Bananas in Space:
Extending Fold and Unfold to Exponential Types

Erik Meijer and Graham Hutton
University of Utrecht
The Netherlands

http://www.cs.ruu.nl/people/{erik,graham}/

Abstract

Fold and unfold are general purpose functionals for process-
ing and constructing lists. By using the categorical approach
of modelling recursive datatypes as fixed points of functors,
these functionals and their algebraic properties were gener-
alised from lists to polynomial (sum-of-product) datatypes.
However, the restriction to polynomial datatypes is a serious
limitation: it precludes the use of exponentials (function-
spaces), whereas it is central to functional programming that
functions are first-class values, and so exponentials should
be able to be used freely in datatype definitions. In this
paper we explain how Freyd’s work on modelling recursive
datatypes as fixed points of difunctors shows how to gen-
eralise fold and unfold from polynomial datatypes to those
involving exponentials. Knowledge of category theory is not
required; we use Gofer throughout as our meta-language,
making extensive use of constructor classes.

1 Introduction

During the 1980s, Bird and Meertens [6, 22] developed a cal-
culus (nicknamed Squiggol) of recursion functionals on lists,
using which efficient functional programs can be derived
from specifications by using equational reasoning. Squiggol
was subsequently generalised from lists to polynomial (sum-
of-product) datatypes [20] by using the categorical approach
of modelling recursive datatypes as fixed points of functors
[21, 14]. This approach allows foldr, unfold and other re-
cursion functionals to be uniformly generalised from lists to
polynomial datatypes. The generalised functionals are given
special names (such as catamorphism and anamorphism),
and are written symbolically using special brackets (such as
“banana” brackets () and “lens” brackets [)].) The cat-
egorical approach also provides a number of algebraic laws
that can be used to derive, transform and reason about pro-
grams expressed using these functionals. The theory and
practice of such generic functionals has been explored by
many authors, e.g. [3, 7, 10, 13, 14, 24, 33].

The aim of the bananas paper of Meijer, Fokkinga and
Paterson [27] was to bring the ideas of Squiggol closer to lazy
functional languages. This was achieved by moving from the
category set of sets and total functions (the world of stan-

dard category theory and Squiggol) to the category cpo of
cpos and continuous functions (the world of cpo-categories
[12] and lazy functional programming). However, a serious
deficiency of the bananas paper — and more generally, the
work of the Squiggol community — is its limitation to poly-
nomial datatypes [20]. This precludes the use of exponen-
tials (function-spaces), whereas it is central to functional
programming that functions are first-class values, and so
exponentials should be able to be used freely in datatype
definitions. So to truly bring Squiggol closer to functional
programming, the theory must be extended to deal with
datatypes that involve exponentials.

Technically, exponentials are problematic because the
exponential functor is contravariant in its first argument.
A standard solution to the problem is to move from the
category cpo to the category cpo®? of cpos and embedding-
projection pairs, on which category the exponential functor
can be made covariant [34]. But while the setting of cpo®?
is technically sufficient, from a practical point of view it is
not a convenient category upon which to base a program-
ming calculus for reasoning about datatypes and recursion
functionals, because the arrows in ¢po®” do not naturally
correspond to programs.

An alternative solution that allows us to stay within cpo
has been proposed by Freyd [12]. His key idea is to model
recursive datatypes as fixed points of difunctors, functors
on two variables, contravariant on the first, covariant on
the second. In the present article (but see also [29, 28]) we
explain to functional programmers how Freyd’s work shows
how to generalise fold and unfold from polynomial datatypes
to those involving exponentials.

We use Gofer throughout as our meta-language, making
extensive use of the constructor classes extension to the stan-
dard Gofer (or Haskell) class system [17, 19]. Using Gofer
rather than category theory as our meta-language makes the
concepts more accessible as well as executable, and elimi-
nates the gap between theory and practice.

2 Polynomial datatypes

We begin in this section by reviewing the theory introduced
in the bananas paper, by implementing it in Gofer. In par-
ticular, we implement the generic versions cata and ana of
the recursion functionals foldr and unfold.

2.1 Functors and recursive datatypes

A (covariant) functor is a type constructor £ that assigns a
type £ a to each type a, together with a polymorphic func-
tional map that lifts a function g :: a -> b to a function

map g :: f a -> f b. In Gofer, the concept of a functor
can be encapsulated as a constructor class, as follows:

class Functor f where
map :: (a -> b) -> (f a -> £ b)

Such a declaration is not possible using the standard class
system, because the parameter f of the class Functor is a
type constructor rather than a type.

A familiar example of a functor is the type constructor
[1 (not to be confused with the empty list [1) for lists:

instance Functor [] where
map f xs = [f x | x <- xs]

Technically, a functor must also preserve the identity
function id and distribute over function composition (.),
i.e. the following two equations must hold:

map id = id
map (gh) = (map g).(map h)

However it is not possible to express these extra require-
ments directly in the Gofer class definition of a functor. It
is the responsibility of the programmer to check that they
indeed hold for each instance of the class.

Given a functor f, its induced recursive datatype Rec
f is defined as the fixed point of £. In Gofer this can be
implemented as follows:

data Rec f = In (f (Rec f)) {- #STRICT# -}

Since Rec f is recursive, we have been forced to define it
using data rather than type, and as a consequence have
been required to introduce the fictitious strict constructor
In. Strictness of In is necessary to obtain an isomorphism
between Rec £ and £ (Rec f). If In was not strict, there
would be no value in £ (Rec f) that corresponds to the
“undefined” value bot in Rec f, defined by bot = bot.

The strictness pragma in the definition of Rec £ is not
currently permitted in Gofer. However, a number of Haskell
implementations permit such constraints in datatype defini-
tions (e.g. [2]), as will future releases of Gofer [18].

