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Abstract

Relational languages such as Ruby are used to derive
hardware circuits from abstract speci�cations of their
behaviour. Much reasoning is done informally in Ruby
using pictorial representations of relational terms. We
formalise this use of pictures in circuit design. We
show that pictures naturally form a unitary pretabular
allegory. Homomorphisms of pictures correspond to
adding new wires or circuit components. Two pictures
are mutually homomorphic if and only if they represent
equal allegorical terms. We prove soundness and com-
pleteness results which guarantee that deriving circuits
using pictures does not lead to errors. We illustrate
the use of pictures by deriving the ripple adder imple-
mentation from a high level, behavioural speci�cation.

1: Introduction

Hardware circuit design involves translating abstract
speci�cations of programs into e�cient circuits which
compute those programs. Pictures are widely used as
an informal means of translating a speci�cation into
an implementable circuit, and improving the layout of
a circuit. A disadvantage of this informal approach is
the lack of an independent means (apart from building
and testing the circuit, which may be expensive and
is not guaranteed to succeed) to verify that a picture
indeed denotes the desired program, and that no errors
have been introduced during the design process.
In this paper we provide a relational semantics for

pictures, together with an equivalence on pictures
which shows how to transform one picture into an-
other while preserving its semantics. The evident no-
tion of homomorphism between pictures corresponds
naturally to simple, relatively high level operations on
pictures (adding new wires and components). Two
pictures are provably equivalent if and only if they are
mutually homomorphic, which is if and only if they de-
note the same relation for any interpretation of their
basic components. These results lead us to a simple
decision procedure for equivalence of circuits [3], which
has been implemented [9].
Our results encourage the use of pictures in deriv-

ing circuits, by providing a formal foundation for that

use. Pictures are easier and quicker to understand than
syntactic terms, and so their use speeds up the process
of circuit design. This paper illustrates these advan-
tages in two ways, by illuminating the rather technical
proof that the category of unitary pretabular allegories
is isomorphic to the category of discrete cartesian bi-
categories, and by presenting the derivation of a ripple
adder from a high level behavioural speci�cation.

Relations have been proposed as a paradigm for cir-
cuit development for several reasons. Relations pro-
vide a rich algebra for transforming and combining
terms, and a natural treatment of non-determinism.
Furthermore, in practice many methods for combin-
ing functions in networks are uni�ed if the distinc-
tion between input and output is relaxed [14], and
many speci�cations can be expressed very naturally as
representation-changers [10], that is, as the relational
composition of a function with the converse of a func-
tion. Jones and Sheeran's relational calculus Ruby has
been used to derive various kinds of hardware circuit
from abstract behavioural speci�cations: examples in-
clude systolic arrays [15], buttery networks [16] and
arithmetic circuits [8, 10]. Other relational languages
under development include that of Backhouse et al [1]
and Bird and de Moor [2, 12]. Since these languages
have the same underlying algebraic structure as Ruby,
our techniques also apply to them.

Much informal reasoning in Ruby depends on a pic-
torial interpretation of a term as a network of primitive
relations, and this pictorial interpretation is crucial
when Ruby is used to develop circuit layouts. This
paper formalises the pictorial interpretation of Ruby
terms and algebraic laws, which has not previously
been made precise.

Allegories abstract the notion of sets and relations
rather as categories abstract the notion of sets and
functions. We view pictures of circuits as arrows in
a unitary pretabular allegory (upa) [5].This approach
provides combinators for pictures corresponding to the
operators of relational algebra, together with combina-
tors corresponding to local products and projections.
The equational axiomatisation of upas provides a no-
tion of equivalence on pictures of circuits which cor-



responds to behavioural equivalence, in the sense that
equivalent pictures represent equal relations.
Pictures are an excellent aid to reasoning but they

are unwieldy and di�cult to automate: we therefore in-
troduce networks of wires and basic components. Net-
works abstract from the net list model of circuit con-
nectivity [6, 13] by ignoring the size and position of
components in a circuit. In the absence of empty types,
the allegory of networks and network homomorphisms
is equivalent to the allegory of pictures and picture
homomorphisms. Further, we prove soundness: two
pictures P and P 0 denote the same relation whenever
there are homomorphisms from P to P 0 and from P 0

