
Under consideration for publication in J. Functional Programming 1

F U N C T I O N A L P E A R L S

Back to Basics: Deriving Representation
Changers Functionally

Graham Hutton and Erik Meijer ∗
Department of Computer Science, University of Utrecht,

PO Box 80.089, 3508 TB Utrecht, The Netherlands.

Abstract

A representation changer is a function that converts a concrete representation of an ab-
stract value into a different concrete representation of that value. Many useful functions
can be recognised as representation changers; examples include compilers, and arithmetic
functions such as addition and multiplication. Functions that can be specified as the right
inverse of other functions are special cases of representation changers.

In recent years, a number of authors have used a relational calculus to derive repre-
sentation changers from their specifications. In this paper we show that the generality of
relations is not essential, and representation changers can be derived within the more basic
setting of functional programming. We illustrate our point by deriving a carry-save adder
and a base-converter, two functions which have previously been derived relationally.

1 Introduction

In the calculational approach to programming the aim is to derive programs from
their specifications by a process of formal reasoning. Programs so derived require
no post-hoc proof of correctness; rather they are “correct by construction”. Despite
the fact that program derivations can often be viewed as correctness proofs turned
upside down, experience has shown that many algorithms can in fact be derived
from their specifications in a smooth and simple way.

In this paper we are concerned with deriving representation changers, a widely
occurring kind of functional program. Many useful functions can be recognised as
representation changers; examples include compilers, and arithmetic functions such
as addition and multiplication. Functions that can be specified as the right inverse
of other functions are special cases of representation changers.

For the last few years, representation changers have been a major topic of study
within the relational calculus Ruby (Sheeran, 1986; Jones and Sheeran, 1990). We
show that the generality of relations is not essential, and representation changers can
be derived within the more basic setting of functional programming. We illustrate

∗ Part of this work was completed while at Department of Computer Sciences, Chalmers Univer-
sity of Technology, S-412 96 Gothenburg, Sweden.

2 Graham Hutton and Erik Meijer

our point by deriving a carry-save adder and a base-converter, two examples which
have previously been derived relationally.

2 Representation changers

A representation changer is a function that converts a concrete representation of
an abstract value into a different concrete representation of that value. A typical
example of a representation changer is a base-conversion function that converts a
number in base m to a number in base n. In this case, abstract values are natural
numbers, and concrete values are numbers in base m and base n respectively.

Given functions f : C1 → A and g : C2 → A (we assume throughout that all
functions are total) that convert concrete values of types C1 and C2 to abstract
values of type A, a representation changer h : C1 → C2 can be specified by the
requirement that if h maps concrete value x ∈ C1 to concrete value y ∈ C2, then
x and y must represent the same abstract value:

h x = y ⇒ f x = g y. (1)

Since g need not be injective, there may be more than one choice of such a y for each
x, and hence there may be more than one solution for h. An equivalent specification
then is that the function h maps a concrete value x to any concrete value y that
represents the same abstract value as x:

h x ∈ {y | f x = g y}. (2)

If for some value of x there is no y for which f x = g y, then there exists no total
function h that satisfies the specification. An h exists precisely when the range of
g is at least the range of f . A sufficient condition for h to exist is that the function
g : C2 → A be surjective, which is often the case in practice. In other cases, one
can try strengthening the specification by adding extra requirements on h, in the
manner of (Runciman and Jagger, 1990).

Substituting y = h x in (1) gives an equivalent functional equality:

f = g ◦ h. (3)

We can also express (1) in the form of a relational inclusion (4), by observing
that h x = y iff x h y and that f x = g y iff x (g−1 ◦ f) y. Here functions are
implicitly viewed as relations—by taking their graph—, and relational composition
◦ and relational converse −1 are the evident generalisations of the composition and
inverse operators on functions (Ross and Wright, 1992).

h ⊆ g−1 ◦ f. (4)

It is sometimes more natural to specify representation changers in this form. Using
specification (4) has the advantage that h is in some sense the subject of the formula,
and the term g−1 ◦ f has an intuitive operational reading: first use f to convert a
concrete value to an abstract value, then use g−1 to convert the result into another
concrete value. In general g−1 ◦f is a true relation, which implies that there may be
more than one function h that satisfies the specification h ⊆ g−1 ◦ f . Constructing

Functional pearls 3

a function h that satisfies (4) usually proceeds by transforming the term g−1 ◦ f
using laws of a relational calculus (Jones and Sheeran, 1991; Jones and Sheeran,
1992; Hutton, 1992).