Consider a simple datatype of arithmetic expressions,
built out of numbers and binary addition:

data Expr = Num Int | Add Expr Expr

To express this datatype as the fixed point of a functor, we
first define a functor E which captures the recursive structure
of arithmetic expressions:

data E e = Num Int | Add e e

instance Functor E where
map g = \x -> case x of
Num n => Num n
Add e e’ -> Add (g e) (g e’)

It is a simple exercise to verify that map satisfies the two
equations required of a functor. The type Expr of expres-
sions can now be defined as the fixed point of functor E:

type Expr = Rec E
Some illustrative values of type Expr are
In bot
In (Num 3)
In (Add bot bot)
In (Add (In (Num 1)) bot)

In (Add bot (In (Num 5)))
In (Add (In (Num 7)) (In (Num 2)))

let e = In (Add e e) in e

It is clear from these examples that In plays no essential
role, except as an explicit type coercion between E Expr and
Expr, and in general, between £ (Rec f) and Rec f. It is
also clear that the type Expr defined using Rec is isomorphic
to the original Gofer definition using recursion. If Rec f
could be defined as a recursive type synonym, the two types
would in fact be identical.

Parameterised datatypes can also be defined as fixed
points of functors. The general method is to partially pa-
rameterise a binary type constructor with a type variable to
give a functor. For example, the datatype

data List a = Nil | Cons a (List a)
of lists with elements of type a can be defined as follows:

data L a1l =0Nil | Cons a 1

instance Functor (L a) where
map g = \x -> case x of
Nil -> Nil
Cons a 1 -> Cons a (g 1)

type List a = Rec (L a)

(In the remainder of this paper, only the Rec definition of
most recursive datatypes used will be given. Such definitions
can be translated to normal Gofer recursive definitions sim-
ply by unfolding the definition of Rec.)

Mutually recursive datatypes can be reduced to direct
recursive datatypes in a similar way to that in which mu-
tually recursive functions can be reduced to direct recursive
functions [5, 10]. So no generality is lost by restricting our
attention to direct recursive datatypes.

Note that only the type constructor part of a functor is
necessary to express datatypes as fixed points of functors.
As we shall see in the next section, the map part comes into
play when recursion functionals on datatypes are defined.

2.2 Invariants, algebras and catamorphisms

In Freyd’s terminology [12], an isomorphism between types £
a and a is an f-invariant. An example of an f-invariant is In

f (Rec f) -> Rec f. Among all possible f-invariants,
In is special in the sense that it is the minimal £-invariant.
Minimality expresses that the function

copy :: Functor f => (Rec f -> Rec f)
copy (In x) = In (map copy x)

which recursively replaces the constructor In by itself is the
identity function on the datatype Rec f. That copy = id
holds is easily proved by structural induction.

Suppose now that we generalise copy to replace In not
by itself but by an arbitrary function phi :: f a -> a. In
this way we obtain the notion of a catamorphism [27]:

cata :: Functor £ => (f a -> a) -> (Rec f -> a)
cata phi (In x) = phi (map (cata phi) x)

The functional cata—written as “banana” brackets () in
the Squiggol literature—is the generic version of the fa-
miliar recursion functional foldr on lists, generic in the
sense that it can be used with any polynomial datatype.
The term catamorphism comes from the Greek preposition
kaTa, meaning downwards, and reflects the fact that cata
phi recursively walks down its argument replacing each oc-
currence of In by a function phi along the way.
Given a functor £ and a specific type a, a function phi
f a -> ais known as an f-algebra. Consider again the

functor E for arithmetic expressions. The following func-
tion (which replaces the constructors Num and Add by the
functions id and (+)) is an E-algebra of type E Int -> Int:

\x -> case x of
Num n -> id n
Add e e’ -> e + €&’

Applying cata to the above algebra gives the standard eval-
uator for arithmetic expressions:

eval :: Expr -> Int

eval = cata (\x -> case x of
Num n -> id n
Add e e’ > e + e’)

This definition says that expressions can be evaluated by si-
multaneously replacing all Num constructors by the id func-
tion on integers, and all Add constructors by (+) on integers.
Unfolding the definition to eliminate the use of cata and map
makes clear that it has the expected behaviour:

eval (In x) =
case x of
Num n ->n
Add e e’ -> (eval e) + (eval e’)

2.3 Free theorems and fusion

A useful heuristic in functional programming is to inspect
the “free theorem” [36] that comes from the type of a poly-
morphic function. The free theorem for cata :: Functor
f =>(f a->a) -> (Rec £ -> a) is the well-known fu-
sion law [27]: for strict functions h,

h.phi =phi’.(map h) = h.(cata phi) = cata phi’

If we only consider finite elements of Rec £ the strictness
condition on h can be removed. Fusion can also be proved
directly using a simple fixed point induction [27], for which
it is also necessary that h be strict.

The hidden type information in the fusion law is exposed
when using commuting diagrams instead of equations:

Rec a

cata phi’
lphi; = cata phil \ P
b

a———>b

Fusion captures a common pattern of inductive proof on
programs expressed as catamorphisms, in a similar way to
that in which cata itself captures a common pattern of re-
cursion over polynomial datatypes. Minimality and fusion
can together be used to show that cata phi satisfies a uni-
versal property, namely that cata phi is the unique function
satisfying its defining equation.

