AI Methods

AIM Evolutionary Strategies

0. Preamble

In this section of the course we are going to consider another aspect of AI; how can programs learn?

In fact, we are only going to scratch the surface of this fascinating area, by looking at an example. Really, this will just give you a flavour of what is possible.

However, it would be remiss of me not to cover a couple of points.

It is possible to use the techniques outlined in this handout as an optimisation strategy, in the same way that we can use genetic algorithms and ant algorithms. In fact, being a population based approach evolutionary optimisation are closely related to both genetic algorithms and ant algorithms.

If you read chapter 8 of (Michalewicz, 1996), you will find a very good description of evolutionary algorithms. In fact, much of these notes are based on that chapter. In (Michalewicz, 1996) the history of evolutionary strategies is reported and also genetic algorithms and evolutionary strategies are compared.

Other good introductions can be found in (Fogel, 1998), (Fogel, 2000), (Michalewicz, 2000) and (Bäck, 1997)

Although we are going to consider the learning aspects of evolutionary strategies we should bear in mind that there are other ways that we could design computer programs so that they “learn.” For example, we could have a knowledge base using some suitable logic symbolism. This would allow us to use inference rules to determine new facts which are not already in the knowledge base.

We should also be careful not confuse evolutionary strategies with evolutionary programming (EP). EP is about writing programs that write programs.

But, the main thrust of this handout is looking at how evolutionary strategies can be used to as an evolving learning strategy. After looking at that, it is a small step to convert this idea into an optimisation tool.

1. Introduction

If we wanted to define what makes an evolutionary strategy (ES) different from a genetic algorithm we could state that it is an algorithm that only uses mutation and does not use crossover. This is not a formal definition and there is no reason why we cannot incorporate crossover (as Michalewicz, 1996 shows).

The other factor that normally is associated with ES’s is that it is applied to real numbers (continuous variables) rather than discrete values. Again, this is not a strict definition and work has been done on using ES’s for discrete problems (Bäck, 1991) and (Herdy, 1991).

We can also say that ES’s are a population based approach. But when they were first introduced, this was not the case. Originally, only a single solution was maintained and this was improved upon.

In summary, we can say that ES’s are like genetic algorithms but only use mutation and not crossover. They operate on real numbers and they are a population based approach. But we can break any, or all, of these rules if we wish!

2. How they operate

An individual in an ES is represented as a pair of real vectors, v = (x,σ).

The first vector, x, represents a point in the search space and consists of a number of real valued variables. The second vector, σ, represents a vector of standard deviations.

Mutation is performed by replacing x by

xt+1 = xt + N(0, σ)

where N(0, σ) is a random Gaussian number with a mean of zero and standard deviations of σ. This mimics the evolutionary process that small changes occur more often than larger ones. If you are interested in implementing an ES an algorithm (in C++) that produces Gaussian random numbers is supplied at the end of this handout.

In the earliest ES’s (where only a single solution was maintained), the new individual replaced its parent if (and only if) it had a higher fitness.

Even though this “single solution” scheme only maintains a single solution at any one time, you might hear it referred to as a “two-numbered evolution strategy.” This is because, there is competition between two individuals (the parent and the offspring) to see which one survives to become the new parent.

In addition, these early ES’s, maintained the same value for σ throughout the duration of the algorithm.

The reason that σ stays the same throughout the run is because it has been proven that if this vector remains constant throughout the run then it is possible to prove that the algorithm converges to the optimal solution (Bäck, 1991).

The problem is, although the global optimum can be proved to be found with a probability of one, it also states that the theorem holds for a sufficiently long search time. The theorem tells us nothing about how long that search time might be. To try and speed up convergence Rechenberg has proposed the “1/5 success rule.” It can be stated as follows

The ratio, (, of successful mutations to all mutations should be 1/5. Increase the variance of the mutation operator if (is greater than 1/5; otherwise, decrease it.

The motivation behind this rule is that if we are finding lots of successful moves then we should try larger steps in order to try and improve the efficiency of the search. If we not finding many successful moves then we should proceed in smaller steps.

The 1/5 rule is applied as follows

if ((k) < 1/5 then σ = σcd
if ((k) > 1/5 then σ = σci
if ((k) = 1/5 then σ = σ
The variable, k, which is a parameter to the algorithm, dictates how many generations should elapse before the rule is applied. cd and ci determine the rate of increase or decrease for σ. ci must be greater than one and cd must be less than one. Schwefel (Schewel, 1981) used cd = 0.82 and ci = 1.22 (=1/0.82).