In this paper we don’t follow the relational route, but rather show how represen-
tation changers can be derived functionally. Starting with a specification f = g ◦ h
we synthesize a function h by constructing a pointwise proof that the equation
holds, aiming to end up with assumptions that give a definition for h. This is a
well-established technique for deriving functional programs, but the application to
deriving representation changers appears to be new.

3 Example: carry-save addition

Our first example concerns a representation of numbers which is much-used in
digital circuits (Davio et al., 1983). A carry-save number is like a binary number in
that the ith digit has weight 2i, but different in that digits range over {0, 1, 2}, with
each digit being represented by a pair of bits whose sum is that digit. For example,
[(0, 1), (1, 1), (1, 0)] is a carry-save representation of the natural number 9, because
(0 + 1).20 + (1 + 1).21 + (1 + 0).22 = 9. A natural number can have many carry-save
representations; for example, [(1, 0), (0, 0), (1, 1)] also represents the number 9. The
function ceval converts a carry-save number to the corresponding natural number:

ceval [] = 0,
ceval ((x, y) : xs) = x+ y + 2 ∗ ceval xs.

Note that ceval expects the least significant bit-pair first.
Consider the function cadd that takes a bit and carry-save number, and adds

them together to give a carry-save number. For any bit b, the function cadd b is a
representation changer, specified by the requirement that

cadd b ⊆ ceval−1 ◦ (b+) ◦ ceval. (5)

The specification expresses that we can add a bit b to a carry-save number by first
converting the carry-save number to its natural-number representation, adding b,
and then converting the result back to a carry-save representation.

Since the range of ceval is at least the range of (b+) ◦ ceval for any bit b, the
specification (5) has a solution for cadd b. Since (b+) ◦ ceval is not injective, the
specification has many solutions. Different solutions can, for example, give different
numbers of trailing (0, 0) pairs in the result list.

Expressing the relational specification (5) in the functional form of (3), and then
using extensionality, gives our working specification:

ceval (cadd b xs) = b+ ceval xs.

Our task now is to find a definition for cadd that satisfies this equation. We do this
by a constructive induction on xs. In the base-case xs = [], we end up with an
assumption that gives a definition for cadd b []. In the inductive-case xs = (x, y) :
xs, we get an assumption that gives a recursive definition for cadd b ((x, y) : xs) in
terms of cadd b′ xs, where b′ is a bit computed from b and (x, y).

First the base-case, xs = []:

4 Graham Hutton and Erik Meijer

ceval (cadd b []) = b+ ceval []

⇔ unfolding ceval

ceval (cadd b []) = b+ 0

⇔ folding ceval

ceval (cadd b []) = ceval [(b, 0)]

⇐ Leibnitz law: f x = f y ⇐ x = y

cadd b [] = [(b, 0)].

We conclude that the definition cadd b [] = [(b, 0)] satisfies the specification in the
base-case. Note that in the “folding ceval” step above, replacing b by ceval [(b, 0)]
is not the only possibility: ceval [(0, b)], ceval [(b, 0), (0, 0)], etc., are equally valid.
Choosing eval [(b, 0)] means that the result list produced by cadd b xs will have no
trailing (0, 0) pairs.

Now for the inductive-case, xs = (x, y) : xs. Rather than manipulating the
equation ceval (cadd b ((x, y) : xs)) = b + ceval ((x, y) : xs) as a whole, we work
only with the right-hand side, aiming (just as in the base-case) to express it in
the form ceval exp for some expression exp, from which we can conclude that the
definition cadd b ((x, y) : xs) = exp satisfies the specification in the inductive case.
We begin by unfolding:

b+ ceval ((x, y) : xs)

= unfolding ceval

b+ x+ y + 2 ∗ ceval xs.