to P; which is precisely when the pictures are provably
equivalent using the axioms of a upa. Since any upa
has a faithful representation in a power of Rel, the
allegory of sets [3, 5], we obtain a completeness theo-
rem stating that two pictures are provably equivalent
if and only if, for every interpretation of their basic
components, they denote the same relation.
Soundness and completeness show that we can rely

on pictures when deriving circuits. In the appendix,
we picture an abstract speci�cation of an adder, which
cannot be implemented directly, and apply equiva-
lences of pictures to derive a picture of a ripple adder,
which is implementable using logical components. We
also give a small portion of the corresponding Ruby
derivation: the full derivation is explained in ten pages
in [7]. By soundness, our pictorial derivation demon-
strates that the two circuits compute the same relation.
The pictorial derivation is much briefer than the term
derivation, because each pictorial equivalence repre-
sents a long sequence of equivalences on terms. In
doing the derivation, we use four additional axioms
which reect the meaning of addition. It is a feature
of pictorial derivations that we can concentrate on the
steps directly involving the semantics of components,
as pictures abstract conveniently from repetitive ap-
plications of structural rules such as associativity.
This example demonstrates the advantages of using

pictures for doing derivations. The pictures are easy to
read and their structure often suggests a suitable strat-
egy for derivations. By contrast, the corresponding
Ruby terms are large and di�cult to read. Scanning
the pictorial derivation makes clear why the circuits
are equivalent and where the real work lies in proving
this: to learn this information from the Ruby deriva-
tion requires careful study. Our direct correspondence
between pictures and terms allows the user to think in
pictures while a machine manipulates the terms.
The notion of a upa is intermediate between an ab-

stract allegory A and the regular category generated
by A. A upa is of interest because it provides a sound
interpretation of the axioms we have given, and em-

beds faithfully in a power of the allegory of sets. This
embedding provides our completeness result. It might
appear more natural to study the slightly stronger no-
tion of unitary tabular allegory, since this corresponds
to the same fragment of logic (conjunction and �rst
order existential quanti�cation) while coinciding with
the notion of category of relations of a regular cate-
gory. However, completing a pre-tabular allegoryA to
a tabular allegory involves adjoining an object for each
non-maximal arrow of A. We view objects as types
(including the natural numbers and booleans) and ar-
rows as circuits which compute non-deterministic pro-
grams. Completion to a tabular allegory adds a type
corresponding to each recursively enumerable function.
These functions interest us as programs, but not as
types: it is therefore appropriate to work in the pre-
tabular allegory rather than in its tabular completion.

In Section 2, we introduce our calculus of pictures
of circuits. In Section 3 we present the allegorical ax-
ioms as an equivalence relation on pictures. In Sec-
tion 4 we give the additional axioms under which our
allegory of pictures is a upa in which every type is in-
habited. In Section 5 we illustrate the expressive power
of our language by picturing terms expressing parallel
composition, bifurcation and interchange of wires, and
feedback loops. In Section 6 we de�ne the connectiv-
ity network underlying a picture. In Section 7 we give
a relational semantics for pictures and networks. In
Section 8 we give an appealing interpretation to pic-
ture homomorphisms as \addition of solder". Section 9
proves the important soundness and completeness re-
sults. Section 10 indicates future areas of research.
In the Appendix we present a simple example of the
derivation of an implementable circuit from a high level
speci�cation.

2: Pictures

A picture is a graphical representation of the relation-
ship between a given collection of basic components
(cells) and their external pins (connectors) as speci�ed
by the (�nite, piecewise linear) wires used to connect
the various pins of the components. A picture deter-
mines a relation between its input type and its output
type thus: any two points on the same wire are con-
strained to carry equal values, while components im-
pose more complex constraints|for example, an and

gate constrains its output to be the logical and of its
inputs. The notions of input (left hand) and output
(right hand) pins, and the consequent notion of causal-
ity, are conventional: taking a relational rather than a
functional view of circuits, we consider information to
ow in more than one direction in a circuit. We write
U for the empty list of connectors (the unit type).



