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Question 1 
 
The development of operating systems can be seen to be closely associated with the 
development of computer hardware. 
Describe the main developments of operating systems that occurred at each computer 
generation. 
 

(17 Marks) 
 
George 2+ and George 3 were mainframe operating systems used on ICL mainframes. 
What are the main differences between the two operating systems? 
 

(8 Marks) 
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Question 2 
 
With regard to process synchronisation describe what is meant by race conditions? 
 

(5 Marks) 
 
Describe two methods that allow mutual exclusion with busy waiting to be implemented. 
Ensure you state any problems with the methods you describe. 
 

(10 Marks) 
 
Describe an approach of mutual exclusion that does not require busy waiting. 
 

(10 Marks) 
 

Operating Systems (G53OPS) - Examination 

Graham Kendall 

 
Question 3 
 
What is meant by pre-emptive scheduling? 
 

(3 marks) 
 
Describe the following scheduling algorithms 
• Non-preemptive, First Come First Served (FCFS) 
• Round Robin (RR) 
• Multilevel Feedback Queue Scheduling 
 
How can RR be made to mimic FCFS? 
 

(15 marks) 
 
The Shortest Job First (SJF) scheduling algorithm can be proven to produce the minimum 
average waiting time. 
However, it is impossible to know the burst time of a process before it runs. Suggest a 
way that the burst time can be estimated. 
 

(7 marks) 
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Question 4 
 
Intuitively, an operating systems that allows multiprogramming provides better CPU 
utilisation than a monoprogramming operating system. However, there are benefits in a 
monoprogramming operating system. Describe these benefits. 
 

(7 marks) 
 
We can demonstrate, using a model, that multiprogramming does provide better CPU 
utilisation. Describe such a model. 
Use the model to show how we can predict CPU utilisation when we add extra memory. 
 
Graph paper is supplied for this question, should you need it. 
 

(18 marks) 
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Question 5 
 
The buddy system is a memory management scheme that uses variable sized partitions. 
 
Explain the basic principle behind the buddy system. 
 
Assume a computer with a memory size of 256K, initially empty. Requests are received 
for blocks of memory of 5K, 25K, 35K and 20K. Show how the buddy system would 
deal with each request, showing the memory layout at each stage. 
 
After allocating all the processes, what would be the effect of the 25K process 
terminating and returning its memory? 
 

(17 marks) 
 
 
Describe and evaluate an alternative to the buddy system 
 

(8 marks) 

Operating Systems (G53OPS) - Examination 

Graham Kendall 

 
Question 6 
 
 
Describe two file system implementations that use linked lists. Describe the advantages 
and disadvantages of each method. 
 

(12 marks) 
 
Describe the I-node method of implementing a file system. 
 

(8 marks) 
 
It has been suggested that the first part of each UNIX file be kept in the same disk block 
as its I-node. What, if any, would be the advantage of doing this? 
 

(5 marks) 
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Question 1 – Model Answer 
 
For the first part of this question I would expect the student to describe the four 
generations of computers. The student should be able to describe the main operating 
system developments in the context of these generations. 
 

First Generation (1945-1955) 
Like many developments, the first digital computer was developed due to the motivation of war. 
During the second world war many people were developing automatic calculating machines (many 
examples were described in the course handouts) 
 
These first computers filled entire rooms with thousands of vacuum tubes. Like the analytical 
engine of Babbage they did not have an operating system, they did not even have programming 
languages and programmers had to physically wire the computer to carry out their intended 
instructions. The programmers also had to book time on the computer dedicated use of the 
machine was required 
 
Second Generation (1955-1965) 
Vacuum tubes proved very unreliable and a programmer, wishing to run his program, could quite 
easily spend all his/her time searching for and replacing tubes that had blown. The mid fifties saw 
the development of the transistor which, as well as being smaller than vacuum tubes, were much 
more reliable. 
It now became feasible to manufacture computers that could be sold to customers willing to part 
with their money. Of course, the only people who could afford computers were large organisations 
who needed large air conditioned rooms in which to place them. 
Now, instead of programmers booking time on the machine, the computers were under the control 
of computer operators. Programs were submitted on punched cards that were placed onto a 
magnetic tape. This tape was given to the operators who ran the job through the computer and 
delivered the output to the programmer. 
 
As computers were so expensive methods were developed that allowed the computer to be as 
productive as possible. One method of doing this (which is still in use today) is the concept of a 
batch job. Instead of submitting one job at a time, many jobs were placed onto a single tape and 
these were processed one after another by the computer. The ability to do this can be seen as the 
first real operating system (although, in the lectures it was stated that one view of an operating 
system is seen as abstracting away the complexity of the hardware). 
 
Third Generation (1965-1980) 
The third generation of computers is characterised by the use of Integrated Circuits as a 
replacement for transistors. This allowed computer manufacturers to build systems that users 
could upgrade as necessary. IBM, at this time introduced its System/360 range and ICL introduced 
its 1900 range. 
 
Up until this time, computers were single tasking. The third generation saw the start of 
multiprogramming. That is, the computer could give the illusion of running more than one task at 
a time. Being able to do this allowed the CPU to be used much more effectively. When one job 
had to wait for an I/O request, another program could use the CPU. 
The concept of multiprogramming led to a need for a more complex operating system. One was 
now needed that could schedule tasks and deal with all the problems that this brings (which we 
will be looking at in some detail later in the course). 
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In implementing multiprogramming, the system was confined by the amount of physical memory 
that was available (unlike today where we have the concept of virtual memory). 
 
Another feature of third generation machines was that they implemented spooling. This allowed 
reading of punch cards onto disc as soon as they were brought into the computer room. This 
eliminated the need to store the jobs on tape, with all the problems this brings. 
Similarly, the output from jobs could also be stored to disc, thus allowing programs that produced 
output to run at the speed of the disc, and not the printer. 
 
