
 1

GENETIC PROGRAMMING: AN INTRODUCTION AND SURVEY OF APPLICATIONS

M.J. Willis*, H.G Hiden*, P. Marenbach+, B. McKay* and G.A. Montague*

 * Symbolic Optimisation Research Group (SORG)
 Dept. of Chemical and Process Engineering
 University of Newcastle upon Tyne
 NE1 7RU, UK

 + Institute of Control Engineering
 Darmstadt University of Technology
 Landgraf-Georg-Strasse 4
 D-64283 Darmstadt, Germany

 {Mark.Willis, H.G.Hiden, Ben.McKay, Gary.Montague}
@ncl.ac.uk

http://lorien.ncl.ac.uk/sorg

 mali@rt.e-technik.th-darmstadt.de

Keywords: genetic programming, survey

Abstract

The aim of this paper is to provide an introduction to the
rapidly developing field of genetic programming (GP).
Particular emphasis is placed on the application of GP to
engineering problem solving. First, the basic
methodology is introduced. This is followed by a review
of applications in the areas of systems modelling, control,
optimisation and scheduling, design and signal
processing. The paper concludes by suggesting potential
avenues of research.

Introduction

GP began as an attempt to discover how computers could
learn to solve problems without being explicitly
programmed to do so. The GP technique is an
evolutionary algorithm that bears a strong resemblance to
genetic algorithm's (GA's). The primary differences
between GA's and GP can be summarised as follows;

• GP typically codes solutions as tree structured,

variable length chromosomes, while GA’s generally
make use of chromosomes of fixed length and
structure.

• GP typically incorporates a domain specific syntax
that governs acceptable (or meaningful)
arrangements of information on the chromosome.
For GA’s, the chromosomes are typically syntax free.

• GP makes use of genetic operators that preserve the
syntax of its tree-structured chromosomes during
‘reproduction’.

• GP solutions are often coded in a manner that allows
the chromosomes to be executed directly using an
appropriate interpreter. GA’s are rarely coded in a
directly executable form.

The use of this flexible coding system allows the
algorithm to perform structural optimisation. This can be
useful for the solution of many engineering problems. For
instance, GP may be used to perform symbolic

regression. While conventional regression seeks to
optimise the parameters for a pre-specified model
structure, with symbolic regression, the model structure
and parameters are determined simultaneously. Similarly,
the evolution of control algorithms, scheduling programs,
structural design and signal processing algorithms can be
viewed as structural optimisation problems suitable for
GP.

Cramer (1985) developed one of the first tree structured
GA’s for basic symbolic regression. Another early
development was the BEAGLE1 algorithm of Forsyth,
(1986), which generated classification rules using a tree
structured GA. However, it was Koza (1992 and 1994)
who was largely responsible for the popularisation of GP
within the field of computer science. His GP algorithm
(coded in LISP) was applied to a wide range of problems
including symbolic regression, control, robotics, games
and classification.

Since this initial work, interest in the field has grown,
with the first international conference on GP held at
Stanford University in 1996 (GP'96). While still
dominated by computer scientists, engineering
applications have begun to appear. Therefore, the
objective of this paper is to discuss these recent
engineering applications and provide an entry point to
this rapidly expanding field.

The paper is organised as follows. First, GP is introduced.
Next, a survey of engineering applications within the GP
field is provided. Finally, the paper concludes with the
authors' perspective on future research directions.

1BEAGLE - Biological Evolutionary Algorithm
Generating Logical Expressions

 2

Genetic Programming

A GP algorithm works on a population of individuals,
each of which represent a potential solution to a problem.
A flowchart of a typical GP algorithm is shown in Fig. 1.
In order to solve a problem using GP Koza (1992) states
that it is necessary to specify the following;

• The terminal set: A set of input variables or

constants.

• The function set: A set of domain specific functions

used in conjunction with the terminal set to construct
potential solutions to a given problem. For symbolic
regression this could consist of a set of basic
mathematical functions, while Boolean and
conditional operators could be included for
classification problems.

• The fitness function: Fitness is a numeric value

assigned to each member of a population to provide a
measure of the appropriateness of a solution to the
problem in question.

• The algorithm control parameters: This includes
the population size and the crossover and mutation
probabilities.

• The termination criterion: This is generally a pre-

defined number of generations or an error tolerance
on the fitness.

It should be noted that the first 3 components determine
the algorithm search space, while the final 2 components
affect the quality and speed of search.

