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Abstract

In functional programming, fold is a standard operator that encapsulates a simple pattern of
recursion for processing lists. This article is a tutorial on two key aspects of the fold operator
for lists. First of all, we emphasize the use of the universal property of fold both as a proof
principle that avoids the need for inductive proofs, and as a definition principle that guides
the transformation of recursive functions into definitions using fold. Secondly, we show that
even though the pattern of recursion encapsulated by fold is simple, in a language with tuples
and functions as first-class values the fold operator has greater expressive power than might
first be expected.

Capsule Review

Within the last ten to fifteen years, the algebra of datatypes has become a stable and well
understood element of the mathematics of program construction. Graham Hutton’s paper is
a highly readable, elementary introduction to the algebra centred on the well-known function
on lists. The paper distinguishes itself by focusing on how the properties are used for the
crucial task of ‘constructing’ programs, rather than on the post hoc verification of existing
programs. Several well-chosen examples are given, beginning at an elementary level and
progressing to more advanced applications. The paper concludes with a good overview and
bibliography of recent literature which develops the theory and its applications in more
depth.

1 Introduction

Many programs that involve repetition are naturally expressed using some form of

recursion, and properties proved of such programs using some form of induction.

Indeed, in the functional approach to programming, recursion and induction are the

primary tools for defining and proving properties of programs.

Not surprisingly, many recursive programs will share a common pattern of recur-

sion, and many inductive proofs will share a common pattern of induction. Repeating

the same patterns again and again is tedious, time consuming, and prone to error.

Such repetition can be avoided by introducing special recursion operators and proof

principles that encapsulate the common patterns, allowing us to concentrate on the

parts that are different for each application.

In functional programming, fold (also known as foldr) is a standard recursion
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operator that encapsulates a common pattern of recursion for processing lists.

The fold operator comes equipped with a proof principle called universality , which

encapsulates a common pattern of inductive proof concerning lists. Fold and its

universal property together form the basis of a simple but powerful calculational

theory of programs that process lists. This theory generalises from lists to a variety

of other datatypes, but for simplicity we restrict our attention to lists.

This article is a tutorial on two key aspects of the fold operator for lists. First of

all, we emphasize the use of the universal property of fold (together with the derived

fusion property) both as proof principles that avoid the need for inductive proofs,

and as definition principles that guide the transformation of recursive functions into

definitions using fold. Secondly, we show that even though the pattern of recursion

encapsulated by fold is simple, in a language with tuples and functions as first-class

values the fold operator has greater expressive power than might first be expected,

thus permitting the powerful universal and fusion properties of fold to be applied

to a larger class of programs. The article concludes with a survey of other work on

recursion operators that we do not have space to pursue here.

The article is aimed at a reader who is familiar with the basics of functional

programming, say to the level of Bird and Wadler (1988) and Bird (1998). All

programs in the article are written in Haskell (Peterson et al., 1997), the standard

lazy functional programming language. However, no special features of Haskell are

used, and the ideas can easily be adapted to other functional languages.

2 The fold operator

The fold operator has its origins in recursion theory (Kleene, 1952), while the use

of fold as a central concept in a programming language dates back to the reduction

operator of APL (Iverson, 1962), and later to the insertion operator of FP (Backus,

1978). In Haskell, the fold operator for lists can be defined as follows:

fold :: (α → β → β) → β → ([α] → β)

fold f v [ ] = v

fold f v (x : xs) = f x ( fold f v xs)

That is, given a function f of type α → β → β and a value v of type β, the function

fold f v processes a list of type [α] to give a value of type β by replacing the nil

constructor [ ] at the end of the list by the value v, and each cons constructor (:)

within the list by the function f. In this manner, the fold operator encapsulates a

simple pattern of recursion for processing lists, in which the two constructors for lists

are simply replaced by other values and functions. A number of familiar functions

on lists have a simple definition using fold . For example:

sum :: [Int] → Int product :: [Int] → Int

sum = fold (+) 0 product = fold (×) 1

and :: [Bool ] → Bool or :: [Bool ] → Bool

and = fold (∧) True or = fold (∨) False
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Recall that enclosing an infix operator ⊕ in parentheses (⊕) converts the operator

into a prefix function. This notational device, called sectioning , is often useful when

defining simple functions using fold . If required, one of the arguments to the operator

can also be enclosed in the parentheses. For example, the function (++) that appends

two lists to give a single list can be defined as follows:

(++) :: [α] → [α] → [α]

(++ ys) = fold (:) ys

In all our examples so far, the constructor (:) is replaced by a built-in function.

