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PROGRAMMING IN HASKELL

Chapter 7 - Higher-Order Functions
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Introduction

A function is called higher-order if it takes a function 
as an argument or returns a function as a result.

twice :: (a ® a) ® a ® a

twice f x = f (f x)

twice is higher-order because it
takes a function as its first argument.
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Why Are They Useful?

❚ Common programming idioms can be encoded 
as functions within the language itself.

❚ Domain specific languages can be defined as 
collections of higher-order functions.

❚ Algebraic properties of higher-order functions 
can be used to reason about programs.
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The Map Function

The higher-order library function called map applies 
a function to every element of a list.

map :: (a ® b) ® [a] ® [b]

For example:

> map (+1) [1,3,5,7]

[2,4,6,8]
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Alternatively, for the purposes of proofs, the map 
function can also be defined using recursion: 

The map function can be defined in a particularly 
simple manner using a list comprehension:

map f xs = [f x | x ¬ xs]

map f []     = []

map f (x:xs) = f x : map f xs
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The Filter Function

The higher-order library function filter selects every 
element from a list that satisfies a predicate.

filter :: (a ® Bool) ® [a] ® [a]

For example:

> filter even [1..10]

[2,4,6,8,10]
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Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ¬ xs, p x]

filter p [] = []

filter p (x:xs)

| p x       = x : filter p xs

| otherwise = filter p xs
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The Foldr Function

A number of functions on lists can be defined using 
the following simple pattern of recursion:

f []     = v

f (x:xs) = x Å f xs

f maps the empty list to some value v, and 
any non-empty list to some function Å

applied to its head and f of its tail.
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For example:

sum []     = 0

sum (x:xs) = x + sum xs

and []     = True

and (x:xs) = x && and xs

product []     = 1

product (x:xs) = x * product xs

v = 0
Å = +

v = 1
Å = *

v = True
Å = &&
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The higher-order library function foldr (fold right) 
encapsulates this simple pattern of recursion, with 
the function Å and the value v as arguments.

For example:

sum = foldr (+) 0

product = foldr (*) 1

or = foldr (||) False 

and = foldr (&&) True
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Foldr itself can be defined using recursion:

foldr :: (a ® b ® b) ® b ® [a] ® b

foldr f v []     = v

foldr f v (x:xs) = f x (foldr f v xs)

However, it is best to think of foldr non-recursively, 
as simultaneously replacing each (:) in a list by a 
given function, and [] by a given value.
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sum [1,2,3]

foldr (+) 0 [1,2,3]
=

foldr (+) 0 (1:(2:(3:[])))
=

1+(2+(3+0))
=

6
=

For example:

Replace each (:)
by (+) and [] by 0.



12

product [1,2,3]

foldr (*) 1 [1,2,3]
=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6
=

For example:

Replace each (:)
by (*) and [] by 1.
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Other Foldr Examples

Even though foldr encapsulates a simple pattern 
of recursion, it can be used to define many more 
functions than might first be expected.

Recall the length function:

length :: [a] ® Int

length []     = 0

length (_:xs) = 1 + length xs
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length [1,2,3]

length (1:(2:(3:[])))
=

1+(1+(1+0))
=

3
=

Hence, we have:

length = foldr (l_ n ® 1+n) 0

Replace each (:) 
by l_ n ® 1+n 

and [] by 0.

For example:
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Now recall the reverse function:

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]

reverse (1:(2:(3:[])))
=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]
=

For example: Replace each (:) by 
lx xs ® xs ++ [x] 

and [] by [].
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Hence, we have:

reverse = foldr (lx xs ® xs ++ [x]) []

Finally, we note that the append function (++) has a 
particularly compact definition using foldr:

(++ ys) = foldr (:) ys
Replace each 
(:) by (:) and 

[] by ys.
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Why Is Foldr Useful?

❚ Some recursive functions on lists, such as sum, 
are simpler to define using foldr.

❚ Properties of functions defined using foldr can 
be proved using algebraic properties of foldr, 
such as fusion and the banana split rule.

❚ Advanced program optimisations can be simpler 
if foldr is used in place of explicit recursion.
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Other Library Functions

The library function (.) returns the composition of 
two functions as a single function.

(.) :: (b ® c) ® (a ® b) ® (a ® c)

f . g = lx ® f (g x)

For example:

odd :: Int ® Bool

odd = not . even
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The library function all decides if every element of 
a list satisfies a given predicate.

all :: (a ® Bool) ® [a] ® Bool

all p xs = and [p x | x ¬ xs]

For example:

> all even [2,4,6,8,10]

True
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Dually, the library function any decides if at least
one element of a list satisfies a predicate.

any :: (a ® Bool) ® [a] ® Bool

any p xs = or [p x | x ¬ xs]

For example:

> any (== ’ ’) "abc def"

True
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The library function takeWhile selects elements from 
a list while a predicate holds of all the elements.

takeWhile :: (a ® Bool) ® [a] ® [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x       = x : takeWhile p xs
| otherwise = []

For example:

> takeWhile (/= ’ ’) "abc def"

"abc"
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Dually, the function dropWhile removes elements 
while a predicate holds of all the elements.

dropWhile :: (a ® Bool) ® [a] ® [a]
dropWhile p [] = []
dropWhile p (x:xs)

| p x       = dropWhile p xs
| otherwise = x:xs

For example:

> dropWhile (== ’ ’) "   abc"

"abc"



23

Exercises

(3) Redefine map f and filter p using foldr.

(2) Express the comprehension [f x | x ¬ xs, p x] 
using the functions map and filter.

(1) What are higher-order functions that return 
functions as results better known as?