The meaning of pictures is intuitive: we omit the for-
mal inductive de�nition and merely indicate the nature
of the picture constructors.1 A picture is either

� the picture C:A! B of a cell
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the bounding box)
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3: Axioms for pictures

Many di�erent pictures can express a given set of the
connections between components of a circuit. In Sec-
tions 3 and 4 we de�ne an equivalence relation ' on
pictures which is such that two pictures are equivalent
if and only if they represent mutually homomorphic
networks: ' captures the transformations of pictures
which do not a�ect connections. This leads naturally
to Theorem 15, which shows that equivalent pictures
denote the same relation between their input and out-
put types.
By de�nition, a picture determines a term over

P ::= C jW j P � j P ; P j P \ P;

where C ranges over a given set of cells and W over
wiring cells. We now present our axioms for equality of
pictures and further, express these axioms as equalities
on terms. The equations of this section are precisely
those of an allegory: thus we can de�ne an allegory P
in which objects are types and arrows are pictures. In
Section 4 we present the additional axioms for wiring
cells, which make our allegory of pictures a upa. We
write ' for the equivalence generated by the axioms

1Note that wires are read from bottom to top of a picture,
and type information is usually omitted when we draw pictures.

of this section together with those of Section 4. The
partial order � on terms obtained by writing P � Q

for P \Q ' P is a pre-congruence.

For any pictures P;Q;R of appropriate type,
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The �rst inclusion imposes monotonicity of compo-
sition in its �rst argument (monotonicity in the second
argument being derivable); the second is the modular
law. Each dotted wire above represents the additional
wire whose insertion renders the two pictures equiv-
alent (since \ is idempotent). In Section 8 we show

that, for each of these inclusions, there is a homomor-
phism from the picture without the dotted wire to the
picture with it. Thus these pictures give a natural in-
terpretation to two rather complex axioms.

All the axioms apart from these last two and idem-
potence of meet can be seen as continuous deforma-
tions of pictures which preserve the connections made
by wires: that is, these axioms correspond to a cer-
tain class2 of homotopies in R3. Thus pictures o�er a
natural insight into the allegorical axioms, and make
certain axioms easier to remember and apply.

4: Axioms for Rewiring Pictures

As well as basic components, we use the wiring cells,
idA; uA; �0;A;B; �1;A;B to e�ect connections among
the wires of a picture. We abbreviate uA ;u

�

B to >A;B.
We require wiring cells to satisfy the following axioms:
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We impose one other axiom, so simple we omit the
corresponding picture. We require that idU ' uU .
This reects the fact that idU and uU both correspond
to the empty picture, with no wires or connectors. In

2Our homotopies permit wires to cross, and so take place in
three dimensions: however, the boxes depicting cells may only
be translated in the plane of the picture or rotated about an axis
perpendicular to that plane. Each such homotopy of pictures
corresponds to an �-equivalence of networks.



the presence of the �rst axiom pictured, idU ' uU is
equivalent to the requirement that idU be the maximal
endomorphism on U .
The �rst wiring axiom pictured states that >A;B

is the top element of the homposet P(A;B), and im-
plies that (uA ; u�A) \ idA ' idA, whence uA is en-
tire. Thus U is a unit [5]. The second axiom im-
plies that ��0;A;B ; �0;A;B � idA, that is, �0;A;B is sim-
ple. The third axiom implies that �1;A;B is simple.
Since idA � ��0;A;B ; �0;A;B, every type is inhabited
and P is well-supported. The last axiom implies that
idA�B � �0;A;B ; ��

0;A;B whence �0;A;B is entire and
thus a map. Similarly, �1;A;B is a map. By the last
two axioms, the maps �0;A;B and �1;A;B tabulate >A;B.
Since the maximummorphism in each homset of P is
tabulated, P is pretabular.
Thus the allegory of pictures is a well-supported,

unitary pretabular allegory as de�ned in [5]. Indeed,
P is the free such allegory on the components C [3].
If we allow empty types, the second and third wiring

axioms above become inequalities. For example, we
have inequality in the second axiom only if A is inhab-
ited and B is not, in which case ��

0;A;B ;�0;A;B is empty.
Empty programs (such as id\ not on booleans) corre-
spond to a short circuits [3], and are always permitted.
The assumption that types are inhabited is not funda-
mental (it is dropped in [3]), but reects programming
practice in Ruby, where the user is assumed to recog-
nise and avoid short circuits.