In order to further illustrate the coding procedure and the
genetic operators used for GP, a symbolic regression
example will be used. Consider the problem of predicting
the numeric value of an output variable, y, from two input
variables a and b. One possible symbolic representation
for y in terms of a and b would be,

y = (a - b) / 3 (1)

Figure (2) demonstrates how this expression may be
represented as a tree structure2.

a b

3

y

Figure 2: Representation of a numeric expression
using a tree structure.

With this tree representation, the genetic operators of
crossover and mutation must be posed in a fashion that
allows the syntax of resulting expressions to be
preserved. Figure (3) shows a valid crossover operation
where the two parent expressions are given by:

Parent 1: y = (a - b) / 3 (2)
Parent 2: y = (c - b) * (a + c) (3)

Parent 1 has input variables 'a' and 'b' and a constant '3'
while parent 2 has three input variables 'a', 'b' and 'c'.
Both expressions attempt to predict the process output, 'y'.
If the ‘/’ from parent 1 and the ‘*’ from parent 2 are
chosen as the crossover points, then the two offspring are
given by:

Offspring 1: y = (a - b) / (a + c) (4)
Offspring 2: y = (c - b)* 3 (5)

2 For a thorough discussion of tree structures and their
properties, see Tenenbaum and Augenstein (1981).

Start

Generate an Initial Population of Npop
'Expressions'

Generation Loop

Evaluate the Fitness of the Expressions in the
Population

Reproduction Loop

Randomly
Select Reproduction

Method

Select an Expression from the
Population, with a Probability of
Selection Proportional to Fitness

Select Two Expressions from the
Population, with a Probability of
Selection Proportional to Fitness

j = 0

j = j + 1 j = j + 2

Perform Mutation Perform Crossover

Add New Expression(s)
 to New Population

Reproduction Loop
j > Nnew

Add (Npop - Nnew) Fittest 15xpressions from Old
Population to the New Population

Generation Loop
i > NG

i = i + 1

Stop

i = 0

Yes

Yes

No

No

P(Crossover)P(Mutation)

Figure 1: Typical genetic programming algorithm
flowsheet.

 3

It is assumed that by recombining relevant sub-trees, it is
possible to produce new expressions that provide fitter
solutions.
In order to provide population diversity and allow the
exploration of areas of the solution space not represented
in the initial population, a mutation operator may also be
used. Mutation merely consists of randomly changing a
function, input or constant in one of the mathematical
expressions making up the present population.

GP Applications

The following section presents a review of engineering
applications of GP. The results of the literature survey
have been arranged into the following broad categories:

• Systems Modelling
• Control
• Optimisation and scheduling
• Design
• Signal processing

Systems Modelling
In Koza (1992), basic regression examples were used to
illustrate the functionality of a GP algorithm. The
examples included the discovery of trigonometric
identities, polynomial approximation and basic
econometric modelling and forecasting. Iba et al. (1993
and 1994) introduced a GP algorithm, called
STROGANOFF3. The algorithm integrated multiple
regression analysis and a GA-based search strategy. The
function set was limited to quadratic polynomials in two
variables. The effectiveness of STROGANOFF was
demonstrated by solving several system identification
problems. Oakley (1994) and Howard and Oakley (1995)
used Koza's LISP code (Koza, 1992) to demonstrate that
GP can be used to perform time series prediction of
chaotic systems.

Applications to chemical process systems have included
the generation of non-linear dynamic models of
biotechnological batch and fed-batch fermentations
(Bettenhausen and Marenbach, 1995; Bettenhausen et
al.., 1995b; Marenbach et al., 1996), the identification of
complex fluid flow patterns (Watson and Parmee, 1996)
and the generation of steady-state input-output models of
a range of industrial chemical process systems (McKay et
al., 1995, 1996b and 1997b). Comparisons with
established modelling paradigms (such as neural
networks) are also available (McKay et al., 1996a).

Bettenhausen et al. (1995b) and Marenbach et al. (1996)
developed a GP algorithm (referred to as a structured

3 STructured Representation On Genetic Algorithms for
Non-linear Function Fitting

model generator or SMOG4) that models dynamic
processes by allowing state variables and feed-back
loops. Such a system appears to have very powerful
representational capabilities. Gray et al. (1996a) also
successfully use a block diagram oriented approach for
non-linear system identification.

A number of contributions have reported a successful
'hybrid' of mechanistic approaches and GP techniques for
process modelling. For instance the work of Gray et al.
(1996b) on the modelling of a simple simulated water
tank example. In more recent work, Elsey et al. (1997),
apply a hybrid GP approach for the development of a
cooking extrusion process (using GP to develop
rheological models for an otherwise mechanistic extruder
model), while McKay et al.(1997a) uses a hybrid GP
technique for the modelling of a fed-batch fermentation
process.

Control
Early applications in the area of control include the
evolution of non-linear control strategies for broom
balancing (Koza and Keane, 1990). Hampo (1992) and
Hampo and Marko (1992) considered the use of GP for
developing vehicle control systems, with emphasis placed
on active suspension control. A popular subject in the GP
literature is the development of robot control strategies
(e.g. see Handly, 1993 and 1994; Ghanea-Herrock and
Fraser ,1994; Gruau and Quatramaran ,1996; and Nordin
and Banzhaf ,1996). Alba et al.(1996) use GP to develop
rule bases for the definition of fuzzy logic controllers.
Steinkolger and Koch (1996) also report the use of
genetic programming techniques for the development of
hierarchical fuzzy logic controllers.

Optimisation and Scheduling
Grimes (1995), used GP to plan the maintenance schedule
for a length of railway track. GP was used to generate
rules determining when track maintenance was required
on a particular section of track. GP was compared with
existing maintenance scheduling tools and found to
provide superior performance. Montana and Czerwinski
(1996) employed a GP algorithm to optimally control the
timing of traffic signals within a network of
interconnecting road junctions. The timing sequences
generated varied with the level of congestion and the
waiting time for cars at various junctions. The systems
developed using GP were tested using a number of
different road configurations under different levels of
congestion, and found to outperform schemes based on
fixed traffic signal timings. Gaces-Perez et al.(1996),
implemented a GP based facility layout scheme, whereby

4 SMOG evolves ‘signal path models’ (similar to the
block diagrams used by control engineers) from a
function set of mathematical functions and linear transfer
function blocks. Recurrent connections allow the
inclusion of recycle loops.

 4

a number of rectangular facilities were optimally placed
within a fixed site boundary.

Design
The application of GP to the design of new polymeric
materials was addressed by Porter et al.(1996). Here, the
GP performed a structural optimisation of a monomer in
order to achieve desired polymer properties. Koza et
al.(1996a) described an automated process for designing
electrical circuits. GP produced both the topology of the
desired circuit and the sizing for all of the components in
the circuit. Koza et al.(1996b) demonstrated the
usefulness of automatically defined functions (ADF's)
and architecture altering operations for designing analog
electrical circuits.

Signal Processing
GP has also been used by Sharman et al.(1995) and
Sharman and Esparcia-Alcazar (1996) to evolve the
structure and parameters of adaptive digital signal
processing (DSP) algorithms. In this application, GP was
used to evolve the structure of the algorithm, while the
parameters contained within it were optimised using
simulated annealing. The GP based approach was
compared with a more traditional recursive least squares
based adaptive algorithm. It was concluded that the
method is a versatile tool, applicable to a wide variety of
signal processing applications.

Conclusions

This survey paper has revealed that engineering
applications of GP are currently focused on typical
systems problems such as modelling, control and
optimisation. While computer scientists have
concentrated on gaining a fundamental understanding of
the algorithm (and improving its performance) the
engineering community is addressing practical issues,
often by introducing accepted systems engineering
concepts and methodologies. For instance, the
incorporation of local hill climbing for parameter
optimisation and the use of cross validation techniques to
ensure model generalisation.

Perhaps the most promising research direction appears to
be the application of GP techniques to engineering design
problems. While computational considerations currently
limit the complexity of design applications that can be
addressed, these will inevitably be lifted as processor
speeds continue to increase.

Further potential avenues of research include the
investigation of other algorithms capable of performing
structural optimisation. For instance, the structural
annealing algorithm of O’Reilly and Oppacher (1994),
which is similar to GP but uses a population of one and a
simulated annealing style mutation operator. This is
reported to achieve similar performance to GP and as
such warrants further investigation.

It is emphasised that GP is a young field of research,
whose practitioners are still exploring its capabilities and
limitations. Consequently it is the authors' belief that the
future holds much promise.

References

Alba, E., Cotta, C. and Troyo, J.J., (1996), ‘Type
constrained genetic programming for rule based
definition in fuzzy logic controllers’, Proc. First
Anual. Conf. on Genetic Programming - GP’96,
Stanford University, USA, pp.255 - 260.

Bettenhausen, K.D., Marenbach, P., Freyer, S.,
Rettenmaier, H. and Nieken, U., (1995b), ‘Self-
organising structured modelling of a
biotechnological fed-batch fermentation by means
of genetic programming’, Proc. IEE Conf. on
Genetic Algorithms in Engng. Systems: Inovations
and Applications - GALESIA’95, Sheffield, UK, No
414, pp.481-486.

Bettenhausen, K.D. and Marenbach, P., (1995), ‘Self-
organising modelling of biotechnological batch and
fed-batch fermentations’, Proc. EUROSIM’95.

Cramer, N.L., (1985), 'A representation for the adaptive
generation of simple sequential programs'. Proc. Int.
Conf. on Genetic Algorithms and their Applications,
Carnegia Mellon University, Pittsburgh, USA,
pp.183-187.

Elsey, J., Riepenhausen, J., McKay, B., Barton G.W. and
Willis M.J., (1997), ‘Modelling and control of a
food extrusion process’, To be presented at Joint
Int. Symp. on Process Systems Engng. and
European Symp. on Comp. Aided Design -
PSE’97/ESCAPE 7, Trondheim, Norway.

Forsyth, R., (1986), 'Evolutionary learning strategies',
Forsyth, R. and Rada, R. (Ed.), Machine Learning:
Applications in Expert Systems and Information
Retrieval, Ellis Horwood Ltd., USA, pp.79-95.

Garces-Perez, J., Schoenefeld, D.A. and Wainwright,
R.L. (1996), 'Solving facility layout problems using
genetic programming', Proc. of the First Annual
Conf. on Genetic Programming - GP’96, Stanford
University, USA, pp.182-190.

Ghanea-Herrock, R. and Fraser, A.P., (1994), ‘Evolution
of autonomous robot control architectures’,
Evolutionary Computation.

Gray, G.J., Murray-Smith, D.J., Li, Y. and Sharman, K.C.
(1996a), 'Structural system identification using
genetic programming and a block diagram oriented
simulation tool'. Electronic Letters, Vol.32, No.15,
pp.1422-1424.

Gray, J., Murry-Smith, D.J., Yun, L. and Sharman, K.C.,
(1996b), ‘Nonlinear model structure identification
using genetic programming’, Late Breaking Papers
at the Genetic Programming 1996 Conference,
Koza, J.R (ed.), Stanford University Bookstore,
USA, pp.32-37.

 5

Grimes, C.A., (1995), 'Application of genetic techniques
to the planning of railway track maintenance' Proc.
IEE Conf. on Genetic Algorithms in Engng.
Systems: Inovations and Applications -
GALESIA’95, Sheffield, UK, pp.467-472.

Gruau, F. and Quatramaran, K., (1996), ‘Cellular
encoding for interactive evolutionary robotics’,
Cognitive science research paper, No.425.

Hampo, R.J. (1992) ‘Genetic programming: A new
paradigm for control and analysis’, Proc. 3rd ASME
Symposium on Transportation Systems, Anaheim,
USA, pp.155-163.

Hampo, R.J. and Marko, K.A., (1992) ‘Application of
Genetic Programming to the control of vehicle
systems’, Proc. Of the intelligent vehicles
symposium, June 29-July 1, Detroit, Mi, USA

Handly, S., (1993), ‘The genetic planner: The automatic
generation of plans for a mobile robot via genetic
programming’, Proc. 8th IEEE Int. Symp. on
Intelligent Control, Chicago, USA.

Handly, S., (1994), ‘The automatic generation of plans
for a mobile robot via genetic programming with
automatically defined functions’, Kinnear, K.E.
(Ed.), Advances in Genetic Programming, 18,
pp.391-407.

Howard, E. and Oakley, N., (1995), ‘Genetic
programming as a means of assessing and reflecting
chaos', Tech. Report FS-95-01, AAAI Press, pp.68-
72.

Iba, H., Kurita,T., Garis,H. and Sato,T., (1993), 'System
identification using structured genetic algorithms',
Proc. 5th Int. Conf. on Genetic Algorithms, Urbana-
Champaign, USA, pp.276-286.

Iba, H., de Garis, H. and Sato, T., (1994), ‘Genetic
programming using local hill-climbing’, Davidor, Y.
,Schwefel, H.P. and Manner, R. (Ed.), Parallel
Problem Solving in Nature - PPSN III, Vol.866 of
Lecture Notes in Computer Science, Springer-
Verlag, Germany, pp.302-311.

Koza, J. R. and Keane, M.A., (1990), ‘Genetic breeding
of non-linear optimal control strategies for broom
balancing’, Proc. 9th Int. Conf. on Analysis and
Optimisation of Systems, France, pp.47-56.

Koza, J., (1992), ‘Genetic programming: On the
programming of computers by means of natural
selection’, The MIT Press, USA.

Koza, J., (1994), Genetic Programming II: Automatic
Discovery of Reusable Programs, The MIT Press,
USA.

Koza J.R., Bennett, F.H., Andre, D. and Keane, M.A.,
(1996a) 'Automated WYWIWYG design of both the
topology and component values of electrical circuits
using genetic programming', Proc. of the First
Annual Conf. on Genetic Programming - GP’96,
Stanford University, USA, pp.123-131.

