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Abstract 

A genetic algorithm for placing polygons on a rectangular board is proposed. The algorithm is improved by 
combination with deterministic methods. 
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1. Introduction and motivation 

In the steel industry problems frequently occur 
when the need to stamp polygonal figures from a 
rectangular board arises. The aim is to maximize 
the use of the contiguous remainder of the board. 
Similar problems exist in the textile industry, 
when clothes are cut out of a rectangular piece of 
material. 

In order to solve these problems let us con- 
sider the following simpler approach. Given a 
finite number of rectangles ri, i = 1 , . . . ,  n, and a 
rectangular board, an orthogonal packing pattern 
requires by definition a disjunctive placement of 
the rectangles on the board in such a way that the 
edges of r i are parallel to the x- and y-axes, 
respectively. The computation of the orthogonal 
packing pattern with minimal height is called 
orthogonal packing problem (OPP). 

Baker, Coffman and Rivest propose an heuris- 
tic for the orthogonal packing problem; in addi- 
tion they present an upper bound for the height 
of the packing pattern [2]. A recent survey on 
packing problems and their respective heuristics 

is given in [16]. The extension from rectangles to 
polygons can be realized in several ways. The first 
method places the polygons directly on the board 
and then the algorithm optimizes locally by means 
of shifts and rotations [23]. A second approach 
places two or three polygons in a cluster. The 
clusters are then placed on the board [1]. 

In this article we use another approach, namely 
an evolutionary algorithm. There are three main 
classes in this approach, each of which is inde- 
pendently developed. The first class is called evo- 
lutionary programming (EP). L.J. Fogel, Owens, 
and Walsh were the first to develop the EP-al- 
gorithms [5]. D.B. Fogel has recently improved 
this approach [6]. The second class was developed 
by Rechenberg and Schwefel. They called their 
approach evolutionary strategies (ES) [17-20]. Fi- 
nally, Holland developed the so called genetic 
algorithm (GA) [12]. The genetic algorithm has 
been perfected by De Jong [13] and Goldberg [9]. 

The paper is organized as follows. It begins by 
explaining the problem and its complexity. In the 
next section the data structure and its transfor- 
mation into a packing pattern are described. Sec- 
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tion 4 provides the genetic algorithm in combina- 
tion with a deterministic algorithm, and numeri- 
cal examples are presented. In Section 5 two 
approaches for the extension to polygons are 
proposed. The straightforward extension applies 
the genetic algorithm directly to the polygons. 
This method results, however, in a rather long 
computing time. An alternative to this method is 
the application of the genetic algorithm to rectan- 
gles in which the polygons are embedded; subse- 
quently, the use of a deterministic shrinking step 
moves the polygons closer to each other. 

2. The problem 

The size of the search space of the orthogonal 
packing problem is infinite, because every move- 
ment of a rectangle into a packing pattern in a 
feasible direction creates a new packing pattern. 
In order to effectively reduce the number of 
possible orthogonal packing patterns the so called 
battom-left-condition (BL-condition) is intro- 
duced. The orthogonal packing pattern fulfills the 
BL-condition if no rectangle can be shifted fur- 
ther to the bottom or to the left. 

In addition, the complexity of the problem 
must be considered. The QPP is a natural gener- 
alization of the one-dimensional bin-packing 
problem. Indeed, ff all rectangles are required to 
have the same height, then the two problems 
coincide. On the other hand, the case in which all 
rectangles have the same width corresponds to 

the well-known makespan minimization problem 
of combinatorial scheduling theory. Both these 
restricted problems are known to be NP-com- 
plete [8]. 

Other authors as Sleator, who did not use the 
BL-condition, mentioned that the packing prob- 
lem can be reduced to the partition problem 
[22,7]. 

3. Data structure 

The data structure is important for the genetic 
algorithm. The first genetic algorithms (shortly 
GAs) worked with bit-strings. Over the last few 
years, GAs have been developed which are based 
on other data structures. In this way the differ- 
ence between GAs and the evolutionary strate- 
gies has diminished [15]. The theory about ge- 
netic algorithms calls the data structure a geno- 
type and its decoding (here: packing pattern) is 
called phenotype. These technical terms are based 
on biological terminology [9]. 

The natural representation of a packing pat- 
tern is based on the placement-coordinates of 
each rectangle on the board. If the left lower and 
the right upper corner of all rectangles are known, 
then the packing pattern can be reconstructed 
easily. For example see Fig. 1. 

The advantage of the natural representation 
lies in its easy reconstruction. But if small changes 
in the coordinates are made it is probable that a 
packing pattern with overlaps will be created. 

r4 
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rectangle 
r l  
r2 

r3 
r4 
r5 

Xo, Yo) 
(18,0) 
(lO,O) 
(10,5) 
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Fig. 1. Natural representation of a packing pattern. 
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This property of natural representat ion is, how- 
ever, not suited for GA. Consequently, a more 
variable data structure is needed.  

Alternatively, a packing pat tern can be repre- 
sented by a permutat ion ~-. 

i~-  Index of the rectangle (r i ) .  
a . J 

~- = (i 1 . . . . .  i , )  - Permutation.  

The permutat ion represents the sequence in 
which the rectangles are packed. The advantage 
of this data structure is the facile creation of new 
permutations by changing the sequence. A conse- 
quence of the variable data structure is the fact 
that every permutat ion has to be assigned to a 
unique packing pattern. This decoding of the 
genotype needs more effort than the conversion 
of the natural representat ion into the packing 
pattern. Hence,  the aim is to create a fast decod- 
ing algorithm. 

3.1. BL-algori thm 

Step 1. Place r~(1) into the left lower corner of 
the board. 

Step i. Shift r~(i) alternately, beginning from 
the upper  right corner of the board, as far as 
possible to the bottom and then as far as possible 
to the left. 

Fig. 2 illustrates the packing process of the BL-al- 
gorithm. 

It is easy to show, that the packing pattern, 
which is created by the BL-algorithm, fulfills the 
BL-condition, because otherwise at least one of 
the rectangles could be shifted further to the 

height 

r2 

. X  

Permutation: 

= 3 

= 2 

= 4 

= 1 

o r  

= ( 3 , 2 , 4 , 1 )  

Fig. 2. Illustration of the BL-algorithm. 

bottom or to the left. This is in contradiction to 
Step i of the BL-algorithm. 

Some properties of the BL-algorithm are pre- 
sented below. The first one is an upper  bound to 
the possible packing patterns. Given n rectangles, 
the number 2" -n [  is an upper  bound to the 
packing patterns which can be calculated by the 
BL-algorithm. This is a consequence of the fact 
that the orthogonal packing problem is a permu- 
tation problem. So there are n! sequences of 
rectangles. Fur thermore each rectangle can be 
placed in two ways such that the edges are paral- 
lel to the x- and y-axes. In practice, less packing 
patterns than 2" .  n! can be created by the BL-al- 
gorithm. For  example in Fig. 3 two permutations 
have the same packing pattern. 

The magnitude of the search space is larger 
than the search space in the travelling salesman 

Y 

r2 

r l  

- - ~ X  

Fig. 3. TWO p e r m u t a t i o n s  wi th  the  s a m e  pack ing  pa t t e rn .  

71" 1 = ( 1 , 2 , 3 )  

~r2 ---- (1,3,2) 
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~X 

71"2: 

' height 

r2 

Fig. 4. Fitness-function based on the height of the packing pattern. 

~X 

problem. If for example n = 25 rectangles are 
given, then 

2 25. 25! > 10 7.5. ( 2 5 / e )  25 > 10 7.5. 10 24 > 10 31 

orthogonal packing patterns exist. 
An additional property of the BL-algorithm 

from Baker, Coffman and Rivest is based on the 
following special case. Let  the axes-parallel rect- 
angles be sorted according to the width, which 
corresponds to the x-coordinates of the rectan- 
gles given by a database, i.e. 

w i d t h ( r ~ ( o )  > wid th(r=( j ) )  for i < j .  

Then the estimation 

hBL ~ 3 • how r 

holds, where hBL and hop T denote the BL-al- 

gorithm height and the optimal height of the 
packing pattern, respectively [2]. 

In addition, the cost of the BL-algorithm is 
@(n2). This based on the fact, that each rectangle 
r i can be shifted a maximum of i times, because 
each shift is limited by one of the i -  1 placed 
rectangles or by the corners of the board. Hence,  
the cost of placing rectangle r i is ~ ( i )  and the 
whole cost amounts to ~(n2).  

4. Genetic algorithm 

For the GA an evaluation of the packing pat- 
tern is necessary. This is represented by an ap- 
propriate fitness-function 

f : "n" ---> R+ 

Y 
7rl: 

contiguous remainder of 7rl 

1 
kl 

ks 

y 
7r2: 

contiguous remainder of ~r2 

Fig. 5. Contiguous remainder of the packing patterns. 
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with the property 

f( 'wi) > f('wy) 

if ~-i is a 'bet ter '  packing pat tern than "wj. The 
computation of the natural approach of the fit- 
ness-function is inversely proportional to the 
height of the packing pattern. 

f (Tr)  = 1/hBL ('W). 

If twO packing patterns have the same height, 
their fitness-values are equal, although one of the 
packings is 'bet ter '  (see Fig. 4). 

For  this reason a differentiated approach is 
necessary. In order  to find a differentiated fit- 
ness-function the biggest resulting contiguous re- 
mainder among the packing patterns on the given 
board must be considered. Fig. 5 shows the con- 
tiguous remainder  of the packing patterns from 
Fig. 4. It is evident that the contiguous remainder  
of ,w E is greater  than of ,w1. The comparison 
suggests the following fitness-function; 

f ( ~ )  = Area ( ContiguousRemainder (,w) ) 

= ]~lx(1 i) -x(2i)[ • (height(board) _y(i)) 
ki 

with 

k i = { ( x ( i ) , y ( i ' ) , ( x ( i ) , y ( i ) ) } -  

4.1. Initialization 

tation '5-1. In contrast to this operation, "w2, . . . ,  "win 
represent  random permutations. Then it is guar- 
antee that the height of the best individual of the 
initial population (hbes t )  fulfills the following in- 
equality: 

hbest ~ 3 • how r 

After the initialization the BL-algorithm com- 
putes the fitness of "w1,-.., Z'm" 

4.2. Proportional selection 

The first genetic operator  selects two individu- 
als with the probability of 

Pi = > O. 

In practice the interval I = [0, 1) is divided into 
rn sub-intervals, such that each individual is as- 
signed a sub-interval. 

A 1 ~ 11 = [0, P l ) ,  

A2 ~ I2= [Pl ,P l  + P 2 ) ,  

A,n ~ I m = [1 --Pm,1). 

Then two random numbers Pi E [0, l ) ,  i = 1, 2, 
are generated and the corresponding sub-inter- 
vals determine the individuals. 

Now we come to the GA and its operators. 
Each evolutionary algorithm, in particular genetic 
algorithms, work with m objects in our case pack- 
ing patterns: 

771, • . . ,  ~T m. 

Each packing pat tern is assigned its fitness value: 

f i = f ( ' w i ) ,  i=  l . . . m .  

Each individual A i is defined by the permutat ion 
"wi and its fitness fi: 

A i  = ( ' r / i ,  f i ) "  

All individuals together represent  the population, 
which is initialized as follows. The width-sorted 
sequence of all rectangles forms the first permu- 

4.3. Crossover 

In contrast to the classical Crossover [9,15] the 
Crossover-Operator presented here  produces a 
new permutation from the two selected individu- 
als. The example of two selected permutations 
below explains the operator: 

7"/" i = ( 1 ,  2, 3, 4, 5, 6) and 
"wj = (6, 4, 2, 5, 3, 1). 

At the random position p the crossover copies q 
elements out of "wi to the beginning of the new 
permutat ion ~'new with 1 _<p, q < n .  For  p = 2, 
q = 3 we get 
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~r~ew(1)=er~(p)=~ri(2)=2. 
~rnew(2) =zri(p + 1 ) = 3 .  
~'new(3) =Tri( p + 2) = 4. 

Finally, ~'~,w is filled up by the other  elements of 
• -y in the same order: 

rest of this paper this kind of mutation will be 
called NormalMutation. A further approach com- 
pensating for the disadvantage of deterministic 
packing algorithms is described as follows. 

The mutation operator  rotates rectangles at 
random by 90 ° with a probability of Pm" 

~'n,w(4)=rrj(1)=6.  
~ '~w(5)='rr j (4)=5.  
7r~w(6)=~'j(6) = 1. 

So it follows 

7mew = (2, 3, 4, 6, 5, 1). 

4.4. Mutation 

Subject to a small mutation rate Pm the opera- 
tor mutates the offspring 7me w. There are a lot of 
approaches for the implementation of the muta- 
t ion-operator [15]. For example the sequence of a 
random block is inverted or some elements of the 
permutat ion are exchanged. From now on for the 

Table 1 

Procedures Cost 

~1 = SortRectangles0 de(n-log n) 
BL-algorithm(~-l) de(n2) 
f l  = f (~ ' l ) ,  A1 = (~'1, f l )  de(n) 
F O R  i := 2 TO m DO 

B E G I N  
~'j = RandomPermuta t ion0  
BL-algorithm(~-j) @(n 2 ) 
fy = f(~:), Ay = (~':, f:) de(n) 

END de(m- n 2) 
t = l  
WHILE t < M A X  LOOPS DO 

BEGIN 
i = SelectIndividual0 @(m) 
j = SelectIndividual0 G(m)  
"n'ne w = Crossover(-¢i, "n'j) de(n) 
Mutat ionNormal0rne w) de(n) 
Mutation(~rne w) de(n) 
BL-alg°rithm(Trnew), fnew = f(rrnew) de(nZ) 
ReplaceWorstlndividual(~'ne w) de(m) 
t = t + l  

END 

~( t .m.n  2) 

F O R i : = l T O n  DO 
BEGIN 

p = Random(0, 1) 
IF p <Pro T H E N  

Rotate(~-new(i)) 
END 

After completion of the three genetic opera- 
tions the offspring is converted into the pheno- 
type (packing pattern). In practice the BL-al- 
gorithm is used. Then the the fitness is computed 
and subsequently, the worst individual character- 
ized by the least fitness in the current population 
will be replaced by the offspring. All these proce- 
dures are repeated until a given upper  bound to 
the loops is reached or further improvement is 
not noticed over a given period of time. In Table 
1, a presentation of the whole G A  with the cost 
of the procedures is given. 

We emphasize that the cost of the G A  is 
determined by the cost of the BL-algorithm. That  
is the reason why our G A  requires a method of 
operation different to that of the classical GA. In 
fact, the classical G A  computes m offsprings be- 
fore sorting out the bad individuals by selection. 
In contrast to the classical approach one of the 
worst individuals is sorted out after an offspring 
has been created by the BL-algorithm. So a good 
offspring could influence the next population. 
The genetic operators presented here are only a 
small extract of all possibilities. Otherwise we 
would blow up the size of this paper. Most impor- 
tant however is the main idea of the combination 
of deterministic procedures with genetic algo- 
rithms for considerable improvement of deter- 
ministic computated results. 

4.5. Numerical examples 

In the first example 25 rectangles with integer 
dimensions are to be packed. For  testing packing 
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13 
i 

19 

10 

Fig. 6. Optimal packing pattern; height = 15. 

18 

17 

16 

21 

algorithms we start  with some optimal packing 
pattern.  To  do so, a big rectangle (here: 40 x 15 
units) is divided randomly into 25 rectangles (see 
Fig. 6). 

I f  these rectangles are packed on a board with 

the dimensions 40 x height (height > 15), the op- 
timal height is 15. 

I f  these rectangles are sorted according to 
width, the BL-algori thm generates the following 
packing pat tern  (see Fig. 7). For improving the 

Fig. 7. Packing pattern generated by the BL-algorithm with rectangles sorted by width; height = 21. 
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17 
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8 

14 3 

4 

13 

16 

Fig. 8. Packing pattern generated by GA (2000 steps); height = 17. 

packing pat tern  the G A  is executed in 2000 steps 
with the following parameters:  
n = 25. 
Width(board) = 40. 
Height(board)  = 25. 
m = 20. 
M A X _ L O O P S  = 2000. 
P m =  0.4. 

After  2000 steps the best individual is shown in 

Fig. 8. The improvement  of  the height amounts to 
19% and only a few small gaps exist. The progres- 
sion of the minimum and the average height 
through all steps for this special run is shown in 
Fig. 9. 

The results of the computed heights only indi- 
cate facts about this corresponding run. The 
problem is, how do we find the result of the next 
run? The solution is given by the Law of Large 

22 

21 

2O 
t t  

e 19 
i 

g 18 h 
t 

17 

16 

15 I 

2OO 
I I I I I I 

400 600 800 1000 1200 1400 

t 

Fig. 9. Heights o f t he  bestindividuals. 

I I I 

1600 1 8 0 0  2000 
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E*(min(height),t) 
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Fig. 10. Approximated estimations of the minimal and average heights. 

i 

2000 

173 

Numbers: T h e  ar i thmet ic  m e a n  of the result  of 
the  stochastic process r epea ted  n converges to 
the expecta t ion E.  To  compute  approximate ly  
the  E(height ,  t), the G A  r u n  is r epea ted  100 

times. 