5: Derived Operations on Pictures

The calculus of pictures has many useful derived pro-
gram constructors. As examples, we now de�ne bi-
furcation and swapping of wires, parallel composition
and feedback loops. The bifurcation operator
forkA:A! A � A that duplicates its input is de�ned
as follows:
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The operator swapA;B :A� B ! B � A that inter-
changes wires is de�ned by:
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swapA;B
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The parallel composition (or product) P � Q:A �
B ! C � D of pictures P :A ! C and Q:B ! D is

de�ned as follows:
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= (�0;A;B ; P ; ��0;C;D) \ (�1;A;B ;Q ; ��1;C;D)

Finally, we illustrate a simple feedback loop. If
P :A� B ! B then feed(P ):A! B is de�ned by:
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6: Networks

Many di�erent pictures represent the same relation-
ship between components and their connectors. We
now abstract away from geometric layout and de�ne
the network of connections underlying a picture: we
consider only the cells and external connectors of a pic-
ture and how they are connected. Such an abstraction
facilitates proofs about properties common to equiv-
alent pictures, including the program or relation they
denote. We assume a collection of typed connector
names, closed under pairing, and such that there is a
countably in�nite set of names of each basic type. A
connector name is basic if it is not equal to any pair
(x; y) of connector names. A name is of basic type if
and only if it is a basic name. The unit type U has a
unique name �.

De�nition 2 A node of type A ! B is a triple
(R; x; y) where R:A ! B is a cell, and x : A and
y : B are names for the connectors on the left and
right faces of the cell.

De�nition 3 A network of type A ! B is a triple
(N; l; r) where N is a �nite set of nodes, and l : A and
r : B are names. We call l and r the input and output
names of the network respectively.

Networks generalise the net listmodel of circuit con-
nectivity, used in circuit extraction [6] and simula-
tion [13]. A net list is a network together with geo-
metric information about the size and position of each
instance of a cell.

Remark 4 We do not distinguish between �-
equivalent networks (networks which are equal up to
a type-preserving bijection on basic names).



De�nition 5 Let (N; l; r) be a network of type
A! B.

� (N; l; r)�
def

= (N; r; l) is a network of type B ! A.

� If (M; l0; r0) is a network of type B ! C and �

is the evident extension to networks of a maxi-
mally general uni�er (MGU)3 of the names r and

l0 then (N; r; l) ; (M; l0; r0)
def

= (�(N [M ); �l; �r0)
is a network of type A! C.

� If (L; a; b) is a network of type A! B and � is an

MGU of (a; b) and (l; r) then (N; l; r)\(L; a; b)
def

=

(�(N [M ); �l; �r) is a network of type A! B.

Each picture represents a network in an evident way:

De�nition 6 A picture P represents a network n if
n is the image of P under the homomorphic extension
to pictures of the function which maps

� wiring cells idA, uA, �0;A;B and �1;A;B to
networks (;; a; a), (;; a; �), (;; (a; b); a) and
(;; (a; b); b) respectively (where a : A and b : B)

� and any other cell C:A ! B to the network
(f(C; a; b)g; a; b), where each basic name in (a; b)
occurs only once.

7: The Relational Semantics of
Pictures and Networks

We now give a semantics to pictures and networks in
terms of relations between sets. Our translation from
pictures to networks respects these semantics in the
sense that the same relation is denoted by a network
and by any picture which represents that network.
We assume an interpretation [[ { ]] of basic types

as sets, extended homomorphically to tuples of types
(with [[U ]] = f�g), and assume for each cell C:A! B

a binary relation [[C ]] � [[A ]] � [[B ]] . The wiring
cells have their standard set-theoretic interpretation:
for example, [[ idA ]] = f(a; a) j a 2 [[A ]]g. We extend
[[ { ]] homomorphically frompictures of cells to pictures,
via the usual set-theoretic de�nitions of reciprocation,
composition, and intersection on relations. Given a
set V of basic names, a valuation � of V assigns an
element of [[A ]] to each x 2 V of type A. We extend
� homomorphically to a valuation of names with base
names in V .