Returning to our running example, an alternative way
to evaluate arithmetic expressions is to use a stack of type
[Int] to store intermediate values. Such a stack-based eval-
uator can be defined as follows:

eval’ :: Expr -> ([Int] -> [Int])
eval’ = cata (\x -> case x of
Num n -> push n

Add e e’ -> add.e’.e)

where push a as = a:as pushes a number onto the stack
and add (a:b:cs) = (b+a):cs adds the top two values.
The fact that the stack-based evaluator leaves the ex-
pected value on top of the stack, i.e. for all finite expres-
sions e Expr we have push (eval e) = eval’ e, can
easily be proved using fusion and the distribution of push
over addition: push (a+b) = add.(push a).(push b) [25].

2.4 Coalgebras and anamorphisms

Using cata we can define functions with recursive datatypes
as their source. Dually, it is also useful to have a functional
for defining functions with recursive datatypes as their tar-
get. Let us begin by re-writing the function copy from which
catamorphisms arose in the equivalent form

copy :: Functor f => (Rec £ -> Rec f)
copy x = In (map copy (out x))

where out (In x) = xis the inverse of the isomorphism In.
If we now generalise this version of copy by replacing the
occurrence of out Rec £ -> £ (Rec f) in its definition
by an arbitrary function psi a -> f a (an f-coalgebra),
we obtain the notion of an anamorphism [27):

ana :: Functor f => (a -> f a) -> (a -> Rec f)
ana psi x = In (map (ana psi) (psi x))

The functional ana—written as “lens” brackets [] in the
Squiggol literature—is the generic version of the recursion
functional unfold [8, p173] on lists. The Greek preposition
ava means upwards, and its use here reflects the fact that
ana psi recursively builds up its result by decomposing its
argument using the function psi.

We illustrate the notion of an anamorphism by defining a
function n2b that converts natural numbers to their binary
representation. The first step is to define a type Bin of
binary numbers as the fixed point of a functor B:

data B b = Empty | Zero b | One b

instance Functor B where
map g = \x -> case x of
Empty -> Empty
Zero b -> Zero (g b)
One b -> One (g b)

type Bin = Rec B

The binary representation of a natural number is built by
recursively splitting off its least significant bit:

n2b :: Int -> Bin

n2b = ana (\x -> case x of
0 -> Empty
2%1n -> Zero n
2%n+1 -> One n)

For example, n2b 2 = In (Zero (In (One (In Empty)))).
The dual function b2n that converts a binary number back
to a natural number can be defined as a catamorphism:

b2n :: Bin -> Int

b2n = cata (\x -> case x of
Empty -> 0
Zero b -> 2*b
One b -> 14+2xb)

2.5 Free theorems and fusion

The free theorem for the functional ana :: Functor f =>
(a => f a) -> (a -> Rec f) is also a fusion theorem:

psi.h = (map h).psi’ = (ana psi).h = ana psi’

or in diagrammatic form,

h
b<=—a

a
lPSi, = ana psil / .
ana psi’

m h Rec f

In this case there is no strictness requirement on h, since
dualising h.bot = bot gives bot.h = bot, which is true for
all functions h. Using fusion for anamorphisms, together
with the fact that ana out is the identity function on Rec
f, we can show that ana psi is in fact the unique function
satisfying its defining equation.

2.6 Primitive and general recursion

Meertens has shown that every primitive recursive function,
i.e. paramorphism [23], can be expressed as an ana followed
by a cata. Let us briefly show how paramorphisms can be
implemented in Gofer. The first step is to define a family of
functors P £, one for each functor £:

type P £ a = £ (Rec f,a) in mapP, para, pp

mapP :: Functor f =>
(a->b) > (Pfa->Pfh)
mapP g = map (\(x,a) -> (x, g a))

instance Functor f => Functor (P f) where
map = mapP

Note that P above is defined as a restricted type synonym
[16] so that it can be partially applied. As a consequence,
the functional mapP cannot be defined directly within the
instance declaration for P f. A functional para that builds
paramorphisms is defined now by:

para :: Functor (P f) =>
(f (Rec f, a) -> a) —> (Rec f -> a)
para phi = cata phi . preds

preds :: Functor (P f) => Rec £ -> Rec (P f)
preds = ana pp

pp :: Functor £ => Rec £ -> P £ (Rec f)
pp (In x) = map (\a -> (a,a)) x

Again for technical reasons concerning types, the definition
for para above has to be split up into parts.

It came as somewhat of a surprise to the authors to dis-
cover that a general fixed point operator can also be defined
as the composition of an ana followed by a cata, thus pro-
viding the full power of recursion. (We have since discovered
that this observation has already been made by Freyd [11].)
The effect is that algebraic languages that provide cata and
ana as the only means to define recursive functions are not
limited in expressive power.

Using cata and ana, the least fixed point fix f of a
function f can be computed as the infinite application £ (£

(f ...)) in the following way: first use an anamorphism to
build an infinite list In (Cons f (In (Cons f (In (Cons
f ...))))), and then use a catamorphism to replace each

constructor Cons by function application.

fix :: Functor (L (a -> a)) => (a -> a) -> a
fix = cata (\(Cons f x) -> f x)
. ana (\f -> Cons f f)

In general, many functions can be naturally expressed as
the composition of an ana and a cata, so it seems useful to
name this idiom. Functions expressed in this way are known
as hylomorphisms [27]:

hylo :: Functor f =>
(fa->a) > (b->=fb)-> (b ->a)
hylo phi psi = cata phi . ana psi

A straightforward fixed point induction shows that the two
constituents of a hylomorphism can be fused together to give
a direct recursive definition that avoids building an interme-
diate [37] (or virtual [35]) value:

hylo phi psi = phi . map (hylo phi psi) . psi
For example, if we express fix as a hylomorphism rather
than the composition of a cata and an ana,

fix £ =
hylo (\(Cons f x) -> f x) (\f -> Cons f f)

then by unfolding using the more efficient definition of hylo
we find that fix £ =f (fix f), as expected.

