
Electronic Notes in Theoretical Computer Science 44 No. 1 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume44.html 14 pages

When is a function a fold or an unfold?

Jeremy Gibbons a, Graham Hutton b, and Thorsten Altenkirch b

a Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford
OX1 3QD, United Kingdom

b Languages and Programming Group, School of Computer Science and IT,
University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham

NG8 1BB, United Kingdom

Abstract

We give a necessary and sufficient condition for when a set-theoretic function can
be written using the recursion operator fold, and a dual condition for the recursion
operator unfold. The conditions are simple, practically useful, and generic in the
underlying datatype.

1 Introduction

The recursion operator fold encapsulates a common pattern for defining pro-
grams that consume values of a least fixpoint type such as finite lists. Dually,
the recursion operator unfold encapsulates a common pattern for defining pro-
grams that produce values of a greatest fixpoint type such as streams (infinite
lists). Theory and applications of fold abound — see [11,4] for recent sur-
veys — while in recent years it has become increasingly clear that the less
well-known concept of unfold is just as useful [5,6,10,13,15].

Given the interest in fold and unfold, it is natural to ask when a program
can be written using one of these operators. Surprisingly little is known about
this question. This article gives a complete answer for the special case in which
programs are total functions between sets. In particular, we give a necessary
and sufficient condition for when a set-theoretic function can be written using
fold, and a dual condition for unfold. The conditions are simple, practically
useful, and generic in the underlying datatype. However, our proofs are set-
theoretic, and make essential use of classical logic and the Axiom of Choice;
hence our results do not generalize to categories of constructive functions 1 .

1 Such as the effective topos or the category of ω-sets.

c©2001 Published by Elsevier Science B. V.

Gibbons, Hutton and Altenkirch

2 Fold and unfold

In this section we review the categorical treatment of fold and unfold in terms
of initial algebras and final coalgebras; for further details see [18,20,14,1].

Suppose that we fix a category C and a functor F : C → C. An algebra
is pair (A, f) comprising an object A and an arrow f : F A → A, and a
homomorphism h : (A, f) → (B, g) from one such algebra to another is an
arrow h : A → B such that the following square commutes:

F A
F h //

f

��

F B

g

��

A h
// B

An initial algebra is an initial object in the category with algebras as
objects and homomorphisms as arrows. We write (µF, in) for an initial algebra,
and fold f for the unique homomorphism h : (µF, in) → (A, f) from the initial
algebra to any other algebra (A, f). That is, fold f is defined as the unique
arrow that makes the following square commute:

F (µF) F (fold f)
//

in

��

F A

f

��

µF fold f
// A

The dual notions of coalgebra, cohomomorphism, and terminal coalgebra
are defined similarly. We write (νF, out) for a terminal coalgebra, and unfold f
for the unique cohomomorphism h : (A, f) → (νF, out) from any coalgebra
(A, f) to the terminal coalgebra. That is, unfold f is defined as the unique
arrow that makes the following square commute:

A
unfold f

//

f

��

νF

out

��

F A F (unfold f)
// F (νF)

In the literature, fold f and unfold f are sometimes written as (|f |) and db(f)ec,
and called catamorphisms and anamorphisms respectively.

2.1 Example: finite lists

Suppose that we define a functor L : SET → SET by L A = 1+(N ×A) and
L f = id1+(idN×f), where N is the set of natural numbers. Then an algebra is

2

Gibbons, Hutton and Altenkirch

a pair (A, f) comprising a set A and a function f : 1+(N ×A) → A. Functions
of this type can always be uniquely decomposed into the form f = [g, h] for
some other functions g : 1 → A and h : N × A → A. A homomorphism
f : (A, [g, h]) → (B, [i, j]) is a function f : A → B such that f · g = i and
f · h = j · (idN × f).