Now, because the expression b+x+y can have the value 3, which cannot be expressed
as a sum of two bits, it is not possible to fold ceval at this point. We proceed in
fact by splitting the value x+ y into two bits: (x+ y) mod 2 and (x+ y) div 2. The
first bit will be paired with the incoming carry b to form a bit-pair in the output
carry-save number, and the second will become the propogated carry-bit. Splitting
in this way avoids a “rippling carry” in the final program.

b+ x+ y + 2 ∗ ceval xs

= splitting x+ y

b+ (x+ y) mod 2 + 2 ∗ ((x+ y) div 2) + 2 ∗ ceval xs

= arithmetic

b+ (x+ y) mod 2 + 2 ∗ ((x+ y) div 2 + ceval xs)

= induction hypothesis

b+ (x+ y) mod 2 + 2 ∗ ceval (cadd ((x+ y) div 2) xs)

= folding ceval

ceval ((b, (x+ y) mod 2) : cadd ((x+ y) div 2) xs).

The final term above is of the form ceval exp, so we are finished and conclude with
the definition cadd b ((x, y) : xs) = (b, (x+ y) mod 2) : cadd ((x+ y) div 2) xs.

Functional pearls 5

In summary, we have derived a functional program

cadd b [] = [(b, 0)],
cadd b ((x, y) : xs) = (b, (x+ y) mod 2) : cadd ((x+ y) div 2) xs.

that satisfies the specification cadd b ⊆ ceval−1 ◦ (b+) ◦ ceval.
Picturing an instance of cadd, for example cadd b [(x0, y0), (x1, y1), (x2, y2),

(x3, y3)], illustrates that the carry-save adder has no rippling carry, and hence the
addition can be done in parallel in constant time:

HA HA HA HA

b

x0 y0 x1 y1 x2 y2 x3 y3

0

.

The component HA (x, y) = ((x + y) mod 2), (x + y) div 2)) above is usually
called a half-adder. If a large number of binary additions are to be done (such as
in a multiplier circuit), a considerable speed-up can be obtained by first converting
to carry-save numbers, and then doing all the additions using carry-save adders.
Using this technique, the carry propogation which occurs when the final carry-save
number is converted back to binary is amortized over many additions.

The carry-save adder is an example which has proved difficult to derive fully-
formally using the relational calculus Ruby (Jones and Sheeran, 1992).

4 A two-stage example: base conversion

For our second example we turn to the problem of converting numbers from one
base to another. This example turns out to be particularly interesting because in
the process of its derivation we construct an auxiliary representation changer.

A function conv that converts a number represented in base m to a number
represented in base n can be specified by the requirement that

conv ⊆ (evaln)−1 ◦ evalm,

where evalb converts a number in base b to the corresponding natural number:

evalb [] = 0,
evalb (x : xs) = x+ b ∗ (evalb xs).

The specification for conv expresses that a number in base m can be converted to
a number in base n by first evaluating the base-m number, and then converting the
resulting natural number to base-n. Since evalb is surjective a solution exists for
conv; since it is not injective, there may more than one solution.

Expressing the specification in the form of equation (3) and then using exten-
sionality gives our working specification:

evaln (conv xs) = evalm xs.

6 Graham Hutton and Erik Meijer

As for the carry-save adder, we synthesize conv by a constructive induction on
xs. In the base-case xs = [], unfolding evalm immediately results in the definition
conv [] = []. For the inductive case xs = x : xs, we calculate as follows:

evalm (x : xs)

= unfolding evalm

x+m ∗ evalm xs

= induction hypothesis

x+m ∗ evaln (conv xs)

= assumption — see below

evaln (convd (conv xs) x).

