
Appendix B Standard prelude

In this appendix we present some of the most commonly used definitions from the
Haskell standard prelude. For expository purposes, a number of the definitions
are presented in simplified form. The full version of the prelude is available from
the Haskell home page, http://www.haskell.org.

B.1 Basic classes

Equality types:

class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

Ordered types:

class Eq a => Ord a where

(<), (<=), (>), (>=) :: a -> a -> Bool

min, max :: a -> a -> a

min x y | x <= y = x

| otherwise = y

max x y | x <= y = y

| otherwise = x

Showable types:

class Show a where

show :: a -> String

Readable types:

class Read a where

read :: String -> a

Numeric types:

B.2 Booleans 281

class Num a where

(+), (-), (*) :: a -> a -> a

negate, abs, signum :: a -> a

Integral types:

class Num a => Integral a where

div, mod :: a -> a -> a

Fractional types:

class Num a => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

recip n = 1/n

B.2 Booleans

Type declaration:

data Bool = False | True

deriving (Eq, Ord, Show, Read)

Logical conjunction:

(&&) :: Bool -> Bool -> Bool

False && _ = False

True && b = b

Logical disjunction:

(||) :: Bool -> Bool -> Bool

False || b = b

True || _ = True

Logical negation:

not :: Bool -> Bool

not False = True

not True = False

Guard that always succeeds:

otherwise :: Bool

otherwise = True

282 Standard prelude

B.3 Characters

Type declaration:

data Char = ...

deriving (Eq, Ord, Show, Read)

The definitions below are provided in the library Data.Char, which can be loaded
by entering the following in GHCi or at the start of a script:

import Data.Char

Decide if a character is a lower-case letter:

isLower :: Char -> Bool

isLower c = c >= ’a’ && c <= ’z’

Decide if a character is an upper-case letter:

isUpper :: Char -> Bool

isUpper c = c >= ’A’ && c <= ’Z’

Decide if a character is alphabetic:

isAlpha :: Char -> Bool

isAlpha c = isLower c || isUpper c

Decide if a character is a digit:

isDigit :: Char -> Bool

isDigit c = c >= ’0’ && c <= ’9’

Decide if a character is alpha-numeric:

isAlphaNum :: Char -> Bool

isAlphaNum c = isAlpha c || isDigit c

Decide if a character is spacing:

isSpace :: Char -> Bool

isSpace c = elem c " \t\n"

Convert a character to a Unicode number:

ord :: Char -> Int

ord c = ...

Convert a Unicode number to a character:

chr :: Int -> Char

chr n = ...

Convert a digit to an integer:

B.4 Strings 283

digitToInt :: Char -> Int

digitToInt c | isDigit c = ord c - ord ’0’

Convert an integer to a digit:

intToDigit :: Int -> Char

intToDigit n | n >= 0 && n <= 9 = chr (ord ’0’ + n)

Convert a letter to lower-case:

toLower :: Char -> Char

toLower c | isUpper c = chr (ord c - ord ’A’ + ord ’a’)

| otherwise = c

Convert a letter to upper-case:

toUpper :: Char -> Char

toUpper c | isLower c = chr (ord c - ord ’a’ + ord ’A’)

| otherwise = c

B.4 Strings

Type declaration:

type String = [Char]

B.5 Numbers

Type declarations:

data Int = ...

deriving (Eq, Ord, Show, Read, Num, Integral)

data Integer = ...

deriving (Eq, Ord, Show, Read, Num, Integral)

data Float = ...

deriving (Eq, Ord, Show, Read, Num, Fractional)

data Double = ...

deriving (Eq, Ord, Show, Read, Num, Fractional)

Decide if an integer is even:

even :: Integral a => a -> Bool

even n = n ‘mod‘ 2 == 0

284 Standard prelude

Decide if an integer is odd:

odd :: Integral a => a -> Bool

odd = not . even

Exponentiation:

(^) :: (Num a, Integral b) => a -> b -> a

_ ^ 0 = 1

x ^ n = x * (x ^ (n-1))

B.6 Tuples

Type declarations:

data () = ...

deriving (Eq, Ord, Show, Read)

data (a,b) = ...

deriving (Eq, Ord, Show, Read)

data (a,b,c) = ...

deriving (Eq, Ord, Show, Read)

Select the first component of a pair:

fst :: (a,b) -> a

fst (x,_) = x

Select the second component of a pair:

snd :: (a,b) -> b

snd (_,y) = y

Convert a function on pairs to a curried function:

curry :: ((a,b) -> c) -> (a -> b -> c)

curry f = \x y -> f (x,y)