The functor L has an initial algebra (µL, in) = (List(N), [nil , cons]), where
List(A) is the set of all finite lists with elements drawn from A, and nil : 1 →
List(N) and cons : N ×List (N) → List(N) are constructors for this set. Given
any other set A and two functions i : 1 → A and j : N × A → A, the function
fold [i, j] : List(N) → A is uniquely defined by the following two equations:

fold [i, j] · nil = i

fold [i, j] · cons = j · (idN × fold [i, j])

That is, fold [i, j] processes a list by replacing the nil constructor at the end
of the list by the function i, and each cons constructor within the list by the
function j. For example, the function sum : List(N) → N that sums a list of
naturals can be defined by sum = fold [zero, plus], where zero : 1 → N and
plus : N × N → N are given by zero () = 0 and plus (x, y) = x + y.

We will use this datatype in examples later. For notational simplicity, we
will write ‘[]’ for nil (), and ‘x : xs’ for cons (x, xs). Thus, we might have
written the above definition of fold more perspicuously as:

(fold [i, j]) [] = i

(fold [i, j]) (x : xs) = j (x, (fold [i, j]) xs)

2.2 Example: streams

Suppose that we define a functor S : SET → SET by SA = N × A and
Sf = idN × f . Then a coalgebra is a pair (A, f) comprising a set A and
a function f : A → N × A. Functions of this type can always be uniquely
decomposed into the form f = 〈g, h〉 for some other functions g : A → N

and h : A → A. A cohomomorphism f : (A, 〈g, h〉) → (B, 〈i, j〉) is a function
f : A → B such that i · f = g and j · f = f · h.

The functor S has a terminal coalgebra (νS, out) = (Stream(N), 〈head ,
tail〉), where Stream(A) is the set of all streams with elements drawn from A,
and head : Stream(N) → N and tail : Stream(N) → Stream(N) are destructors
for this set. Given any other set A and two functions g : A → N and h : A →
A, the function unfold 〈g, h〉 : A → Stream(N) is uniquely defined by the
following two equations:

head · unfold 〈g, h〉 = g

tail · unfold 〈g, h〉 = unfold 〈g, h〉 · h

That is, unfold 〈g, h〉 produces a stream by using the function g to produce

3

Gibbons, Hutton and Altenkirch

the head of the stream, and the function h to generate another value that
is then itself unfolded in the same way to produce the tail of the stream.
For example, the function from : N → Stream(N), which produces a stream of
naturals ascending in steps of one, can be defined by from = unfold 〈idN , succ〉
where succ : N → N is given by succ x = x + 1.

3 When is an arrow a fold or an unfold?

The fold operator encapsulates a common pattern for defining an arrow of
type µF → A. It is natural then to ask when an arrow of this type can be
written using fold. More precisely, when can an arbitrary arrow h : µF → A
be written in the form h = fold f for some other arrow f : FA → A?

A technically complete, but nonetheless unsatisfactory, answer to this ques-
tion is provided by the universal property of the fold operator [18], which can
be stated as the following equivalence:

h = fold f ⇔ h · in = f · F h

The ⇒ direction of this equivalence states that fold f is a homomorphism from
the initial algebra (µF, in) to another algebra (A, f), while the ⇐ direction
states that any other homomorphism h between these two algebras must be
equal to fold f . Taken as a whole, the universal property expresses the fact
that fold f is the unique homomorphism from (µF, in) to (A, f).

The universal property provides a complete answer to our question — h
can be written in the form fold f precisely when h · in = f · F h — but is less
helpful than it might be because it requires that we already know f . Given
a specific h, however, the universal property can often be used to guide the
construction of an appropriate f [11], but we do not consider this a completely
satisfactory answer either, because this approach is only a heuristic, and it is
sometimes difficult to apply in practice.

