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PROGRAMMING IN HASKELL

Chapter 6 - Recursive Functions
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Introduction

As we have seen, many functions can naturally be 
defined in terms of other functions.

fac :: Int ® Int

fac n = product [1..n]

fac maps any integer n to the product 
of the integers between 1 and n.
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Expressions are evaluated by a stepwise process of 
applying functions to their arguments.

For example:

fac 4

product [1..4]
=

product [1,2,3,4]
=

1*2*3*4
=

24
=
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Recursive Functions

In Haskell, functions can also be defined in terms of 
themselves.  Such functions are called recursive.

fac 0 = 1

fac n = n * fac (n-1)

fac maps 0 to 1, and any other 
integer to the product of itself and 

the factorial of its predecessor.
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For example:

fac 3

3 * fac 2
=

3 * (2 * fac 1)
=

3 * (2 * (1 * fac 0))
=

3 * (2 * (1 * 1))
=

3 * (2 * 1)
=

=
6

3 * 2
=
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Note:

❚ fac 0 = 1 is appropriate because 1 is the identity 
for multiplication: 1*x = x = x*1.

❚ The recursive definition diverges on integers < 0 
because the base case is never reached:

> fac (-1)

*** Exception: stack overflow
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Why is Recursion Useful?

❚ Some functions, such as factorial, are simpler to 
define in terms of other functions.

❚ As we shall see, however, many functions can 
naturally be defined in terms of themselves.

❚ Properties of functions defined using recursion 
can be proved using the simple but powerful 
mathematical technique of induction.
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Recursion on Lists

Recursion is not restricted to numbers, but can also 
be used to define functions on lists.

product :: Num a Þ [a] ® a
product []     = 1
product (n:ns) = n * product ns

product maps the empty list to 1, 
and any non-empty list to its head 
multiplied by the product of its tail.
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For example:

product [2,3,4]

2 * product [3,4]
=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24
=
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Using the same pattern of recursion as in product 
we can define the length function on lists.

length :: [a] ® Int

length []     = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0, 
and any non-empty list to the 

successor of the length of its tail.
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For example:

length [1,2,3]

1 + length [2,3]
=

1 + (1 + length [3])
=

1 + (1 + (1 + length []))
=

1 + (1 + (1 + 0))
=

3
=
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Using a similar pattern of recursion we can define 
the reverse function on lists.

reverse :: [a] ® [a]

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty 
list, and any non-empty list to the reverse 

of its tail appended to its head.
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For example:

reverse [1,2,3]

reverse [2,3] ++ [1]
=

(reverse [3] ++ [2]) ++ [1]
=

((reverse [] ++ [3]) ++ [2]) ++ [1]
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=
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Multiple Arguments

Functions with more than one argument can also 
be defined using recursion.  For example:

❚ Zipping the elements of two lists:

zip :: [a] ® [b] ® [(a,b)]

zip []     _      = []

zip _      []     = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys
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drop :: Int ® [a] ® [a]

drop 0 xs = xs

drop _ []     = []

drop n (_:xs) = drop (n-1) xs

❚ Remove the first n elements from a list:

(++) :: [a] ® [a] ® [a]

[]     ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

❚ Appending two lists:
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Quicksort

The quicksort algorithm for sorting a list of values 
can be specified by the following two rules:

❚ The empty list is already sorted;

❚ Non-empty lists can be sorted by sorting the 
tail values £ the head, sorting the tail values >
the head, and then appending the resulting 
lists on either side of the head value.
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Using recursion, this specification can be translated 
directly into an implementation:

qsort :: Ord a Þ [a] ® [a]
qsort []     = []
qsort (x:xs) =

qsort smaller ++ [x] ++ qsort larger
where

smaller = [a | a ¬ xs, a £ x]
larger  = [b | b ¬ xs, b > x]

❚ This is probably the simplest implementation of 
quicksort in any programming language!

Note:
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For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]
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Exercises

(1) Without looking at the standard prelude, define 
the following library functions using recursion:

and :: [Bool] ® Bool

❚ Decide if all logical values in a list are true:

concat :: [[a]] ® [a]

❚ Concatenate a list of lists:
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(!!) :: [a] ® Int ® a

❚ Select the nth element of a list:

elem :: Eq a Þ a ® [a] ® Bool

❚ Decide if a value is an element of a list:

replicate :: Int ® a ® [a]

❚ Produce a list with n identical elements:
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(2) Define a recursive function

merge :: Ord a Þ [a] ® [a] ® [a]

that merges two sorted lists of values to give 
a single sorted list.  For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]
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(3) Define a recursive function

❚ Lists of length £ 1 are already sorted;

❚ Other lists can be sorted by sorting the two 
halves and merging the resulting lists. 

msort :: Ord a Þ [a] ® [a]

that implements merge sort, which can be 
specified by the following two rules:


