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PROGRAMMING IN HASKELL

Chapter 15 – Lazy Evaluation
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Introduction

! Avoids doing unnecessary evaluation;

! Ensures termination whenever possible;

! Supports programming with infinite lists;

! Allows programs to be more modular.

Expressions in Haskell are evaluated using a simple 
technique called lazy evaluation, which:
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square (1+2)

square 3
=

3 * 3
=

9

=

Evaluating Expressions

square n = n * n

Example:

Apply + first.
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Another evaluation order is also possible:

square (1+2)

(1+2) * (1+2)
=

3 * (1+2)
=

3 * 3
=

Any way of evaluating the same expression will give 
the same result, provided it terminates.

9
=

Apply square first.
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Evaluation Strategies

There are two main strategies for deciding which 
reducible expression (redex) to consider next:

! Choose a redex that is innermost, in the sense 
that does not contain another redex;

! Choose a redex that is outermost, in the sense 
that is not contained in another redex.
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fst (0, infinity)

fst (0, 1 + infinity)
=

fst (0, 1 + (1 + infinity))
=

Termination

infinity = 1 + infinity

Example:
Innermost 
evaluation.

=
•
•
•
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fst (0, infinity)

0
=

Outermost 
evaluation.

! Outermost evaluation may give a result when 
innermost evaluation fails to terminate;

! If any evaluation sequence terminates, then so 
does outermost, with the same result.

Note:
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Number of Reductions

square (1+2)

square 3
=

3 * 3
=

9
=

square (1+2)

(1+2) * (1+2)
=

3 * (1+2)
=

3 * 3
=

9
=

Innermost: Outermost:

3 steps. 4 steps.
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Note:

! The outmost version is inefficient, because the 
argument 1+2 is duplicated when square is 
applied and is hence evaluated twice.

! Due to such duplication, outermost evaluation 
may require more steps than innermost.

! This problem can easily be avoided by using 
pointers to indicate sharing of arguments.
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square (1+2)

9

=

*  

=

1+2

*  

=

3 

Example:

Shared argument 
evaluated once.
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This gives a new evaluation strategy:

lazy evaluation =
outermost evaluation 

+
sharing of arguments

Note:

! Lazy evaluation ensures termination whenever 
possible, but never requires more steps than 
innermost evaluation and sometimes fewer.
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ones

1 : ones=
1 : (1 : ones)=

Infinite Lists

ones = 1 : ones

Example:

An infinite 
list of ones.

= •
•
•

1 : (1 : (1 : ones))=
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head ones

head (1:ones)
=

head (1:(1:ones))
=

head ones

head (1:ones)
=

1
=

Innermost: Lazy:

What happens if we select the first element?

=
•
•
•

Does not 
terminate.

Terminates 
in 2 steps!
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Note:

! In the lazy case, only the first element of ones 
is produced, as the rest are not required.

! In general, with lazy evaluation expressions 
are only evaluated as much as required by the 
context in which they are used.

! Hence, ones is really a potentially infinite list.
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Modular Programming

Lazy evaluation allows us to make programs more 
modular by separating control from data.

> take 5 ones

[1,1,1,1,1]

The data part ones is only evaluated as 
much as required by the control part take 5.
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Without using lazy evaluation the control and data 
parts would need to be combined into one:

replicate :: Int ® a ® [a]

replicate 0 _ = []

replicate n x = x : replicate (n-1) x

> replicate 5 1

[1,1,1,1,1]

Example:
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Generating Primes

To generate the infinite sequence of primes:

1. Write down the infinite sequence 2, 3, 4, …;

2. Mark the first number p as being prime;

3. Delete all multiples of p from the sequence;

4. Return to the second step.
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2 3 4 8 9 105 6 7 11 12 • ••2

3 95 7 11 • ••3

5 11 • ••75

7 11 • ••

11 • ••

7

11
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This idea can be directly translated into a program 
that generates the infinite list of primes!

primes :: [Int]

primes = sieve [2..]

sieve :: [Int] ® [Int]

sieve (p:xs) =

p : sieve [x | x ¬ xs, mod x p /= 0]
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Examples:

> primes

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,…

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

> takeWhile (< 10) primes

[2,3,5,7]
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We can also use primes to generate an (infinite?) list 
of twin primes that differ by precisely two.

twin :: (Int,Int) ® Bool

twin (x,y) = y == x+2

twins :: [(Int,Int)]

twins = filter twin (zip primes (tail primes))

> twins

[(3,5),(5,7),(11,13),(17,19),(29,31),…
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Exercise

(1) The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

starts with 0 and 1, with each further number 
being the sum of the previous two.  Using a 
list comprehension, define an expression

fibs :: [Integer]

that generates this infinite sequence.