The problem with the universal property is that it concerns an intensional
aspect of h, namely the function f that forms part of its implementation.
Often a condition based on purely extensional aspects is more useful. A
partial answer to our question with purely extensional concerns is that every
left invertible arrow h : µF → A can be written using fold [20]. Formally, if
we assume that there exists an arrow g : A → µF such that g · h = idµF ,
then the equation h = fold f can be solved for f as follows:

h = fold f

⇔ { universal property }
h · in = f · F h

⇔ { identities }
h · in · idF (µF) = f · F h

4

Gibbons, Hutton and Altenkirch

⇔ { functors }
h · in · F (idµF) = f · F h

⇔ { assumption }
h · in · F (g · h) = f · F h

⇔ { functors }
h · in · F g · F h = f · F h

⇐ { substitutivity }
f = h · in · F g

In summary, we have derived the following implication:

g · h = idµF ⇒ h = fold (h · in · F g)

As an example, the function rev : List(N) → List(N) that reverses a list is
its own inverse, and hence it is immediate that rev can be written using fold
by the above implication. Note, however, that this implication only provides
a partial answer to our question, because the converse is not true in general.
That is, not every arrow h : µF → A that can be written using fold is left
invertible. For example, the function sum : List(N) → N was written using
fold in the previous section, but is not left invertible.

Dually, the unfold operator also satisfies a universal property, which can
be used to show that every right invertible arrow of type A → νF can be
written using unfold [20]. For example, the function evenpos : Stream(N) →
Stream(N) that removes every other element from a stream has a right inverse
(any function that inserts an element between each adjacent pair in a stream),
and hence it is immediate that evenpos can be written using unfold. However,
not every arrow h : A → νF that can be written using unfold is right invertible.
For example, the function from : N → Stream(N) was written using unfold in
the previous section, but is not right invertible.

As far as we are aware, the invertibility results above are the only known
results that state when arbitrary arrows of the correct type can be written
using fold or unfold. We conclude this section by noting that much more
progress has been made concerning specific kinds of arrows. For example, the
fusion law states that the composition of a homomorphism and a fold can
always be written as a fold, while the banana split law states that two folds
applied to the same argument can always be written as a single fold [20].

4 When is a function a fold?

In this section we give a necessary and sufficient condition for when an arrow
can be written using fold, for the special case of the category SET in which
the arrows are total functions between sets. We dualize the result to unfold in

5

Gibbons, Hutton and Altenkirch

the following section.
The result depends on the following definition:

Definition 4.1 The kernel [17] of a function f : A → B is the set of pairs of
elements that are identified by f :

ker f = { (a, a′) ∈ A × A | f a = f a′ }
The main result of this section is a necessary and sufficient condition for

when an arbitrary arrow h : µF → A in SET can be written in the form
h = fold f for some other arrow f : F A → A.

Theorem 4.2 Suppose that h : µF → A. Then

(∃g : F A → A. h = fold g) ⇔ ker (F h) ⊆ ker (h · in)

(Another way of saying this is that h is a fold iff ker h is a congruence under
in; that is, writing Rel(F)(R) for the relational lifting to a relation on F A of
relation R on A [12], iff (x, y) ∈ Rel(F)(ker h) implies (in x, in y) ∈ ker h.)

The crux of the proof is the well-known observation that inclusion of kernels
is equivalent to the existence of ‘postfactors’:

Lemma 4.3 Suppose that f : A → B and h : A → C. Then

(∃g : B → C. h = g · f) ⇔ (ker f ⊆ ker h ∧ B → C 6= ∅)

Proof. The proof is straightforward. For the ⇒ direction, assume that g :
B → C and h = g · f ; then clearly B → C 6= ∅, and moreover,

(a, a′) ∈ ker f

⇔ { kernels }
f a = f a′

⇒ { substitutivity }
g (f a) = g (f a′)

⇔ { h = g · f }
h a = h a′

⇔ { kernels }
(a, a′) ∈ ker h

Conversely, assume that ker f ⊆ ker h and B → C 6= ∅, so that either B = ∅
or C 6= ∅. When B = ∅, let g be the unique function in B → C; note that g
is the ‘empty function’, and so g · f is empty too. Moreover, A = ∅ because
of the type of f , so h is also empty and hence equal to g · f . When C 6= ∅, we
define g b for b in the range of f by g b = h a for some a with f a = b; this is
a proper definition, because if there are two choices a, a′ with f a = f a′ = b,