3 Problems with exponentials

In the previous section we reviewed how the functionals
foldr and unfold are generalised from lists to polynomial
datatypes. While such datatypes are sufficient for many pro-
gramming tasks, a central aspect of functional programming
is that functions are first-class values.

However, exponentials (function-spaces) are problematic
because the type constructor (->) is contravariant in its
first argument. The effect is that certain type constructors
defined using (->) cannot be made into functors, and as
a result, functionals such as cata and ana cannot always
be used to define functions on recursive datatypes involving
exponentials. This section gives a number of examples of
recursive datatypes involving exponentials, and elaborates
on the problems with such datatypes.

3.1 Covariant uses of (->)

An example in which function-spaces are used covariantly is
that of non-deterministic computations [32]. An element of
datatype State a b is either a final value of type b, or an in-
termediate state of type a together with a non-deterministic
continuation of type a -> [State a bl:

data S a b s = Done b | Pause a (a -> [s])

type State a b = Rec (S a b)

To make the type constructor S a b into a functor, we first
observe that the sub-component (a ->) can itself be made
into a functor. That is, fixing the first argument of (->)
to a specific type a yields a functor ((->) a). The re-
quired type of the map functional for ((->) a) is (b => c¢)
=> ((->) a b) -> ((->) a c). Using familiar infix nota-
tion we recognise (b => c) -> (a -> b) -> (a -> c) as
the type of function composition (.). One can easily verify
that (.) indeed makes ((->) a) into a functor.

instance Functor ((->) a) where
map = (.)

Now S a b can be made into a functor, as follows:

instance (Functor ((->) a), Functor []) =>
Functor (S a b) where
map g =
\x -> case x of
Done n -> Done n
Pause n h —>
Pause n (map (map g) h)

Note that map for S a b is not recursive; the uses of map in
its definition are those for ((->) a) and lists [].

A function exec that forces evaluation of a state to its
set of final values can now be defined as a catamorphism:

exec :: Functor (S a b) => State a b -> [b]
exec = cata (\x -> case x of

Done n -> [n]

Pause n h -> concat (h n))

As a simple application, exec and ana can be used to define
a function n2d that extracts the list of digits from a number:

n2d :: Int -> [Int]
n2d = exec . ana (\x ->
if x <= 9 then Done x
else Pause x (\n -> [n ‘div‘ 10,
n ‘mod¢ 10]))

For example, n2d 1234 = [1,2, 3, 4].

A more practical use of the type State is the extension
of a library of parsing combinators [15] with a combinator
for parallel composition of parsers [9].

3.2 Contravariant uses of (->)

An example where (->) is used contravariantly is in the
definition of a fixed point combinator by using recursion on
types rather than recursion on functions. We first define a
type Inf a of functions that yield a result of type a from an
infinitely nested argument of such functions:

type I a i = (i -> a) in inI, outl

inT :: (i ->a) >Iai
outIl :: T ai-> (1 -> a)
inI = id
outI = id

type Inf a = Rec (I a)

The functions inI and outI above play the réle of construc-
tor and destructor functions for the type I a i.

Using Inf a we can define Curry’s fixed point combi-
nator Y f = gg where g = Ah.f(hh) from the untyped A-
calculus in a typed functional language:

fix :: (a -> a) > a
fix £ = g (In (inI g))
where g (In h) = £ (outI h (In h))

We would like to be able to express recursive functions
on Inf a using recursion functionals such as cata, but it is
not possible to define a map that makes I a into a covariant
functor. However, the following definition of a functional
comap makes I a into a contravariant functor:

comap :: (b ->c) > (I ac->1ab)
comap g h = inI. (h.g).outl

A contravariant functor is like a covariant functor, except
that the functional comap lifts a functiong :: a -> btoa
function comap g :: f b -> f a where the argument and
result types have been interchanged. As a consequence, such
functors must distribute contravariantly over function com-
position: comap (g.h) = (comap h).(comap g).

In Gofer, the concept of a contravariant functor can be
encapsulated as a constructor class, as follows:

class Cofunctor f where
comap :: (a ->b) > (f b -> £ a)

It is possible, with some effort, to define versions of cata,
ana, para, and hylo on datatypes expressed as fixed points
of contravariant functors, but this would only be a partial
solution to the problem. In general, a type constructor in-
volving function-spaces can be of mixed variance.

3.3 Mixed variant uses of (->)

An example where (->) is used both covariantly and con-
travariantly is in the definition of a type Scott for modelling
the untyped (lazy) A-calculus [1]:

data S s = Func (s -> s)

type Scott = Rec S

An occurrence of a type variable in a type expression is
said to be contravariant if it occurs to the left of an odd
number of nested arrows (->), and covariant otherwise. The
argument s to S above occurs both covariantly (s -> s)
and contravariantly (s -> s). The effect is that S cannot
be made into a functor, either covariant or contravariant.

We can however make the distinction between the two
kinds of occurrences of the argument s in the definition of
S explicit by defining a binary type constructor S’:

data S’ s s’ = Func (s -> s’)

By fixing its first argument, S’ can be made into a covariant
functor; by fixing its second argument, S’ can be made into a
contravariant functor. In general, a binary type constructor
with this property is called a difunctor.