Although, compared to first and second generation machines, third generation machines were far 
superior but they did have a downside. Up until this point programmers were used to giving their 
job to an operator (in the case of second generation machines) and watching it run (often through 
the computer room door – which the operator kept closed but allowed the programmers to press 
their nose up against the glass). The turnaround of the jobs was fairly fast. 
Now, this changed. With the introduction of batch processing the turnaround could be hours if not 
days. 
This problem led to the concept of time sharing. This allowed programmers to access the 
computer from a terminal and work in an interactive manner. 
 
Obviously, with the advent of multiprogramming, spooling and time sharing, operating systems 
had to become a lot more complex in order to deal with all these issues. 
 
Fourth Generation (1980-present) 
The late seventies saw the development of Large Scale Integration (LSI). This led directly to the 
development of the personal computer (PC). These computers were (originally) designed to be 
single user, highly interactive and provide graphics capability. 
One of the requirements for the original PC produced by IBM was an operating system and, in 
what is probably regarded as the deal of the century, Bill Gates supplied MS-DOS on which he 
built his fortune. 
In addition, mainly on non-Intel processors, the UNIX operating system was being used. 
 
It is still (largely) true today that there are mainframe operating systems (such as VME which runs 
on ICL mainframes) and PC operating systems (such as MS-Windows and UNIX), although the 
edges are starting to blur. For example, you can run a version of UNIX on ICL’s mainframes and, 
similarly, ICL were planning to make a version of VME that could be run on a PC. 

 
For the second part of the question I would expect the student to compare G2+ and G3. 
The notes below show some of the main comparisons. I would not expect the student to 
go into as much detail but I will be looking for these key points 
 
• G2+ is not an operating system as such. It is really just a scheduler that runs on top of 

the true operating system (called manual executive). 
• It allows many programs to be run in a single job. 
• There was a JCL (Job Control Language) 
• The scheduling algorithm could be adjusted by the operator (e.g. run an important job 

first) 
• The operators are still responsible for running individual jobs 
 
• The G3 operating system allows the operators to be in control of the machine. They 

are no longer responsible (as a general rule) for individual jobs. 
• Jobs could be submitted from interactive terminals. 
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• Development staff could submit jobs and also run jobs interactively 
• There was the concept of filestore where the operating system placed files in a 

general disc area and also used magnetic tape to extend the amount of space 
available. 

 
GEORGE (GEneral ORGanisational Environment) was an operating system for ICL mainframe 
computers. The first version was called George 1 (G1). G2 and G2+ quickly followed. 
The idea behind G1/2/2+ was that it ran on top of the operating system. So it was not an operating 
system as such (in the same way that Windows 3.1 is not a true operating system as it is only a 
GUI that runs on top of DOS). 
What G2+ (we’ll ignore the previous versions) allowed you to do was submit jobs to the machine 
and then G2+ would schedule those jobs and run process them accordingly. Some of the features 
of G2+ included. 
• It allowed you to batch many programs into a single job. For example, you could run a 

program that extracted data from a masterfile, run a sort and then run a print program to print 
the results. Under manual exec you would need to run each program manually. 
It was not unusual to have a typical job process twenty or thirty separate programs. 

• You could write parameterised macros (or JCL – Job Control Language) so that you could 
automate tasks. 

• You could provide parameters at the time you submitted the job so that the jobs could run 
without user intervention. 

• You could submit many jobs at the same time so that G2+ would run them one after another. 
• You could adjust the scheduling algorithm (via the operators console) so that an important job 

could be run next – rather than waiting for all the jobs in the input queue to be complete. 
• You could inform G2+ of the requirements of each job so that it would not run (say) two jobs 

which both required four tape decks when the computer only had six tape decks. 
 
Under G2+, the operators still looked after individual jobs (albeit, they now consisted of several 
programs). 
 
When ICL released George 3 (G3) and later G4, all this changed. The operators no longer looked 
after individual jobs. Instead they looked after the system as a whole. 
Jobs could now be submitted via interactive terminals. Whereas the operators used to submit the 
jobs, this role was typically carried out by a dedicated scheduling team who would set up the 
workload that had to be run over night, and would set up dependencies between the jobs. 
In addition, development staff would be able to issue their own batch jobs and also runs jobs in an 
interactive environment. 
If there were any problems with any of the jobs, the output would either go to the development 
staff or to the technical support staff where the problem would be resolved and the job 
resubmitted. 
 
Operators, under this type of operating system were, in some peoples opinion little more than 
“tape monkeys”, although the amount of technical knowledge held by the operators varied greatly 
from site to site. 
 
In addition to G3 being an operating system in its own right G3 also had the following features 
To use the machine you had to run the job in a user. This is a widely used concept today but was 
not a requirement of G2+. 
• The Job Control Language (JCL) was much more extensive than that of G2+. 
• It allowed interactive sessions 
• It had a concept of filestore. When you created a file you had no idea where it was stored. G3 

simply placed it in filestore. This was a vast amount of disc space used to store files. In fact 
the filestore was virtual in that some of it was on tape. What files were placed on tape was 
controlled by G3. For example, you could set the parameters so that files over a certain size or 
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files that had not been used for a certain length of time were more likely to be placed onto 
tape. If your job requested a file that was in filestore but had been copied to tape the operator 
would be asked to load that tape. The operator had no idea what file was being requested or 
who it was for (although they could find out). G3 simply asked for a TSN (Tape Serial 
Number) to be loaded. 