The problem with the applying the 1/5 rule is that it may lead to premature convergence for some problems. One answer to this is to increase the population size, which now turns ES’s into a population based search mechanism. By increasing the population size we can now make these observations

1. The population size is now (obviously) > 1.

2. All members of the population have an equal probability of mating (compare this to chromosomes in a genetic algorithm which mate in proportion to their fitness).

3. We could now introduce the possibility of crossover. For the purposes of this discussion we will not consider this as an option but, from the genetic algorithm handout, you will be able to envisage how this might be achieved.

4. As we have more than one individual we have the opportunity to alter σ independently for each member.

5. We have more options with regards to how we control the population. This topic is discussed below.

In evolutionary computation there are two variations as to how we create the new generation (to continue our discussion from 5, above). The first, termed ((+ (), uses (parents and creates (offspring. Therefore, after mutation, there will be (+ (members in the population. All these solutions compete for survival, with the (best selected as parents for the next generation.

An alternative scheme, termed ((, (), works by the (parents producing (offspring (where (> (). Only the (compete for survival. Thus, the parents are completely replaced at each new generation. Or, to put it another way, a single solution only has a life span of a single generation.

The original work on evolution strategies (Schwefel, 1965) used a (1 + 1) strategy. This took a single parent and produced a single offspring. Both these solutions competed to survive to the next generation.

We cannot mention ES’s without mentioning the name of David Fogel. He has done (and written) a vast amount on the subject. Below, we present his definition of ES’s. This is taken from one of his many books. See, for example, (Fogel, 1998) or (Michalewicz, 2000).

1. The problem is defined as finding real-valued n-dimensional vector x that is associated with the extrmemum of a function F(x) : Rn → R. The procedure can be implemented as to minimise or maximise the function.

2. An initial population of parent vectors, xi, i=1,…P, is selected at random from a feasible range in each dimension. The distribution of initial trials is typically uniform.

3. An offspring vector, x’i, i=1,…P, is created from each parent xi by adding a Gaussian random variable with zero mean and preselected standard deviation to each component of xi.

4. Selection then determines which of these vectors to maintain by comparing the errors F(xi) and F(x’i), i=1,…P. The new vectors that possess the least error become the new parents for the next generation.

5. The process of generating new trials and selecting those with least error continues until a sufficient solution is reached or the available computation is exhausted.

3. Case Studies

3.1 An Adaptive Poker Player

In this section we present a case study that uses an evolutionary algorithm as a learning mechanism. The case study is taken from (Barone, 1999). If you are interested, you can download the paper from his web site http://www.cs.uwa.edu.au/~luigi/publications.html.

The aim of this work is to develop an agent that knows how to play poker and also learns how to adapt its playing style to different types of player. Four types of opponent are recognised; these being

Loose
Tight

Passive
Players who overvalue their hands, but rarely raise, being fearful of large pots.
Players who play few hands, usually with a high probability of winning, but rarely raise, being fearful of large pots.

Aggressive
Players who overvalue their hands and who raise often to increase potential winnings.
Players who play few hands, usually with a high probability of winning, and who raise often to increase potential winnings.

Barone showed that he could indeed develop an agent that learnt to adapt its play when faced with each of the playing styles shown above. It works as follows.

The poker playing agent is able to calculate the probability, x, of winning from any given position. It does this by enumerating all possible hands that can be held by the opponents.

x is used as the independent variable in the following functions

fold(x) = exp(-eval(b) * (x – a))

call(x) = eval(c) * exp(-eval(b)2 * (x-a)2)

raise(x) = exp(eval(b) * (x + a – 1.0))

eval(c) is defined as

eval(c) = c / (1-c)

which simply maps a number in the range [0..1] to range [0..∞] with eval(0.5) = 1.

The constants in each function (a, b and c) define the shape of each function and it is these functions that we want our poker playing agent to learn. To be more specific, the probability of winning, x, from a certain position is calculated. This value is fed into the three functions (fold, call and raise). The response returned from the function determines the action of the poker player. Barone calls a grouping of these functions a candidate.

To complete the description of the structure of our evolving poker player a population of solutions is maintained. In fact, a hypercube of solutions is maintained. The hypercube is segmented into two dimensions. The first dimension represents the position of the player. That is, the position of the player at the table; early middle or late. The position has been shown to be important as at different positions your betting strategy may be different depending on what has happened already in that betting round.