Hence we make the definition conv (x : xs) = convd (conv xs) x. In the above
derivation, in order to end up in the form evaln exp, we had to postulate the
existence of a function convd satisfying

x+m ∗ evaln ys = evaln (convd ys x). (6)

This equation expresses that convd ys is itself a representation changer, which
takes a digit in base m and yields a number in base n. The auxiliary function convd
is constructed by a double induction on its two arguments. A simple calculation
gives the base-case: convd [] 0 = []. For the first inductive case, ys = [] and
x 6= 0, manipulating the left-hand side of equation (6) results in the definition
convd [] x = xmod n : convd [] (x div n):

x+m ∗ evaln []

= unfolding evaln

x

= splitting x

xmod n+ n ∗ (x div n)

= folding evaln

xmod n+ n ∗ (m ∗ evaln [] + x div n)

= induction hypothesis

xmod n+ n ∗ (evaln (convd [] (x div n)))

= folding evaln

evaln (xmod n : convd [] (x div n)).

For the induction hypothesis to be applicable above, we must assume n > 1. For
the second inductive case, ys = y : ys, splitting x + m ∗ y into (x + m ∗ y) mod n
and (x + m ∗ y) div n ensures that the output list contains only base-n digits as
required. Such a splitting was also the essential step in establishing the previous
induction step.

Functional pearls 7

x+m ∗ evaln (y : ys)

= unfolding evaln

x+m ∗ (y + n ∗ evaln ys)

= arithmetic

(x+m ∗ y) +m ∗ n ∗ evaln ys

= splitting x+m ∗ y

(x+m ∗ y) mod n+ n ∗ ((x+m ∗ y) div n) +m ∗ n ∗ evaln ys

= arithmetic

(x+m ∗ y) mod n+ n ∗ ((x+m ∗ y) div n+m ∗ evaln ys)

= induction hypothesis

(x+m ∗ y) mod n+ n ∗ (evaln (convd ys ((x+m ∗ y) div n)))

= folding evaln

evaln ((x+m ∗ y) mod n : convd ys ((x+m ∗ y) div n)).

We conclude that convd (y : ys) x = (x+m∗y)modn : convd ys ((x+m∗y)divn).
In summary, we have synthesized the following function:

conv [] = [],
conv (x : xs) = convd (conv xs) x.

The auxiliary function convd is defined as follows:

convd [] 0 = [],
convd [] x = xmod n : convd [] (x div n),
convd (y : ys) x = (x+m ∗ y) mod n : convd ys ((x+m ∗ y) div n).

This base conversion program can be readily implemented as a circuit (Davio et al.,
1983). In our opinion, it would be a non-trivial exercise to arrive at this program
without the use of formal reasoning. The reader might like to compare the above
functional derivation with the corresponding relational derivation in (Hutton, 1992).

Acknowledgements

We would like to thank Jeroen Fokker, Maarten Fokkinga, Johan Jeuring, Lambert
Meertens, and the JFP referees, for their comments and suggestions.

8 Graham Hutton and Erik Meijer

References

Davio, M., Deschamps, J.-P., and Thayse, A. 1983. Digital Systems, with Algorithm Im-
plementation. John Wiley & Sons.

Hutton, G. 1992. Between Functions and Relations in Calculating Programs. PhD thesis,
University of Glasgow. Available as Research Report FP-93-5.

Jones, G. and Sheeran, M. 1990. Circuit design in Ruby. In Staunstrup, editor, Formal
Methods for VLSI Design, Amsterdam. Elsevier Science Publications.

Jones, G. and Sheeran, M. 1991. Relations and refinement in circuit design. In Morgan,
editor, Proc. BCS FACS Workshop on Refinement, Workshops in Computing. Springer-
Verlag.

Jones, G. and Sheeran, M. 1992. Designing arithmetic circuits by refinement in Ruby.
In Proc. Second International Conference on Mathematics of Program Construction,
Lecture Notes in Computer Science. Springer-Verlag.

Ross, K.A. and Wright, C.R.B. 1992. Discrete Mathematics. Prentice-Hall, New Jersey.

Runciman, C. and Jagger, N. 1990. Relative specification and transformational re-use of
functional programs. Lisp and Symbolic Computation, 3:21–37.

Sheeran, M. 1986. Describing and reasoning about circuits using relations. In Tucker et al.,
editors, Proc. Workshop in Theoretical Aspects of VLSI, Leeds.