De�nition 7 Let (N; l; r) be a network of type A! B

with basic connector names V . Then (N; l; r) denotes
the relation p(N; l; r)q given by:

3that is, � is an idempotent substitution on basic names such
that �(r) = �(l0) and any other substitution �0 such that �0(r) =
�0(l0) is equal to � � � for some substitution �. The typing
restriction for composition ensures that such an MGU exists.

f(a; b) 2 [[A ]] � [[B ]] j there is a valuation � of V
such that �l = a; �r = b and if (C; x; y) 2 N then
(�x; �y) 2 [[C ]]g:

Lemma 8 For any networks n = (N; l; r) and
m = (M; l0; r0), of appropriate type, pn�q = pnq�,
pn ;mq = pnq ; pmq and pn \mq = pnq \ pmq.

Proposition 9 If a picture P represents the network
n then [[P ]] = pnq.

8: Homomorphisms on pictures

De�nition 10 Let n = (N; a; b) and m = (M; c; d)
be networks of the same type. A homomorphism
f :n! m is a type-preserving function f mapping ba-
sic connector names in n to basic connector names in
m, extended homomorphically to compound connector
names, such that

� f(a) = c and f(b) = d,

� if (C; l; r) 2 N then (C; f(l); f(r)) 2M .

A homomorphismbetween networks corresponds to an
inclusion of the relations they denote, thus:

Lemma 11 If there is a homomorphism of networks
f :n! m then pmq � pnq.

De�nition 12 Let P : A ! B and Q : A ! B be
pictures. Let IP and OP be respectively the lists of
input and output connectors of P , in ascending order,
and similarly IQ and OQ. A homomorphism from P

to Q is a type-preserving function h from connectors
of P to connectors of Q such that

� h(IP ) = IQ, h(OP ) = OQ and

� for each cell C pictured in P with inputs IC and
outputs OC , there is a cell C pictured in Q with
inputs h(IC) and outputs h(OC).

We write P 
 Q if there are homomorphisms h:P !
Q and k:Q! P .

Proposition 13 The category of pictures and picture
homomorphisms is equivalent to the category of net-
works and network homomorphisms.

A picture homomorphism h:P ! Q has a very nat-
ural interpretation. Every cell of P maps to the same
cell in Q: further, h may connect wires which are dis-
tinct in P . Thus Q can be obtained from P by \adding
solder", that is, by connecting wires which are not con-
nected in P and by wiring new components into P .
This process is illustrated by the inequational forms
of the monotonicity and modular laws given in Re-
mark 1. The right hand picture in each case has a



dotted wire. There is a homomorphism from the pic-
ture without the wire to the picture with the wire,
which at the network level identi�es the names of the
two wires linked by the dotted wire. In each case the
image of the homomorphism is provably equivalent to
the left hand picture, by idempotence of \.
Each cell in a picture imposes a constraint on the

values of its input and output wires, while connecting
two wires forces them to carry the same value. Thus
if h:P ! Q then Q imposes more constraints on the
values carried by its wires than P : this is reected by
the following corollary of Lemma 11:

Corollary 14 If h:P ! Q is a picture homomor-
phism then [[Q ]] � [[P ]] . If P 
 Q then [[P ]] = [[Q ]] .

9: Soundness and completeness

We now present our main result, that two pictures can
be proved equal using the axioms for a upa if and only
if each is homomorphic to the other. By Corollary 14,
they are equivalent only if they denote the same rela-
tion. In fact, by the proof of Theorem 15, two pictures
are provably equivalent if and only if they denote the
same relation under any interpretation of their basic
components. These justify our use of the upa axioms
in deriving programs like the ripple adder from the
speci�cation in Figure 1 (see Appendix).

Theorem 15 Let P and Q be pictures. P ' Q if and
only if P 
 Q.

