1 Expanded Proof: $H\left(X_{n} \mid h_{n}\right) \leq H_{F}(\pi)$

 of Predictability in Human Mobility by Song, Qu, Blumm and Barabasi, that $H\left(X_{n} \mid h_{n}\right) \leq H_{F}(\pi)$ "represents an appropriate rewritting of Fano's inequality".
 h_{n-1} be the outcome of the preceding random variables within the random process.
Consider the distribution $P\left(X_{n} \mid h_{n-1}\right)$. In context this distribution denotes the next step probabilities over all possible spatial regions in the spatial area under consideration. h_{n-1} is a specific history of points of length $n-1$.
Let the probability of the most probable location, $x_{M L} \in \Omega$, equal π, given the history h_{n-1}.
Let E be a binary random variable.
Let:

$$
P\left(e \mid h_{n-1}\right)=\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right)
$$

Then:

$$
1-P\left(e \mid h_{n-1}\right)=P\left(x_{M L} \mid h_{n-1}\right)
$$

The corresponding entropy, H, of the binary variable E is then:

$$
\begin{equation*}
H\left(E \mid h_{n-1}\right)=-P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)-\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n 1-}\right)\right) \tag{3}
\end{equation*}
$$

Now define:

$$
P_{C}\left(x \mid h_{n-1}\right)= \begin{cases}\frac{P\left(x \mid h_{n-1}\right)}{P\left(e \mid h_{n-1}\right)} & \text { if } x \neq x_{M L} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Note that by definition:

$$
\begin{aligned}
\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) & =\sum_{x \in \Omega, x \neq x_{M L}} \frac{P\left(x \mid h_{n-1}\right)}{P\left(e \mid h_{n-1}\right)} \\
& =\frac{1}{P\left(e \mid h_{n-1}\right)} \sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right) \\
& =\frac{\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right)}{\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right)} \\
& =1
\end{aligned}
$$

$$
=\frac{\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right)}{\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right)} \quad[\text { via equation } 1]
$$

Consider the entropy $H\left(X_{n} \mid h_{n-1}\right)$:

[via equation 2]

$$
H\left(X_{x \neq x_{M L}} \mid h_{n-1}\right)=\left[\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) \log _{2} P_{C}\left(x \mid h_{n-1}\right)\right]
$$

[zero change, $+/$ - of identical terms
is the entropy of an ensemble of $N-1$ elements whose value cannot exceed $\log _{2}(N-1)$. Thus,

$$
H\left(X_{n} \mid h_{n-1}\right) \leq-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]+P\left(e \mid h_{n-1}\right) \log _{2}(N-1)
$$

Now recall that $P\left(e \mid h_{n-1}\right)$ is the probability of $X \neq x_{M L}$ (equation 2). Recall that $P\left(X=x_{M L} \mid h_{n-1}\right)=\pi$.
Therefore:

$$
P\left(e \mid h_{n-1}\right)=1-\pi
$$

$$
\begin{align*}
H\left(X_{n} \mid h_{n-1}\right) & \left.\leq-\left[\pi \log _{2} \pi+(1-\pi)\right) \log _{2}(1-\pi)\right]+(1-\pi) \log _{2}(N-1) \tag{26}\\
& \leq S_{F}(\pi) \tag{27}
\end{align*}
$$

Where $S_{F}(\pi)$ is defined in the Supporting Online Material for Limits of Predictability in Human Mobility by Song, Qu, Blumm and Barabasi, with $\pi=\pi\left(h_{n-1}\right)$, which completes the proof.

$$
\begin{aligned}
& H\left(X_{n} \mid h_{n-1}\right)=-\sum_{x \in X_{n}} P\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right) \\
& =-P\left(x_{M L} \mid h_{n-1}\right) \log _{2}\left(P\left(x_{M L} \mid h_{n-1}\right)\right)-\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right) \\
& =-\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)-\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right) \\
& =-P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)-\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)-\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right) \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)-\sum_{x \in \Omega, x \neq x_{M L}} P\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right) \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)-P\left(e \mid h_{n-1}\right) \sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right) \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]-P\left(e \mid h_{n-1}\right)\left[-\log _{2} P\left(e \mid h_{n-1}\right)+\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right)\right] \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]-P\left(e \mid h_{n-1}\right)\left[-\log _{2} P\left(e \mid h_{n-1}\right)\left(\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right)\right)+\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right)\right] \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]-P\left(e \mid h_{n-1}\right)\left[\sum_{x \in \Omega, x \neq x_{M L}}-P_{C}\left(x \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)+\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right)\right] \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]-P\left(e \mid h_{n-1}\right)\left[\sum_{x \in \Omega, x \neq x_{M L}}-P_{C}\left(x \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)+P_{C}\left(x \mid h_{n-1}\right) \log _{2}\left(P\left(x \mid h_{n-1}\right)\right)\right] \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]-P\left(e \mid h_{n-1}\right)\left[\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right)\left[\log _{2}\left(P\left(x \mid h_{n-1}\right)\right)-\log _{2} P\left(e \mid h_{n-1}\right)\right]\right] \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]-P\left(e \mid h_{n-1}\right)\left[\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) \log _{2}\left(\frac{P\left(x \mid h_{n-1}\right)}{P\left(e \mid h_{n-1}\right)}\right)\right] \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]-P\left(e \mid h_{n-1}\right)\left[\sum_{x \in \Omega, x \neq x_{M L}} P_{C}\left(x \mid h_{n-1}\right) \log _{2}\left(P_{C}\left(x \mid h_{n-1}\right)\right)\right] \\
& =-\left[\left(1-P\left(e \mid h_{n-1}\right)\right) \log _{2}\left(1-P\left(e \mid h_{n-1}\right)\right)+P\left(e \mid h_{n-1}\right) \log _{2} P\left(e \mid h_{n-1}\right)\right]+P\left(e \mid h_{n-1}\right) H\left(X_{x \neq x_{M L}} \mid h_{n-1}\right)
\end{aligned}
$$