However, in most applications of fold the constructor (:) will be replaced by a

user-defined function, often defined as a nameless function using the λ notation, as

in the following definitions of standard list-processing functions:

length :: [α] → Int

length = fold (λx n → 1 + n) 0

reverse :: [α] → [α]

reverse = fold (λx xs → xs ++ [x]) [ ]

map :: (α → β) → ([α] → [β])

map f = fold (λx xs → f x : xs) [ ]

filter :: (α → Bool ) → ([α] → [α])

filter p = fold (λx xs → if p x then x : xs else xs) [ ]

Programs written using fold can be less readable than programs written using

explicit recursion, but can be constructed in a systematic manner, and are better

suited to transformation and proof. For example, we will see later on in the article

how the above definition for map using fold can be constructed from the standard

definition using explicit recursion, and more importantly, how the definition using

fold simplifies the process of proving properties of the map function.

3 The universal property of fold

As with the fold operator itself, the universal property of fold also has its origins

in recursion theory. The first systematic use of the universal property in functional

programming was by Malcolm (1990a), in his generalisation of Bird and Meerten’s

theory of lists (Bird, 1989; Meertens, 1983) to arbitrary regular datatypes. For

finite lists, the universal property of fold can be stated as the following equivalence

between two definitions for a function g that processes lists:

g [ ] = v

g (x : xs) = f x (g xs)
⇔ g = fold f v

In the right-to-left direction, substituting g = fold f v into the two equations for g

gives the recursive definition for fold . Conversely, in the left-to-right direction the

two equations for g are precisely the assumptions required to show that g = fold f v
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using a simple proof by induction on finite lists (Bird, 1998). Taken as a whole,

the universal property states that for finite lists the function fold f v is not just a

solution to its defining equations, but in fact the unique solution.

The key to the utility of the universal property is that it makes explicit the two

assumptions required for a certain pattern of inductive proof. For specific cases then,

by verifying the two assumptions (which can typically be done without the need for

induction) we can then appeal to the universal property to complete the inductive

proof that g = fold f v. In this manner, the universal property of fold encapsulates

a simple pattern of inductive proof concerning lists, just as the fold operator itself

encapsulates a simple pattern of recursion for processing lists.

The universal property of fold can be generalised to handle partial and infinite

lists (Bird, 1998), but for simplicity we only consider finite lists in this article.

3.1 Universality as a proof principle

The primary application of the universal property of fold is as a proof principle

that avoids the need for inductive proofs. As a simple first example, consider the

following equation between functions that process a list of numbers:

(+1) · sum = fold (+) 1

The left-hand function sums a list and then increments the result. The right-hand

function processes a list by replacing each (:) by the addition function (+) and the

empty list [ ] by the constant 1. The equation asserts that these two functions always

give the same result when applied to the same list.

To prove the above equation, we begin by observing that it matches the right-hand

side g = fold f v of the universal property of fold , with g = (+1) · sum, f = (+),

and v = 1. Hence, by appealing to the universal property, we conclude that the

equation to be proved is equivalent to the following two equations:

((+1) · sum) [ ] = 1

((+1) · sum) (x : xs) = (+) x (((+1) · sum) xs)

At first sight, these may seem more complicated than the original equation. However,

simplifying using the definitions of composition and sectioning gives

sum [ ] + 1 = 1

sum (x : xs) + 1 = x + (sum xs + 1)

which can now be verified by simple calculations, shown here in two columns:

sum [ ] + 1 sum (x : xs) + 1

= { Definition of sum } = { Definition of sum }
0 + 1 (x + sum xs) + 1

= { Arithmetic } = { Arithmetic }
1 x + (sum xs + 1)

This completes the proof. Normally this proof would have required an explicit use of

induction. However, in the above proof the use of induction has been encapsulated
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in the universal property of fold , with the result that the proof is reduced to a

simplification step followed by two simple calculations.

