AI Methods

Question 1

a)
With reference to the Travelling Salesman Problem explain what is meant by combinatorial explosion and what effect this has in finding an optimal solution?

(5 marks)

b)
Consider the following map.

(16 marks)

[image: image1.png]AND OR NOT

Using the A* algorithm work out a route from town A to town M. Use the following cost functions.

· G(n) = The cost of each move as the distance between each town (shown on map).

· H(n) = The Straight Line Distance between any town and town M. These distances are given in the table below.

Provide the search tree for your solution and indicate the order in which you expanded the nodes. Finally, state the route you would take and the cost of that route.

Straight Line Distance to M

A
223

E
165

I
100

M
0

B
222

F
136

J
60

C
166

G
122

K
32

D
192

H
111

L
102

c)
The straight line distance heuristic used above is known to be an admissible heuristic. What does this mean and why is it important?

(4 marks)

Question 1 - Answer

a)
With reference to the Travelling Salesman Problem explain what is meant by combinatorial explosion and what effect this has in finding an optimal solution?

The number of solutions is n! (n factorial), where n is the number of cities. This results in an exponential rise in the number of solutions. For example, for 10 cities the number of possible routes is 3,628,800.
This is known as combinatorial explosion where the number of solutions rises exponentially.
The effect this has with regards to TSP is that is quickly becomes impossible to search the entire search space (i.e. enumerate all possible solutions and choose the best route).

Therefore, heuristic methods are often used to find solutions to these problems.

b)
Using A* Algorithm

The Search Tree

The figures next to each node represent the G(n) and H(n) functions, where

G(n)
=
The cost of the search so far (i.e. distance travelled)

H(n)
=
The heuristic value (i.e. the straight line distance to the target town)
[image: image2.png]AND OR NOT

The route you would take is A, C, F, K, M at a cost of 236.

c)
The straight line distance heuristic used above is known to be an admissible heuristic. What does this mean and why is it important?

An admissible heuristic is one which never over estimates the cost to the goal. This is obviously the case with the straight line distance between two towns.

Having admissible heuristics is important as it allows the A* algorithm to be proved to be optimal (i.e. always find the best solution).

Question 2

With regards to Genetic Algorithms :-

a)
Describe a parent selection technique and show the algorithm.

(8 marks)

b)
Describe how one-point crossover works.

(8 marks)

c) One-Point Crossover is not suitable for The Travelling Salesman Problem (TSP).
Why is this?
Give a description of a crossover operator that is suitable for the TSP?

(9 marks)

Question 2 - Answer

a) Parent Selection Technique

The technique described in the lectures was roulette wheel selection.

The idea behind the roulette wheel selection technique is that each individual is given a chance to become a parent in proportion to its fitness. It is called roulette wheel selection as the chances of selecting a parent can be seen as spinning a roulette wheel with the size of the slot for each parent being proportional to its fitness. Obviously those with the largest fitness (slot sizes) have more chance of being chosen.

Roulette wheel selection can be implemented as follows

1. Sum the fitnesses of all the population members. Call this TF (total fitness).

2. Generate a random number n, between 0 and TF.

3. Return the first population member whose fitness added to the preceding population members is greater than or equal to n.

In marking this question I will be looking for the following points.

· Why it is called “roulette wheel” selection.

· The algorithm, in outline, has been presented.

· The fact that parents are picked in proportion to their fitness.

· An example may be useful in describing the technique.

b) One Point Crossover

One-point crossover takes two parents and breeds two children. It works as follows

Parent 1
1
0
1
1
1
0
1

Parent 2
1
1
0
0
1
1
0

Child 1
1
0
0
0
1
1
0

Child 2
1
1
1
1
1
0
1

· Two parents are selected.

· A crossover point is chosen at random (shown above by the dotted line).

· Child 1 is built by taking genes from parent 1 from the left of the crossover point and genes from parent 2 from the right of crossover point.

· Child 2 is built in the same way but it takes genes from the left of the crossover point of parent 2 and genes from the right of the crossover point of parent 1.

c) Crossover Operators for the TSP

The problem with one-point crossover is that it can lead to illegal solutions for some problems.
Take, for example, the travelling salesman problem (TSP). A chromosome will be coded as a list of towns. If we allow the one-point crossover operator we can (and almost definitely will) produce an illegal solution by duplicating some cities and deleting others.

We can deal with this by developing crossover operators that do not produce illegal solutions. Order-based crossover is one such crossover operator.

It works as follows (assume the coding scheme represent cities)

Parent 1
A
B
C
D
E
F
G

Parent 2
E
B
D
C
F
G
A

Template
0
1
1
0
0
1
0

Child 1
E
B
C
D
G
F
A

Child 2
A
B
D
C
E
G
F

· Select two parents

· A template is created which consists of random bits

· Fill in some of the bits for child 1 by taking the genes from parent 1 where there is a one on the template (at this point we have child 1 partially filled, but it has some “gaps”).

· Make a list of the genes in parent 1 that have a zero in the template

· Sort these genes so that they appear in the same order as in parent 2

· Fill in the gaps in child 1 using this sorted list.

· Create child 2 using a similar process

Question 3

a)
Show how BREADTH-FIRST-SEARCH and DEPTH-FIRST-SEARCH can be implemented using some appropriate pseudo-code. If you use another search algorithm as a sub-routine then show this algorithm in detail as well.

(10 marks)

b)
Describe any data structures that are used in implementing the two searches and describe the way in which they are used.

(8 marks)

c)
What is the worst-case time and space complexity of the above two algorithms.

(5 marks)

d)
Describe the terms complete and optimal with regards to evaluating search strategies?
Are either DEPTH-FIRST-SEARCH or BREADTH-FIRST-SEARCH complete? Are either of them optimal?

(2 marks)

Question 3 - Answer

a)
Show how BREADTH-FIRST-SEARCH and DEPTH-FIRST-SEARCH can be implemented using some appropriate pseudo-code. If you use another search algorithm as a sub-routine then show this algorithm in detail as well.

Breadth-First Search Implementation

Function BREADTH-FIRST-SEARCH(problem) returns a solution or failure

Return GENERAL-SEARCH(problem,ENQUEUE-AT-END)
Depth-First Search Implementation

Function DEPTH-FIRST-SEARCH(problem) returns a solution or failure

Return GENERAL-SEARCH(problem,ENQUEUE-AT-FRONT)
Both searches call the GENERAL-SEARCH algorithm

Function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure

nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

Loop do

If nodes is empty then return failure

node = REMOVE-FRONT(nodes)

If GOAL-TEST[problem] applied to STATE(node) succeeds then return node

nodes = QUEUING-FN(nodes,EXPAND(node,OPERATORS[problem]))

End
End Function

b)
Describe any data structures that are used in implementing the two searches and describe the way in which they are used.

Both searches use a queue. The next node to expand is always taken from the front of the queue. The important aspect is that the search is implemented by adding nodes to the queue in different orders (thus the need for a QUEUING-FN in the above implementations).

Breadth-First Search adds new nodes to the end of the queue.

Depth-First Search adds new nodes to the beginning of the queue.

c)
What is the worst-case time and space complexity of the above two algorithms.

Evaluation
Breadth First
Depth First

Time
BD
BM

Space
BD
BM

Where
B
=
Branching Factor

D
=
Depth of Solution

M
=
Maximum Depth of the Search Tree

d)
Describe the terms complete and optimal with regards to evaluating search strategies?
Are either DEPTH-FIRST-SEARCH or BREADTH-FIRST-SEARCH complete? Are either of them optimal?

Complete
:
Is the search guaranteed to find a solution if there is one?

Optimal
:
Is the search guaranteed to find the optimal (cheapest) solution (however cheapest has been defined for that search problem)?

Breadth-First Search is both optimal and complete

Depth-First Search is neither optimal nor complete

Question 4

a)
For each of the truth tables below say whether it is possible for a perceptron to learn the required output.

In each case, explain the reason behind your decision.

i)
Input
0
0
1
1

Input
0
1
0
1

Required Output
1
0
0
1

ii)
Input
0
0
1
1

Input
0
1
0
1

Required Output
1
1
0
0

iii)
Input
0
0
1
1

Input
0
1
0
1

Required Output
1
1
1
1

(10 marks)

b)
A perceptron with two inputs has a threshold level set at the point at which it will fire (i.e. output a one).
It is sometimes convenient to always set the threshold level to zero.
Show how this can be achieved by describing two perceptrons which act in the same way but one has its threshold set to a non-zero figure and the other perceptron has a zero threshold.
Why might it be a good idea to build a perceptron with a zero threshold figure?

(15 marks)

Question 4 - Answer

Only i) cannot be learnt. This is because it is not linearly separable. This can be shown on the diagrams below (where the outputs have been plotted and the filled circles represent a 1 and the hollow circles represent a zero.).

Those problems which are linearly separable can have a line dividing the "1" outputs from the "0" outputs. In the case of i) this is not possible.

i)
ii)

iii)

b)
A perceptron with two inputs has a threshold level set at the point at which it will fire (i.e. output a one).
It is sometimes convenient to always set the threshold level to zero.
Show how this can be achieved by describing two perceptrons which act in the same way but one has its threshold set to a non-zero figure and the other perceptron has a zero threshold.
Why might it be a good idea to build a perceptron with a zero threshold figure?