• The operators ran the system, rather than individual jobs. 
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Question 2 – Model Answer 
 
Part 1 
 

It is sometimes necessary for two processes to communicate with one another. This can either be 
done via shared memory or via a file on disc. It does not really matter. 
We are not discussing the situation where a process can write some data to a file that is read by 
another process at a later time (maybe days, weeks or even months). We are talking about two 
processes that need to communicate at the time they are running. 
Take, as an example, one type of process (i.e. there could be more than one process of this type 
running) that checks a counter when it starts running. If the counter is at a certain value, say x, 
then the process terminates as only x copies of the process are allowed to run at any one time. 
This is how it works 
• The process starts 
• The counter, i, is read from the shared memory 
• If the i = x the process terminates else i = i + 1 
• x is written back to the shared memory 
 
Sounds okay. But consider this scenario 
 
• Process 1, P1, starts 
• P1 reads the counter, i1, from the shared memory. Assume i1 = 3 (that is three processes of 

this type are already running) 
• P1 gets interrupted and is placed in a ready state 
• Process 2, P2, starts 
• P2 reads the counter, i2, from the shared memory; i2 = 3 
• Assume i2 < x so i2 = i2 +1 (i.e. 4) 
• i2 is written back to shared memory 
• P2 is moved to a ready state and P1 goes into a running state 
• Assume i1 < x so i1 = i1 +1 (i.e. 4) 
• i1 is written back to the shared memory 
 
We now have the situation where we have five processes running but the counter is only set to 
four 
 
This problem is known as a race condition. 

 
Part 2 
 
All the methods below implement mutual exclusion with busy waiting. The student only 
has to describe two methods, with associated problems. 
As well as any problems with the individual implementations I would also expect the 
student to give two problems with busy waiting in general 
• It wastes CPU resources by sitting in a tight loop waiting for an event to happen. 
• You could have the priority inversion problem, whereby a high priority job can be 

stopped entering its critical section by a lower priority job that is unable to run. 
 

One way to avoid race conditions is not to allow two processes to be in their critical sections at the 
same time (by critical section we mean the part of the process that accesses a shared variable). 
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That is, we need a mechanism of mutual exclusion. Some way of ensuring that one processes, 
whilst using the shared variable, does not allow another process to access that variable. 
 
Disabling Interrupts 
Perhaps the most obvious way of achieving mutual exclusion is to allow a process to disable 
interrupts before it enters its critical section and then enable interrupts after it leaves its critical 
section. 
By disabling interrupts the CPU will be unable to switch processes. This guarantees that the 
process can use the shared variable without another process accessing it. 
But, disabling interrupts, is a major undertaking. At best, the computer will not be able to service 
interrupts for, maybe, a long time (who knows what a process is doing in its critical section?). At 
worst, the process may never enable interrupts, thus (effectively) crashing the computer. 
Although disabling interrupts might seem a good solution its disadvantages far outweigh the 
advantages. 
 
Lock Variables 
Another method, which is obviously flawed, is to assign a lock variable. This is set to (say) 1 
when a process is in its critical section and reset to zero when a processes exits its critical section. 
It does not take a great leap of intuition to realise that this simply moves the problem from the 
shared variable to the lock variable. 
 
Strict Alternation 

Process 0 Process 1 
While (TRUE) { 
 while (turn != 0); // wait 
 critical_section(); 
 turn = 1; 
 noncritical_section(); 
} 

While (TRUE) { 
 while (turn != 1); // wait 
 critical_section(); 
 turn = 0; 
 noncritical_section(); 
} 

 
These code fragments offer a solution to the mutual exclusion problem. 
Assume the variable turn is initially set to zero. 
Process 0 is allowed to run. It finds that turn is zero and is allowed to enter its critical region. If 
process 1 tries to run, it will also find that turn is zero and will have to wait (the while statement) 
until turn becomes equal to 1. 
When process 0 exits its critical region it sets turn to 1, which allows process 1 to enter its critical 
region. 
If process 0 tries to enter its critical region again it will be blocked as turn is no longer zero. 
However, there is one major flaw in this approach. Consider this sequence of events. 
• Process 0 runs, enters its critical section and exits; setting turn to 1. Process 0 is now in its 

non-critical section. Assume this non-critical procedure takes a long time. 
• Process 1, which is a much faster process, now runs and once it has left its critical section 

turn is set to zero. 
• Process 1 executes its non-critical section very quickly and returns to the top of the 

procedure. 
• The situation is now that process 0 is in its non-critical section and process 1 is waiting for 

turn to be set to zero. In fact, there is no reason why process 1 cannot enter its critical 
region as process 0 is not in its critical region. 

 
What we can see here is violation of one of the conditions that we listed above (number 3). That 
is, a process, not in its critical section, is blocking another process. 
If you work through a few iterations of this solution you will see that the processes must enter 
their critical sections in turn; thus this solution is called strict alternation. 
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Peterson’s Solution 
A solution to the mutual exclusion problem that does not require strict alternation, but still uses the 
idea of lock (and warning) variables together with the concept of taking turns is described in 
(Dijkstra, 1965). In fact the original idea came from a Dutch mathematician (T. Dekker). This was 
the first time the mutual exclusion problem had been solved using a software solution. 
(Peterson, 1981), came up with a much simpler solution. 
 
The solution consists of two procedures, shown here in a C style syntax. 
 
int No_Of_Processes; // Number of processes 
int turn; // Whose turn is it? 
int interested[No_Of_Processes]; // All values initially FALSE 
 
void enter_region(int process) { 
 int other; // number of the other process 
 
 other = 1 – process; // the opposite process 
 interested[process] = TRUE; // this process is interested 
 turn = process; // set flag 
 while(turn == process && interested[other] == TRUE); // 
wait 
} 
 
void leave_region(int process) { 
 interested[process] = FALSE; // process leaves critical 
region 
} 
 
A process that is about to enter its critical region has to call enter_region. At the end of its critical 
region it calls leave_region. 
Initially, both processes are not in their critical region and the array interested has all (both in the 
above example) its elements set to false. 
Assume that process 0 calls enter_region. The variable other is set to one (the other process 
number) and it indicates its interest by setting the relevant element of interested. Next it sets the 
turn variable, before coming across the while loop. In this instance, the process will be allowed to 
enter its critical region, as process 1 is not interested in running. 
 
