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Abstract 

The aim of this paper is to provide an introduction to the 
rapidly developing field of genetic programming (GP). 
Particular emphasis is placed on the application of GP to 
engineering problem solving. First, the basic 
methodology is introduced. This is followed by a review 
of applications in the areas of systems modelling, control, 
optimisation and scheduling, design and signal 
processing. The paper concludes by suggesting potential 
avenues of research. 
 

Introduction 

GP began as an attempt to discover how computers could 
learn to solve problems without being explicitly 
programmed to do so. The GP technique is an 
evolutionary algorithm that bears a strong resemblance to 
genetic algorithm's (GA's). The primary differences 
between GA's and GP can be summarised as follows; 
 
• GP typically codes solutions as tree structured, 

variable length chromosomes, while GA’s generally 
make use of chromosomes of fixed length and 
structure. 

• GP typically incorporates a domain specific syntax 
that governs acceptable (or meaningful) 
arrangements of information on the chromosome. 
For GA’s, the chromosomes are typically syntax free. 

• GP makes use of genetic operators that preserve the 
syntax of its tree-structured chromosomes during 
‘reproduction’. 

• GP solutions are often coded in a manner that allows 
the chromosomes to be executed directly using an 
appropriate interpreter. GA’s are rarely coded in a 
directly executable form. 

 
The use of this flexible coding system allows the 
algorithm to perform structural optimisation. This can be 
useful for the solution of many engineering problems. For 
instance, GP may be used to perform symbolic 

regression. While conventional regression seeks to 
optimise the parameters for a pre-specified model 
structure, with symbolic regression, the model structure 
and parameters are determined simultaneously. Similarly, 
the evolution of control algorithms, scheduling programs, 
structural design and signal processing algorithms can be 
viewed as structural optimisation problems suitable for 
GP. 
 
Cramer (1985) developed one of the first tree structured 
GA’s for basic symbolic regression. Another early 
development was the BEAGLE1 algorithm of Forsyth, 
(1986), which generated classification rules using a tree 
structured GA. However, it was Koza (1992 and 1994) 
who was largely responsible for the popularisation of GP 
within the field of computer science. His GP algorithm 
(coded in LISP) was applied to a wide range of problems 
including symbolic regression, control, robotics, games 
and classification. 

 
Since this initial work, interest in the field has grown, 
with the first international conference on GP held at 
Stanford University in 1996 (GP'96). While still 
dominated by computer scientists, engineering 
applications have begun to appear. Therefore, the 
objective of this paper is to discuss these recent 
engineering applications and provide an entry point to 
this rapidly expanding field. 
 
The paper is organised as follows. First, GP is introduced. 
Next, a survey of engineering applications within the GP 
field is provided. Finally, the paper concludes with the 
authors' perspective on future research directions.  
 

                                                           
1BEAGLE - Biological Evolutionary Algorithm 
Generating Logical Expressions 
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Genetic Programming 

A GP algorithm works on a population of individuals, 
each of which represent a potential solution to a problem. 
A flowchart of a typical GP algorithm is shown in Fig. 1. 
In order to solve a problem using GP Koza (1992) states 
that it is necessary to specify the following; 
 
• The terminal set: A set of input variables or 

constants. 
 
• The function set: A set of domain specific functions 

used in conjunction with the terminal set to construct 
potential solutions to a given problem. For symbolic 
regression this could consist of a set of basic 
mathematical functions, while Boolean and 
conditional operators could be included for 
classification problems. 

 
• The fitness function: Fitness is a numeric value 

assigned to each member of a population to provide a 
measure of the appropriateness of a solution to the 
problem in question. 

 

• The algorithm control parameters: This includes 
the population size and the crossover and mutation 
probabilities. 

 
• The termination criterion: This is generally a pre-

defined number of generations or an error tolerance 
on the fitness. 

 
It should be noted that the first 3 components determine 
the algorithm search space, while the final 2 components 
affect the quality and speed of search.  
 