Perceptrons with two inputs and the threshold non-zero

A perceptron (with two inputs) to act as a logic gate could be modelled as follows (three examples are shown – students would only need to show one example).

If we consider the AND function we can see that it acts correctly for the four possible inputs (see table below).

Note in the table
Sum is defined as (Input 1 * Weight 1) + (Input 2 * Weight 2)

Step(t) is defined as returning 1 if Sum => t else 0 and the output of Step(t) is also the output (or activation level) of the perceptron.

AND

Input 1
Input 2
Weight 1
Weight2
Sum
Step(t)

0
0
1
1
0
0

0
1
1
1
1
0

1
0
1
1
1
0

1
1
1
1
2
1

Similarly, OR and NOT can be shown as follows

OR

Input 1
Input 2
Weight 1
Weight 2
Sum
Step(t)

0
0
1
1
0
0

0
1
1
1
0.5
1

1
0
1
1
0.5
1

1
1
1
1
1
1

NOT

Input 1
Weight 1
Sum
Step(t)

0
-1
0
1

1
01
-0.49
0

Perceptron with three inputs and the threshold set to zero

It is possible to have an extra input whose activation is set to –1 and the weight from that input unit to the output neuron is set to the required threshold level. Diagramatically this can be shown as follows

It can be shown that this acts in the same way as the previous perceptrons.

To demonstrate the perceptrons act in the same way the following tables are given

AND (weight on extra neuron = 1.5)

Input 1
Input 2
Input 3
Sum
Step(0)

-1
0
0
-1.5
0

-1
0
1
-0.5
0

-1
1
0
-0.5
0

-1
1
1
0.5
1

OR (weight on extra neuron = 0.5)

Input 1
Input 2
Input 3
Sum
Step(0)

-1
0
0
-0.5
0

-1
0
1
0
1

-1
1
0
0
1

-1
1
1
0.5
1

NOT (weight on extra neuron = -0.49)

Input 1
Input 2
Sum
Step(0)

-1
0
0.49
1

-1
1
-0.51
0

Again, I would not expect the students to show three examples. They are just shown for completeness.

Why it is an advantage to have threshold set to zero

When learning, the algorithm only has to adjust weights and not thresholds and weights.

Question 5

a) Describe the main parts of an expert system. Show how they interact with one another.

(5 marks)

b) Using two brief examples of knowledge representation, explain how knowledge may be represented in the knowledge base.

(10 marks)

c) Describe the advantages and disadvantages of an expert system.

(5 marks)

c) Why is MYCIN considered important in the development of expert systems and how did it lead to EMYCIN?

(5 marks)

Question 5 - Answer

a) Describe the main parts of an expert system. Show how they interact with one another.

A generic model is shown here

And described as follows

The user (or more likely a knowledge engineer) will populate the knowledge base with facts.

The user will then interrogate the knowledge base via a suitable user interface. In turn the Expert System will supply the user with the answer in the form of “expertise.”

The expert system actually comprises two main components (knowledge base and inference engine). The inference engine is responsible for using the knowledge base and, where necessary, it will infer new facts that have not explicitly been stored in the knowledge base.

b) Using two brief examples of knowledge representation, explain how knowledge may be represented in the knowledge base.

In the lectures I presented four types of knowledge representation. These were

1. Semantic Networks

2. Frames

3. Production Rules

4. Logic

I would expect the student to give two out of these four with suitable examples (e.g. a diagram of a semantic network, a diagram of a frame, some simple production rules or an example of logic).

The marks will be split equally between the two examples and I will mark each example on the following criteria

· Describing the representation (including a suitable diagram, where appropriate)

· Giving an example of its use.

c) Describe the advantages and disadvantages of an expert system

I will give one mark for each correct answer. Other answers, than those described below are acceptable as long as they are reasonable.

The following advantages were described in the lectures and were presented in the lecture handouts – the students only need to describe five.

· Increased availability : Expertise is available on any suitable computer.

· Reduced cost : The cost “per expert” is greatly reduced
· Reduced danger : Non-human experts can be used in dangerous environments.

· Permanence : The expert is permanent. Unlike a human which has time off, goes sick, does not work 24 hours a day and eventually retires and/or dies.

· Multiple expertise : Multiple experts can exist inside one expert system. This can either be expert knowledge from different areas or can be expert knowledge from experts in different fields, which can combine into an expert system that can be greater than any one single expert.