Proof: For the forward implication, as both ' and 

are congruences, it su�ces to prove the result when
P ' Q is an axiom instance. For each of the axioms
of Sections 3 and 4 except monotonicity of composi-
tion and the modular law, the pictures involved de-
note �-equivalent networks, and so are isomorphic. In
the remaining two cases, homomorphisms are readily
found between the networks representing the pictures
concerned, as indicated in Remark 1.
Conversely, by Corollary 14, if P 
 Q then [[P ]] =

[[Q ]] , whatever the interpretation of the basic cells of
P . A upa has a faithful representation [5] in a power
of Rel. Hence if [[P ]] = [[Q ]] for any interpretation
of the basic components of P , then [3] P ' Q. ut

Example 1 Let R:A! B and consider the equation

R ; rng(R) ' R, where rng(R)
def

= idB \ (>B;A ; R) is
the identity on the range of R. The equation can be
proved using the allegorical axioms:

R ; (idB \ (>B;A ;R)) � (R ; idB) \ (R ;>B;A ;R)
� R ; idB � R and

R ; (idB \ (>B;A ;R)) � R ; (idB \ (R� ;R))
� R \ (R ; idB) � R

Alternatively, the equivalence follows by Theo-
rem 15, observing that the terms represent the nets
(f(R; x; y); (R; z; y)g; x; y) and (f(R; a; b)g; a; b),
and these networks are mutually homomorphic via
fx 7! a; y 7! b; z 7! ag and fa 7! x; b 7! yg. Mapping
both x and z to a corresponds to adding a (dotted)
wire to make the pictures of the two terms equivalent:

R
� R
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This wire witnesses the fact that there is a homo-
morphism from the left hand picture to the right hand
picture (add the dotted wire and the identify the two
copies of R). There is an evident inclusion of the right
hand picture in the left.

Example 2 Pictures illuminate the isomorphism be-
tween the category of small upas and the category of
small discrete cartesian bicategories (dcbs). To prove
these two categories isomorphic we de�ne the structure
of one in terms of the structure of the other, and con-
versely, and prove these de�nitions mutually inverse.
As an example, if we translate R� into a dcb and then
back to a upa, we obtain the term ��

0;B;A ;(idB�(forkA ;
(R� idA)));�B;B;A ;(fork

�

B� idA);�1;B;A, with picture:

�

R
�
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The complex picture makes the same connections as
the simpler picture given in Section 2, and so their
networks are mutually homomorphic. By Proposition
13 the pictures themselves are mutually homomorphic,
and by Theorem 15, the pictures are equivalent. Fur-
thermore, by Corollary 14 the pictures denote the same
set theoretic relation. Notice how much easier it is to
construct the picture of R� than to construct the cor-
responding term.

10: Future Work

Our results have several natural extensions. In order to
design grid-like circuits where cells and pictures have
connectors on all four sides we might consider a suit-
able notion of double allegory. This relates to work
by Molitor [11] in which circuits can be composed ei-
ther at east-west or at north-south interfaces. We are
also considering how to model Ruby's treatment of
clocked circuits, and how to augment our axioms with
new equations, as is done informally in the appendix.



Appendix: Using Pictures to Guide
Derivations

We derive a ripple adder from a high level speci�cation.
We assume a type B of bits (false and true) and N of
natural numbers, together with primitives �: B ! N,
�2:N! N, and +:N� N! N, with interpretations

[[� ]] = f(false; 0); (true; 1)g
[[�2 ]] = f(x; 2x) j x 2 Ng
[[+ ]] = f((x; y); x+ y) j x; y 2 N

A program eval3: (B �B )�B ! N that converts a 3-bit
binary number to a natural number in the range 0{7
is de�ned by (writing �22 for �2 ; �2):

eval3
def

= (((���)��);((�22��2)� idN);(+� idN);+:

We de�ne evaln analogously for any positive integer n.
A circuit add (pictured in Figure 1) which on input of a
3-bit binary number and a bit, adds them and outputs
the result as a 4-bit binary number, is speci�ed by the
term (eval3 � �) ; + ; eval4

�.

The term add expresses that a bit can be added to a
binary number by converting the binary number and
bit to natural numbers, adding them, and convert-
ing the result back to binary. We cannot implement
add directly in hardware as it is de�ned using arith-
metic primitives rather than logical primitives, and
contains non-deterministic components such as +�.