6

Gibbons, Hutton and Altenkirch

then h a = h a′ also by assumption. For b outside the range of f , we define g b
arbitrarily. By construction, this gives h a = g (f a) for every a. 2

We also use the following simple fact concerning initial algebras:

Lemma 4.4

µF → A 6= ∅ ⇒ F A → A 6= ∅

Proof. We note that F A → A 6= ∅ is equivalent to A = ∅ ⇒ F A = ∅, which
implication can then be verified as follows:

A = ∅
⇒ { µF → A 6= ∅ }

µF = ∅
⇒ { in : F (µF) → µF }

F (µF) = ∅
⇒ { µF = ∅ = A }

F A = ∅
2

Proof of Theorem 4.2 Given the two lemmata above, the proof of the
theorem is almost embarrassingly simple:

∃g : F A → A. h = fold g

⇔ { universal property }
∃g : F A → A. h · in = g · F h

⇔ { Lemma 4.3 }
ker (F h) ⊆ ker (h · in) ∧ F A → A 6= ∅

⇔ { Lemma 4.4, h : µF → A }
ker (F h) ⊆ ker (h · in)

2

Remark 4.5 For the type List(A) of finite lists with elements drawn from
A, with constructors nil : 1 → List(A) and cons : A × List(A) → List(A),
Theorem 4.2 reduces to stating that an arbitrary function h : List(A) → B
can be written directly as a fold precisely when the lists that are identified by
h are closed under cons, in the sense that for all x, xs, ys,

h xs = h ys ⇒ h (x : xs) = h (x : ys)

7

Gibbons, Hutton and Altenkirch

Example 4.6 If we define sum : List(N) → N by the equations

sum [] = 0

sum (x : xs) = x + sum xs

then it is easy to show that the lists identified by sum are closed under cons:

sum (x : xs) = sum (x : ys)

⇔ { definition of sum }
x + sum xs = x + sum ys

⇐ { substitutivity }
sum xs = sum ys

Hence, sum can be written directly using fold.

Example 4.7 In contrast, if we define a function stail : List(N) → List(N)
(for ‘safe tail’) by the equations

stail [] = []

stail (x : xs) = xs

then a simple counterexample verifies that the lists identified by stail are
not closed under cons: for example, with xs = [] and ys = 0 : [], we have
stail xs = [] = stail ys , but stail (1 : xs) = [] 6= 0 : [] = stail (1 : ys).
Therefore stail cannot be written directly as a fold.

Example 4.8 For the type List(R) of finite lists of reals, consider the problem
of computing floorsum = floor · rsum, where rsum : List(R) → R sums a list
of reals and floor : R → Z rounds a real r down to the largest integer at
most r. Because the result is an integer, one might wonder whether floorsum
can be carried out as a fold to integers, thereby avoiding the computationally
more expensive real arithmetic. It cannot: we have floorsum (0.3 : []) =
floorsum (0.6 : []), but floorsum (0.5 : 0.3 : []) 6= floorsum (0.5 : 0.6 : []).

On the other hand, the reverse composition sum · map floor , which floors
every element of the list before summing, can be written as a fold: an argument
similar to Example 4.6 applies. This is an instance of deforestation [24],
an optimisation whereby two computations are combined into one and the
intermediate data structure (here of type List(Z)) is eliminated.

Remark 4.9 For the type Tree(A) of binary trees with constructors leaf :
A → Tree(A) and node : Tree(A) ×Tree(A) → Tree(A), Theorem 4.2 reduces
to stating that an arbitrary function h : Tree(A) → B can be written directly
as a fold precisely when the trees that are identified by h are closed under
node, in the sense that for all t, u,

h t = h t ′ ∧ h u = h u ′ ⇒ h (node (t, u)) = h (node (t′, u′))

8

Gibbons, Hutton and Altenkirch

Example 4.10 For another deforestation example, consider flatsum = sum ·
flatten, where flatten : Tree(A) → List(A) generates a list of the elements of
a tree. The intermediate list in flatsum can be eliminated, because

flatsum (node (t, u))

= { definition of flatsum }
sum (flatten (node (t, u)))

= { definition of flatten }
sum (flatten t ++ flatten u)

= { sum distributes over ++ }
sum (flatten t) + sum (flatten u)

= { definition of flatsum }
flatsum t + flatsum u

from which we conclude that trees identified under flatsum are closed under
node. (Here, ‘++’ concatenates two lists.)