In general, any two functions on lists that can be proved equal by induction can

also be proved equal using the universal property of the fold operator, provided, of

course, that the functions can be expressed using fold . The expressive power of the

fold operator will be addressed later on in the article.

3.2 The fusion property of fold

Now let us generalise from the sum example and consider the following equation

between functions that process a list of values:

h · fold g w = fold f v

This pattern of equation occurs frequently when reasoning about programs written

using fold . It is not true in general, but we can use the universal property of fold

to calculate conditions under which the equation will indeed be true. The equation

matches the right-hand side of the universal property, from which we conclude that

the equation is equivalent to the following two equations:

(h · fold g w) [ ] = v

(h · fold g w) (x : xs) = f x ((h · fold g w) xs)

Simplifying using the definition of composition gives

h ( fold g w [ ]) = v

h ( fold g w (x : xs)) = f x (h ( fold g w xs))

which can now be further simplified by two calculations:

h ( fold g w [ ]) = v

⇔ { Definition of fold }
h w = v

and

h ( fold g w (x : xs)) = f x (h ( fold g w xs))

⇔ { Definition of fold }
h (g x ( fold g w xs)) = f x (h ( fold g w xs))

⇐ { Generalising ( fold g w xs) to a fresh variable y }
h (g x y) = f x (h y)

That is, using the universal property of fold we have calculated – without an explicit

use of induction – two simple conditions that are together sufficient to ensure for

all finite lists that the composition of an arbitrary function and a fold can be fused

together to give a single fold . Following this interpretation, this property is called

the fusion property of the fold operator, and can be stated as follows:

h w = v

h (g x y) = f x (h y)
⇒ h · fold g w = fold f v
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The first systematic use of the fusion property in functional programming was again

by Malcolm (1990a), generalising earlier work by Bird (1989) and Meertens (1983).

As with the universal property, the primary application of the fusion property is

as a proof principle that avoids the need for inductive proofs. In fact, for many

practical examples the fusion property is often preferable to the universal property.

As a simple first example, consider again the equation:

(+1) · sum = fold (+) 1

In the previous section this equation was proved using the universal property of

fold . However, the proof is simpler using the fusion property. First, we replace the

function sum by its definition using fold given earlier:

(+1) · fold (+) 0 = fold (+) 1

The equation now matches the conclusion of the fusion property, from which we

conclude that the equation follows from the following two assumptions:

(+1) 0 = 1

(+1) ((+) x y) = (+) x ((+1) y)

Simplifying these equations using the definition of sectioning gives 0 + 1 = 1 and

(x + y) + 1 = x + (y + 1), which are true by simple properties of arithmetic. More

generally, by replacing the use of addition in this example by an arbitrary infix

operator ⊕ that is associative, a simple application of fusion shows that:

(⊕ a) · fold (⊕) b = fold (⊕) (b ⊕ a)

For a more interesting example, consider the following well-known equation,

which asserts that the map operator distributes over function composition (·):

map f · map g = map (f · g)

By replacing the second and third occurrences of the map operator in the equation

by its definition using fold given earlier, the equation can be rewritten in a form

that matches the conclusion of the fusion property:

map f · fold (λx xs → g x : xs) [ ]

=

fold (λx xs → (f · g) x : xs) [ ]

Appealing to the fusion property and then simplifying gives the following two

equations, which are trivially true by the definitions of map and (·):

map f [ ] = [ ]

map f (g x : y) = (f · g) x : map f y

In addition to the fusion property, there are a number of other useful properties

of the fold operator that can be derived from the universal property (Bird, 1998).