Now process 1 could call enter_region. It will be forced to wait as the other process (0) is still 
interested. Process 1 will only be allowed to continue when interested[0] is set to false which can 
only come about from process 0 calling leave_region. 
 
If we ever arrive at the situation where both processes call enter region at the same time, one of the 
processes will set the turn variable, but it will be immediately overwritten. 
Assume that process 0 sets turn to zero and then process 1 immediately sets it to 1. Under these 
conditions process 0 will be allowed to enter its critical region and process 1 will be forced to 
wait. 
 
Test and Set Lock (TSL) 
If we are given assistance by the instruction set of the processor we can implement a solution to 
the mutual exclusion problem. The instruction we require is called test and set lock (TSL). This 
instructions reads the contents of a memory location, stores it in a register and then stores a non-
zero value at the address. This operation is guaranteed to be indivisible. That is, no other process 
can access that memory location until the TSL instruction has finished. 
 
This assembly (like) code shows how we can make use of the TSL instruction to solve the mutual 
exclusion problem. 
 
enter_region: 

Operating Systems (G53OPS) - Examination 

Graham Kendall 

 tsl register, flag ; copy flag to register and set flag to 1 
 cmp register, #0 ;was flag zero? 
 jnz enter_region ;if flag was non zero, lock was set , so loop 
 ret  ;return (and enter critical region) 
 
leave_region: 
 mov flag, #0 ; store zero in flag 
 ret  ;return 
 
Assume, again, two processes. 
Process 0 calls enter_region. The tsl instruction copies the flag to a register and sets it to a non-
zero value. The flag is now compared to zero (cmp - compare) and if found to be non-zero (jnz – 
jump if non-zero) the routine loops back to the top. Only when process 1 has set the flag to zero 
(or under initial conditions), by calling leave_region, will process 0 be allowed to continue. 
 
 
 

Part 3 
 
For this part of the question I would expect the student to describe a “sleep/wakeup” 
algorithm, which was the method described in the lectures. 
I will also give marks for describing semaphores (as defined by Dijkstra). 
 
I would not expect the student to go into the detail below, this just shows the material 
covered in the lectures. 
 

In this section, instead of a process doing a busy waiting we will look at procedures that send the 
process to sleep. In reality, it is placed in a blocked state. The important point is that it is not using 
the CPU by sitting in a tight loop. 
To implement a sleep and wakeup system we need access to two system calls (SLEEP and 
WAKEUP). These can be implemented in a number of ways. One method is for SLEEP to simply 
block the calling process and for WAKEUP to have one parameter; that is the process it has to 
wakeup. 
An alternative is for both calls to have one parameter, this being a memory address which is used 
to match the SLEEP and WAKEUP calls. 
 
The Producer-Consumer Problem 
To implement a solution to the problem using SLEEP/WAKEUP we need to maintain a variable, 
count, that keeps track of the number of items in the buffer 
The producer will check count against n (maximum items in the buffer). If count = n then the 
producer sends itself the sleep. Otherwise it adds the item to the buffer and increments n. 
Similarly, when the consumer retrieves an item from the buffer, it first checks if n is zero. If it is it 
sends itself to sleep. Otherwise it removes an item from the buffer and decrements count. 
 
The calls to WAKEUP occur under the following conditions. 
• Once the producer has added an item to the buffer, and incremented count, it checks to see if 

count = 1 (i.e. the buffer was empty before). If it is, it wakes up the consumer. 
• Once the consumer has removed an item from the buffer, it decrements count. Now it checks 

count to see if it equals n-1 (i.e. the buffer was full). If it does it wakes up the producer. 
 
Here is the producer and consumer code. 
 
int BUFFER_SIZE = 100; 
int count = 0; 
 
void producer(void) { 
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int item; 
while(TRUE) { 
produce_item(&item); // generate next item 
if(count == BUFFER_SIZE) sleep (); // if buffer full, go to sleep 
enter_item(item); // put item in buffer 
count++; // increment count 
if(count == 1) wakeup(consumer); // was buffer empty? 
} 
} 
 
void consumer(void) { 
int item; 
while(TRUE) { 
if(count == 0) sleep (); // if buffer is empty, sleep 
remove_item(&item); // remove item from buffer 
count--; // decrement count 
if(count == BUFFER_SIZE - 1) wakeup(producer); // was buffer full? 
consume_item(&item); // print item 
} 
} 
 
This seems logically correct but we have the problem of race conditions with count. 
The following situation could arise. 
• The buffer is empty and the consumer has just read count to see if it is equal to zero. 
• The scheduler stops running the consumer and starts running the producer. 
• The producer places an item in the buffer and increments count. 
• The producer checks to see if count is equal to one. Finding that it is, it assumes that it was 

previously zero which implies that the consumer is sleeping – so it sends a wakeup. 
• In fact, the consumer is not asleep so the call to wakeup is lost. 
• The consumer now runs – continuing from where it left off – it checks the value of count. 

Finding that it is zero it goes to sleep. As the wakeup call has already been issued the 
consumer will sleep forever. 

• Eventually the buffer will become full and the producer will send itself to sleep. 
• Both producer and consumer will sleep forever. 

 
One solution is to have a wakeup waiting bit that is turned on when a wakeup is sent to a process 
that is already awake. If a process goes to sleep, it first checks the wakeup bit. If set the bit will be 
turned off, but the process will not go to sleep. 
Whilst seeming a workable solution it suffers from the drawback that you need an ever increasing 
number wakeup bits to cater for larger number of processes. 
 
