
Appendix A

Standard prelude

In this appendix we present some of the most commonly used definitions
from the standard prelude. For clarity, a number of the definitions have been
simplified or modified from those given in the Haskell Report (25).

A.1 Classes

Equality types:

class Eq a where
(==), (!=) :: a → a → Bool

x != y = ¬ (x == y)

Ordered types:

class Eq a ⇒ Ord a where
(<), (≤), (>), (≥) :: a → a → Bool

min,max :: a → a → a

min x y | x ≤ y = x

| otherwise = y

max x y | x ≤ y = y

| otherwise = x

Showable types:

class Show a where
show :: a → String

Readable types:

class Read a where
read :: String → a

A.2 LOGICAL VALUES 157

Numeric types:

class (Eq a, Show a) ⇒ Num a where
(+), (−), (∗) :: a → a → a

negate, abs, signum :: a → a

Integral types:

class Num a ⇒ Integral a where
div ,mod :: a → a → a

Fractional types:

class Num a ⇒ Fractional a where
(/) :: a → a → a

recip :: a → a

recip n = 1 / n

Monadic types:

class Monad m where
return :: a → m a

(>>=) :: m a → (a → m b) → m b

A.2 Logical values

Type declaration:

data Bool = False | True

deriving (Eq,Ord, Show ,Read)

Logical conjunction:

(∧) :: Bool → Bool → Bool

False ∧ = False

True ∧ b = b

Logical disjunction:

(∨) :: Bool → Bool → Bool

False ∨ b = b

True ∨ = True

Logical negation:

¬ :: Bool → Bool

¬ False = True

¬ True = False

Guard that always succeeds:

otherwise :: Bool

otherwise = True

158 STANDARD PRELUDE

A.3 Characters and strings

Type declarations:

data Char = · · ·
deriving (Eq,Ord, Show ,Read)

type String = [Char]

Decide if a character is a lower-case letter:

isLower :: Char → Bool

isLower c = c ≥ ’a’ ∧ c ≤ ’z’

Decide if a character is an upper-case letter:

isUpper :: Char → Bool

isUpper c = c ≥ ’A’ ∧ c ≤ ’Z’

Decide if a character is alphabetic:

isAlpha :: Char → Bool

isAlpha c = isLower c ∨ isUpper c

Decide if a character is a digit:

isDigit :: Char → Bool

isDigit c = c ≥ ’0’ ∧ c ≤ ’9’

Decide if a character is alpha-numeric:

isAlphaNum :: Char → Bool

isAlphaNum c = isAlpha c ∨ isDigit c

Decide if a character is spacing:

isSpace :: Char → Bool

isSpace c = elem c " \t\n"

Convert a character to a Unicode number:

ord :: Char → Int

ord c = · · ·

Convert a Unicode number to a character:

chr :: Int → Char

chr n = · · ·

Convert a digit to an integer:

digitToInt :: Char → Int

digitToInt c | isDigit c = ord c − ord ’0’

A.4 NUMBERS 159

Convert an integer to a digit:

intToDigit :: Int → Char

intToDigit n

| n ≥ 0 ∧ n ≤ 9 = chr (ord ’0’+ n)

Convert a letter to lower-case:

toLower :: Char → Char

toLower c | isUpper c = chr (ord c − ord ’A’+ ord ’a’)
| otherwise = c

Convert a letter to upper-case:

toUpper :: Char → Char

toUpper c | isLower c = chr (ord c − ord ’a’+ ord ’A’)
| otherwise = c

A.4 Numbers

Type declarations:

data Int = · · ·
deriving (Eq,Ord, Show ,Read,

Num, Integral)

data Integer = · · ·
deriving (Eq,Ord, Show ,Read,

Num, Integral)

data Float = · · ·
deriving (Eq,Ord, Show ,Read,

Num,Fractional)

Decide if an integer is even:

even :: Integral a ⇒ a → Bool

even n = n ‘mod‘ 2 == 0

Decide if an integer is odd:

odd :: Integral a ⇒ a → Bool

odd = ¬ ◦ even

Exponentiation:

(↑) :: (Num a, Integral b) ⇒ a → b → a

↑ 0 = 1
x ↑ (n + 1) = x ∗ (x ↑ n)

160 STANDARD PRELUDE

A.5 Tuples

Type declarations:

data () = · · ·
deriving (Eq,Ord, Show ,Read)

data (a, b) = · · ·
deriving (Eq,Ord, Show ,Read)

data (a, b, c) = · · ·
deriving (Eq,Ord, Show ,Read)

...

Select the first component of a pair:

fst :: (a, b) → a

fst (x ,) = x

Select the second component of a pair:

snd :: (a, b) → b

snd (, y) = y

A.6 Maybe

Type declaration:

data Maybe a = Nothing | Just a

deriving (Eq,Ord, Show ,Read)

A.7 Lists

Type declaration:

data [a] = [] | a : [a]
deriving (Eq,Ord, Show ,Read)

Decide if a list is empty:

null :: [a] → Bool

null [] = True

null (:) = False

Decide if a value is an element of a list:

elem :: Eq a ⇒ a → [a] → Bool

elem x xs = any (== x) xs

Decide if all logical values in a list are True:

and :: [Bool] → Bool

A.7 L ISTS 161

and = foldr (∧) True

Decide if any logical value in a list is False:

or :: [Bool] → Bool

or = foldr (∨) False

Decide if all elements of a list satisfy a predicate:

all :: (a → Bool) → [a] → Bool

all p = and ◦ map p

Decide if any element of a list satisfies a predicate:

any :: (a → Bool) → [a] → Bool

any p = or ◦ map p

Select the first element of a non-empty list:

head :: [a] → a

head (x :) = x

Select the last element of a non-empty list:

last :: [a] → a

last [x] = x

last (: xs) = last xs

Select the nth element of a non-empty list:

(!!) :: [a] → Int → a

(x :) !! 0 = x

(: xs) !! (n + 1) = xs !! n

Select the first n elements of a list:

take :: Int → [a] → [a]
take 0 = []
take (n + 1) [] = []
take (n + 1) (x : xs) = x : take n xs

Select all elements of a list that satisfy a predicate:

filter :: (a → Bool) → [a] → [a]
filter p xs = [x | x ← xs, p x]

Select elements of a list while they satisfy a predicate:

takeWhile :: (a → Bool) → [a] → [a]
takeWhile [] = []
takeWhile p (x : xs)

| p x = x : takeWhile p xs

| otherwise = []

Remove the first element from a non-empty list:

tail :: [a] → [a]

162 STANDARD PRELUDE

tail (: xs) = xs

Remove the last element from a non-empty list:

init :: [a] → [a]
init [] = []
init (x : xs) = x : init xs

Remove the first n elements from a list:

drop :: Int → [a] → [a]
drop 0 xs = xs

drop (n + 1) [] = []
drop (n + 1) (: xs) = drop n xs

Remove elements from a list while they satisfy a predicate:

dropWhile :: (a → Bool) → [a] → [a]
dropWhile [] = []
dropWhile p (x : xs)

| p x = dropWhile p xs

| otherwise = x : xs

Split a list at the nth element:

splitAt :: Int → [a] → ([a], [a])
splitAt n xs = (take n xs, drop n xs)

Split a list using a predicate:

span :: (a → Bool) → [a] → ([a], [a])
span p xs = (takeWhile p xs, dropWhile p xs)

Process a list using an operator that associates to the right:

foldr :: (a → b → b) → b → [a] → b

foldr v [] = v

foldr f v (x : xs) = f x (foldr f v xs)

Process a non-empty list using an operator that associates to the right:

foldr1 :: (a → a → a) → [a] → a

foldr1 [x] = x

foldr1 f (x : xs) = f x (foldr1 f xs)

Process a list using an operator that associates to the left:

foldl :: (a → b → a) → a → [b] → a

foldl v [] = v

foldl f v (x : xs) = foldl f (f v x) xs

Process a non-empty list using an operator that associates to the left:

foldl1 :: (a → a → a) → [a] → a

foldl1 f (x : xs) = foldl f x xs

A.7 L ISTS 163

Produce an infinite list of identical elements:

repeat :: a → [a]
repeat x = xs where xs = x : xs

Produce a list with n identical elements:

replicate :: Int → a → [a]
replicate n = take n ◦ repeat

Produce an infinite list by iterating a function over a value:

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

Produce a list of pairs from a pair of lists:

zip :: [a] → [b] → [(a, b)]
zip [] = []
zip [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Calculate the length of a list:

length :: [a] → Int

length = foldl (λn → n + 1) 0

Calculate the sum of a list of numbers:

sum :: Num a ⇒ [a] → a

sum = foldl (+) 0

Calculate the product of a list of numbers:

product :: Num a ⇒ [a] → a

product = foldl (∗) 1

Calculate the minimum of a non-empty list:

minimum :: Ord a ⇒ [a] → a

minimum = foldl1 min

Calculate the maximum of a non-empty list:

maximum :: Ord a ⇒ [a] → a

maximum = foldl1 max

Append two lists:

(++) :: [a] → [a] → [a]
[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

Concatenate a list of lists:

concat :: [[a]] → [a]
concat = foldr (++) []

164 STANDARD PRELUDE

Reverse a list:

reverse :: [a] → [a]
reverse = foldl (λxs x → x : xs) []

Apply a function to all elements of a list:

map :: (a → b) → [a] → [b]
map f xs = [f x | x ← xs]

A.8 Functions

Type declaration:

data a → b = · · ·

Identity function:

id :: a → a

id = λx → x

Function composition:

(◦) :: (b → c) → (a → b) → (a → c)
f ◦ g = λx → f (g x)

Constant functions:

const :: a → (b → a)
const x = λ → x

Strict application:

($!) :: (a → b) → a → b

f $! x = · · ·

Convert a function on pairs to a curried function:

curry :: ((a, b) → c) → (a → b → c)
curry f = λx y → f (x , y)

Convert a curried function to a function on pairs:

uncurry :: (a → b → c) → ((a, b) → c)
uncurry f = λ(x , y) → f x y

A.9 Input/output

Type declaration:

data IO a = · · ·

A.9 INPUT/OUTPUT 165

Read a character from the keyboard:

getChar :: IO Char

getChar = · · ·

Read a string from the keyboard:

getLine :: IO String

getLine = do x ← getChar

if x == ’\n’ then
return ""

else
do xs ← getLine

return (x : xs)

Read a value from the keyboard:

readLn :: Read a ⇒ IO a

readLn = do xs ← getLine

return (read xs)

Write a character to the screen:

putChar :: Char → IO ()
putChar c = · · ·

Write a string to the screen:

putStr :: String → IO ()
putStr "" = return ()
putStr (x : xs) = do putChar x

putStr xs

Write a string to the screen and move to a new line:

putStrLn :: String → IO ()
putStrLn xs = do putStr xs

putChar ’\n’

Write a value to the screen:

print :: Show a ⇒ a → IO ()
print = putStrLn ◦ show

Display an error message and terminate the program:

error :: String → a

error xs = · · ·