However, the fusion property suffices for many practical cases, and one can always

revert to the full power of the universal property if fusion is not appropriate.
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3.3 Universality as a definition principle

As well as being used as a proof principle, the universal property of fold can also be

used as a definition principle that guides the transformation of recursive functions

into definitions using fold . As a simple first example, consider the recursively defined

function sum that calculates the sum of a list of numbers:

sum :: [Int] → Int

sum [ ] = 0

sum (x : xs) = x + sum xs

Suppose now that we want to redefine sum using fold . That is, we want to solve the

equation sum = fold f v for a function f and a value v. We begin by observing that

the equation matches the right-hand side of the universal property, from which we

conclude that the equation is equivalent to the following two equations:

sum [ ] = v

sum (x : xs) = f x (sum xs)

From the first equation and the definition of sum, it is immediate that v = 0. From

the second equation, we calculate a definition for f as follows:

sum (x : xs) = f x (sum xs)

⇔ { Definition of sum }
x + sum xs = f x (sum xs)

⇐ { † Generalising (sum xs) to y }
x + y = f x y

⇔ { Functions }
f = (+)

That is, using the universal property we have calculated that:

sum = fold (+) 0

Note that the key step (†) above in calculating a definition for f is the generalisation

of the expression sum xs to a fresh variable y. In fact, such a generalisation step is

not specific to the sum function, but will be a key step in the transformation of any

recursive function into a definition using fold in this manner.

Of course, the sum example above is rather artificial, because the definition of

sum using fold is immediate. However, there are many examples of functions whose

definition using fold is not so immediate. For example, consider the recursively

defined function map f that applies a function f to each element of a list:

map :: (α → β) → ([α] → [β])

map f [ ] = [ ]

map f (x : xs) = f x : map f xs

To redefine map f using fold we must solve the equation map f = fold g v for a

function g and a value v. By appealing to the universal property, we conclude that

this equation is equivalent to the following two equations:
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map f [ ] = v

map f (x : xs) = g x (map f xs)

From the first equation and the definition of map it is immediate that v = [ ]. From

the second equation, we calculate a definition for g as follows:

map f (x : xs) = g x (map f xs)

⇔ { Definition of map }
f x : map f xs = g x (map f xs)

⇐ { Generalising (map f xs) to ys }
f x : ys = g x ys

⇔ { Functions }
g = λx ys → f x : ys

That is, using the universal property we have calculated that:

map f = fold (λx ys → f x : ys) [ ]

In general, any function on lists that can be expressed using the fold operator can

be transformed into such a definition using the universal property of fold .

4 Increasing the power of fold: generating tuples

As a simple first example of the use of fold to generate tuples, consider the function

sumlength that calculates the sum and length of a list of numbers:

sumlength :: [Int] → (Int , Int)

sumlength xs = (sum xs, length xs)

By a straightforward combination of the definitions of the functions sum and

length using fold given earlier, the function sumlength can be redefined as a single

application of fold that generates a pair of numbers from a list of numbers:

sumlength = fold (λn (x, y) → (n + x, 1 + y)) (0, 0)

This definition is more efficient than the original definition, because it only makes a

single traversal over the argument list, rather than two separate traversals. General-

ising from this example, any pair of applications of fold to the same list can always

be combined to give a single application of fold that generates a pair, by appealing

to the so-called ‘banana split’ property of fold (Meijer, 1992). The strange name of

this property derives from the fact that the fold operator is sometimes written using

brackets (| |) that resemble bananas, and the pairing operator is sometimes called

split. Hence, their combination can be termed a banana split!

As a more interesting example, let us consider the function dropWhile p that

removes initial elements from a list while all the elements satisfy the predicate p:

dropWhile :: (α → Bool ) → ([α] → [α])

dropWhile p [ ] = [ ]

dropWhile p (x : xs) = if p x then dropWhile p xs else x : xs
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Suppose now that we want to redefine dropWhile p using the fold operator. By

appealing to the universal property, we conclude that the equation dropWhile p =

fold f v is equivalent to the following two equations:

dropWhile p [ ] = v

dropWhile p (x : xs) = f x (dropWhile p xs)

¿From the first equation it is immediate that v = [ ]. From the second equation, we

attempt to calculate a definition for f in the normal manner:

dropWhile p (x : xs) = f x (dropWhile p xs)

⇔ { Definition of dropWhile }
if p x then dropWhile p xs else x : xs = f x (dropWhile p xs)

⇐ { Generalising (dropWhile p xs) to ys }
if p x then ys else x : xs = f x ys

Unfortunately, the final line above is not a valid definition for f, because the variable

xs occurs freely. In fact, it is not possible to redefine dropWhile p directly using fold .