Formally, a difunctor [12] is a binary type constructor f
that assigns to each pair of types a and b a type £ a b, to-
gether with a polymorphic functional dimap that lifts a pair
of functions g :: a -> bandh :: ¢ -> d to a function
g ‘dimap‘ h :: f b ¢ -> f a d. A difunctor must also
preserve the identity function and distribute over function
composition in the following way:

id ‘dimap‘ id = id
(gh) ‘dimap‘ (i.j) = (h ‘dimap‘ i).(g ‘dimap‘ j)

In Gofer the concept of a difunctor can be encapsulated
as a constructor class, as follows:

class Difunctor f where
dimap :: (a -> b) -> (¢ > d) ->
(fbc->fad

One can verify now that the following definition for dimap
makes the type constructor S’ into a difunctor:

instance Difunctor S’ where
(f ‘dimap‘ g) (Func h) = Func (g.h.f)

In the above, the Func constructor only plays an auxiliary
roéle. In fact, S’ is a difunctor because the function-space
constructor (->) is itself a difunctor:

instance Difunctor (->) where
(f ‘dimap‘ g) h = g.h.f

In general, by separating the covariant and contravari-
ant occurrences of the argument a in the body of a non-
recursive datatype declaration data F a = ..., every such
type constructor F induces a difunctor F’, such that F can
be recovered from F’ by diagonalising, i.e. F a=F’ a a.

4 General datatypes

We have seen in the previous section that (non-recursive)
type constructors involving exponentials do not in general
induce functors, but do induce difunctors. Freyd [12] presents
a categorical theory of recursive datatypes modelled as fixed
points of difunctors. In this section we explain how Freyd’s
work shows how to generalise the recursion functionals cata
and ana, together with their associated fusion rules. As was
the case previously, cata and ana are obtained by suitably
generalising a simple copy function.

4.1 Difunctors and recursive datatypes

Given a difunctor £, its induced recursive datatype Rec f
is defined as the simultaneous fixed point of f in both ar-
guments. In Gofer this definition for Rec £ can be imple-
mented as follows (as previously, strictness of the construc-
tor In is necessary to obtain an isomorphism):

data Rec f =
In (f (Rec f) (Rec f)) {- #STRICT# -}
4.2 Catamorphisms and anamorphisms

An isomorphism between types f a a and a is called an f-
invariant. An example of an f-invariant is In :: £ (Rec
f) (Rec f) -> Rec f. It is also the minimal f-invariant, in
the sense that copy = id, where

copy :: Difunctor f => (Rec f -> Rec f)
copy (In x) = In ((copy ‘dimap‘ copy) x)

This definition can be expressed in diagrams by

I
(Rec £) ‘£ (Rec f) ——>Rec f

lcopy

(Rec f) ‘f¢ (Rec f) T>Rec f

copyT ‘dimap* l copy

Note that by drawing the arrows g :: a -> band h ::
¢ -> 4 of a difunctor g ‘dimap‘ h :: (b ‘£¢ ¢c) -> (a
‘f¢ d) separately, both the contravariance and typing as-
sumptions of dimap are made explicit.

For datatypes expressed as fixed points of functors, the
notion of a catamorphism arose by abstracting on In in the
body of the definition of copy. Let us now try to play the
same game for the difunctors version of copy. As a first
attempt, abstracting (naively) on In in the body of the di-
functors version of copy gives the definition

cata phi (In x) =
phi (((cata phi) ‘dimap‘ (cata phi)) x)

However this definition is too restrictive, since it forces the
argument function phi to have type f (Rec f) (Rec f) ->
Rec f, and cata phi itself to have type Rec £ -> Rec f.
The problem is the use of cata phi as both the covariant
and contravariant argument of dimap in the definition. The

covariant use of cata phi requires that the argument func-
tion phi have type £ b a -> a; a function of this type is
called an f-dialgebra [12]. The additional contravariant use
of cata phi then requires that a = b = Rec f, i.e. that phi
have type £ (Rec f) (Rec f) -> Rec f.

As a first step to solving this problem, let us assume
the existence of a function g :: b -> Rec f to use as the
contravariant argument of dimap in the body of cata phi,
rather than cata phi itself. This assumption leads to a
definition for cata phi with sufficiently general typing re-
quirements, as illustrated by the following diagram:

I
(Rec £) ‘£ (Rec f) ———>Rec £
gT ‘dimap* lcata phi lcata phi

b ‘fe a— > a
phi

A similar problem occurs with the naive generalisation
of copy to obtain an anamorphism functional:

ana psi x =
In (((ana psi) ‘dimap‘ (ana psi)) (psi x))

The covariant use of ana psi here requires that psi have
type b => f a b; a function of this type is called an £f-
codialgebra. The additional contravariant use of ana psi
then requires that a = b = Rec £, i.e. that psi have type Rec
f -> f (Rec f) (Rec f), and hence that ana psi have type
Rec f -> Rec f. However, a definition for ana psi with
sufficiently general typing requirements can be obtained by
assuming the existence of a function h :: Rec f -> a to
use as the contravariant argument of dimap:

psi
b<—bD

a tf{
hT ‘dimap* lana psi

(Rec f) ‘f¢ (Rec f) <——— (Rec f)
out

lana psi

Let us now consider the above diagrams for cata phi
and ana psi simultaneously. We observe that a function
g :: b -> Rec f required to define cata phi can be ob-
tained simply as g = ana psi, and similarly, a function h

Rec f -> arequired to define ana psi can be obtained
as h = cata phi. Thus we are naturally led to the following
mutually recursive definitions for cata and ana on datatypes
expressed as fixed points of difunctors:

cata :: Difunctor f =>
(fba->a) -> (b ->fab) -> (Rec £ -> a)
ana :: Difunctor f =>

(fba->a) -> (b ->fab) -> (b -> Rec f)

cata phi psi (In x) =
phi (((ana phi psi)
‘dimap‘ (cata phi psi)) x)
ana phi psi x =
In (((cata phi psi)
‘dimap‘ (ana phi psi)) (psi x))

Note that the difunctor versions of cata and ana above
are proper generalisations of the functor versions from Sec-
tion 2, in the sense that if the difunctor f is independent
of its contravariant argument, the definitions reduce to the
standard definitions for functors.

