
0

PROGRAMMING IN HASKELL

Chapter 9 - The Countdown Problem

1

What Is Countdown?

❚ A popular quiz programme on British television
that has been running since 1982.

❚ Based upon an original French version called
"Des Chiffres et Des Lettres".

❚ Includes a numbers game that we shall refer
to as the countdown problem.

2

Example

1 3 7 10 25 50

Using the numbers

and the arithmetic operators

765

+ - * ÷

construct an expression whose value is

3

Rules

❚ All the numbers, including intermediate results,
must be positive naturals (1,2,3,…).

❚ Each of the source numbers can be used at
most once when constructing the expression.

❚ We abstract from other rules that are adopted
on television for pragmatic reasons.

4

For our example, one possible solution is

❚ There are 780 solutions for this example.

❚ Changing the target number to gives
an example that has no solutions.

Notes:

831

(25-10) * (50+1) 765=

5

Evaluating Expressions

Operators:

data Op = Add | Sub | Mul | Div

Apply an operator:

apply :: Op ® Int ® Int ® Int
apply Add x y = x + y
apply Sub x y = x - y
apply Mul x y = x * y
apply Div x y = x `div` y

6

Decide if the result of applying an operator to two
positive natural numbers is another such:

valid :: Op ® Int ® Int ® Bool
valid Add _ _ = True
valid Sub x y = x > y
valid Mul _ _ = True
valid Div x y = x `mod` y == 0

Expressions:

data Expr = Val Int | App Op Expr Expr

7

eval :: Expr ® [Int]
eval (Val n) = [n | n > 0]
eval (App o l r) = [apply o x y | x ¬ eval l

, y ¬ eval r
, valid o x y]

Return the overall value of an expression, provided
that it is a positive natural number:

Either succeeds and returns a singleton
list, or fails and returns the empty list.

8

Formalising The Problem

Return a list of all possible ways of choosing zero
or more elements from a list:

choices :: [a] ® [[a]]

For example:

> choices [1,2]

[[],[1],[2],[1,2],[2,1]]

9

Return a list of all the values in an expression:

values :: Expr ® [Int]
values (Val n) = [n]
values (App _ l r) = values l ++ values r

Decide if an expression is a solution for a given list
of source numbers and a target number:

solution :: Expr ® [Int] ® Int ® Bool
solution e ns n = elem (values e) (choices ns)

&& eval e == [n]

10

Brute Force Solution

Return a list of all possible ways of splitting a list
into two non-empty parts:

split :: [a] ® [([a],[a])]

For example:

> split [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]

11

Return a list of all possible expressions whose values
are precisely a given list of numbers:

exprs :: [Int] ® [Expr]
exprs [] = []
exprs [n] = [Val n]
exprs ns = [e | (ls,rs) ¬ split ns

, l ¬ exprs ls
, r ¬ exprs rs
, e ¬ combine l r]

The key function in this lecture.

12

combine :: Expr ® Expr ® [Expr]
combine l r =

[App o l r | o ¬ [Add,Sub,Mul,Div]]

Combine two expressions using each operator:

solutions :: [Int] ® Int ® [Expr]
solutions ns n = [e | ns' ¬ choices ns

, e ¬ exprs ns'
, eval e == [n]]

Return a list of all possible expressions that solve an
instance of the countdown problem:

13

How Fast Is It?

System:

Compiler:

Example:

One solution:

All solutions:

solutions [1,3,7,10,25,50] 765

2.8GHz Core 2 Duo, 4GB RAM

GHC version 7.10.2

0.108 seconds

12.224 seconds

14

❚ Many of the expressions that are considered
will typically be invalid - fail to evaluate.

❚ For our example, only around 5 million of the
33 million possible expressions are valid.

❚ Combining generation with evaluation would
allow earlier rejection of invalid expressions.

Can We Do Better?

15

results :: [Int] ® [Result]
results ns = [(e,n) | e ¬ exprs ns

, n ¬ eval e]

type Result = (Expr,Int)

Valid expressions and their values:

We seek to define a function that fuses together
the generation and evaluation of expressions:

Fusing Two Functions

16

results [] = []
results [n] = [(Val n,n) | n > 0]
results ns =

[res | (ls,rs) ¬ split ns
, lx ¬ results ls
, ry ¬ results rs
, res ¬ combine' lx ry]

This behaviour is achieved by defining

combine' :: Result ® Result ® [Result]

where

17

solutions' :: [Int] ® Int ® [Expr]
solutions' ns n =

[e | ns' ¬ choices ns
, (e,m) ¬ results ns'
, m == n]

New function that solves countdown problems:

combine’ (l,x) (r,y) =
[(App o l r, apply o x y)

| o ¬ [Add,Sub,Mul,Div]
, valid o x y]

Combining results:

18

How Fast Is It Now?

Example:

One solution:

All solutions:

solutions' [1,3,7,10,25,50] 765

0.014 seconds

1.312 seconds

Around 10
times faster in

both cases.

19

❚ Many expressions will be essentially the same
using simple arithmetic properties, such as:

❚ Exploiting such properties would considerably
reduce the search and solution spaces.

Can We Do Better?

x * y y * x

x * 1 x

=

=

20

Exploiting Properties

Strengthening the valid predicate to take account
of commutativity and identity properties:

valid :: Op ® Int ® Int ® Bool

valid Add x y = True

valid Sub x y = x > y

valid Mul x y = True

valid Div x y = x `mod` y == 0

x £ yx £ y && x ¹ 1x £ y && x ¹ 1 && y ¹ 1

x £ y

&& y ¹ 1

21

How Fast Is It Now?

Example:

Valid:

Solutions:

solutions'' [1,3,7,10,25,50] 765

250,000 expressions

49 expressions

Around 20
times less.

Around 16
times less.

22

One solution:

All solutions:

0.007 seconds

0.119 seconds

Around 2
times faster.

Around 11
times faster.

More generally, our program usually returns all
solutions in a fraction of a second, and is around
100 times faster that the original version.