However, it is possible indirectly, because the more general function

dropWhile′ :: (α → Bool ) → ([α] → ([α], [α]))

dropWhile′ p xs = (dropWhile p xs, xs)

that pairs up the result of applying dropWhile p to a list with the list itself can be

redefined using fold . By appealing to the universal property, we conclude that the

equation dropWhile′ p = fold f v is equivalent to the following two equations:

dropWhile′ p [ ] = v

dropWhile′ p (x : xs) = f x (dropWhile′ p xs)

A simple calculation from the first equation gives v = ([ ], [ ]). From the second

equation, we calculate a definition for f as follows:

dropWhile′ p (x : xs) = f x (dropWhile′ p xs)

⇔ { Definition of dropWhile′ }
(dropWhile p (x : xs), x : xs) = f x (dropWhile p xs, xs)

⇔ { Definition of dropWhile }
(if p x then dropWhile p xs else x : xs, x : xs)

= f x (dropWhile p xs, xs)

⇐ { Generalising (dropWhile p xs) to ys }
(if p x then ys else x : xs, x : xs) = f x (ys, xs)

Note that the final line above is a valid definition for f, because all the variables

are bound. In summary, using the universal property we have calculated that:

dropWhile′ p = fold f v

where

f x (ys, xs) = (if p x then ys else x : xs, x : xs)

v = ([ ], [ ])
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This definition satisfies the equation dropWhile′ p xs = (dropWhile p xs, xs), but

does not make use of dropWhile in its definition. Hence, the function dropWhile itself

can now be redefined simply by dropWhile p = fst · dropWhile′ p.

In conclusion, by first generalising to a function dropWhile′ that pairs the desired

result with the argument list, we have now shown how the function dropWhile can

be redefined in terms of fold , as required. In fact, this result is an instance of a

general theorem (Meertens, 1992) that states that any function on finite lists that is

defined by pairing the desired result with the argument list can always be redefined

in terms of fold , although not always in a way that does not make use of the original

(possibly recursive) definition for the function.

4.1 Primitive recursion

In this section we show that by using the tupling technique from the previous section,

every primitive recursive function on lists can be redefined in terms of fold . Let us

begin by recalling that the fold operator captures the following simple pattern of

recursion for defining a function h that processes lists:

h [ ] = v

h (x : xs) = g x (h xs)

Such functions can be redefined by h = fold g v. We will generalise this pattern

of recursion to primitive recursion in two steps. First of all, we introduce an extra

argument y to the function h, which in the base case is processed by a new function

f, and in the recursive case is passed unchanged to the functions g and h. That is,

we now consider the following pattern of recursion for defining a function h:

h y [ ] = f y

h y (x : xs) = g y x (h y xs)

By simple observation, or a routine application of the universal property of fold ,

the function h y can be redefined using fold as follows:

h y = fold (g y) (f y)

For the second step, we introduce the list xs as an extra argument to the auxiliary

function g. That is, we now consider the following pattern for defining h:

h y [ ] = f y

h y (x : xs) = g y x xs (h y xs)

This pattern of recursion on lists is called primitive recursion (Kleene, 1952). Tech-

nically, the standard definition of primitive recursion requires that the argument y

is a finite sequence of arguments. However, because tuples are first-class values in

Haskell, treating the case of a single argument y is sufficient.