4.3 Free theorems and fusion

Just as was the case for functors, the cata and ana func-
tionals for difunctors satisfy a fusion law, which arises as a
free theorem. Because the difunctors versions of cata and
ana are defined mutually recursively, we get a simultaneous
fusion law for the two functionals, rather than two separate
laws as was the case previously: for strict functions h,

h.phi = phi’.(g ‘dimap‘ h)
" psi.g = (h ‘dimap‘ g).psi’
h.(cata phi psi) = cata phi’ psi’
" (ana phi psi).g = ana phi’ psi’

or in diagrammatic form,

phi
a ‘f¢* b——>bD
gT ‘dimap* l/h lh
c ‘f¢ d——————>d
phi’
N
psi’

d ‘f¢ c<=——c
hT ‘dimap* lg lg
b (f¢ a<————a

psi

cata phi psi

Rec £ b
h
cata phi’pwi’\\ l/
d
A

ana phi’ psi’
Rec f =——

c
ana pl?ips\ lg
a

It is interesting to note that the above fusion law turns
out to be the specialisation to functions of Pitt’s relational
induction principle for recursive datatypes [29, Prop 2.10].

Let us consider an example of the use of fusion. A
retract from a type b to a type a is a pair of functions
up :: b -> aanddown :: a -> bsuch that up.down =
id :: a -> a. Inother words, down is an injective function
with up as a left-inverse. In Gofer, the notion of a retract
can be encapsulated as a type class, as follows:

class Retract b a where
up b ->a
down :: a -> b

Using fusion it can be shown that given a difunctor £, if up
and down form a retract from (f a a) to a, then (ana up
down) and (cata up down) form a retract from a to (Rec
£). In Gofer, this can be implemented as follows:

instance (Difunctor f, Retract (f a a) a) =>
Retract a (Rec f) where
up = ana (up :: Retract (f a a) a =>
f aa->a) (down :: Retract

(faa)a=>a->faa)
down = cata (up :: Retract (f a a) a =>
f a a -> a) (down :: Retract
(faa) a=>a->faa)

This result will be used in the next section.

4.4 Interpreters for the \-calculus

We illustrate the generalised theory by defining a class of in-
terpreters for the untyped A-calculus, and taking some steps
towards formally relating such interpreters. We begin by
defining a datatype Expr of \-expressions:

data Expr = Var String
| Lambda String Expr
|

Apply Expr Expr

The datatype Expr could of course be expressed as the fixed
point of a functor, but we don’t do this here, preferring
instead to concentrate on the use of fixed points in defining
the semantic domains for A-interpreters.

A datatype can serve as such a semantic domain if it
is reflexive [4]. Formally, a type a is reflexive if there is a
retract from a to (a -> a). (The notion of a retract was
defined in the previous section.) Intuitively then, a type is
reflexive if it is large enough to faithfully represent its own
function-space. In Gofer, the notion of a reflexive type can
be encapsulated as a type class, as follows:

class Retract a (a -> a) => Reflexive a where
apply :: a => (a -> a)
abstr :: (a -> a) -> a

f ‘apply a =up f a
abstr £ = down £

We can now define a class of interpreters (one for each
reflexive type a) that map a A-expression to its value in the
semantic domain a; as usual, an environment carries the
values of the free variables in the expression:

class Reflexive a => LambdaModel a where
eval :: Expr -> Env a -> a

eval (Var x) env =

env ‘lookup‘ x
eval (Lambda x b) env =

abstr (\a -> eval b (env ‘update‘ (x,a)))
eval (Apply f a) env =

(eval f env) ‘apply‘ (eval a env)

Environments are represented as functions from identifiers
to values, and are equipped with two operations:

type Env a = String -> a in
lookup, update, mapEnv

lookup ::
update ::

Env a -> String -> a
Env a -> (String,a) -> Env a

env ‘lookup‘ x = env x

env ‘update‘ (x,a) =
\y -> if y==x then a else env ‘lookup‘ y

Later on in this section, we will use the fact that Env can be
extended to a functor, as follows:

mapEnv :: (a -> b) -> (Env a -> Env b)
mapEnv = (.)

instance Functor Env where
map = mapEnv

The standard (call by name) interpreter for the untyped
A-calculus is obtained by taking the reflexive datatype Scott
of section 3.3 as the semantic domain:

instance Retract Scott (Scott -> Scott) where
up (In (Func £)) = £
down f = In (Func f)

instance Reflexive Scott

instance LambdaModel Scott

An appropriate reflexive type Cont for a (call by name)
continuation-based semantics for A-expressions is defined by:

type Cont = (Closure -> Closure) -> Closure

instance Retract Cont (Cont -> Cont) where
up £ =
\a -> \cont ->
f (\(In (Clos f)) -> f a cont)
down f =
\cont -> cont (In (Clos f))

instance Reflexive Cont

instance LambdaModel Cont
where Closure is the fixed point of difunctor C:

data C c ¢’ =
Clos (((c -> ¢’) -> c)
-> ((c? => ¢c) => ¢c?))

instance Difunctor (->) => Difunctor C where
(f ‘dimap‘ g) (Clos h) =
Clos ((((f ‘dimap‘ g) ‘dimap‘ £f)
‘dimap‘ ((g ‘dimap‘ f) ‘dimap‘ g)) h)

type Closure = Rec C

Suppose now that we want to show that the continuation-
based interpreter is correct with respect to the standard in-
terpreter [30]. An interpreter based upon a reflexive type b
is correct with respect to an interpreter based upon a reflex-
ive type a if there exists a retract from b to a such that the
following diagram commutes for all expressions e:

eval e
Env a——>a

map up T Tup

Env b———>b
eval e

That is, evaluating an expression using an environment bind-
ing variables to b-values and then converting the result to
an a-value is equivalent to first converting the bindings to
a-values and then interpreting the expression.

