PROGRAMMING IN HASKELL

Chapter 8 - Declaring Types and Classes

Type Declarations

In Haskell, a new name for an existing type can be
defined using a type declaration.

type String = [Char]

PN

[String is a synonym for the type [Char].]

Type declarations can be used to make other types
easier to read. For example, given

type Pos = (Int,Int)

we can define:

origin :: Pos
origin = (0,0)

left :: Pos —» Pos
left (x,y) = (x-1,y)

Like function definitions, type declarations can also
have parameters. For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int —» Int
mult (m,n) = m*n

copy :: a — Pair a
copy X = (X,x)

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos — Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

Data Declarations

A completely new type can be defined by specifying
its values using a data declaration.

data Bool = False | True

Bool is a new type, with two
new values False and True.

Note:

I The two values False and True are called the
constructors for the type Bool.

I Type and constructor names must always begin

with an upper-case letter.

B Data declarations are similar to context free
grammars. The former specifies the values of
a type, the latter the sentences of a language.

Values of new types can be used in the same ways
as those of built in types. For example, given

data Answer = Yes | No | Unknown

we can define:

answers :: [Answer]
answers = [Yes,No,Unknown]

Tip :: Answer — Answer
1p Yes = No

1p No = Yes

Tip Unknown = Unknown

The constructors in a data declaration can also have
parameters. For example, given

data Shape = Circle Float
| Rect Float Float

we can define:

square :: Float — Shape
square n = Rect n n

area :: Shape — Float
area (Circle r) = p1 * rA2
area (Rect x y) = x * vy

Note:

B Shape has values of the form Circle r where r is
a float, and Rect x y where x and y are floats.

I Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float — Shape

Rect :: Float — Float — Shape

Not surprisingly, data declarations themselves can
also have parameters. For example, given

data Maybe a = Nothing | Just a

we can define:

safediv :: Int - Int — Maybe Int
safediv _ 0 = Nothing

safediv m n = Just (m ‘div’ n)

safehead :: [a] — Maybe a
safteheac = Nothing
safehead SRS GEE S

Recursive Types

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

PN

L Nat is a new type, with constructors }

Zero :: Nat and Succ :: Nat — Nat.

Note:

B A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains the
following infinite sequence of values:

ero
Succ Zero

Succ (Succ Zero)

We can think of values of type Nat as natural
numbers, where Zero represents 0, and Succ
represents the successor function 1+.

For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1+ @A+ @A+0)) = 3

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat — Int
nat2int Zero =0
nat2int (Succ n) = 1 + nat2int n

int2nat :: Int — Nat
1nt2nat Zero
1nt2nat Succ (1nt2nat (n-1))

Two naturals can be added by converting them to
integers, adding, and then converting back:

add :: Nat —» Nat — Nat
add m n = 1nt2nat (nat2int m + nat2int n)

However, using recursion the function add can be
defined without the need for conversions:

add Zero n n
add (Succ m) n Succ (add m n)

For example:

add (Succ (Succ Zero)) (Succ Zero)
Succ (add (Succ Zero) (Succ Zero))
Succ (Succ (add Zero (Succ Zero))

Succ (Succ (Succ Zero))

Note:

I The recursive definition for add corresponds to
the laws 0+n = n and (1+m)+n = 1+(m+n).

Arithmetic Expressions

Consider a simple form of expressions built up from
integers using addition and multiplication.

/\
/\

Using recursion, a suitable new type to represent
such expressions can be declared by:

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr

For example, the expression on the previous slide
would be represented as follows:

Add (val 1) (Mul (val 2) (val 3))

Using recursion, it is now easy to define functions
that process expressions. For example:

size :: Expr — Int
size (Val n) 1
size (Add x y) size
size (Mul x y) size

Expr — Int
(Val n) n
(Add x y) = eval
(Mul x y) eval

Note:

I The three constructors have types:

Val :: Int — Expr
Add :: Expr — Expr — Expr
Mul :: Expr — Expr — Expr

I Many functions on expressions can be defined
by replacing the constructors by other functions
using a suitable fold function. For example:

eval = folde id (+) (*)

Exercises

(1) Using recursion and the function add, define a
function that multiplies two natural numbers.

(2) Define a suitable function folde for expressions
and give a few examples of its use.

(3) Define a type Tree a of binary trees built from
Leaf values of type a using a Node constructor
that takes two binary trees as parameters.

