
0

PROGRAMMING IN HASKELL

Chapter 15 – Lazy Evaluation

1

Introduction

! Avoids doing unnecessary evaluation;

! Ensures termination whenever possible;

! Supports programming with infinite lists;

! Allows programs to be more modular.

Expressions in Haskell are evaluated using a simple
technique called lazy evaluation, which:

2

square (1+2)

square 3
=

3 * 3
=

9

=

Evaluating Expressions

square n = n * n

Example:

Apply + first.

3

Another evaluation order is also possible:

square (1+2)

(1+2) * (1+2)
=

3 * (1+2)
=

3 * 3
=

Any way of evaluating the same expression will give
the same result, provided it terminates.

9
=

Apply square first.

4

Evaluation Strategies

There are two main strategies for deciding which
reducible expression (redex) to consider next:

! Choose a redex that is innermost, in the sense
that does not contain another redex;

! Choose a redex that is outermost, in the sense
that is not contained in another redex.

5

fst (0, infinity)

fst (0, 1 + infinity)
=

fst (0, 1 + (1 + infinity))
=

Termination

infinity = 1 + infinity

Example:
Innermost
evaluation.

=
•
•
•

6

fst (0, infinity)

0
=

Outermost
evaluation.

! Outermost evaluation may give a result when
innermost evaluation fails to terminate;

! If any evaluation sequence terminates, then so
does outermost, with the same result.

Note:

7

Number of Reductions

square (1+2)

square 3
=

3 * 3
=

9
=

square (1+2)

(1+2) * (1+2)
=

3 * (1+2)
=

3 * 3
=

9
=

Innermost: Outermost:

3 steps. 4 steps.

8

Note:

! The outmost version is inefficient, because the
argument 1+2 is duplicated when square is
applied and is hence evaluated twice.

! Due to such duplication, outermost evaluation
may require more steps than innermost.

! This problem can easily be avoided by using
pointers to indicate sharing of arguments.

9

square (1+2)

9

=

*

=

1+2

*

=

3

Example:

Shared argument
evaluated once.

10

This gives a new evaluation strategy:

lazy evaluation =
outermost evaluation

+
sharing of arguments

Note:

! Lazy evaluation ensures termination whenever
possible, but never requires more steps than
innermost evaluation and sometimes fewer.

11

ones

1 : ones=
1 : (1 : ones)=

Infinite Lists

ones = 1 : ones

Example:

An infinite
list of ones.

= •
•
•

1 : (1 : (1 : ones))=

12

head ones

head (1:ones)
=

head (1:(1:ones))
=

head ones

head (1:ones)
=

1
=

Innermost: Lazy:

What happens if we select the first element?

=
•
•
•

Does not
terminate.

Terminates
in 2 steps!

13

Note:

! In the lazy case, only the first element of ones
is produced, as the rest are not required.

! In general, with lazy evaluation expressions
are only evaluated as much as required by the
context in which they are used.

! Hence, ones is really a potentially infinite list.

14

Modular Programming

Lazy evaluation allows us to make programs more
modular by separating control from data.

> take 5 ones

[1,1,1,1,1]

The data part ones is only evaluated as
much as required by the control part take 5.

15

Without using lazy evaluation the control and data
parts would need to be combined into one:

replicate :: Int ® a ® [a]

replicate 0 _ = []

replicate n x = x : replicate (n-1) x

> replicate 5 1

[1,1,1,1,1]

Example:

16

Generating Primes

To generate the infinite sequence of primes:

1. Write down the infinite sequence 2, 3, 4, …;

2. Mark the first number p as being prime;

3. Delete all multiples of p from the sequence;

4. Return to the second step.

17

2 3 4 8 9 105 6 7 11 12 • ••2

3 95 7 11 • ••3

5 11 • ••75

7 11 • ••

11 • ••

7

11

18

This idea can be directly translated into a program
that generates the infinite list of primes!

primes :: [Int]

primes = sieve [2..]

sieve :: [Int] ® [Int]

sieve (p:xs) =

p : sieve [x | x ¬ xs, mod x p /= 0]

19

Examples:

> primes

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,…

> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

> takeWhile (< 10) primes

[2,3,5,7]

20

We can also use primes to generate an (infinite?) list
of twin primes that differ by precisely two.

twin :: (Int,Int) ® Bool

twin (x,y) = y == x+2

twins :: [(Int,Int)]

twins = filter twin (zip primes (tail primes))

> twins

[(3,5),(5,7),(11,13),(17,19),(29,31),…

21

Exercise

(1) The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

starts with 0 and 1, with each further number
being the sum of the previous two. Using a
list comprehension, define an expression

fibs :: [Integer]

that generates this infinite sequence.