 
In order to further illustrate the coding procedure and the 
genetic operators used for GP, a symbolic regression 
example will be used. Consider the problem of predicting 
the numeric value of an output variable, y, from two input 
variables a and b. One possible symbolic representation 
for y in terms of a and b would be, 

 
y =  (a - b) / 3 (1) 

 
Figure (2) demonstrates how this expression may be 
represented as a tree structure2.  

a b

3

y

 
 

Figure 2: Representation of a numeric expression 
using a tree structure. 

 
With this tree representation, the genetic operators of 
crossover and mutation must be posed in a fashion that 
allows the syntax of resulting expressions to be 
preserved. Figure (3) shows a valid crossover operation 
where the two parent expressions are given by: 
 

Parent 1: y = (a - b) / 3 (2) 
Parent 2: y = (c - b) * (a + c) (3) 

 
Parent 1 has input variables 'a' and 'b' and a constant '3' 
while parent 2 has three input variables 'a', 'b' and 'c'. 
Both expressions attempt to predict the process output, 'y'. 
If the ‘/’ from parent 1 and the ‘*’ from parent 2 are 
chosen as the crossover points, then the two offspring are 
given by: 

 
Offspring 1: y = (a - b) / (a + c) (4) 
Offspring 2: y = (c - b)* 3 (5) 

                                                           
2 For a thorough discussion of tree structures and their 
properties, see Tenenbaum and Augenstein (1981). 
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Figure 1: Typical genetic programming algorithm 
flowsheet. 
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It is assumed that by recombining relevant sub-trees, it is 
possible to produce new expressions that provide fitter 
solutions. 
In order to provide population diversity and allow the 
exploration of areas of the solution space not represented 
in the initial population, a mutation operator may also be 
used. Mutation merely consists of randomly changing a 
function, input or constant in one of the mathematical 
expressions making up the present population. 
 

GP Applications 

The following section presents a review of engineering 
applications of GP. The results of the literature survey 
have been arranged into the following broad categories: 
 
• Systems Modelling 
• Control 
• Optimisation and scheduling 
• Design 
• Signal processing 
 
Systems Modelling 
In Koza (1992), basic regression examples were used to 
illustrate the functionality of a GP algorithm. The 
examples included the discovery of trigonometric 
identities, polynomial approximation and basic 
econometric modelling and forecasting. Iba et al. (1993 
and 1994) introduced a GP algorithm, called 
STROGANOFF3. The algorithm integrated multiple 
regression analysis and a GA-based search strategy. The 
function set was limited to quadratic polynomials in two 
variables. The effectiveness of STROGANOFF was 
demonstrated by solving several system identification 
problems. Oakley (1994) and Howard and Oakley (1995) 
used Koza's LISP code (Koza, 1992) to demonstrate that 
GP can be used to perform time series prediction of 
chaotic systems. 
 
Applications to chemical process systems have included 
the generation of non-linear dynamic models of 
biotechnological batch and fed-batch fermentations 
(Bettenhausen and Marenbach, 1995; Bettenhausen et 
al.., 1995b; Marenbach et al., 1996), the identification of 
complex fluid flow patterns (Watson and Parmee, 1996) 
and the generation of steady-state input-output models of 
a range of industrial chemical process systems (McKay et 
al., 1995, 1996b and 1997b). Comparisons with 
established modelling paradigms (such as neural 
networks) are also available (McKay et al., 1996a). 
 
Bettenhausen et al. (1995b) and Marenbach et al. (1996) 
developed a GP algorithm (referred to as a structured 
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Non-linear Function Fitting 

model generator or SMOG4) that models dynamic 
processes by allowing state variables and feed-back 
loops. Such a system appears to have very powerful 
representational capabilities. Gray et al. (1996a) also 
successfully use a block diagram oriented approach for 
non-linear system identification. 
 
A number of contributions have reported a successful 
'hybrid' of mechanistic approaches and GP techniques for 
process modelling. For instance the work of Gray et al. 
(1996b) on the modelling of a simple simulated water 
tank example. In more recent work, Elsey et al. (1997), 
apply a hybrid GP approach for the development of a 
cooking extrusion process (using GP to develop 
rheological models for an otherwise mechanistic extruder 
model), while McKay et al.(1997a) uses a hybrid GP 
technique for the modelling of a fed-batch fermentation 
process. 
 