Example 4.11 The predicate bal : Tree(A) → B that holds of tree iff it is bal-
anced (all the leaves at the same depth) is not a fold: with tree t being balanced
and of depth 1, and tree u being balanced and of depth 2, both t and u are
identified by bal (both yielding true), yet bal (node (t, t)) 6= bal (node (t, u)).

Example 4.12 However, the function dbal : Tree(A) → N ×B that computes
a pair, the depth of the tree and whether it is balanced, is a fold. Because

depth (node (t, u)) = 1 + max (depth t, depth u)

bal (node (t, u)) = bal t ∧ bal u ∧ depth t = depth u

trees identified by dbal are closed under node. This is an example of a mu-
tumorphism [7] or almost homomorphism [3,8]; transforming a function into
such a form is an important step towards constructing an efficient data-parallel
algorithm for computing it.

5 When is a function an unfold?

Dualising Theorem 4.2 to unfold is straightforward. The appropriate dual to
the notion of the kernel of a function is simply its image:

Definition 5.1 The image of a function f : A → B is the set of elements
that are produced by f :

img f = { b ∈ B | ∃a ∈ A. f a = b }

9

Gibbons, Hutton and Altenkirch

The duality between kernels and images is perhaps not immediately evi-
dent, but is revealed by thinking relationally. In particular, if functions are
viewed as relations in the obvious way, then the relational composition f◦ · f
of a function f with its converse f◦ is precisely the kernel of f , while the dual
composition f · f◦ is (the identity relation on) the image of f .

We can now present our result for unfold, which gives a necessary and
sufficient condition for when an arbitrary arrow h : A → νF in SET can be
written in the form h = unfold g for some other arrow g : A → F A.

Theorem 5.2 Suppose that h : A → νF . Then

(∃g : A → F A. h = unfold g) ⇔ img (F h) ⊇ img (out · h)

(Another way of saying this is that h is an unfold iff img h is an invariant of
out; that is, writing Pred(F)(P) for the predicate lifting to a predicate on F A
of predicate P on A [12], iff Pred(F)(∈ img h) (outx) follows from (∈ img h) x.)

The crux of the proof is the dual of Lemma 4.3, namely that inclusion of
images is equivalent to the existence of ‘prefactors’:

Lemma 5.3 Suppose that f : B → C and h : A → C. Then

(∃g : A → B. h = f · g) ⇔ (img f ⊇ img h ∧ A → B 6= ∅)

Proof. For the ⇒ direction, assume that g : A → B and h = f · g; then
clearly A → B 6= ∅, and moreover,

c ∈ img h

⇔ { images }
∃a. h a = c

⇔ { h = f · g }
∃a. f (g a) = c

⇒ { g : A → B }
∃b. f b = c

⇔ { images }
c ∈ img f

Conversely, assume that img f ⊇ img h and A → B 6= ∅, so that either A = ∅
or B 6= ∅. When A = ∅, then h is the empty function; let g be the empty
function too, so f · g is also empty and hence equal to h. When B 6= ∅, we
define g a for a ∈ A as follows. Let c = h a; by assumption, c ∈ img f too,
so there exists b ∈ B with f b = c, and we define g a to be such a b. If there
is more than one such b, it doesn’t matter which one that we choose. By
construction, this gives h a = f (g a) for every a. 2

10

Gibbons, Hutton and Altenkirch

We also use the dual of Lemma 4.4:

Lemma 5.4

A → νF 6= ∅ ⇒ A → F A 6= ∅
Proof. We note that A → F A 6= ∅ is equivalent to A 6= ∅ ⇒ F A 6= ∅, which
implication can then be verified by combining the two calculations:

A 6= ∅
⇒ { A → νF 6= ∅ }

νF 6= ∅
⇒ { out : νF → F (νF) }

F (νF) 6= ∅
and

A 6= ∅
⇒ { functions }

νF → A 6= ∅
⇒ { functors }

F (νF) → F A 6= ∅
That is, A 6= ∅ implies that F (νF) 6= ∅ and F (νF) → F A 6= ∅, which
conjunction in turn implies that F A 6= ∅, as required. 2

Proof of Theorem 5.2 Again, the proof is simple:

∃g : A → F A. h = unfold g

⇔ { universal property }
∃g : A → F A. out · h = F h · g

⇔ { Lemma 5.3 }
img (F h) ⊇ img (out · h) ∧ A → F A 6= ∅

⇔ { Lemma 5.4, h : A → νF }
img (F h) ⊇ img (out · h)

2

Remark 5.5 For the type Stream(A) of streams with elements drawn from A,
with destructors head : Stream(A) → A and tail : Stream(A) → Stream(A),
Theorem 5.2 reduces to stating that an arbitrary function h : B → Stream(A)
can be written directly as an unfold precisely when the tail of every stream pro-
ducible by h is itself producible by h, in the sense that: img (tail · h) ⊆ img h.

11

Gibbons, Hutton and Altenkirch

Example 5.6 Consider the function from : N → Stream(N) defined in Sec-
tion 2.2. Then (tail · from) n is the stream [n + 1, n + 2, . . .], and in general,
img (tail · from) is the set of streams { [n + 1, n + 2, . . .] | n ∈ N }, which is
in included in img from, the set of streams { [n, n + 1, . . .] | n ∈ N }. Hence,
from can be written directly using unfold.

Example 5.7 In contrast, if we define a function mults : N → Stream(N)
such that mults n produces the stream of multiples [0, n, n × 2, n × 3, . . .] of a
natural n, then (tail ·mults) n is the stream [n, n×2, . . .], and so img (tail ·mults)
is not included in img mults, which only includes streams whose head is 0.
Therefore mults cannot be written directly as an unfold.

Remark 5.8 For the type CoTree(A) of infinite binary trees with elements
drawn from A, with destructors root : CoTree(A) → A and left , right :
CoTree(A) → CoTree(A), Theorem 5.2 reduces to stating that an arbitrary
function h : B → CoTree(A) can be written as an unfold precisely when the
left and right of every tree producible by h are themselves producible by h:

img (left · h) ⊆ img h

img (right · h) ⊆ img h

Example 5.9 Consider the infinite binary tree with every node labelled by
its path, a finite list of booleans recording the left and right turns from the root
in order to reach that node. The function paths : 1 → CoTree(List(B)) that
produces this tree is not an unfold, because img (left · paths) and img (right ·
paths) contain trees with singleton lists at their roots, which are not included
in img paths, which contains a tree with the empty list at its root.

Example 5.10 In contrast, the more general function pathsfrom : List(B) →
CoTree(List(B)) that generates the tree of paths starting from a given path
is an unfold, because (left · pathsfrom) bs = pathsfrom (false : bs) implies that
img (left · pathsfrom) is included in img pathsfrom, and similarly for right .

6 Conclusion

We have given the first complete results for when an arbitrary arrow can be
written directly as a fold or unfold, for the special case of the category SET . In
future work we will investigate whether the results can be generalised to other
categories, and to other patterns of recursion, such as primitive (co-)recursion
[19,22] and course-of-value (co-)iteration [23].