The second dimension of the hypercube is classified as risk management. This is divided into four divisions which represent how many bets there are to call. Risk management is included as if there are zero bets to call you have a better chance of winning than if all (4) your opponents have called as they all think they have a chance of winning the pot.

Each element of the hypercube has a population of N candidates in it, which represent the functions defined above. That is, each candidate is represented by seven real values in the range [0..1]; two each for the constants in the fold and raise function and three for the constants in the call function. It is these values that evolve over time using an evolutionary strategy.

The poker player, at a given point in the game, selects the element in the hypercube that describes its position and risk management. One candidate from the population stored in that element is chosen (in a cyclic manner) to decide on the action of the poker player. Once the outcome of the hand is known, feedback is given to the chosen candidate.

Evolution of the population occurs when each candidate has been used a certain number of times. Barone uses a (1+1) strategy with mutation occurring on all seven values of each candidate. He uses a mean of zero and a pre-selected (which, frustratingly, he does not specify!) standard deviation.

The results in Barone’s paper shows that using the model described above he is able to evolve a poker player that is able to adapt to the playing styles of different players.

3.2 The Six Hump Camelback Problem

The six hump camelback function, is as follows

z = [4 - 2.1x2 + x4 / 3] x2 + xy + [-4 + 4y2]y2
x lies between (3 and y lies between (2

The aim is to minimise z. For your information, though you should not use this information in your program, the global minimum at x = -0.0898 and y = 0.7126 which results in z = -1.0316.

In the lectures, a simple implementation was shown which demonstrated how an evolutionary algorithm could be coded. There are many refinements we could try to this. For example

· We need to ensure that x and y stay within their boundaries.

· Should we use a single candidate for each value or should we have a population of vectors?

· What sort of evolutionary scheme should we use; ((+ () or ((, (); and what values should we give (and (?

· Can we achieve better results using the “1/5 scheme”?

· Can we achieve better results if we mutate the standard deviation parameter in the same way we mutate the real valued vectors.

4. Have a Go!

If you want something to do in the long winter months(!), how about developing an agent that learns how to play Blackjack. A simplified version of the game can be stated as follows.

Blackjack is a two player game comprising of a dealer and a player. The dealer deals two cards (from a normal pack(s) of 52 cards) to the player and one card to himself. All cards are dealt face up. All cards take their face value, except Jack, Queen and King which count as 10 and Aces which can count as one or eleven.

The aim for the player is to draw as many cards as he/she wishes (zero if they wish) in order to get as close as possible to 21 without exceeding 21.

There are known good strategies for playing blackjack which reduce the advantage to the casino to the lowest levels in a casino. The seminal work for this system is (Thorp, 1966). Thorp’s method (known as basic strategy) outlines what to do for every possible pair of cards you receive and based on what the dealers “up card” is. As you receive more cards, basic strategy also tells you what to do as your count approaches twenty one and how you should treat aces.

There is also the concept of doubling down (being able to double your stake at certain times and only receive one more card), and splitting (when you get two cards of the same value, splitting them and playing two hands).

The rules for doubling down differ from casino to casino. For example, some casino’s only allow you to double your stake when you have 9, 10 or 11 with the first two cards. Other casinos allow you to double down on the first two cards, whatever their value.

The rules for splitting also differs from casino to casino. Some casinos will allow you to split any two cards that are the same. In UK casino’s you are not allowed to split 4’s, 5’s or 10’s. In fact, you should never split these cards anyway and it is the gaming board that applies these rules. The casino’s would love you to split 4’s , 5’s and 10’s.

Aces are a special case of splitting. In some casinos, you can split aces but then you only receive one more card on each ace and, if you receive a ten, it does not count as a blackjack – only as 21.

If you split two cards, you may, or may not be able to split again if you get another pair. Again, this is a casino dependent rule. And you may or may not be able to double down after splitting.

If you are going to develop an agent that learns the rules of blackjack you should be sure that you specify the rules exactly and, ideally, make it so that a new set of rules can be learnt, without having to re-write the program.

If you take a look at http://www.blackjackinfo.com/ you will find a “blackjack engine” that allows you to enter the rules in force at the casino of your choice and you will be returned the “basic strategy” for that set of rules. If you did write an agent that learnt how to play blackjack, it would be interesting to see how well it learns the basic strategy.

How might we develop a blackjack agent that learns how to play blackjack?