In order to redefine primitive recursive functions in terms of fold , we must solve

the equation h y = fold i j for a function i and a value j. This is not possible

directly, but is possible indirectly, because the more general function

k y xs = (h y xs, xs)
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that pairs up the result of applying h y to a list with the list itself can be redefined

using fold . By appealing to the universal property of fold , we conclude that the

equation k y = fold i j is equivalent to the following two equations:

k y [ ] = j

k y (x : xs) = i x (k y xs)

A simple calculation from the first equation gives j = (f y, [ ]). ¿From the second

equation, we calculate a definition for i as follows:

k y (x : xs) = i x (k y xs)

⇔ { Definition of k }
(h y (x : xs), x : xs) = i x (h y xs, xs)

⇔ { Definition of h }
(g y x xs (h y xs), x : xs) = i x (h y xs, xs)

⇐ { Generalising (h y xs) to z }
(g y x xs z, x : xs) = i x (z, xs)

In summary, using the universal property we have calculated that:

k y = fold i j

where

i x (z, xs) = (g y x xs z, x : xs)

j = (f y, [ ])

This definition satisfies the equation k y xs = (h y xs, xs), but does not make

use of h in its definition. Hence, the primitive recursive function h itself can now be

redefined simply by h y = fst · k y. In conclusion, we have now shown how an

arbitrary primitive recursive function on lists can be redefined in terms of fold .

Note that the use of tupling to define primitive recursive functions in terms

of fold is precisely the key to defining the predecessor function for the Church

numerals (Barendregt, 1984). Indeed, the intuition behind the representation of the

natural numbers (or more generally, any inductive datatype) in the λ-calculus is the

idea of representing each number by its fold operator. For example, the number

3 = succ (succ (succ zero)) is represented by the term λf x → f (f (f x)), which is

the fold operator for 3 in the sense that the arguments f and x can be viewed as

the replacements for the succ and zero constructors respectively.

5 Using fold to generate functions

Having functions as first-class values increases the power of primitive recursion,

and hence the power of the fold operator. As a simple first example of the use of

fold to generate functions, the function compose that forms the composition of a

list of functions can be defined using fold by replacing each (:) in the list by the

composition function (·), and the empty list [ ] by the identity function id:

compose :: [α → α] → (α → α)

compose = fold (·) id
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As a more interesting example, let us consider the problem of summing a list of

numbers. The natural definition for such a function, sum = fold (+) 0, processes

the numbers in the list in right-to-left order. However, it is also possible to define a

function suml that processes the numbers in left-to-right order. The suml function is

naturally defined using an auxiliary function suml′ that is itself defined by explicit

recursion and makes use of an accumulating parameter n:

suml :: [Int] → Int

suml xs = suml′ xs 0

where

suml′ [ ] n = n

suml′ (x : xs) n = suml′ xs (n + x)

Because the addition function (+) is associative and the constant 0 is unit for

addition, the functions suml and sum always give the same result when applied to

the same list. However, the function suml has the potential to be more efficient,

because it can easily be modified to run in constant space (Bird, 1998).

Suppose now that we want to redefine suml using the fold operator. This is not

possible directly, but is possible indirectly, because the auxiliary function

suml′ :: [Int] → (Int → Int)

can be redefined using fold . By appealing to the universal property, we conclude

that the equation suml′ = fold f v is equivalent to the following two equations:

suml′ [ ] = v

suml′ (x : xs) = f x (suml′ xs)

A simple calculation from the first equation gives v = id. From the second equation,

we calculate a definition for the function f as follows:

suml′ (x : xs) = f x (suml′ xs)

⇔ { Functions }
suml′ (x : xs) n = f x (suml′ xs) n

⇔ { Definition of suml′ }
suml′ xs (n + x) = f x (suml′ xs) n

⇐ { Generalising (suml′ xs) to g }
g (n + x) = f x g n

⇔ { Functions }
f = λx g → (λn → g (n + x))

In summary, using the universal property we have calculated that:

suml′ = fold (λx g → (λn → g (n + x))) id

This definition states that suml′ processes a list by replacing the empty list [ ] by

the identity function id on lists, and each constructor (:) by the function that takes

a number x and a function g, and returns the function that takes an accumulator

value n and returns the result of applying g to the new accumulator value n + x.

