

Using recursion, this specification can be translated
directly into an implementation:

qsort :: Ord a Þ [a] ® [a]
qsort [] = []
qsort (x:xs) =

qsort smaller ++ [x] ++ qsort larger
where

smaller = [a | a ¬ xs, a £ x]
larger = [b | b ¬ xs, b > x]

❚ This is probably the simplest implementation of
quicksort in any programming language!

Note:

17

For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]

18

Exercises

(1) Without looking at the standard prelude, define
the following library functions using recursion:

and :: [Bool] ® Bool

❚ Decide if all logical values in a list are true:

concat :: [[a]] ® [a]

❚ Concatenate a list of lists:

19

(!!) :: [a] ® Int ® a

❚ Select the nth element of a list:

elem :: Eq a Þ a ® [a] ® Bool

❚ Decide if a value is an element of a list:

replicate :: Int ® a ® [a]

❚ Produce a list with n identical elements:

20

(2) Define a recursive function

merge :: Ord a Þ [a] ® [a] ® [a]

that merges two sorted lists of values to give
a single sorted list. For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]

21

(3) Define a recursive function

❚ Lists of length £ 1 are already sorted;

❚ Other lists can be sorted by sorting the two
halves and merging the resulting lists.

msort :: Ord a Þ [a] ® [a]

that implements merge sort, which can be
specified by the following two rules:

