Definitive Semantic Descriptions

Peter D. Mosses
BRICS & Department of Computer Science
University of Aarhus, Denmark

1st APPSEM-II Workshop, Nottingham, March 2003
Conventional semantic descriptions

Abstract syntax (fragment)

Expressions $e \in \text{Exp}$
$$e ::= \text{con} \mid x \mid e_0 \text{bop} e_1 \mid \sim e \mid \ldots$$

Commands $c \in \text{Com}$
$$c ::= x := e \mid c_0 ; c_1 \mid \text{if } e \text{ then } c \mid \ldots$$

\ldots
Conventional semantic descriptions

Auxiliary entities (fragment)

Environments \(\rho \in Env = Var \rightarrow BV \)
Stores \(\sigma \in S = Loc \rightarrow SV \ldots \)

\ldots
Conventional semantic descriptions

Semantics (SOS fragment)

Expressions

\[\rho \vdash \langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \]

\[\frac{\rho(x) = l, \quad \sigma(l) = v}{\rho \vdash \langle x, \sigma \rangle \rightarrow \langle v, \sigma \rangle} \]

(1)
Conventional semantic descriptions

Semantics (SOS fragment)

Commands

\[\rho \vdash \langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle \] \hspace{1cm} (2)

\[\rho \vdash \langle \text{if } e \text{ then } c, \sigma \rangle \longrightarrow \langle \text{if } e' \text{ then } c, \sigma' \rangle \]

\[\rho \vdash \langle \text{if true then } c, \sigma \rangle \longrightarrow \langle c, \sigma \rangle \] \hspace{1cm} (3)

\[\rho \vdash \langle \text{if false then } c, \sigma \rangle \longrightarrow \langle \text{nil}, \sigma \rangle \] \hspace{1cm} (4)
Possibility of reuse of parts of descriptions?

- usually cut-and-paste, edit, . . .
- explicit modules don’t help much . . .

Best chance for reuse with descriptions of individual constructs

(or of a few closely-related constructs)
Conventional descriptions of constructs

Commands

\(c \in Com \)

\(\rho \in Env, \sigma \in S, \ldots \)

\(\rho \vdash \langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle \)
Conventional descriptions of constructs

Commands: Conditional

\[c ::= \text{if } e \text{ then } c \]

\[V \supseteq \{ \text{true, false} \} \]

\[
\rho \vdash \langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \\
\rho \vdash \langle \text{if } e \text{ then } c, \sigma \rangle \rightarrow \langle \text{if } e' \text{ then } c, \sigma' \rangle \\
\ldots
\]

(5)
Possibility of reuse of parts of descriptions!

- a language description is the collection of the descriptions of its individual constructs
- need to develop libraries of descriptions of individual constructs and auxiliary entities

Unfortunately, there’s a major problem:

combining constructs sometimes requires reformulation of their descriptions
We need **definitive descriptions of constructs!**

- conventional SOS and denotational semantics don’t support definitive descriptions
- modular SOS [see the proceedings] and action semantics definitely do
- does monadic denotational semantics?
Definitive descriptions of constructs

Commands

\[c \in Com \]

\[c \xrightarrow{X} c' \]

\[\text{Final} \supseteq \{ \text{nil} \} \]
Definitive descriptions of constructs

Commands: Conditional

\[c ::= \text{if } e \text{ then } c \]

\[V \supseteq \{\text{true, false}\} \]

\[e \xrightarrow{X} e' \]

\[\text{if } e \text{ then } c \xrightarrow{X} \text{if } e' \text{ then } c \]

\[\ldots \]
Definitive descriptions of constructs

Expressions

\[e \in Exp \]

\[e \overset{X}{\longrightarrow} e' \]

Final \supseteq Con
Definitive descriptions of constructs

Expressions: Constant Identifier

\[e ::= x \]

\[\rho : Env \]

\[U = \{ \rho, \ldots \}, \quad \rho(x) = con \]

\[\frac{\rho(x) = con}{x \xrightarrow{U} con} \]

(7)
Status

- Libraries of definitive descriptions of constructs (and auxiliary entities) are being developed for MSOS and action semantics.
- A language-independent abstract syntax is being developed.
- Bisimulation proofs can be language-independent too, based on the definitive descriptions of the constructs involved.
Conclusion

• Describe individual constructs definitively
• Contribute to libraries
• Refer to libraries