Convert a curried function to a function on pairs:

uncurry :: (a -> b -> c) -> ((a,b) -> c)

uncurry f = \(x,y) -> f x y

B.7 Maybe

Type declaration:

B.8 Lists 285

data Maybe a = Nothing | Just a

deriving (Eq, Ord, Show, Read)

B.8 Lists

Type declaration:

data [a] = [] | a:[a]

deriving (Eq, Ord, Show, Read)

Select the first element of a non-empty list:

head :: [a] -> a

head (x:_) = x

Select the last element of a non-empty list:

last :: [a] -> a

last [x] = x

last (_:xs) = last xs

Select the nth element of a non-empty list:

(!!) :: [a] -> Int -> a

(x:_) !! 0 = x

(_:xs) !! n = xs !! (n-1)

Select the first n elements of a list:

take :: Int -> [a] -> [a]

take 0 _ = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

Select all elements of a list that satisfy a predicate:

filter :: (a -> Bool) -> [a] -> [a]

filter p xs = [x | x <- xs, p x]

Select elements of a list while they satisfy a predicate:

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile _ [] = []

takeWhile p (x:xs) | p x = x : takeWhile p xs

| otherwise = []

Remove the first element from a non-empty list:

tail :: [a] -> [a]

tail (_:xs) = xs

286 Standard prelude

Remove the last element from a non-empty list:

init :: [a] -> [a]

init [_] = []

init (x:xs) = x : init xs

Remove the first n elements from a list:

drop :: Int -> [a] -> [a]

drop 0 xs = xs

drop _ [] = []

drop n (_:xs) = drop (n-1) xs

Remove elements from a list while they satisfy a predicate:

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile _ [] = []

dropWhile p (x:xs) | p x = dropWhile p xs

| otherwise = x:xs

Split a list at the nth element:

splitAt :: Int -> [a] -> ([a],[a])

splitAt n xs = (take n xs, drop n xs)

Produce an infinite list of identical elements:

repeat :: a -> [a]

repeat x = xs where xs = x:xs

Produce a list with n identical elements:

replicate :: Int -> a -> [a]

replicate n = take n . repeat

Produce an infinite list by iterating a function over a value:

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

Produce a list of pairs from a pair of lists:

zip :: [a] -> [b] -> [(a,b)]

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

Append two lists:

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

B.9 Functions 287

Reverse a list:

reverse :: [a] -> [a]

reverse = foldl (\xs x -> x:xs) []

Apply a function to all elements of a list:

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

B.9 Functions

Type declaration:

data a -> b = ...

Identity function:

id :: a -> a

id = \x -> x

Function composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \x -> f (g x)

Constant functions:

const :: a -> (b -> a)

const x = _ -> x

Strict application:

($!) :: (a -> b) -> a -> b

f $! x = ...

Flip the arguments of a curried function:

flip :: (a -> b -> c) -> (b -> a -> c)

flip f = \y x -> f x y

B.10 Input/output

Type declaration:

data IO a = ...

Read a character from the keyboard:

getChar :: IO Char

getChar = ...

288 Standard prelude

Read a string from the keyboard:

getLine :: IO String

getLine = do x <- getChar

if x == ’\n’ then

return ""

else

do xs <- getLine

return (x:xs)

Read a value from the keyboard:

readLn :: Read a => IO a

readLn = do xs <- getLine

return (read xs)

Write a character to the screen:

putChar :: Char -> IO ()

putChar c = ...

Write a string to the screen:

putStr :: String -> IO ()

putStr "" = return ()

putStr (x:xs) = do putChar x

putStr xs

Write a string to the screen and move to a new line:

putStrLn :: String -> IO ()

putStrLn xs = do putStr xs

putChar ’\n’

Write a value to the screen:

print :: Show a => a -> IO ()

print = putStrLn . show

Display an error message and terminate the program:

error :: String -> a

error xs = ...

B.11 Functors

Class declaration:

class Functor f where

fmap :: (a -> b) -> f a -> f b

B.12 Applicatives 289

Maybe functor:

instance Functor Maybe where

-- fmap :: (a -> b) -> Maybe a -> Maybe b

fmap _ Nothing = Nothing

fmap g (Just x) = Just (g x)

List functor:

instance Functor [] where

-- fmap :: (a -> b) -> [a] -> [b]

fmap = map

IO functor:

instance Functor IO where

-- fmap :: (a -> b) -> IO a -> IO b

fmap g mx = do {x <- mx; return (g x)}

Infix version of fmap:

(<$>) :: Functor f => (a -> b) -> f a -> f b

g <$> x = fmap g x

B.12 Applicatives

Class declaration:

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Maybe applicative:

instance Applicative Maybe where

-- pure :: a -> Maybe a

pure = Just

-- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

Nothing <*> _ = Nothing

(Just g) <*> mx = fmap g mx

List applicative:

instance Applicative [] where

-- pure :: a -> [a]

pure x = [x]

-- (<*>) :: [a -> b] -> [a] -> [b]

290 Standard prelude

gs <*> xs = [g x | g <- gs, x <- xs]

IO applicative:

instance Applicative IO where

-- pure :: a -> IO a

pure = return

-- (<*>) :: IO (a -> b) -> IO a -> IO b

mg <*> mx = do {g <- mg; x <- mx; return (g x)}

B.13 Monads

Class declaration:

class Applicative m => Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

return = pure

Maybe monad:

instance Monad Maybe where

-- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= _ = Nothing

(Just x) >>= f = f x

List monad:

instance Monad [] where

-- (>>=) :: [a] -> (a -> [b]) -> [b]

xs >>= f = [y | x <- xs, y <- f x]

IO monad:

instance Monad IO where

-- return :: a -> IO a

return x = ...

-- (>>=) :: IO a -> (a -> IO b) -> IO b

mx >>= f = ...

B.14 Alternatives

The declarations below are provided in the library Control.Applicative, which
can be loaded by entering the following in GHCi or at the start of a script:

B.15 MonadPlus 291

import Control.Applicative

Class declaration:

class Applicative f => Alternative f where

empty :: f a

(<|>) :: f a -> f a -> f a

many :: f a -> f [a]

some :: f a -> f [a]

many x = some x <|> pure []

some x = pure (:) <*> x <*> many x

Maybe alternative:

instance Alternative Maybe where

-- empty :: Maybe a

empty = Nothing

-- (<|>) :: Maybe a -> Maybe a -> Maybe a

Nothing <|> my = my

(Just x) <|> _ = Just x

List alternative:

instance Alternative [] where

-- empty :: [a]

empty = []

-- (<|>) :: [a] -> [a] -> [a]

(<|>) = (++)

B.15 MonadPlus

The declarations below are provided in the library Control.Monad, which can
be loaded by entering the following in GHCi or at the start of a script:

import Control.Monad

Class declaration:

class (Alternative m, Monad m) => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

mzero = empty

mplus = (<|>)

292 Standard prelude

Maybe monadplus:

instance MonadPlus Maybe

List monadplus:

instance MonadPlus []

B.16 Monoids

Class declaration:

class Monoid a where

mempty :: a

mappend :: a -> a -> a

mconcat :: [a] -> a

mconcat = foldr mappend mempty

The declarations below are provided in a library Data.Monoid, which can be
loaded by entering the following in GHCi or at the start of a script:

import Data.Monoid

Maybe monoid:

instance Monoid a => Monoid (Maybe a) where

-- mempty :: Maybe a

mempty = Nothing

-- mappend :: Maybe a -> Maybe a -> Maybe a

Nothing ‘mappend‘ my = my

mx ‘mappend‘ Nothing = mx

Just x ‘mappend‘ Just y = Just (x ‘mappend‘ y)

List monoid:

instance Monoid [a] where

-- mempty :: [a]

mempty = []

-- mappend :: [a] -> [a] -> [a]

mappend = (++)

Numeric monoid for addition:

newtype Sum a = Sum a

deriving (Eq, Ord, Show, Read)

B.16 Monoids 293

getSum :: Sum a -> a

getSum (Sum x) = x

instance Num a => Monoid (Sum a) where

-- mempty :: Sum a

mempty = Sum 0

-- mappend :: Sum a -> Sum a -> Sum a

Sum x ‘mappend‘ Sum y = Sum (x+y)

Numeric monoid for multiplication:

newtype Product a = Product a

deriving (Eq, Ord, Show, Read)

getProduct :: Product a -> a

getProduct (Product x) = x

instance Num a => Monoid (Product a) where

-- mempty :: Product a

mempty = Product 1

-- mappend :: Product a -> Product a -> Product a

Product x ‘mappend‘ Product y = Product (x*y)

Boolean monoid for conjunction:

newtype All = All Bool

deriving (Eq, Ord, Show, Read)

getAll :: All -> Bool

getAll (All b) = b

instance Monoid All where

-- mempty :: All

mempty = All True

-- mappend :: All -> All -> All

All b ‘mappend‘ All c = All (b && c)

Boolean monoid for disjunction:

newtype Any = Any Bool

deriving (Eq, Ord, Show, Read)

getAny :: Any -> Bool

getAny (Any b) = b

294 Standard prelude

instance Monoid Any where

-- mempty :: Any

mempty = Any False

-- mappend :: Any -> Any -> Any

Any b ‘mappend‘ Any c = Any (b || c)