Note that the structuring of the arguments to suml′ :: [Int] → (Int → Int) is

crucial to its definition using fold . In particular, if the order of the two arguments is
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swapped or they are supplied as a pair, then the type of suml′ means that it can no

longer be defined directly using fold . In general, some care regarding the structuring

of arguments is required when aiming to redefine functions using fold . Moreover,

at first sight one might imagine that fold can only be used to define functions that

process the elements of lists in right-to-left order. However, as the definition of suml′

using fold shows, the order in which the elements are processed depends on the

arguments of fold , not on fold itself.

In conclusion, by first redefining the auxiliary function suml′ using fold , we have

now shown how the function suml can be redefined in terms of fold , as required:

suml xs = fold (λx g → (λn → g (n + x))) id xs 0

We end this section by remarking that the use of fold to generate functions

provides an elegant technique for the implementation of ‘attribute grammars’ in

functional languages (Fokkinga et al., 1991; Swierstra et al., 1998).

5.1 The foldl operator

Now let us generalise from the suml example and consider the standard operator

foldl that processes the elements of a list in left-to-right order by using a function f

to combine values, and a value v as the starting value:

foldl :: (β → α → β) → β → ([α] → β)

foldl f v [ ] = v

foldl f v (x : xs) = foldl f (f v x) xs

Using this operator, suml can be redefined simply by suml = foldl (+) 0. Many other

functions can be defined in a simple way using foldl . For example, the standard

function reverse can redefined using foldl as follows:

reverse :: [α] → [α]

reverse = foldl (λxs x → x : xs) [ ]

This definition is more efficient than our original definition using fold , because it

avoids the use of the inefficient append operator (++) for lists.

A simple generalisation of the calculation in the previous section for the function

suml shows how to redefine the function foldl in terms of fold :

foldl f v xs = fold (λx g → (λa → g (f a x))) id xs v

In contrast, it is not possible to redefine fold in terms of foldl , due to the fact that

foldl is strict in the tail of its list argument but fold is not. There are a number

of useful ‘duality theorems’ concerning fold and foldl , and also some guidelines for

deciding which operator is best suited to particular applications (Bird, 1998).

5.2 Ackermann’s function

For our final example of the power of fold , consider the function ack that processes

two lists of integers, and is defined using explicit recursion as follows:
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ack :: [Int] → ([Int] → [Int])

ack [ ] ys = 1 : ys

ack (x : xs) [ ] = ack xs [1]

ack (x : xs) (y : ys) = ack xs (ack (x : xs) ys)

This is Ackermann’s function, converted to operate on lists rather than natural

numbers by representing each number n by a list with n arbitrary elements. This

function is the classic example of a function that is not primitive recursion in a

first-order programming language. However, in a higher-order language such as

Haskell, Ackermann’s function is indeed primitive recursive (Reynolds, 1985). In

this section we show how to calculate the definition ack in terms of fold .

First of all, by appealing to the universal property of fold , the equation ack =

fold f v is equivalent to the following two equations:

ack [ ] = v

ack (x : xs) = f x (ack xs)

A simple calculation from the first equation gives the definition v = (1 :). From the

second equation, proceeding in the normal manner does not result in a definition

for the function f, as the reader may wish to verify. However, progress can be

made by first using fold to redefine the function ack (x : xs) on the left-hand

side of the second equation. By appealing to the universal property, the equation

ack (x : xs) = fold g w is equivalent to the following two equations:

ack (x : xs) [ ] = w

ack (x : xs) (y : ys) = g y (ack (x : xs) ys)

The first equation gives w = ack xs [1], and from the second:

ack (x : xs) (y : ys) = g y (ack (x : xs) ys)

⇔ { Definition of ack }
ack xs (ack (x : xs) ys) = g y (ack (x : xs) ys)

⇐ { Generalising (ack (x : xs) ys) to zs }
ack xs zs = g y zs

⇔ { Functions }
g = λy → ack xs

That is, using the universal property we have calculated that:

ack (x : xs) = fold (λy → ack xs) (ack xs [1])

Using this result, we can now calculate a definition for f:

ack (x : xs) = f x (ack xs)

⇔ { Result above }
fold (λy → ack xs) (ack xs [1]) = f x (ack xs)

⇐ { Generalising (ack xs) to g }
fold (λy → g) (g [1]) = f x g

⇔ { Functions }
f = λx g → fold (λy → g) (g [1])

In summary, using the universal property twice we have calculated that:

ack = fold (λx g → fold (λy → g) (g [1])) (1 :)
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6 Other work on recursion operators

In this final section we briefly survey a selection of other work on recursion operators

that we did not have space to pursue in this article.