E ( height , t )  = E * (height ,  t )  

t = 1 . . . 2 0 0 0 ,  

1 lOO 

100 • height ( i ,  t ) ,  
i=1 

with i r ep resen t ing  the i-th run.  In  Fig. 10 the 
approximated  expectat ions  of the min ima l  heights  

6 

5 

39 

42 

32 

Fig. 11. Optimal packing pattern; height = 15. 

41 

44 

46 

48 
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Fig. 12. Pack ing  p a t t e r n  g e n e r a t e d  by the  BL-a lgo r i t hm wi th  r ec tang les  sor ted  by width;  he igh t  = 21. 

and the approximated expectations of the average 
heights are shown. Both curves fall exponentially 
and 

E *(min(height), 2000) = 17.48. 

The major issue is: With a probability of over 
50% a packing pattern with the height 17 is 
computed after 2000 steps. 

The following example corresponds to the 
afore-mentioned case. The same rectangle used 
earlier (40 x 15) is randomly divided into 50 rect- 
angles instead of 25. The optimum packing pat- 
tern is shown in Fig. 11. Fig. 12 shows the pack- 
ing pattern created by the BL-algorithm based on 
the rectangles sorted by width. The development 
of the approximated expectations are presented 

22 

21 

2O 

h 
e 19 
i 
g 
h 18 

t 
17 

16 

15 

E*(average(height),t) 

~ ~r , . . . . .  ~ ::: .-: ;~-:.-:~--' ~:~::.~'r-~"_-:~-.:; : ::..~'~--~.::.t :7.:::: '-:~\7 ~.-,.- ~-;.~,:_'.~ 

E*(min(height),t) 

I I I I I I I I I 

200 400 600 800 1000 1200 1400 1600 1800 

t 

Fig. 13. A p p r o x i m a t e d  e s t ima t ions  o f t h e m i n i m a l a n d  average  he ights .  

2000 
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Fig. 14. Packing pattern computed after 2000 steps; height = 17. 

in Fig. 13. The expected minimum height is 
greater than in the example described above. 

E * (min(height) ,  2000) = 17.28. 

This result is based on the fact that smaller 
rectangles can be packed closer together.  The 
packing pat tern computed after 2000 steps of the 
50 rectangles is shown in Fig. 14. 

5. Extension to polygons 

One approach for the extension to polygons is 
based on the use of a deterministic algorithm to 
convert the permutat ion of polygons into a pack- 
ing pattern. The  cost of existing algorithms [23,16] 
is greater than ~(n2).  In the GA for each step 
one permutat ion has to be converted. For  this 
reason it is not advisable to use this approach. 

Our Embedding-Shrinking Algorithm offers a 
faster alternative. It consists of three steps: 

Step 1. Embed the polygons into rectangles. 
Step 2. Apply the GA to the embedded rectan- 

gles. 
Step 3. Shrinking-Step: Shift the polygons closer 

to each other. 

The first step is to determine the embedding 
rectangles with minimum area for all polygons. 
To achieve this aim we use the following heuris- 
tic. A polygon is rotated once around the centre 
of gravity of all its corner points in a fixed num- 
ber o f  equal angular increments. At each incre- 
ment the embedding rectangle parallel to the x- 
and y-axes with minimum area is computed. Fi- 
nally, a minimisation of all increments is per- 
formed (see Fig. 15). Alternatively, more than 

F] 
Fig. 15. Determining the embedding rectangle with minimum 
area. 
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Fig. 16. Pattern which cannot be improved by shrinking; height = 16. 

one  polygon is put  into a rectangle  called cluster 

[23,16]. 
In  Step 2 the  genet ic  a lgori thm starts packing 

with the embedding  rectangles.  I f  the fitness o f  
the best  individual no longer  improves, it is nec- 
essary to move the polygons closer together ,  be- 

k__ I 

Fig. 17. Pattern which cannot be improved by shrinking; height = 10. 

a) original b) 1. reflection 

c) 2. reflection d) 3. reflection 

Fig. 18. Reflections of a polygon. 
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Fig. 19. Improved pattern of Fig. 16; height = 16. 

cause there might be big gaps between the poly- 
gons. 