The �rst step in deriving an implementable circuit
for add uses the associativity of +. Writing � for the
natural iso�A;B;C : (A�B)�C ! A�(B�C), de�nable
using projections, we apply the additional axiom:
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(+ � id) ; + ' � ; (id� +) ; +

to transform the upwards staircase of +s in (eval3��)
into a downwards staircase, as in Figure 2. A cor-
responding lengthy calculation shows that (omitting
type subscripts) add ' � ;� ;(��(��(���)));(�22�
(�21 � (�20 � id))) ; (id� ((id�+) ; +)) ; + ; eval4

�.

We now use the following property of +
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+ ; +� ' (id�+�) ; �� ; (+ � id)

to slide the + and +� staircases past one another to
form a single + ; +� staircase, as in Figure 3. The

corresponding calculation (omitting subscripts) is

(id� ((id� +) ; +)) ; + ; +�;
(+� � ((+� ; (+� � id))� id)

' (id� ((id� +) ; + ; +�)) ; ��;
((+ ; +� ; (+� � id))� id)

' (id� ((id� (+ ; +�)) ; �� ; (+ � id))) ; ��;
(((id� +�) ;�� ; ((+ ; +�)� id))� id)

' (id� ((id� (+ ; +�)) ; �� ; ((+ ; +�) � id))) ; ��;
((�� ; ((+ ; +�) � id))� id)

We next combine distributivity of �2 over +:
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with the equation relating two terms describing a +
cell in which the second input is constrained to be even:
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to obtain the derived equation:
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(�2� id) ; + ; +� ; (�2� � �2�) ' (id� �2�) ; + ; +�

As a Ruby theorem this is called Horner's rule, be-
ing a natural generalisation of Horner's rule for evalu-
ating polynomials e�ciently. The resulting picture is
given in Figure 4: the corresponding calculation is:

(�22 � (�21 � (�20 � id))) ; (id � ((id� (+ ; +�));
�
� ; ((+ ; +�)� id))) ; �� ; ((�� ; ((+ ; +�)� id))
�id) ; (((�23

�

� �22
�

)� �21
�

)� �20
�

)
' (id� ((id� (+ ; +�)) ; �� ; (((�2� id) ; + ; +�;

(id � �2�))� id))) ; �� ; ((�� ; ((((�2 ; �2)� id) ; +;
+� ; ((�2� ; �2� ; �2�)� (�2� ; �2�)))� id))� id)

' (id� ((id� (+ ; +�)) ; �� ; (((�2� id) ; + ; +�;
(�2� � �2�))� id))) ; �� ; ((�� ; (((�2� id);
+ ; +� ; ((�2� ; �2�)� �2�))� id))� id)

' (id� ((id� (+ ; +� ; (�2� � id))) ; ��;
((+ ; +� ; (�2� � id))� id))) ; ��;
((�� ; ((+ ; +� ; (�2� � id))� id))� id)

We have now shown that add ' � ;� ; (� � (� � (� �
�))) ; (id � ((id� (+ ; +� ; (�2� � id))) ; �� ; ((+ ; +� ;
(�2� � id)) � id))) ; �� ; ((�� ; ((+ ; +� ; (�2� � id)) �
id)) � id) ; (((�� � ��)� ��) � ��).
Next we address the type conversions �. The fol-

lowing equation expresses that if the lower input and
the outputs of + ;+� ; (�2�� id) are constrained to be



in f0; 1g, then so is the upper input:
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Applying this result twice to the adder yields Figure
5. Finally, we observe that the component

� ��

� �2
� ��

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����������������������������������

���������������������������������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� �
� �� � � �

� �
� �� �

+

� �

� �
� �+

�

� �

� �� �

� �
� �� � � �

� �
� �� �

� �
� �� �

takes two logical values as input, and outputs their
logical carry and sum. This is the semantics of a half
adder ha, which can be implemented using standard

logical components: ha
def

= hand; ori ; (fork� id) ;� ; (id�
((not � id) ; and)). In conclusion, we have derived the
standard ripple-adder implementation for add , given
by the term add = � ; � ; (id� ((id� ha) ; �� ; (ha �
id))) ; � ; ((� ; (ha � id)) � id):
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Figure 1: The picture of the speci�cation add
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Figure 2: Circuit after applying Associativity of +
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Figure 3: Circuit after conversion to a single staircase
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Figure 4: Circuit after applying Horner's rule
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Figure 5: Circuit after applying Distributivities