Infix version of mappend:

(<>) :: Monoid a => a -> a -> a

x <> y = x ‘mappend‘ y

B.17 Foldables

The declarations below are provided in the library Data.Foldable, which can
be loaded by entering the following in GHCi or at the start of a script:

import Data.Foldable

Class declaration:

class Foldable t where

foldMap :: Monoid b => (a -> b) -> t a -> b

foldr :: (a -> b -> b) -> b -> t a -> b

fold :: Monoid a => t a -> a

foldl :: (a -> b -> a) -> a -> t b -> a

foldr1 :: (a -> a -> a) -> t a -> a

foldl1 :: (a -> a -> a) -> t a -> a

toList :: t a -> [a]

null :: t a -> Bool

length :: t a -> Int

elem :: Eq a => a -> t a -> Bool

maximum :: Ord a => t a -> a

minimum :: Ord a => t a -> a

sum :: Num a => t a -> a

product :: Num a => t a -> a

Default definitions:

foldMap f = foldr (mappend . f) mempty

foldr f v = foldr f v . toList

fold = foldMap id

B.17 Foldables 295

foldl f v = foldl f v . toList

foldr1 f = foldr1 f . toList

foldl1 f = foldl1 f . toList

toList = foldMap (\x -> [x])

null = null . toList

length = length . toList

elem x = elem x . toList

maximum = maximum . toList

minimum = minimum . toList

sum = sum . toList

product = product . toList

The minimal complete definition for an instance is to define foldMap or foldr,
as all other functions in the class can be derived from either of these two using
the above default definitions and the following instance for lists.

List foldable:

instance Foldable [] where

-- foldMap :: Monoid b => (a -> b) -> [a] -> b

foldMap _ [] = mempty

foldMap f (x:xs) = f x ‘mappend‘ foldMap f xs

-- foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

-- fold :: Monoid a => [a] -> a

fold = foldMap id

-- foldl :: (a -> b -> a) -> a -> [b] -> a

foldl _ v [] = v

foldl f v (x:xs) = foldl f (f v x) xs

-- foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 _ [x] = x

foldr1 f (x:xs) = f x (foldr1 f xs)

-- foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 f (x:xs) = foldl f x xs

-- toList :: [a] -> [a]

toList = id

296 Standard prelude

-- null :: [a] -> Bool

null [] = True

null (_:_) = False

-- length :: [a] -> Int

length = foldl (\n _ -> n+1) 0

-- elem :: Eq a => a -> [a] -> Bool

elem x xs = any (==x) xs

-- maximum :: Ord a => [a] -> a

maximum = foldl1 max

-- minimum :: Ord a => [a] -> a

minimum = foldl1 min

-- sum :: Num a => [a] -> a

sum = foldl (+) 0

-- product :: Num a => [a] -> a

product = foldl (*) 1

Decide if all logical values in a structure are True:

and :: Foldable t => t Bool -> Bool

and = getAll . foldMap All

Decide if any logical value in a structure is True:

or :: Foldable t => t Bool -> Bool

or = getAny . foldMap Any

Decide if all elements in a structure satisfy a predicate:

all :: Foldable t => (a -> Bool) -> t a -> Bool

all p = getAll . foldMap (All . p)

Decide if any element in a structure satisfies a predicate:

any :: Foldable t => (a -> Bool) -> t a -> Bool

any p = getAny . foldMap (Any . p)

Concatenate a structure whose elements are lists:

concat :: Foldable t => t [a] -> [a]

concat = fold

B.18 Traversables 297

B.18 Traversables

Class declaration:

class (Functor t, Foldable t) => Traversable t where

traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

sequenceA :: Applicative f => t (f a) -> f (t a)

mapM :: Monad m => (a -> m b) -> t a -> m (t b)

sequence :: Monad m => t (m a) -> m (t a)

Default definitions:

traverse g = sequenceA . fmap g

sequenceA = traverse id

mapM = traverse

sequence = sequenceA

The minimal complete definition for an instance of the class is to define traverse
or sequenceA, as all other functions in the class can be derived from either of
these two using the above default definitions.

Maybe traversable:

instance Traversable Maybe where

-- traverse :: Applicative f =>

-- (a -> f b) -> Maybe a -> f (Maybe b)

traverse _ Nothing = pure Nothing

traverse g (Just x) = pure Just <*> g x

List traversable:

instance Traversable [] where

-- traverse :: Applicative f => (a -> f b) -> [a] -> f [b]

traverse _ [] = pure []

traverse g (x:xs) = pure (:) <*> g x <*> traverse g xs