· Increased confidence : Expert systems can provide a second opinion that can be used to reinforce the decision made by a human expert. Or it could be used to arbitrate between two conflicting decisions by two human experts.

· Explanation : An expert system can explain its decision in detail and explain the decision every time. A human expert may be unwilling to do this, may make a mistake in explaining the reasoning or may not be able to explain how they reached the decision.

· Fast response : An expert system may be able to supply an answer faster than a human expert. In some emergency situations this may be an essential feature of the system.

· Steady, unemotional and complete response at all times : Whereas a human may not be able to perform at peak efficiency at all times an expert system can always perform at the same state of efficiency and without becoming emotionally involved in the decision.
An expert system will not be affected by stress or fatigue.

· Intelligent tutor : The expert system may be able to provide tuition for “novice experts.” The system may also allow sample decisions to be made to see what effect it would have.

· Intelligent database : Expert systems have access to an intelligent database which is a source of structured knowledge and can be updated as necessary.

Disadvantages (described in lectures and on handouts)

· Explanation Facility : Although the benefits of an explanation facility can be invaluable, the explanation may be shallow and it may not be possible for the user to seek clarification of a certain point. With a real expert you can interrogate them until you are satisfied with the answer.
· Updating the Knowledge Base : Updating the knowledge base, especially if the base is large, could be difficult and may lead to side effects which are either difficult to predict or could not be predicted at all.
· Searching the Knowledge Base : Searching for a solution may depend (almost definitely will do) on how the knowledge is represented and efficient searching can vary considerably from one representation to another for a given problem.

d) Why is MYCIN considered important in the development of expert systems and how did it lead to EMYCIN?

· It demonstrated that expert systems could be used for practical, real-world problems.

· It was the test bed of features such as an explanation facility, automatic acquisition of data and intelligent tutoring.

· It demonstrated the feasibility of the expert empty shell. MYCIN separated the knowledge base from the inference engine which meant that the main parts of the expert system could be re-used with a different knowledge base.
The shell produced by removing the medical knowledge was called EMYCIN (Empty-MYCIN).

Question 6

a) Describe Quinlan’s ID3 algorithm for inducing rules from tables.

(7 marks)

b) With reference to the ID3 algorithm, explain clearly how the decision is made as to which attribute is selected to partition a set of examples.

 (8 marks)

c) Use the ID3 algorithm to devise a set of rules for identifying bird’s eggs (see table below).
Show how you would cope with any ambiguity that arises.

Bird
Colour
Texture
Size

Herring Gull
Brown
Speckled
Medium

Starling
Blue
Smooth
Small

Mallard
Grey
Smooth
Medium

Swan
Grey
Smooth
Large

Guillemot
Brown
Speckled
Medium

Sparrow
Grey
Speckled
Small

 (10 marks)

Question 6 - Answer
a)

Algorithm

1. Select, randomly, a small subset (the window) from the set of training data.

2. Repeat

2.1. Form a decision tree from this window (using the information content formula described in part b)

2.2. Find exceptions to this decision tree, among the unused training instances

2.3. Add these exceptions to the current window, forming a new window

3. Until no exceptions exist in the training set

In overview, algorithm examines the data that is presented to it and works out which attribute of the data gives the largest “information content.” This attribute is used to produce the decision node.

Only a subset of the complete data is used and the decision tree is verified using a disjoint set from the remaining data. If exceptions are found then the process is repeated until no exceptions are found.

b)

The key to the ID3 algorithm is how it decides which attribute gives the best “information content” and so produce the smallest (most efficient tree).

The information content formula can be described as follows

The probability of an object belonging to a class (i.e. can be classified as being the same as other objects) is calculated by C/X (where X is the total number of objects and C is the number of members that belong to a certain class).

For example, if at a node in the decision tree there are a total of ten objects, X, and four of those objects belong to the same class, C, then the probability that any one of the object belongs to class C is C/X (= 0.4).

The following formula returns a measure as to how much information content is contained in the data. Or, to put it another way, the value represents the minimum information needed to classify the whole set of objects

Hc = -Sumi(hi * log2(hi))

Where hi is the fraction of objects that belong to class Ci in a sample of n objects and i covers the whole range of possible classes.

Next we need to consider each attribute and work out the information content for that attribute. An example of this is shown in part c) of the question but, essentially, it involves a similar process as above for each value of each attribute.

The information content values for each value of an attribute are averaged and subtracted from Hc.

The attribute which returns the highest figure is used to make a node in the decision tree, as this attribute gives the highest information content and thus will lead to the smallest tree.