Semaphores 
In (Dijkstra, 1965) the suggestion was made that an integer variable be used that recorded how 
many wakeups had been saved. Dijkstra called this variable a semaphore. If it was equal to zero it 
indicated that no wakeup’s were saved. A positive value shows that one or more wakeup’s are 
pending. 
Now the sleep operation (which Dijkstra called DOWN) checks the semaphore to see if it is 
greater than zero. If it is, it decrements the value (using up a stored wakeup) and continues. If the 
semaphore is zero the process sleeps. 
The wakeup operation (which Dijkstra called UP) increments the value of the semaphore. If one or 
more processes were sleeping on that semaphore then one of the processes is chosen and allowed 
to complete its DOWN. 
Checking and updating the semaphore must be done as an atomic action to avoid race conditions. 
 
Here is an example of a series of Down and Up’s. We are assuming we have a semaphore called 
mutex (for mutual exclusion). It is initially set to 1. The subscript figure, in this example, 
represents the process, p, that is issuing the Down. 
 
Down1(mutex) // p1 enters critical section (mutex = 0) 
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Down2(mutex) // p2 sleeps (mutex = 0) 
Down3(mutex) // p3 sleeps (mutex = 0) 
Down4(mutex) // p4 sleeps (mutex = 0) 
Up(mutex) // mutex = 1 and chooses p3 
Down3(mutex) // p3 completes its down (mutex = 0) 
Up(mutex) // mutex = 1 and chooses p2 
Down2(mutex) // p2 completes its down (mutex = 0) 
Up(mutex) // mutex = 1 and chooses p2 
Down1(mutex) // p1 completes its down (mutex = 0) 
Up(mutex) // mutex = 1 and chooses p4 
Down4(mutex) // p4 completes its down (mutex = 0) 
 
From this example, you can see that we can use semaphores to ensure that only one process is in 
its critical section at any one time, i.e. the principle of mutual exclusion. 
 
We can also use semaphores to synchronise processes. For example, the produce and consume 
functions in the producer-consumer problem. Take a look at this program fragment. 
int BUFFER_SIZE = 100; 
typedef int semaphore; 
 
semaphore mutex = 1; 
semaphore empty = BUFFER_SIZE; 
semaphore full = 0; 
 
void producer(void) { 
int item; 
while(TRUE) { 
produce_item(&item); // generate next item 
down(&empty); // decrement empty count 
down(&mutex); // enter critical region 
enter_item(item); // put item in buffer 
up(&mutex); // leave critical region 
up(&full); // increment count of full slots 
} 
} 
 
void consumer(void) { 
int item; 
while(TRUE) { 
down(&full); // decrement full count 
down(&mutex); // enter critical region 
remove_item(&item); // remove item from buffer 
up(&mutex); // leave critical region 
up(&empty); // increment count of empty slots 
consume_item(&item); // print item 
} 
} 
 
The mutex semaphore (given the above example) should be self-explanatory. 
The empty and full semaphore provide a method of synchronising adding and removing items to 
the buffer. Each time an item is removed from the buffer a down is done on full. This decrements 
the semaphore and, should it reach zero the consumer will sleep until the producer adds another 
item. The consumer also does an up an empty. This is so that, should the producer try to add an 
item to a full buffer it will sleep (via the down on empty) until the consumer has removed an item. 
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Question 3 – Model Answer 
 
Part 1 
 
For this part of the question I am looking for a description of pre-emptive scheduling. 
Below, are the course notes about pre-emptive scheduling. Really, I am just looking for 
the last section of the notes that says pre-emptive scheduling allows the operating 
systems to decide when a process uses the CPU and when it should be stopped from 
running in favour of another process. 
 

A simple scheduling algorithm would allow the currently active process to run until it has 
completed. This would have several advantages 
• We would no longer have to concern ourselves with race conditions as we could be sure that 

one process could not interrupt another and update a shared variable. 
• Scheduling the next process to run would simply be a case of taking the highest priority job 

(or using some other algorithm, such as FIFO algorithm). 
 
Note : We could define completed as when a process decides to relinquish control of the CPU. The 
process may not have completed but it would only relinquish control when it was safe to do so 
(e.g. not in the middle of updating a shared variable). 
 
But the disadvantages of this approach far outweigh the advantages. 
• A rogue process may never relinquish control, effectively bringing the computer to a 

standstill. 
• Processes may hold the CPU too long, not allowing other applications to run. 
 
Therefore, it is usual for the scheduler to have the ability to decide which process can use the CPU 
and, once it has had its slice of time then it is placed into a ready state and the next process 
allowed to run. 
This type of scheduling is called preemptive scheduling. 
This disadvantage of this method is that we need to cater for race conditions as well as having the 
responsibility of scheduling the processes. 

 
Part 2 
 
Described below are the scheduling algorithms asked for in the question. I would not 
expect this much detail but I will be looking for a brief description of the algorithm and 
maybe an example of how it works along with a problem or a benefit with the algorithm. 
 
In order to make RR mimic FCFS an infinite quantum would need to be defined so that 
processes can execute to completion  
 
I will award four marks for each algorithm and three marks for the FCFS/RR part. 
 

First Come – First Served Scheduling (FCFS) 
An obvious scheduling algorithm is to execute the processes in the order they arrive and to execute 
them to completion. In fact, this simply implements a non-preemptive scheduling algorithm. 
It is an easy algorithm to implement. When a process becomes ready it is added to the tail of ready 
queue. This is achieved by adding the Process Control Block (PCB) to the queue. 
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When the CPU becomes free the process at the head of the queue is removed, moved to a running 
state and allowed to use the CPU until it is completed. 
The problem with FCFS is that the average waiting time can be long. Consider the following 
processes 
 

Process Burst Time 
P1 27 
P2 9 
P3 2 

 
P1 will start immediately, with a waiting time of 0 milliseconds (ms). P2 will have to wait 27ms. 
P3 will have to wait 36ms before starting. This gives us an average waiting time of 21ms (i.e. (0 + 
27 + 36) /3 ). 
 