Fold for regular datatypes. The fold operator is not specific to lists, but can

be generalised in a uniform way to ‘regular’ datatypes. Indeed, using ideas from

category theory, a single fold operator can be defined that can be used with any

regular datatype (Malcolm, 1990b; Meijer et al., 1991; Sheard and Fegaras, 1993).

Fold for nested datatypes. The fold operator can also be generalised in a natural

way to ‘nested’ datatypes. However, the resulting operator appears to be too general

to be widely useful. Finding solutions to this problem is the subject of current

research (Bird and Meertens, 1998; Jones and Blampied, 1998).

Fold for functional datatypes. Generalising the fold operator to datatypes that

involve functions gives rise to technical problems, due to the contravariant nature

of function types. Using ideas from category theory, a fold operator can be defined

that works for such datatypes (Meijer and Hutton, 1995a), but the the use of this

operator is not well understood, and practical applications are lacking. However,

a simpler but less general solution has given rise to some interesting applications

concerning cyclic structures (Fegaras and Sheard, 1996).

Monadic fold. In a series of influential articles, Wadler showed how pure functional

programs that require imperative features such as state and exceptions can be

modelled using monads (Wadler, 1990, 1992a, 1992b). Building on this work, the

notion of a ‘monadic fold’ combines the use of fold operators to structure the

processing of recursive values with the use of monads to structure the use of

imperative features (Fokkinga, 1994; Meijer and Jeuring, 1995b).

Relational fold. The fold operator can also be generalised in a natural way from

functions to relations. This generalisation supports the use of fold as a specification

construct, in addition to its use as a programming construct. For example, a relational

fold is used in the circuit design calculus Ruby (Jones and Sheeran, 1990; Jones,

1990), the Eindhoven spec calculus (Aarts et al., 1992), and in a recent textbook on

the algebra of programming (Bird and de Moor, 1997).

Other recursion operators. The fold operator is not the only useful recursion oper-

ator. For example, the dual operator unfold for constructing rather than processing

recursive values has been used for specification purposes (Jones, 1990; Bird and

de Moor, 1997), to program reactive systems (Kieburtz, 1998), to program opera-

tional semantics (Hutton, 1998), and is the subject of current research. Other in-

teresting recursion operators include the so-called paramorphisms (Meertens, 1992),

hylomorphisms (Meijer, 1992), and zygomorphisms (Malcolm, 1990a).

Automatic program transformation. Writing programs using recursion operators can

simplify the process of optimisation during compilation. For example, eliminating

the use of intermediate data structures in programs (deforestation) in considerably

simplified when programs are written using recursion operators rather than general

recursion (Wadler, 1981; Launchbury and Sheard, 1995; Takano and Meijer, 1995).

A generic system for transforming programs written using recursion operators is

currently under development (de Moor and Sittampalan, 1998).
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Polytypic programming. Defining programs that are not specific to particular

datatypes has given rise to a new field, called polytypic programming (Backhouse

et al., 1998). Formally, a polytypic program is one that is parameterised by one

or more datatypes. Polytypic programs have already been defined for a number of

applications, including pattern matching (Jeuring, 1995), unification (Jansson and

Jeuring, 1998), and various optimisation problems (Bird and de Moor, 1997).

Programming languages. A number of experimental programming languages have

been developed that focus on the use of recursion operators rather than general re-

cursion. Examples include the algebraic design language ADL (Kieburtz and Lewis,

1994), the categorical programming language Charity (Cockett and Fukushima,

1992), and the polytypic programming language PolyP (Jansson and Jeuring, 1997).
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