The shrinking algorithm moves the polygons to 
one another as close as possible using the idea of 
the BL-heuristic. So the polygons are shifted al- 
ternately as far as possible to the bottom and to 
the left. More than two shifting directions are 
possible only with restriction of packing perfor- 
mance. The order in which the polygons are 
shifted is given by the permutation. 

The following two examples cannot be im- 
proved by the shrinking step (see Figs. 16 and 17). 

In order to shift the polygons closer in this 
case, three reflections of the polygons within the 
embedding rectangle are performed and shifted, 

too (see Fig. 18). The polygon of the four possibil- 
ities, which can be shifted over the greatest dis- 
tance, replace the original. So the improved ex- 
amples are shown in Fig. 19 and Fig. 20. 

In the implementation, the shifting of the poly- 
gons is done with some fixed increment. After 
each increment it has to be tested whether over- 
laps are generated. This is done  by the Polygon- 
Cut-Algorithm (PCA). 

Given two polygons Pi, Ps, the PCA compares 
each edge of Pi with each edge of Ps for a point 
of intersection. The latter can be done by solving 
a linear system of two equations (parallel edges 
have to be treated as a special case). 

In [14] and [21] other methods of calculating 

r 
Fig. 20. Improved pattern of  Fig. 17; height = 10. 
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- 1 J 

15 

16 18 23 

h • 
J 

24  6 I---- I 

a 

S 

22 

Fig. 21. Packing pattern generated by the BL-algofithm; height = 22. 

points of intersection of two polygons are given. 
These are effective under  additional geometric  
restrictions (e.g. convexity). 

5.1. Numer ica l  examples 

The first example is based on 25 polygons 
randomly created. After  the embedding the BL- 

14 

13 

algorithm creates the packing pat tern  shown in 
Fig. 21. The reason that big gaps exist in Fig. 21 
comes from the fact that  the embedding rectan- 
gles are left out. 

The G A  working on the embedding rectangles 
has the same parameters  as in Section 4 about  
rectangles. Represent ing a packing pat tern cre- 
ated after 1000 steps, we obtain Fig. 22. 

Fig. 22. Packing pattern generated by GA (1000 steps); height = 15. 
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I 9 

23 

Fig. 23. Packing pattern generated by the shrinking algorithm; height = 15. 

Although the GA decreases the height and 
improves the fitness a lot of big gaps exist after 
deleting the embedding rectangles. 

Now a shrinking step is needed. The result of 
the shrinking algorithm is shown in Fig. 23. Obvi- 
ously the fitness of the packing pattern is im- 

proved and the gaps get smaller. Rectangle 14 in 
Fig. 23 could  be shifted further to the left. The  
gap between rectangle 14 and polygon 12 is based 
on the fact that rectangle 14 is shifted earlier. A 
further shrinking step is necessary t o  close the 
gap. A further example with 25 polygons is pre- 

222! 

Fig. 24. Packing pattern generated by the BL-algorithm; height = 20. 
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8 ~ 23 

Fig. 25. Packing pattern generated by GA (1000 steps); height = 17. 

sented below. The results of the steps according 
to the former ones are shown in Figs. 24-26~ 

6. Improvements and conclusions 

We addressed the problem of improving deter- 
ministic packing algorithms. In practice, the com- 

bination of deterministic and genetic algorithtrls 
provides a possible escape out of local minima. A 
further advantage is the easy implementation of 
the combination. 

Any deterministic packing algorithm based on 
permutation could be improved by the genetic 
algorithm presented here. The improvement of 
the BL-algorithm is the first step in this direction. 

! 

\ 

i 23 
Fig: 26. Packing pattern generated by the shrinking algorithm; height = 16. 
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More improvements described below are possi- 
ble. 

Instead of embedding one polygon into one 
rectangle, the embedding of several polygons into 
one rectangle could be done. The computation of 
optimal clusters of polygons for embedding is a 
problem of optimization which is too extensive to 
be presented here. For more details see [10] and 
[11]. 

The disadvantage of the BL-algorithm is that 
groups of rectangles exist for which the BL-al- 
gorithm cannot generate the optimal packing pat- 
tern [3], thus making it necessary to use a greater 
and more expensive deterministic algorithm to 
transform a permutation into a packing pattern. 

Finally, the development of a mature mathe- 
matical foundation in genetic algorithms would 
be a very interesting and exciting direction for 
future research. 
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