Now consider if the processes had arrived in the order P2, P3, P1. The average waiting time would 
now be 6.6ms (i.e. (0 + 9 + 11) /3). 
This is obviously a big saving and all due to the fact the way the jobs arrived. It can be shown that 
FCFS is not generally minimal, with regard to average waiting time and this figure varies 
depending on the process burst times. 
The FCFS algorithm can also have other undesirable effects. A CPU bound job may make the I/O 
bound (once they have finished the I/O) wait for the processor. At this point the I/O devices are 
sitting idle. 
When the CPU bound job finally does some I/O, the mainly I/O processes use the CPU quickly 
and now the CPU sits idle waiting for the mainly CPU bound job to complete its I/O. 
Although this is a simplistic example, you can appreciate that FCFS can lead to I/O devices and 
the CPU both being idle for long periods. 

 
Round Robin Scheduling (RR) 
The processes to be run are held in a queue and the scheduler takes the first job off the front of the 
queue and assigns it to the CPU (so far the same as FCFS). 
In addition, there is a unit of time defined (called a quantum). Once the process has used up a 
quantum the process is preempted and a context switch occurs. The process which was using the 
processor is placed at the back of the ready queue and the process at the head of the queue is 
assigned to the CPU. 
Of course, instead of being preempted the process could complete before using its quantum. This 
would mean a new process could start earlier and the completed process would not be placed at 
the end of the queue (it would either finish completely or move to a blocked state whilst it waited 
for some interrupt, for example I/O). 
 
The average waiting time using RR can be quite long. Consider these processes (which we assume 
all arrive at time zero). 
 

Process Burst Time 
P1 24 
P2 3 
P3 3 

 
Assume a quantum of 4ms is being used. Process 1 will run first and will be preempted after 4ms. 
Next process 2 will run for 3ms, followed by process 3 (for 3ms) Following this process 1 will run 
to completion, taking five quantum. 
The waiting time is 17ms (process 2 had to wait 4ms, process 3 had to 7ms and process 1 had to 
wait 6ms), giving an average of 5.66ms. If we compare this to SJF, the average is only 3ms ( 9/3 ). 
 
But, the main concern with the RR algorithm is the length of the quantum. If it is too long then 
processes will never get preempted and we have the equivalent of FCFS. If we switch processes 
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after every ms then we make it appear as if every process has its own processor that runs at 1/n the 
speed of the actual processor. 
In fact, this ignores the effect of context switching. If the quantum is too small then the processor 
will spend large amounts of time context switching, and not processing data. 
Say, for example, we set the quantum to 5ms and it takes 5ms to execute a process switch then we 
are using half the CPU capability simply switching processes. 
A quantum of around 100ms is often used. 

 
Multilevel Feedback Queue Scheduling 
In multilevel queue scheduling we assign a process to a queue and it remains in that queue until 
the process is allowed access to the CPU. That is, processes do not move between queues. This is 
a reasonable scheme as batch processes do not suddenly change to an interactive process and vice 
versa. However, there may be instances when it is advantageous to move process between queues. 
Multilevel feedback queue scheduling allows us to do this. 
 
Consider processes with different CPU burst characteristics. If a process uses too much of the 
CPU it will be moved to a lower priority queue. This will leave I/O bound and (fast) interactive 
processes in the higher priority queue(s). 
 
Assume we have three queues (Q0, Q1 and Q2). Q0 is the highest priority queue and Q2 is the 
lowest priority queue. 
The scheduler first executes process in Q0 and only considers Q1 and Q2 when Q0 is empty. 
Whilst running processes in Q1, if a new process arrived in Q0, then the currently running process 
is preempted so that the Q0 process can be serviced. 
 
Any job arriving is put into Q0. When it runs, it does so with a quantum of 8ms (say). If the 
process does not complete, it is preempted and placed at the end of the Q1 queue. This queue (Q1) 
has a time quantum of 16ms associated with it. Any processes not finishing in this time are 
demoted to Q2, with these processes being executed on a FCFS basis. 
 
The above description means that any jobs that require less than 8ms of the CPU are serviced very 
quickly. Any processes that require between 8ms and 24ms are also serviced fairly quickly. Any 
jobs that need more than 24ms are executed with any spare CPU capacity once Q0 and Q1 
processes have been serviced. 
 
In implementing a multilevel feedback queue there are various parameters that define the 
scheduler. 
• The number of queues 
• The scheduling algorithm for each queue 
• The method used to demote processes to lower priority queues 
• The method used to promote processes to a higher priority queue (presumably by some form 

of aging) 
• The method used to determine which queue a process will enter 
 
If you are interested in scheduling algorithms then you might like to implement a multilevel 
feedback queue scheduling algorithm. Once implemented you can mimic any of the other 
scheduling algorithms we have discussed (e.g. by defining only one queue, with a suitable 
quantum and the RR algorithm we can generalise to the RR algorithm). 

 
Part 3 
 
The method described in the lectures is given below. 
 

The next CPU burst time can be estimated using the following formula 
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Tn+1 = atn + (1 – a)Tn 
 
Where 

a, 0 <= a <= 1 
Tn, stores the past history 
tn, contains the most recent information 

 
What this formula allows us to do is weight both the history of the burst times and the most recent 
burst time. The weight is controlled by a. 
If a = 0 then Tn+1 = Tn and recent history (the most recent burst time) has no effect. If a = 1 then 
the history has no effect and the guess is equal to the most recent burst time. 
 
A value of 0.5 for a is often used so that equal weight is given to recent and past history. 
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Question 4 – Model Answer 
 
Part 1 
 

It is easy to give advantages for a multiprogramming environment but this question specifically 
wants the student to consider the more simple monoprogramming environment. 
 
Some of the advantages described in the course are given below; although the student may suggest 
their own. 
 
1. We do not have to worry about race conditions 
2. The operating system does not have to concern itself with keeping separate processes in 

memory – with all the problems that this entails (e.g. ensuring processes do not overwrite 
another processes address space, having to swap processes to disc when physical memory is in 
short reply etc.) 

3. Scheduling is easy. We simply start a process and execute it to completion 
4. No CPU time is wasted on overheads associated with multiprogramming environments (e.g. 

context switching) 
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Part 2 
 

If we have five processes that use the processor twenty percent of the time (spending eighty percent 
doing I/O) then we should be able to achieve one hundred percent CPU utilisation. Of course, in 
reality, this will not happen as there may be times when all five processes are waiting for I/O. 
However, it seems reasonable that we will achieve better than twenty percent utilisation than we 
would achieve with monoprogramming. 
 
We can build a model from a probabilistic viewpoint. 
Assume that that a process spends p percent of its time waiting for I/O. With n processes in memory 
the probability that all n processes are waiting for I/O (meaning the CPU is idle) is pn. 
The CPU utilisation is then given by 
 
CPU Utlisation = 1 - pn 

 
 
The following graph shows this formula being used (the spreadsheet that produced this graph was 
available to the students from the web site for the course). 
 

 

It can be seen that with an I/O wait time of 20%, almost 100% CPU utilisation can be achieved with 
four processes. 
If the I/O wait time is 90% then with ten processes, we only achieve just above 60% utilisation. 
The important point is that, as we introduce more processes the CPU utilisation rises. 
 
The model is a little contrived as it assumes that all the processes are independent in that processes 
could be running at the same time. This (on a single processor machine) is obviously not possible. 
More complex models could be built using queuing theory but we can still use this simplistic model 
to make approximate predictions. 
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Assume a computer with one megabyte of memory. The operating system takes up 200K, leaving 
room for four 200K processes. If we have an I/O wait time of 80% then we will achieve just under 
60% CPU utilisation. 
If we add another megabyte, it allows us to run another five processes (nine in all). We can now 
achieve about 86% CPU utilisation. You might now consider adding another megabyte of memory, 
allowing fourteen processes to run. If we extend the above graph, we will find that the CPU 
utilisation will increase to about 96%. 
Adding the second megabyte allowed us to go from 59% to 86%. The third megabyte only took us 
from 86% to 96%. It is a commercial decision if the expense of the third megabyte is worth it. 
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Question 5 – Model Answer 
 
Part 1 
 

If we keep a list of holes (in memory) sorted by their size, we can make allocation to processes very 
fast as we only need to search down the list until we find a hole that is big enough. 
The problem is that when a process ends the maintenance of the list is complicated. In particular, 
merging adjacent holes is difficult as the entire list has to be searched in order to find its neighbours. 
 
The Buddy System is a memory allocation that works on the basis of using binary numbers as these 
are fast for computers to manipulate. 
 
Lists are maintained which stores lists of free memory blocks of sizes 1, 2, 4, 8,…, n, where n is the 
size of the memory (in bytes). This means that for a 256K memory we require 19 lists. 
If we assume we have 256K of memory and it is all unused then there will be one entry in the 256K 
list; and all other lists will be empty. 

 
 
After allocating the processes the memory will look like this 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

List No. Block Size Entries 
(Start Positions) 

1 1  
2 2  
3 4  
4 8  
5 16  
6 32  
7 64  
8 128  
9 256  
10 512  
11 1024 (1K)  
12 2048 (2K)  
13 4096 (4K)  
14 8192 (8K) 8192 

0K 

8K

16K 

32K 

64K 

128K 

160K 

192K 

256K 

5K Process 

25K 
Process 

20K 
Process 35K Process 
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15 16384 (16K) 16384 
16 32768 (32K) 163840 
17 65536 (64K) 12288 
18 131072 (128K)  
19 262144 (256K)  

 
 
The effect of the 25K process terminating is that the memory is occupies (32K) is added to the 32K 
free list. The memory cannot be merged at this point as the free memory next to it (its buddy) would 
only add up to 56K. It would need the returning of the 8K process to give 64K of memory to 
combine lists. 
 

Part 2 
 
Two alternatives were presented in the lectures. These were managing memory with bit maps and 
managing memory with linked lists. 
 
I would only expect a brief discussion of one of these methods. The notes below give sample 
answers; although I would not expect the student to go into as much detail (certainly for linked lists)  
– just explain the basic principle of one of the schemes. 
 
I would expect a brief evaluation with another scheme (probably the buddy system), giving an 
evaluation of the scheme they have chosen to describe. 
 
Memory Usage with Bit Maps 
Under this scheme the memory is divided into allocation units and each allocation unit has a 
corresponding bit in a bit map. If the bit is zero, the memory is free. If the bit in the bit map is one, 
then the memory is currently being used. 
This scheme can be shown as follows. 
 
 
 
 
 
 
 
 
 
 
 
The main decision with this scheme is the size of the allocation unit. The smaller the allocation unit, 
the larger the bit map has to be. But, if we choose a larger allocation unit, we could waste memory as 
we may not use all the space allocated in each allocation unit. 
 
The other problem with a bit map memory scheme is when we need to allocate memory to a process. 
Assume the allocation size is 4 bytes. If a process requests 256 bytes of memory, we must search the 
bit map for 64 consecutive zeroes. This is a slow operation and for this reason bit maps are not often 
used. 
 
Memory Usage with Linked Lists 
Free and allocated memory can be represented as a linked list. The memory shown above as a bit 
map can be represented as linked list as follows. 
 