It turns out now that the free theorem for the polymor-
phic A-interpreter eval :: Reflexive a => Expr -> Env

a —-> a gives tractable conditions that establish the correct-
ness of one interpreter with respect to another:

h (f ‘apply‘ a) = (h £f) ‘apply‘ (h a)
A
h.g=f.h = h (abstr g) = abstr £
=
h.(eval e) = (eval e).map h

(See [26] for a general discussion of free theorems in the con-
text of class restrictions.) This result is a generalisation to
the untyped A-calculus of Reynolds’ (functional) abstraction
theorem for the typed A-calculus [31].

Appealing to the abstraction theorem with a = Scott,
b = Cont and h = up, we are required to find a retract from
Cont to Scott satisfying the preconditions of the theorem.
Using the fact that Scott is of the form Rec S’, together
with the fact that cata and ana preserve retracts (previous
section), we are motivated to look for a retract from Cont to
S’ Cont Cont. It is easy to prove that the following defini-
tions for up and down give such a retract, thus establishing
a retract from Cont to Scott:

instance Retract Cont (S’ Cont Cont) where
up f = Func (up f)
down (Func f) = down f

instance Retract Cont Scott

It remains to show that up :: Cont -> Scott satisfies
the preconditions of the abstraction theorem. Verifying the
second condition is straightforward. However, we have not
yet been successful in establishing the first condition, namely
that up (£ ‘apply‘ a) = (up £) ‘apply‘ (up a).

4.5 Covariant functors suffice

Freyd [12] shows that, somewhat surprisingly, the generali-
sation from functors to difunctors is not technically neces-
sary to handle exponentials: fixed points of difunctors can
be expressed in terms of fixed points of covariant functors.
The result is mainly of theoretical interest, but it is instruc-
tive to see how the translation from difunctors to functors
works. The present class system of Gofer isn’t quite power-
ful enough to let us implement all aspects of the translation
directly, so here we just give an outline.

As we have seen previously for the case of (->), a difunc-
tor £ can be made into a covariant functor (f a) by fixing
its contravariant argument to a specific type a:

instance Difunctor f => Functor (f a) where
map g = id ‘dimap‘ g

Consider now the mapping on types MyRec f which sends a
type a to the fixed point of the covariant functor (£ a):

type MyRec £ a = Rec (f a)

By using the cata operator for functors of section 2.2, the
mapping MyRec f can be extended to a mapping on func-
tions, such that MyRec f is then a contravariant functor:

mycomap :: (Difunctor f, Functor (f b)) =>
(a => b) -> (MyRec £ b -> MyRec £ a)
mycomap g = cata (In . (g ‘dimap‘ id))

For technical reasons concerning type classes in Gofer, MyRec
f cannot directly be made into an instance of Gofer class
Cofunctor of contravariant functors.

A contravariant functor £ can be made into a covariant
functor Square f by composing £ with itself:

type Square f a = £ (f a) in sqrmap

sqrmap :: Cofunctor f =>
(a => b) -> (Square f a -> Square f b)
sqrmap g = comap (comap g)

instance Cofunctor f => Functor (Square f)
where map = sqrmap

Again for technical reasons, sqrmap cannot be defined di-
rectly within the instance declaration above.

Freyd shows now that fixed points of difunctors can be
reduced to fixed points of covariant functors in two steps.
First of all, the least fixed point Rec f of a difunctor f is
isomorphic to the least fixed point Rec (MyRec f) of the
contravariant functor MyRec f (viewed as a difunctor inde-
pendent of its second argument). And secondly, the least
fixed point Rec f of a contravariant functor is isomorphic to
the least fixed point Rec (Square f) of the covariant func-
tor Square f. Combining the two steps, we see that the least
fixed point Rec f of a difunctor £ can be obtained (up to
isomorphism) as the least fixed point Rec (Square (MyRec
£)) of the covariant functor Square (MyRec f).

Another way of showing that covariant functors suffice
is to first eliminate the use of mutual recursion in the def-
initions of cata and ana (using standard techniques), and
then construct datatypes on which the resulting functions
are catamorphisms and anamorphisms.

5 Discussion

In this paper we have explained how the recursion func-
tionals cata and ana can be generalised from polynomial
datatypes to those involving exponentials. An important
area for future research is in experimenting with the use
of the generalised operators and laws in writing and trans-
forming programs. Another interesting topic for study is
non-regular datatypes [28], i.e. datatypes in which the re-
cursive calls in the body are not all of the form of the head
of a definition. Examples are the datatype Twist a b of
lists of alternating elements of type a and type b, and the
datatype Nest a of lists of nested lists:

data Twist a b = Nil | Cons a (Twist b a)

data Nest a = Block a (Nest [a])

To our knowledge, it is not in general known how to express
non-regular datatypes as fixed points of functors (or difunc-
tors). Note however that it is possible, with some effort, to
express non-regular datatypes as fixed points of type con-
structors, by using a Rec of kind ((* -> *) => (* -> %))
-> (* => %) instead of kind (x -> %) -> x,

Our final remarks concern the Gofer type system. In a
number of places we had to hack around the limitations of
type synonyms. First of all, since standard type synonyms
cannot be partially applied we were forced in some cases to
make use of restricted type synonyms, which can be par-
tially applied. Secondly, since type synonyms cannot be re-
cursive, we were forced to use a data declaration in defining
Rec, leading to the introduction of the fictitious constructor
In. Both these problems don’t seem to be inherent to type
synonyms, but are rather artifacts of the treatment of type
synonyms as macros in earlier functional languages; see [19]
for further discussion on this point.

