A Hitchhiker’s Guide to the Universes
(Universes for Generic Programs and Proofs)

Marcin Benke Peter Dybjer Patrik Jansson
Chalmers Technical University

Main goals:

• extend generic programming to functional languages with dependent types

• create generic proofs of properties of generic functions
Generic functional programming

- **Basic idea**: define generic functions by induction on the definition of a data type

- **Examples**:
 - generic Boolean equality: SML (built-in) and Haskell (derivable class)
 - generic `map` combinators, and generic `iteration` and `recursion` over inductive datatypes

- **Benefits**:
 - highly reusable and adaptive definitions
 - well suited for building libraries of programs, theorems *and proofs*
Related work:

Generic programming:

- ’85 Böhm & Berarducci (universal algebra)
- ’91 Backhouse et al. (Squiggol),
- ’93 Bird et al. (generic functional programming),
- ’95 Jay (shape polymorphism),
- ’97 Jansson & Jeuring (polytypic programming)
- ’02 Hinze & Jeuring (Generic Haskell).

Generic programming and dependent types:

- ’99 Dybjer & Setzer (generic dependent type theory: IIR)
- ’99 Pfeifer & Rueß (first polytypic proof)
- ’02 Altenkirch & McBride; Norell (Generic Haskell in Type Theory)
Dependent types

Examples:

- Vect n — vectors (lists) of length n
- data structures with invariants: ordered lists, balanced trees, AVL-trees, red-black-trees, etc.
- In general: we can express more or less arbitrary properties of programs and data structures.
- Universe of codes for datatypes — the natural setting for generic programming

The ideas presented in this talk have been implemented and tested using the Alfa proof editor.
Universes

• A universe consists of
 – a set of codes for datatypes: Sig : Set
 – a decoding function: T : (Σ : Sig) → Set

• Example: Sig = Bool and T = Tr

 \[
 \begin{align*}
 \text{Tr} & : \text{Bool} \rightarrow \text{Set} \\
 \text{Tr False} & = \text{Void} \\
 \text{Tr True} & = \text{Unit}
 \end{align*}
 \]
A universe for single-sorted algebras

Consider the class of term algebras T_{Σ} for a one-sorted signature Σ.

Such a signature is a list of arities of the operations.

Examples are:

- the empty type with $\Sigma = [\]$,
- the booleans with $\Sigma = [0, 0]$, lists of booleans with $\Sigma = [0, 1, 1]$,
- the natural numbers with $\Sigma = [0, 1]$,
- and binary trees without information in the nodes with $\Sigma = [0, 2]$.

This universe is described by the set of signatures $\text{Sig} = \text{[Nat]}$, and the decoding function $T : \text{Sig} \rightarrow \text{Set}$, which maps a signature to (the carrier of) its term algebra.
Generic programs and proofs

We define generic functions, e.g.

\[
\text{size} : (\Sigma : \text{Sig}) \rightarrow T_{\Sigma} \rightarrow \text{Nat}
\]

\[
\text{eq} : (\Sigma : \text{Sig}) \rightarrow T_{\Sigma} \rightarrow T_{\Sigma} \rightarrow \text{Bool}
\]

and proofs

\[
\text{reflexivity} : (\Sigma : \text{Sig}) \rightarrow (x : T_{\Sigma}) \rightarrow \text{Tr} (\text{eq}_{\Sigma} x x)
\]

\[
\text{substitutivity} : (\Sigma : \text{Sig}) \rightarrow (x, y : T_{\Sigma}) \rightarrow \text{Tr} (\text{eq}_{\Sigma} x y) \rightarrow
\]

\[
(P : T_{\Sigma} \rightarrow \text{Set}) \rightarrow (P x) \rightarrow (P y)
\]

To do this we introduce a generic iterator and recursor for T_{Σ}.

Functions and proofs are defined by applying the iterator (or the recursor) to a step-function which is in turn defined by induction on Σ.
More Universes

By varying the definition of Sig, we can create generic programs and proofs in various settings:

- Iterated induction: $\text{Sig} = [\text{Arity}]$ and
 $$\text{Arity} = \text{data Zero} \mid \text{Rec Arity} \mid \text{NonRec Arity Arity}$$

- Parameterized algebraic types:
 $$\text{Arity} = \text{data Zero} \mid \text{Rec Arity} \mid \text{NonRec Arity Arity} \mid \text{Par Arity}$$

- ... with n parameters: $\text{Arity}(n : \text{Nat}) = \text{data Zero} \mid \text{Rec Arity} \mid \text{NonRec Arity Arity} \mid \text{Par (Fin n) Arity}$

- Generalized induction: $\text{Sig} = [\text{Set}]$

- Generalized iterated induction: $\text{Sig} = [\text{Sig}]$

- Inductive families indexed by I:
 $$\text{Sig}_I = \text{data Nil} \mid \text{NonRec } (A : \text{Set})(A \to \text{Sig}_I) \mid \text{Rec }I\text{ Sig}_I$$
Formal theory

We work in versions of Martin-Löf type theory, each consisting of:

- Rules for the logical framework (as in Martin-Löf)
- Rules for the universe Sig
- Generic formation, introduction, elimination and equality rules for T_{Σ}.
Conclusions

- Dependent types are the natural setting for generic programming.
- This setting allows generic proofs as well as generic functions.
- Our approach works for a wide range of universes, including inductive families.
- All of these have been implemented and tested using the Alfa proof editor.