 

1 0 0 0 1 1 1 0 1 

Allocation Units 

Bit Map 

P 0 1 H 1 3 P 4 3 H 7 1 P 8 1 
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Each entry in the list holds the following data 
• P or H : for Process or Hole 
• Starting segment address 
• The length of the memory segment 
• The next pointer is not shown but assumed to be present 
 
In the list above, processes follow holes and vice versa (with the exception of the start and the end of 
the list). But, it does not have to be this way. It is possible that two processes can be next to each 
other and we need to keep them as separate elements in the list so that if one process ends we only 
return the memory for that process. 
Consecutive holes, on the other hand, can always be merged into a single list entry. 
 
This leads to the following observations when we a process terminates and we return the memory. 
 
A terminating process can have four combinations of neighbours (we’ll ignore the start and the end 
of the list to simplify the discussion). 
If X is the terminating process the four combinations are 
 
 Before X terminates After X terminates 

 
 
• In the first option we simply have to replace the P by an H, other than that the list remains the 

same. 
• In the second option we merge two list entries into one and make the list one entry shorter. 
• Option three is effectively the same as option 2. 
• For the last option we merge three entries into one and the list becomes two entries shorter. 
 
In order to implement this scheme it is normally better to have a doubly linked list so that we have 
access to the previous entry. 
 
When we need to allocate memory, storing the list in segment address order allows us to implement 
various strategies. 
 
First Fit : This algorithm searches along the list looking for the first segment that is large 

enough to accommodate the process. The segment is then split into a hole and a process. This 
method is fast as the first available hole that is large enough to accommodate the process is 
used.  

Best Fit : Best fit searches the entire list and uses the smallest hole that is large enough to 
accommodate the process. The idea is that it is better not to split up a larger hole that might be 
needed later. 

Best fit is slower than first fit as it must search the entire list every time. It has also be shown that 
best fit performs worse than first fit as it tends to leave lots of small gaps. 

Worst Fit : As best fit leaves many small, useless holes it might be a good idea to always use 
the largest hole available. The idea is that splitting a large hole into two will leave a large 
enough hole to be useful. 
It has been shown that this algorithm is no very good either. 
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These three algorithms can all be speeded up if we maintain two lists; one for processes and one for 
holes. This allows the allocation of memory to a process to be speeded up as we only have to search 
the hole list. The downside is that list maintenance is complicated. If we allocate a hole to a process 
we have to move the list entry from one list to another. 
 
However, maintaining two lists allow us to introduce another optimisation. If we hold the hole list in 
size order (rather than segment address order) we can make the best fit algorithm stop as soon as it 
finds a hole that is large enough. In fact, first fit and best fit effectively become the same algorithm. 
 
The Quick Fit algorithm takes a different approach to those we have considered so far. Separate lists 
are maintained for some of the common memory sizes that are requested. For example, we could 
have a list for holes of 4K, a list for holes of size 8K etc. One list can be kept for large holes or holes 
which do not fit into any of the other lists. 
Quick fit allows a hole of the right size to be found very quickly, but it suffers in that there is even 
more list maintenance. 
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Question 6 – Model Answer 
 
Part 1 

 
The methods described in the lectures are shown below. 
 
The first uses part of the data block to store a pointer to another block (as shown below) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The advantages of this method include 
• Every block can be used, unlike a scheme that insists that every file is contiguous. 
• No space is lost due to external fragmentation (although there is fragmentation within the file, 

which can lead to performance issues). 
• The directory entry only has to store the first block. The rest of the file can be found from there. 
• The size of the file does not have to be known beforehand (unlike a contiguous file allocation 

scheme). 
• When more space is required for a file any block can be allocated (e.g. the first block on the free 

block list). 
The disadvantages of this method include 
• Random access is very slow (as it needs many disc reads to access a random point in the file). In 

fact, the implementation described above is really only useful for sequential access. 
• Space is lost within each block due to the pointer. This does not allow the number of bytes to be 

a power of two. This is not fatal, but does have an impact on performance. 
• Reliability could be a problem. It only needs one corrupt block pointer and the whole system 

might become corrupted (e.g. writing over a block that belongs to another file). 
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The second implementation is shown here. It mimics the two files shown above 

 
Physical Block Pointers 

0  
1 0 
2 14 
3  
4 12 
5  
6 9 
7  
8 0 
9 4 
10  
11 2 
12 1 
13  
14 8 

 
This method removes the pointers from the data block and places them in a table which is stored in 
memory. The advantages of this approach include 
• The entire block is available for data. 
• Random access can be implemented a lot more efficiently. Although the pointers still have to be 

followed these are now in main memory and are thus much faster. 
The main disadvantages is that the entire table must be in memory all the time. For a large disc (with 
a large number of blocks) this can lead to a large table having to be kept in memory. 
 

Part 2 
 
In describing an I-node I will be looking for the following points from the student. 
• An I-node is associated with each file. 
• The I-node is loaded into memory when the file is accessed. 
• It contains a list of file attributes such as date/time stamps, type of file, owners and permissions 
• The I-node contains fifteen pointers. 
• Twelve of these pointers are known as direct blocks and contain pointers to data blocks. If the 

file is small then, as all these pointers are in memory, access to the blocks making up the file 
will be fast. 

• The other three pointers are indirect pointers (single, double and triple). 
• It is common for the triple indirect pointers not to be needed (due to the maximum number of 

blocks available to a single file). 
 
As well as making the above points the student might also provide a diagram, as one was given in 
the lectures.  
 

Part 3 
 
Many UNIX files are short. If the entire file can be fitted into the same block as the I-node, then only 
one disc access would be needed to read the file instead of two. 
In addition, this method would have benefits for larger files as one less disc access would be 
required. 

File A starts 
here 

File B starts 
here 

Unused block 