Acknowledgements

Utrecht University and Chalmers University provided fund-
ing for mutual visits by the two authors, during which time
part of this paper was written. It was Ross Paterson who
originally suggested to Meijer that Freyd’s paper might have
applications in functional programming. Thanks to Luc
Duponcheel, Johan Jeuring, Mark Jones, and the FPCA
referees for useful comments and suggestions.

References

[1] Samson Abramsky. The lazy lambda calculus. In David
Turner, editor, Research Topics in Functional Program-
ming, pages 65-116. Addison-Wesley, 1990.

[2] Lennart Augustsson. The Haskell B. compiler.
Chalmers University of Technology, 1994.

[3] Roland Backhouse, Ed Voermans, and Jaap van der
Woude. A relational theory of datatypes. In prepara-
tion, 1994.

[4] Henk Barendregt. The Lambda Calculus — it’s Syntaz
and Semantics. North-Holland, 1984. Revised edition.

[6] Hans Beki¢. Programming Languages and their Defini-
tion, volume 177 of LNCS. Springer-Verlag, 1984.

[6] Richard Bird. Constructive functional programming. In
Proc. Marktoberdorf International Summer School on
Constructive Methods in Computer Science. Springer-
Verlag, 1989.

[7] Richard Bird and Oege de Moor. The algebra of pro-
gramming. In preparation, 1994.

[8] Richard Bird and Philip Wadler. An Introduction to
Functional Programming. Prentice Hall, 1988.

[9] Gert Florijn. Modelling office processes with functional
parsers. University of Utrecht, The Netherlands, 1994.

[10] Maarten Fokkinga. Law and Order in Algorithmics.
PhD thesis, University of Twente, March 1992.

[11] Peter Freyd. Algebraically complete categories. In
A. Carboni et al, editor, Proc. 1990 Como Category
Theory Conference, volume 1488 of Lecture Notes in
Math, pages 95-104. Springer-Verlag, Berlin, 1990.

[12] Peter Freyd. Recursive types reduced to inductive
types. In Proc. LICS 90. IEEE Computer Society Press,
1990.

[13] Jeremy Gibbons. Algebras for Tree Algorithms. PhD
thesis, Oxford University, September 1991.

[14] T. Hagino. Category Theoretic Approach to Data Types.
PhD thesis, University of Edinburgh, 1987.

[15] Graham Hutton. Higher-order functions for parsing.
Journal of Functional Programming, 2(3):323-343, July
1992.

[16] Mark Jones. Gofer 2.28 release notes. February 1993.

[17] Mark Jones. A system of constructor classes: overload-
ing and implicit higher-order polymorphism. In Proc.
FPCA 93. Springer, 1993.

[18] Mark Jones. Personal communication, May 1994.

[19] Mark Jones and Erik Meijer. Gofer goes bananas. In
preparation, 1994.

[20] Grant Malcolm. Algebraic data types and program
transformation. Science of Computer Programming,
14(2-3):255-280, September 1990.

[21] E.G. Manes and M.A. Arbib. Algebraic Approaches to
Program Semantics. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1986.

[22] Lambert Meertens. Algorithmics: Towards program-
ming as a mathematical activity. In Proc. CWI Sympo-
sium, Centre for Mathematics and Computer Science,
Amsterdam, November 1983.

[23] Lambert Meertens. Paramorphisms. Formal Aspects of
Computing, 4(5):413-425, 1992.

[24] Erik Meijer. Calculating Compilers. PhD thesis, Ni-
jmegen University, February 1992.

[25] Erik Meijer. More advice on proving a compiler correct:
Improve a correct compiler. Submitted for Publication,
September 1994.

[26] Erik Meijer. Type classes for better free theorems. In
preparation, 1994.

[27] Erik Meijer, Maarten Fokkinga, and Ross Paterson.
Functional programming with bananas, lenses, en-
velopes and barbed wire. In John Hughes, editor, Pro-
ceedings FPCA 91, number 523 in LNCS. Springer-
Verlag, 1991.

[28] Ross Paterson. Control structures from types. Submit-
ted for publication, 1994.

[29] Andrew M. Pitts. Relational properties of recursively
defined domains. In Proc. LICS 93. IEEE Computer
Society Press, 1993.

[30] John C. Reynolds. On the relation between direct
and continuation semantics. In Jacques Loeckx, ed-
itor, Proc. 2nd Colloquium on Automata, Languages
and Programming, number 14 in LNCS, pages 141-156.
Springer-Verlag, 1974.

[31] John C. Reynolds. Types, abstraction and paramet-
ric polymorphism. Information Processing, 83:513-523,
1983.

[32] David A. Schmidt. Denotational Semantics: A Method-
ology for Language Development. Allyn and Bacon,
Inc., 1986.

[33] Tim Sheard and Leonidas Fegaras. A fold for all sea-
sons. In Proc. FPCA 93. Springer, 1993.

[34] Mike B. Smyth and Gordon D. Plotkin. The category
theoretic solution of recursive domain equations. STAM
Journal of Computing, pages 761-783, 1982.

[35] Doaitse Swierstra and Oege de Moor. Virtual data
structures. Technical Report RUU-CS-92-16, Utrecht
University, The Netherlands, 1992.

[36] Philip Wadler. Theorems for free! In Proc. FPCA 89.
Springer, 1989.

37

Philip Wadler. Deforestation: Transforming programs
to eliminate trees. Theoretical Computer Science,
73:231-248, 1990.