Maybe we could identify each possible situation. For example, how many potential hands can we get – taking into account the role of the ace (being one or eleven), doubling down and splitting? We could then assign each of these hands a random probability as to what to do (stand, hit, double down, split etc.). The agent could be given the task of learning these probabilities by playing many (millions?) of hands of blackjack. You might decide to simplify the rules (e.g. not allow doubling down or splitting to make the implementation easier and more efficient (as there are not so many hands to consider).

We could measure the success of our agent by seeing how well it plays (how much it wins or loses0 and also compare the final probabilities against the basic strategy.

This is just one idea. You might have your own ideas as to how this problem could be solved using an evolutionary strategy. Here are some questions you might like to think about.

· Do you think this would work the method I have outlined would work?

· Should we use a single candidate for each probability or should we have a population greater than one? What sort of evolutionary scheme should we use; ((+ () or ((, (); and what values should we give (and (?

· Can you come up with a better representation; other than trying to learn probabilities?

5. Parting Comments

I said at the start of this handout that evolutionary algorithms can be used as search methods as well as a learning mechanism. I just want to emphasise this at the end of the handout. The case study we looked was definitely an evolving mechanism but these same techniques can be used to conduct searches over complex landscapes.

6. Generating Random Numbers with a Normal Distribution

Here is an algorithm that will generate random numbers with a normal distribution having a mean of zero and a standard deviation of one.

#include <stdlib.h>

#include <math.h>

double gaussrand(double sigma) // sigma should probably default to 1

{

static double V1, V2, S;

static int phase = 0;

double X;

if(phase == 0) {

do {

double U1 = (double)rand() / RAND_MAX;

double U2 = (double)rand() / RAND_MAX;

V1 = 2 * U1 - 1;

V2 = 2 * U2 - 1;

S = V1 * V1 + V2 * V2;

} while(S >= 1 || S == 0);

X = V1 * sqrt(-2 * log(S) / S);

} else

X = V2 * sqrt(-2 * log(S) / S);

phase = 1 - phase;

return X * sigma;

}

More information can be found in (Press, 1996).

References

1. Bäck, T., Hoffmeister, F. and Schwefel, H-P. (1991). A Survey of Evolution Strategies. Proceedings of the Fourth Conference on Genetic Algorithms (eds Belew, R. and Booker, L.), Morgan Kaufmann Publishers, San Mateo, CA, pp 2-9.

2. Bäck, T., Fogel, D. and Michalewicz, Z. (eds in chief) (1997). Handbook of Evolutionary Computation. Oxford University Press, ISBN 0-7503-0392-1.

3. Barone, L. and While, L. An Adaptive Learning Model for Simplified Poker Using Evolutionary Algorithms. In Proceedings of 1999 Congress on Evolutionary Computation (CEC ’99), 6-9 July 1999, Washington DC, pp 153-160

4. Fogel, D. B. (1994) IEEE Transactions on Neural Networks, Vol 5:1, pp3-14

5. Fogel, D.B. (1998) Evolutionary Computation The Fossil Record, IEEE Press, ISBN 0-7803-3481-7, pp 3-14

6. Fogel, D.B. (2000) Evolutionary Computation : Toward a New Philosphy of Machine Intelligence, 2nd Ed., IEEE Press Marketing, ISBN 0-7803-5379-X

7. Herdy, M. (1991). Application of the Evolution Strategy to Discrete Optimization Problems. Proceedings of the First International Conference on Parallel Problem Solving from Nature (PPSN), Lecture Notes in Computer Science (eds Schwefel, H-P and Männer, R), Springer-Verlag, Vol. 496, pp 188-192

8. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, ISBN 3-540-60676-9

9. Michalewicz, Z. and Fogel, D. (2000). How to Solve It : Modern Heuristics. Springer-Verlag, ISBN 3-540-66061-5

10. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1996). Numerical Recipes in C, 2nd ed., Cambridge University Press, ISBN 0-521-43108-5

11. Schwefel, H.P. (1965) Kybernetische evolution als strategie der experimentellen forschung der strmungstechink, Diploma thesis, Technical Univ. of Berlin.

12. Schwefel, H. P. (1981) Numerical Optimization for Computer Models. John Wiley, Chichester, UK.

13. Thorp, E. Beat the Dealer. 1966.

D:\My Documents\Training & Courses\Lecture Courses\G5BAIM\Nott Handouts\012 Evolutionary Strategies.doc
Graham Kendall - 03/04/00 - Page 4 of 7