I will give marks for explaining the concept of information content as well as marks for the formulae. But it is important that they explain how the attributes are inspected to see which one has the highest information content.

c)

Note : In this part of the question I would not expect the students to show the information content formulae. It is good enough to show the completed tree and to produce the rules.

The tree and rules are assigned 4.5 marks each and 1 mark is given for explaining how to deal with the ambiguity.

The tree should look like this. It can be produced by inspection of the data (for this small problem). It can also be built using the formula described in section b).

The rules should look like this. They are simply extracted from the tree.

IF colour is blue THEN Starling

IF colour is grey THEN

IF size is large THEN swan

ELSEIF size is medium THEN mallard

ELSE sparrow

IF colour is brown THEN herring-gull (0.5)

OR guillemot (0.5)

One way to cope with the ambiguity is to introduce a probability factor into the rule (in this case 0.5). Another way to cope with it would be to assign a probability to each type of egg before the tree was built.

For completeness the information content figures are shown below (although the students do not need to produce these). The left hand figures show the initial calculation which shows that the initial decision node would be the colour.

The right hand figures show the calculations for the right hand node of the tree and shows why it was decided to use the size attribute, rather than the texture attribute.

On the following page, the same information is shown but with the formulae displayed which shows how the information content is calculated (but, as stated above, I would not expect the students to show this).

Information content (Start)

Information content (After using Colour)

Complete Set
2.5850

Complete Set
1.2157

Colour Brown
1.0000

Size Small
0.5283

Colour Blue
0.0000

Size Medium
0.5283

Colour Grey
1.5850

Size Large
0.5283

Average
0.5000

Average
0.5283

Information content
2.0850

Information content
0.6874

Texture Speckled
1.5850

Texture Speckled
0.5283

Texture Smooth
1.5850

Texture Smooth
1.0566

Average
1.5850

Average
0.7925

Information content
1.0000

Information content
0.4232

Size Medium
1.5850

Size Small
1.0000

Size Large
0.0000

Average
1.2925

Information content
1.2925

Information content (Start)

Set
=-((1/6)*LOG(1/6,2)+(1/6)*LOG(1/6,2)+(1/6)*LOG(1/6,2)+(1/6)*LOG(1/6,2)+(1/6)*LOG(1/6,2)+(1/6)*LOG(1/6,2))

Colour Brown
=-((1/2)*LOG(1/2,2)+(1/2)*LOG(1/2,2))

Colour Blue
=-((1/1)*LOG(1/1,2))

Colour Grey
=-((1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2))

Average
=AVERAGE(C13:C14)

Information content
=C11-C16

Texture Speckled
=-((1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2))

Texture Smooth
=-((1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2))

Average
=AVERAGE(C21:C22)

Information content
=C11-C23

Size Medium
=-((1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2))

Size Small
=-((1/2)*LOG(1/2,2)+(1/2)*LOG(1/2,2))

Size Large
=-((1/1)*LOG(1/1,2))

Average
=AVERAGE(C25:C27)

Information content
=C11-C29

Information content (After using Colour)

Set
=-((1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2)+(1/3)*LOG(1/3))

Size Small
=-((1/3)*LOG(1/3,2))

Size Medium
=-((1/3)*LOG(1/3,2))

Size Large
=-((1/3)*LOG(1/3,2))

Average
=AVERAGE(F13:F15)

Information content
=F11-F16

Texture Speckled
=-((1/3)*LOG(1/3,2))

Texture Smooth
=-((1/3)*LOG(1/3,2)+(1/3)*LOG(1/3,2))

Average
=AVERAGE(F21:F22)

Information content
=F11-F23

1,0

0,1

1,1

0,0

1,0

0,1

1,1

0,0

1,0

0,1

1,1

0,0

316+136=452

240+60=300

236+0=236

123+166=289

214+60=274

� EMBED PBrush ���

W = 1

W = 1

W = 1.5

-1

x

y

t = 0.0

204+32=236

L

A

K

C

F

J

I

H

G

E

D

B

M

31

20

52

31

32

102

32

36

112

80

61

45

40

43

122

36

122+223=345

93+192=285

92+136=228

141+102=243

36+222=258

61+166=227

0+223=223

11

F

12

J

13

M

8

C

9

J

10

K

4

A

5

D

6

F

7

L

2

B

3

C

1

A

Expert System

Expertise

Facts

Inference Engine

Knowledge Base

User

Ambiguous

small

medium

large

m

grey

h,g

brown

m

sw

st

s, sw, m

blue

h, st, m, sw, g, s

C:\My Documents\AIM\Word\Exam 1998.doc

Graham Kendall - 07/05/98 - Page 1 of 24

_949738106