Koza J.R., Andre, D., Bennett, F.H. and Keane, M.A.,
(1996b), 'Use of automatically defined functions and
architecture altering operations in automated circuit
synthesis with genetic programming', Proc. of the

First Annual Conf. on Genetic Programming -
GP’96, Stanford University, USA, pp.132-140.

Marenbach, P., Bettenhausen, K.D. and Freyer, S.,
(1996), ‘Signal path oriented approach for
generation of dynamic process models’, Proc. 1st
Anual Conf. on Genetic Programming, Stanford
University, USA, pp.327-332.

McKay,B., Willis, M.J. and Barton, G. (1995). 'On the
application of genetic programming to chemical
process systems', Proc. IEEE Int. Conf. on
Evolutionary Computation - ICEF'95, Perth,
Australia.

McKay, B., Lennox, B., Willis, M.J., .Montague, G. and
Barton, G.W., (1996a), ‘Extruder modelling: A
comparison of two paradigms’, Proc. of the UKACC
Int. Conf. on Control - CONTROL-96, Exeter, UK,
Vol.2, pp.734-739.

McKay,B., Elsey,J., Willis,M.J. and Barton,G.W.,
(1996b), 'Evolving input-output models of chemical
process systems using genetic programming', Proc.
IFAC, 13th World Congress '96, San Francisco,
USA, Vol.M, pp.277-282.

B. McKay, C. Sanderson, M.J. Willis, J. Barford, G.
Barton., (1997a), 'Evolving a hybrid model of a fed-
batch fermentation process', Accepted for
publication in Trans. of the Inst. of Measurement
and Control.

McKay,B., Willis, M.J., Barton, G., (1997b),
'Steady_state modelling of chemical process systems
using genetic programming', Accepted for
publication in Comp. and Chem. Eng.

Montana, D.J., Czerwinski, S., (1996), 'Evolving control
laws for a network of traffic signals', Proc. First
Anual Conf. on Genetic Programming - GP’96,
Stanford University, USA, pp.333-338.

Nordin, P. and Banzhaf, W., (1996), ‘Genetic
programming controlling a miniature robot’, Proc.
First Anual Conf. on Genetic Programming -
GP’96, Stanford University, USA, pp.61 - 67.

Oakley, N., (1994) ‘Two scientific applications of genetic
programming: stack filter and non-linear equation
fitting to chaotic data’, Kinnear, K.E. (Ed.),
Advances in Genetic Programming, Cambridge,
Mass: MIT Press, pp 369-389.

O’Reilly, U.M. and Oppacher, F., (1994), 'Program
search with a hierarchical variable length
representation: Genetic programming, simulated
annealing and hill climbing', Davidor, Y. ,Schwefel,
H.P. and Manner, R. (Ed.), Parallel Problem
Solving in Nature - PPSN III, Vol.866 of Lecture
Notes in Computer Science, Springer-Verlag,
Germany, pp.397-406.

Porter, M. Willis, M. and Hiden, H.G. (1996), 'Computer-
Aided Polymer Design Using Genetic
Programming', MEng. Research Project, Dept.
Chemical and Process Engng, Uni. of Newcastle,
UK.

Tenenbaum, A.M. and Augenstein, M.J., (1981), Data
structures using pascal, Prentice Hall Inc, USA.

 6

Steinkolger, A. and Koch, J., (1996), ‘Genetic
programming designs hierarchic fuzzy logic
controllers’, Proc. Fuzzy Logic in Engineering and
Natural Sciences – FUZZY’96, Zittav, Germany.

Sharman, K.C., Esparcia-Alcazar, A.I., Li, Y., (1995),
'Evolving signal processing algorithms by genetic
programming'. Proc. IEE Conf. on Genetic
Algorithms in Engng. Systems: Inovations and
Applications - GALESIA’95, Sheffield, UK, No 414,
pp.473-480.

Esparcia-Alcazar, A.I. and Sharman, K.C., (1996), 'Some
applications of genetic programming in digital
signal processing', Late Breaking Papers at the
Genetic Programming 1996 Conference, Koza, J.R
(Ed.), Stanford University Bookstore, USA, pp.24-
31.

Watson, A.H., Parmee, I.C., (1996), ‘Identification of
fluid systems using genetic programming’, Proc. of
the Second Online Workshop on Evolutionary
Computation - WEC2, pp.45-48

3

*

c b ca

+

a b ca

+

a b

3

c b

*

Parent 1 Parent 2

Offspring 1 Offspring 2

Figure 3. A typical crossover operation.

 7

 8