Control 
Early applications in the area of control include the 
evolution of non-linear control strategies for broom 
balancing (Koza and Keane, 1990). Hampo (1992) and 
Hampo and Marko (1992) considered the use of GP for 
developing vehicle control systems, with emphasis placed 
on active suspension control. A popular subject in the GP 
literature is the development of robot control strategies 
(e.g. see Handly, 1993 and 1994; Ghanea-Herrock and 
Fraser ,1994; Gruau and Quatramaran ,1996; and Nordin 
and Banzhaf ,1996). Alba et al.(1996) use GP to develop 
rule bases for the definition of fuzzy logic controllers. 
Steinkolger and Koch (1996) also report the use of 
genetic programming techniques for the development of 
hierarchical fuzzy logic controllers. 
 
Optimisation and Scheduling 
Grimes (1995), used GP to plan the maintenance schedule 
for a length of railway track. GP was used to generate 
rules determining when track maintenance was required 
on a particular section of track. GP was compared with 
existing maintenance scheduling tools and found to 
provide superior performance. Montana and Czerwinski 
(1996) employed a GP algorithm to optimally control the 
timing of traffic signals within a network of 
interconnecting road junctions. The timing sequences 
generated varied with the level of congestion and the 
waiting time for cars at various junctions. The systems 
developed using GP were tested using a number of 
different road configurations under different levels of 
congestion, and found to outperform schemes based on 
fixed traffic signal timings. Gaces-Perez et al.(1996), 
implemented a GP based facility layout scheme, whereby 

                                                           
4 SMOG evolves ‘signal path models’ (similar to the 
block diagrams used by control engineers) from a 
function set of mathematical functions and linear transfer 
function blocks. Recurrent connections allow the 
inclusion of recycle loops. 
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a number of rectangular facilities were optimally placed 
within a fixed site boundary. 
 
Design 
The application of GP to the design of new polymeric 
materials was addressed by Porter et al.(1996). Here, the 
GP performed a structural optimisation of a monomer in 
order to achieve desired polymer properties. Koza et 
al.(1996a) described an automated process for designing 
electrical circuits. GP produced both the topology of the 
desired circuit and the sizing for all of the components in 
the circuit. Koza et al.(1996b) demonstrated the 
usefulness of automatically defined functions (ADF's) 
and architecture altering operations for designing analog 
electrical circuits. 
 
Signal Processing 
GP has also been used by Sharman et al.(1995) and 
Sharman and Esparcia-Alcazar (1996) to evolve the 
structure and parameters of adaptive digital signal 
processing (DSP) algorithms. In this application, GP was 
used to evolve the structure of the algorithm, while the 
parameters contained within it were optimised using 
simulated annealing. The GP based approach was 
compared with a more traditional recursive least squares 
based adaptive algorithm. It was concluded that the 
method is a versatile tool, applicable to a wide variety of 
signal processing applications. 
 

Conclusions  

This survey paper has revealed that engineering 
applications of GP are currently focused on typical 
systems problems such as modelling, control and 
optimisation. While computer scientists have 
concentrated on gaining a fundamental understanding of 
the algorithm (and improving its performance) the 
engineering community is addressing practical issues, 
often by introducing accepted systems engineering 
concepts and methodologies. For instance, the 
incorporation of local hill climbing for parameter 
optimisation and the use of cross validation techniques to 
ensure model generalisation. 
 
Perhaps the most promising research direction appears to 
be the application of GP techniques to engineering design 
problems. While computational considerations currently 
limit the complexity of design applications that can be 
addressed, these will inevitably be lifted as processor 
speeds continue to increase. 
 
Further potential avenues of research include the 
investigation of other algorithms capable of performing 
structural optimisation. For instance, the structural 
annealing algorithm of O’Reilly and Oppacher (1994), 
which is similar to GP but uses a population of one and a 
simulated annealing style mutation operator. This is 
reported to achieve similar performance to GP and as 
such warrants further investigation. 

 
It is emphasised that GP is a young field of research, 
whose practitioners are still exploring its capabilities and 
limitations. Consequently it is the authors' belief that the 
future holds much promise. 
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Figure 3. A typical crossover operation. 
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