As well as being interesting from a theoretical point of view, we also ex-
pect the results to have practical applications in program optimisation. A
well-structured program is typically factored into several phases, each phase
generating a data structure that is consumed by the subsequent phase; defor-
estation [9,16,21] fuses adjacent phases and eliminates the intermediate data
structures. When performed as a compiler optimisation, it yields efficient ob-

12

Gibbons, Hutton and Altenkirch

ject code without sacrificing the structure and clarity of the source code. Our
results can be used to determine when two phases cannot be fused to a fold
or an unfold. It might be possible to use an automatic testing system such as
QuickCheck [2] to find counterexamples to the appropriate inclusions.

Acknowledgements

We are very grateful to Lambert Meertens, whose suggestions lead to a sub-
stantial simplification of our proofs. We also thank the anonymous referees
for their useful comments. Graham Hutton was supported by EPSRC grant
Structured Recursive Programming , and together with Thorsten Altenkirch by
ESPRIT Working Group Applied Semantics .

References

[1] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[2] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing
of Haskell programs. In Proc. 5th ACM SIGPLAN International Conference
on Functional Programming, September 2000.

[3] M. Cole. Parallel programming with list homomorphisms. Parallel Processing
Letters, 5(2):191–203, 1995.

[4] J. Gibbons. Calculating functional programs. In Summer School and
Workshop on Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction, Oxford, April 2000.

[5] J. Gibbons and G. Hutton. Proof methods for structured corecursive programs.
In Proc. 1st Scottish Functional Programming Workshop, Stirling, Scotland,
August 1999.

[6] J. Gibbons and G. Jones. The under-appreciated unfold. In Proc. 3rd ACM
SIGPLAN International Conference on Functional Programming, Baltimore,
Maryland, September 1998.

[7] M. M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit
Twente, 1992.

[8] S. Gorlatch. Extracting and implementing list homomorphisms in parallel
program development. Science of Computer Programming, 33:1–27, 1999.

[9] Z. Hu, H. Iwasaki and M. Takeichi. Deriving structural hylomorphisms from
recursive definitions. In Proc. 1st ACM SIGPLAN International Conference on
Functional Programming, 1996.

[10] G. Hutton. Fold and unfold for program semantics. In Proc. 3rd ACM
SIGPLAN International Conference on Functional Programming, Baltimore,
Maryland, September 1998.

13

Gibbons, Hutton and Altenkirch

[11] G. Hutton. A tutorial on the universality and expressiveness of fold. Journal
of Functional Programming, 9(4):355–372, July 1999.

[12] B. Jacobs. Exercises in coalgebraic specification. In Summer School and
Workshop on Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction, Oxford, April 2000.

[13] B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors. Proc. of the First
Workshop on Coalgebraic Methods in Computer Science. Elsevier Science B.V.,
1998. Electronic Notes in Theoretical Computer Science Volume 11.

[14] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin
of the European Association for Theoretical Computer Science, 62:222–259,
1997.

[15] B. Jacobs and J. Rutten, editors. Proc. of the Second Workshop on Coalgebraic
Methods in Computer Science. Elsevier Science B.V., 1999. Electronic Notes in
Theoretical Computer Science Volume 19.

[16] J. Launchbury and T. Sheard. Warm fusion: Deriving build-catas from recursive
definitions. In Proc. Conference on Functional Programming Languages and
Computer Architecture, ACM Press, 1995.

[17] S. Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971.

[18] G. Malcolm. Algebraic data types and program transformation. Science of
Computer Programming, 14(2-3):255–280, September 1990.

[19] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424,
1992.

[20] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proc.
Conference on Functional Programming and Computer Architecture, number
523 in LNCS. Springer-Verlag, 1991.

[21] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In Proc.
Conference on Functional Programming Languages and Computer Architecture,
ACM Press, 1995.

[22] V. Vene and T. Uustalu. Functional programming with apomorphisms
(corecursion). Proceedings of the Estonian Academy of Sciences: Physics,
Mathematics, 47(3):147–161, 1998.

[23] V. Vene. Categorical Programming with Inductive and Coinductive Types. PhD
thesis, Universitity of Tartu, 2000.

[24] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231–248, 1990.

14

