
0

PROGRAMMING IN HASKELL

Chapter 5 - List Comprehensions

1

Set Comprehensions

In mathematics, the comprehension notation can
be used to construct new sets from old sets.

{x2 | x Î {1...5}}

The set {1,4,9,16,25} of all numbers x2 such
that x is an element of the set {1…5}.

2

Lists Comprehensions

In Haskell, a similar comprehension notation can
be used to construct new lists from old lists.

[x^2 | x ¬ [1..5]]

The list [1,4,9,16,25] of all numbers x^2
such that x is an element of the list [1..5].

3

Note:

❚ The expression x ¬ [1..5] is called a generator,
as it states how to generate values for x.

❚ Comprehensions can have multiple generators,
separated by commas. For example:

> [(x,y) | x ¬ [1,2,3], y ¬ [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

4

❚ Changing the order of the generators changes
the order of the elements in the final list:

> [(x,y) | y ¬ [4,5], x ¬ [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

❚ Multiple generators are like nested loops, with
later generators as more deeply nested loops
whose variables change value more frequently.

5

> [(x,y) | y ¬ [4,5], x ¬ [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

❚ For example:

x ¬ [1,2,3] is the last generator, so
the value of the x component of each

pair changes most frequently.

6

Dependant Generators

Later generators can depend on the variables that
are introduced by earlier generators.

[(x,y) | x ¬ [1..3], y ¬ [x..3]]

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are

elements of the list [1..3] and y ³ x.

7

Using a dependant generator we can define the
library function that concatenates a list of lists:

concat :: [[a]] ® [a]

concat xss = [x | xs ¬ xss, x ¬ xs]

For example:

> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]

8

Guards

List comprehensions can use guards to restrict the
values produced by earlier generators.

[x | x ¬ [1..10], even x]

The list [2,4,6,8,10] of all numbers
x such that x is an element of the

list [1..10] and x is even.

9

factors :: Int ® [Int]
factors n =

[x | x ¬ [1..n], n `mod` x == 0]

Using a guard we can define a function that maps
a positive integer to its list of factors:

For example:

> factors 15

[1,3,5,15]

10

A positive integer is prime if its only factors are 1
and itself. Hence, using factors we can define a
function that decides if a number is prime:

prime :: Int ® Bool

prime n = factors n == [1,n]

For example:

> prime 15
False

> prime 7
True

11

Using a guard we can now define a function that
returns the list of all primes up to a given limit:

primes :: Int ® [Int]

primes n = [x | x ¬ [2..n], prime x]

For example:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

12

The Zip Function

A useful library function is zip, which maps two lists
to a list of pairs of their corresponding elements.

zip :: [a] ® [b] ® [(a,b)]

For example:

> zip [’a’,’b’,’c’] [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

13

Using zip we can define a function returns the list
of all pairs of adjacent elements from a list:

For example:

pairs :: [a] ® [(a,a)]

pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

[(1,2),(2,3),(3,4)]

14

Using pairs we can define a function that decides
if the elements in a list are sorted:

For example:

sorted :: Ord a Þ [a] ® Bool
sorted xs = and [x £ y | (x,y) ¬ pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False

15

Using zip we can define a function that returns the
list of all positions of a value in a list:

positions :: Eq a Þ a ® [a] ® [Int]

positions x xs =

[i | (x’,i) ¬ zip xs [0..], x == x’]

For example:

> positions 0 [1,0,0,1,0,1,1,0]

[1,2,4,7]

16

String Comprehensions

A string is a sequence of characters enclosed in
double quotes. Internally, however, strings are
represented as lists of characters.

"abc" :: String

Means [’a’, ’b’, ’c’] :: [Char].

17

Because strings are just special kinds of lists, any
polymorphic function that operates on lists can
also be applied to strings. For example:

> length "abcde"

5

> take 3 "abcde"

"abc"

> zip "abc" [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

18

Similarly, list comprehensions can also be used to
define functions on strings, such counting how
many times a character occurs in a string:

count :: Char ® String ® Int

count x xs = length [x’ | x’ ¬ xs, x == x’]

For example:

> count ’s’ "Mississippi"
4

19

Exercises
A triple (x,y,z) of positive integers is called
pythagorean if x2 + y2 = z2. Using a list
comprehension, define a function

(1)

pyths :: Int ® [(Int,Int,Int)]

that maps an integer n to all such triples with
components in [1..n]. For example:

> pyths 5

[(3,4,5),(4,3,5)]

20

A positive integer is perfect if it equals the sum
of all of its factors, excluding the number itself.
Using a list comprehension, define a function

(2)

perfects :: Int ® [Int]

that returns the list of all perfect numbers up
to a given limit. For example:

> perfects 500

[6,28,496]

21

(xsi * ysi)å
i = 0

n-1

Using a list comprehension, define a function
that returns the scalar product of two lists.

The scalar product of two lists of integers xs
and ys of length n is give by the sum of the
products of the corresponding integers:

(3)

